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Abstract: Air pollution is a rising environmental concern that has detrimental effects on human
health and the environment. Building environment and urban green space features play a crucial role
in the dispersion and accumulation of air pollutants. This study examines the impacts of building
environment and urban green space on air pollution levels in the highly urbanized city of Hong Kong,
focusing on their interaction effects and potential nonlinearity. For the analysis, this paper investigates
how building density, building height, building types, urban green space size, and number of urban
green space clusters, as well as their interplays, impact PM2.5 concentrations using high-resolution,
satellite-based PM2.5 grids coupled with spatial analysis techniques. The findings reveal that a unit
increase in the size of urban green space and the standard deviation of building height contribute
to a 0.0004 and a 0.0154 reduction in PM levels, respectively. In contrast, air pollution levels are
found to be positively associated with building density (0.1117), scatteredness of urban green space
(0.0003), and share of commercial buildings (1.0158). Moreover, it has been found that building
height presents a U-shape relationship with PM2.5 concentrations. Finally, the negative association
between the size of urban green space and air pollution levels tends to be enlarged in districts with
more low-rise buildings. This study conveys important building environment and urban green space
planning implications.

Keywords: air pollution; building environment; urban green space; interaction effects; multivariate
regression

1. Introduction

Urban air pollution has emerged as a pressing global issue, posing significant threats to
human health and the environment. The rapid urbanization and industrialization witnessed
in recent decades have led to a sharp increase in air pollutants, such as particulate matter
(PM), nitrogen dioxide (NO2), and volatile organic compounds (VOCs), in urban areas [1].
These pollutants not only contribute to health problems but also have adverse effects on
the climate and ecosystems [2,3]. For example, the World Health Organization (WHO)
estimates that around 4.2 million premature deaths occur annually due to exposure to
ambient air pollution, with most of these deaths occurring in low- and middle-income
countries [4]. Moreover, urban air pollution has been linked to a wide range of health
issues, including asthma, lung cancer, and heart disease [5]. In addition, air pollution also
contributes to climate change by altering the Earth’s energy balance, leading to global
warming and other environmental consequences [6]. Against this background, mitigating
urban air pollution has become a primary concern for urban planners, policymakers,
and researchers.

Recently, the roles of building environments and urban green spaces in air pollution
mitigation have gained considerable attention. Buildings, being central to urban landscapes,
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significantly impact air quality through their design, construction materials, ventilation
systems, and operation. At one level, Buildings emit pollutants through various processes,
such as combustion of fossil fuels for heating and cooling, construction activities, and
off-gassing of building materials [7,8]. Numerous efforts have been made to explore
how building operation and construction, as potential pollution sources, contribute to
air pollution emissions. For example, energy consumption in buildings, particularly for
heating, cooling, and lighting, is a major source of air pollution. The combustion of fossil
fuels, such as coal, oil, and natural gas, releases pollutants like PM, NOx, and SO2 into
the atmosphere [9]. Consequently, improving energy efficiency in buildings has become a
key strategy for reducing air pollution in urban areas. Strategies such as passive design,
green building materials, and renewable energy systems have been found to be effective in
reducing energy consumption [10]. In addition, building construction activities, including
material production, transportation, and on-site operations, contribute to air pollution
through dust emissions and exhaust from construction machinery [11]. Research has
suggested that adopting sustainable construction practices, such as minimizing construction
waste, using low-emission materials, and implementing dust control measures, can help
reduce pollution from construction activities [12].

At another level, building design and layout can significantly affect the dispersion
and concentration of pollutants in the surrounding environment [13–15]. Thanks to the
increasing availability of air quality concentration data, recent studies have started to
investigate the interplays between building structure features and ambient air quality,
focusing particularly on their dispersion and accumulation of air pollutants. The height of
buildings has been identified as a key factor influencing urban air pollution, but conflicting
results have been presented in the literature. On the one hand, some studies show that
higher buildings can create canyons that trap pollutants and hinder their dispersion,
resulting in increased pollutant concentrations at street level [16]. For example, a study
conducted in Hong Kong found that high-rise buildings can lead to elevated concentrations
of NO2 at street level due to reduced ventilation and limited air exchange within the street
canyons [17]. Similarly, a study in New York City revealed that tall buildings can create
localized pollution hotspots due to the increased concentrations of PM and NOx within
the canyons formed by the buildings [18]. On the other hand, another group of studies
argues that building height does not pose any significant impacts on urban air quality or
have mixed effects on air pollution dispersion [19,20]. This contradictory evidence may
be explained by the fact that low-rise buildings tend to reduce wind speed and make
air pollution dispersion more difficult, while when the building is too high, air pollution
will be generated along with increased wind speed. This posits a non-linear relationship
between building height and ambient air pollution, which still needs to be examined with
rigorous analyses.

The configuration of buildings, including their arrangement and spacing, also influ-
ences urban air pollution. The layout of buildings can affect the dispersion of pollutants
and the formation of microclimates within urban areas. Research has shown that compact
building configurations can lead to the accumulation of pollutants within urban areas.
Compact urban forms, characterized by high building densities and narrow street widths,
can restrict airflow and hinder the dispersion of pollutants, resulting in increased pollutant
concentrations. For instance, a study in Wuhan has revealed that areas with high building
densities experienced higher concentrations of PM2.5 compared with areas with lower
densities [21]. In contrast, dispersed building configurations with more open spaces and
larger setbacks between buildings can facilitate better ventilation and pollutant dispersion,
leading to lower pollutant concentrations. A study conducted in Singapore found that
residential areas with more dispersed building layouts had lower levels of PM and NO2
compared with areas with compact building configurations [22].

Apart from building environments, attention has also been paid to urban green spaces,
which provide a vital ecosystem service by absorbing and filtering air pollutants, thereby
improving air quality [23]. Urban green spaces, including parks, gardens, and green roofs,
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have been widely recognized for their potential to improve air quality and mitigate air
pollution in urban areas. The ability of green spaces to remove air pollutants can be
attributed to several mechanisms, such as deposition on plant surfaces, absorption by
stomata, and the breakdown of pollutants by microorganisms in the soil [24]. Previous
empirical studies have demonstrated that urban green spaces can effectively reduce the
concentration of PM, NO2, and other pollutants [25]. For instance, a study conducted
in Strasbourg, France, found that urban green spaces removed approximately 88 tons of
pollutants, including 56 tons of O3, 12 tons of PM10, 14 tons of NO2, and 6 tons of other
pollutants annually, providing significant benefits to air quality [26]. Similarly, a study
in Canada has estimated that urban forests removed approximately 16,500 metric tons
of air pollutants per year, with an associated health benefit of $227 million (CAD) [27].
However, the effectiveness of green spaces in mitigating air pollution depends largely on
various factors, such as the size, type, and spatial distribution of green spaces, as well as
the specific pollutant in question. Research has shown that larger green spaces with diverse
vegetation types tend to be more effective in pollutant removal than smaller, less diverse
spaces [28]. Additionally, certain plant species have been found to be more effective in
removing specific pollutants, suggesting that targeted planting strategies could enhance
the pollution removal capacity of green spaces [29].

While the aforementioned studies have assessed the impacts of building environment
and urban green space on air quality levels, there are still research gaps that remain unfilled.
One research gap is that few studies have empirically examined the interaction effects of
building environments and urban green spaces on urban air pollution, although some
simulation models detect mediating effects of urban green space on the building–pollution
relationship [30,31]. Another research gap is that previous studies have often focused on
the linear effects of building environments and urban green spaces on air quality, while
neglecting the potential non-linear relationships. In fact, previous studies have suggested
that air pollution level tends to be higher in places with either more low or tall buildings
compared with those with median average building height [32–34], positing a U-shape
relationship between building height and air pollution. That is, this relationship between
building height and air pollution level can be plotted as a U shape in a coordinate axis,
with the y-axis indicating the air pollution level and the x-axis showing building height.

In recognition of these research gaps, this study has the following three objectives:
(1) to investigate the interaction effects of urban green spaces and the building environment
on air pollution levels, using empirical approaches; (2) to explore the nonlinearity under-
lying the building–pollution nexus; and (3) to suggest practical implications regarding
building environment and urban green space planning for the improvements of urban air
quality. For the analysis, the impacts of building environments and urban green spaces on
urban air quality are examined, using multivariate regression models on satellite-based,
high-resolution PM2.5 data. Hong Kong is chosen as a case study for two reasons. Firstly,
because Hong Kong’s diverse urban landscapes create a favorable environment in which
to investigate how air quality is affected by building features, providing new insights
into environmental sustainability for other cities around the world. Secondly, Hong Kong
has abundant urban green spaces spread across the city, allowing us to better capture the
relationship between urban green spaces and urban air pollution. The novelty of this study
is threefold. First, compared with conventional studies that have been conducted based on
air quality data that were collected from air monitoring stations, the use of satellite-based
PM2.5 data in this study substantially extends the spatial scope of analysis. Second, this
study analyzes the effects of both urban green spaces and the building environment on air
quality within a single framework, and further highlights their interaction effects. Finally,
the non-linear relationship between building features and urban air quality is explored in
this study.
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2. Methods

In this study, a multivariate regression approach is adopted to examine the impacts of
building environment and urban green space features on urban air pollution. The main
hypothesis is that urban air quality can be seen as a function of urban green space and
building environment features, with other conditions being controlled. Specifically, the
baseline model is given as follows.

PMi = β1·GSi + β2·BEi + β3·Xi + εi (1)

where PMi is the PM2.5 concentration for grid cell i at year 2020; GSi is a vector of urban
green space indicators for grid cell i; BEi is a vector of building environment indicators for
grid cell i; Xi is a vector of control variables; β1, β2, and β3 are parameters to be estimated;
and εi is the error term.

Then, the quadratic terms of building environment features are further added to the
model to capture the non-linear relationship between the building environment and urban
air quality. All notations are identical as defined in Equation (1), and the model is specified
as follows.

PMi = β1·GSi + β2·BEi + β3·(BEi)
2 + β4·Xi + εi (2)

Finally, to examine the interaction effects of the building environment and urban green
spaces, interaction terms BEi·GSi, are introduced to the regression model. The model
specification is shown as follows, with all notations being identical to Equations (1) and (2).

PMi = β1·GSi + β2·BEi + β3·BEi·GSi + β4·Xi + εi (3)

For the analysis, two urban green space indicators are used, including the size of urban
green space (S_GS) and the number of urban green space clusters (N_GS). In addition, seven
building environment indicators are included, namely number of buildings (N_BULD),
dispersion degree of building distribution (DD_BULD), mean building area (M_BA), mean
building height (M_BH), standard deviation of building height (SD_BH), share of industrial
building GFA (SHR_I), and share of commercial building GFA (SHR_C). Finally, two control
variables, total road length (T_RL) and elevation (M_DEM), which are not categorized into
building environment and urban green space but have strong impacts on urban air quality,
are included.

The computational process of the building environment indicators of DD_BULD
and SD_BH is also worth mentioning. Specifically, the DD_BULD is estimated using the
following equation.

DD_BULDi =
σi
µi

=

√
∑n

j=1
(

DTCijc − DTCi
)

n
· 1
DTCi

(4)

where σi is the standard deviation of the distance of buildings to the grid center within grid
i; µi is the average of the distance of buildings to the block center within grid i; DTCijc is
the distance of building j to the grid center c within grid i; DTCi is the average distance of
buildings to the grid center within grid i; and n is the number of grids.

The SD_BH is calculated using the following equation.

SD_BHi =

√
∑n

j=1
(

BHij − BHi
)

n
(5)

where BHj is the building height of building j within grid i and BHi is the average building
height within grid i. All other notations are identical as defined in previous equations.
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3. Study Area and Data

The areas with buildings in the Hong Kong Special Administrative Region (HKSAR)
are selected as study areas for this study (Figure 1). Hong Kong, located on the southeastern
coast of China, is a vibrant and densely populated city known for its striking urban form
and unique geographical characteristics.
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Hong Kong’s spatial layout is shaped by its unique geographical features, including a
hilly terrain and a deep natural harbor. The city is divided into three main regions: Hong
Kong Island, Kowloon Peninsula, and the New Territories. Hong Kong Island, the heart of
the city, is characterized by steep slopes and a compact urban core. Kowloon Peninsula,
located to the north of Hong Kong Island, is relatively flat and densely populated. The
New Territories, comprising the northern part of the territory, are more rural and include a
mix of residential, agricultural, and conservation areas. Land use in Hong Kong is carefully
planned and regulated due to the limited availability of developable land. The government
has implemented a comprehensive land use zoning system, which designates specific areas
for different purposes, such as residential, commercial, industrial, and recreational. The
majority of the population resides in high-rise residential buildings, often clustered in
densely populated neighborhoods known as “towers in the park” developments. Commer-
cial activities are concentrated in the Central district and other major commercial centers,
while industrial zones are primarily located in the New Territories.

A cross-sectional dataset for 659 grids at the spatial resolution of 1 km × 1 km is
constructed for HKSAR in 2020 from various sources. The PM2.5 data are obtained from [35],
which is originally estimated from the satellite-based aerosol optical depth (AOD) and
ground-level observations. High-resolution PM2.5 grids have been widely adopted in recent
urban and transportation studies [36,37], partly confirming the validity of applying such
data to building environments and urban green space studies.

The urban green space data are extracted from high-resolution land use and land cover
(LULC) data, provided by Yang and Huang (2021) [38]. The LULC dataset contains nine
land use types: cropland, forest, shrub, grassland, water, snow/ice, barren, impervious,
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and wetland. Among these, five land use types (cropland, forest, shrub, grassland, and
wetland) are used to characterize urban green space features in this study. Specifically, two
commonly adopted urban green space indicators are tested. One is S_GS, which is defined
as the total area of urban green space within a grid. Another is N_GS, which refers to the
number of urban green space clusters.

Building environment data are collected from the Hong Kong Geodata Store provided
by the Land Department of the Government of Hong Kong Special Administrative Re-
gion [39]. In detail, a 3D model of all buildings in Hong Kong is provided in this dataset,
and we extract the information on building height, building location, building type, as well
as build area for each building using a spatial analysis tool, and then aggregate them at the
district level to calculate N_BULD, DD_BULD, M_BA, M_BH, SD_BH, SHR_I, and SHR_C,
respectively.

Finally, two control variables, T_RL and M_DEM, are collected from the Open Street
Map (OSM) [40] dataset and the USGS Earth Explorer [41], respectively, as traffic and
topological conditions are closely relevant to air pollution levels [42,43]. A detailed list of
variables and descriptive statistics are presented in Table 1, and the spatial variations in air
quality, building environment features, and urban green space characteristics are visualized
in Figure 2.

Table 1. Variables list and descriptive statistics.

Variable Description Obs. Mean Std. Dev.

Dependent Variable
PM Annual mean PM2.5 levels (µg/m3) 659 16.86 1.04

Urban Green Space Indicators
S_GS Size of green space (104 m2) 659 63.04 39.67
N_GS Number of green space clusters 659 1.94 1.81

Building Environment Indicators
N_BULD Number of buildings 659 290.83 395.75

DD_BULD Dispersion degree of building distribution 659 0.30 0.14
M_BA Mean building area (m2) 659 399.37 825.09
M_BH Mean building height (m) 659 11.43 10.82
SD_BH Standard deviation of building height (m) 659 11.09 11.68
SHR_I Share of industrial building GFA 659 0.03 0.14
SHR_C Share of commercial building GFA 659 0.02 0.10

Control Variables
T_RL Total road length (km) 659 10.01 7.43

M_DEM Mean of digital elevation model 659 108.36 108.98
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4. Results

Before conducting the regression analysis, the multicollinearity among independent
variables is first tested, which could potentially bias the regression results, by estimating
the variance inflation factor (VIF) values. As shown in Table 2, The VIF values estimated
for all of the included independent variables are below the threshold of 10 [44], suggesting
that the adopted regression model is not subject to serious multicollinearity problems.

Table 2. Baseline model results.

Independent Variables (1) VIF

S_GS −3.96 × 10−4 ** (1.64 × 10−4) 3.56
N_GS 1.12 × 10−1 *** (2.36 × 10−2) 1.23

N_BULD 3.12 × 10−4 ** (1.38 × 10−4) 2.04
DD_BULD 3.15 × 10−1 (3.07 × 10−1) 1.18

M_BA −4.93 × 10−5 (5.66 × 10−5) 1.49
M_BH 8.93 × 10−3 (8.39 × 10−3) 5.61
SD_BH −1.54 × 10−2 * (8.01 × 10−3) 5.96
SHR_I 2.62 × 10−1 (2.87 × 10−1) 1.06
SHR_C 1.02 × 100 ** (4.18 × 10−1) 1.21

Control variables Yes
Constant 1.70 × 101 *** (2.00 × 10−1)

R2 0.11
N 659

Note: standard errors are in parentheses; *, ** and *** indicate significance at the 10%, 5% and 1% levels
respectively.

The baseline model results show that most of the building environment and urban
green space features are significantly associated with PM2.5 concentrations (Table 2). As
shown in Model (1), the coefficients for both of the two urban green space indicators
are significant at the 5% or higher levels, with the size of urban green space negatively
associated with PM2.5 levels and number of urban green clusters positively associated with
PM2.5 levels. On the one hand, the negative association between urban green space size
and air pollution may be related to the total size of the urban green space in a given unit of
analysis determining the capacity of ecosystems to absorb and filter air pollutants. On the
other hand, the positive association between number of urban green space clusters could
be interpreted such that, with a fixed total size, a large-sized urban green space cluster is
found to perform better in mitigating air pollution than several small-sized clusters.

Among the seven building environment indicators, number of buildings and share
of commercial building GFA are positively associated with PM concentrations, while
the standard deviation of building height is negatively associated with PM levels. The
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positive associations may be explained by the increased energy consumption associated
with a rising number of buildings and the high energy intensity for commercial buildings
compared with residential buildings in Hong Kong’s context [45]. The negative association
between the standard deviation of building height and air pollution can be attributed to the
better ventilation environment encouraged by the diverse building height features within
a neighborhood [46]. In contrast, the coefficients of three other building environment
characteristics, the dispersion degree of building distribution, mean building area, and
share of industrial building GFA, are not statistically significant. On the one hand, the
omitted variable limitation embedded in the adopted method may partially explain the
insignificant results. Some detailed building design features or grid-specific characteristics
(e.g., building-level ventilation conditions and geographical conditions), which potentially
correlate with building distribution and building area and cause estimation biases, cannot
be fully controlled. On the other hand, Hong Kong has experienced deindustrialization
during the past decades, and many industrial buildings have maintained a relatively
high vacancy rate and, thus, a low energy consumption when compared with commercial
buildings [47].

The results from Table 3 show that mean building height presents a non-linear relation-
ship with PM concentrations, while such nonlinearity has not been found for the standard
deviation of building height. As displayed in Model (2), a negative sign is observed for
the coefficient of mean building height, and a positive sign is detected for the quadratic
term of mean building height, suggesting a U-shape relationship between building height
and air pollution. On the one hand, low building height will not be able to create an ideal
ventilation environment, leading to accumulations of air pollutants [19]. On the other hand,
higher buildings can create canyons that trap pollutants and hinder their dispersion, result-
ing in increased pollutant concentrations at street levels [20]. In comparison, as presented
in Model (3), a non-linear relationship does not exist between the standard deviation of
building height and air pollution.

Table 3. Model results: non-linear effects.

Independent Variables (2) (3)

S_GS −3.58 × 10−4 ** (1.63 × 10−4) −3.88 × 10−4 ** (1.64 × 10−4)
N_GS 1.14 × 10−1 *** (2.33 × 10−2) 1.13 × 10−1 *** (2.36 × 10−2)

N_BULD 3.60 × 10−4 ** (1.38 × 10−4) 3.22 × 10−4 ** (1.39 × 10−4)
DD_BULD 3.69 × 10−1 (3.04 × 10−1) 3.30 × 10−1 (3.07 × 10−1)

M_BA 5.61 × 10−6 (5.80 × 10−5) −3.22 × 10−5 (5.78 × 10−5)
M_BH −4.17 × 10−2 *** (1.60 × 10−2) 1.19 × 10−3 (9.95 × 10−3)

M_BH × M_BH 3.59 × 10−4 *** (9.67 × 10−5)
SD_BH 6.25 × 10−3 (9.84 × 10−3) −2.41 × 10−2 ** (1.00 × 10−2)

SD_BH × SD_BH 3.01 × 10−4 (2.08 × 10−4)
SHR_I 1.81 × 10−1 (2.85 × 10−1) 2.54 × 10−1 (2.87 × 10−1)
SHR_C 1.06 × 100 ** (4.18 × 10−1) 1.00 × 100 ** (4.18 × 10−1)

Control variables Yes Yes
Constant 1.71 × 101 *** (2.02 × 10−1) 1.71 × 101 *** (2.02 × 10−1)

R2 0.12 0.12
N 659 659

Note: standard errors are in parentheses; **, and *** indicate significance at the 5%, and 1% levels, respectively.

The interaction effects of building environments and urban green spaces on PM
pollution are further tested (Table 4). Model (4) shows that the interaction term, S_GS ×
M_BH_L, where M_BH_L is a dummy variable indicating that the mean building height is
less than 27 m, is statistically significant at the 5% level with a negative sign, suggesting that
increased supply of urban green spaces tend to result in more air pollution mitigations in
places with low-rise buildings than in those with high-rise buildings. In contrast, the results
of Model (5), showing that the coefficient for the interaction term, S_GS × N_BULD_L, is
not statistically significant at the 10% level, reflect that there are no interaction effects of
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building density and urban green space supply on local air quality. This may be explained
by the fact that the pollution mitigation effects of urban green space supply can be largely
offset by the positive effect of building density on air pollution levels [48].

Table 4. Model results: interaction effects.

Independent Variables (4) (5)

S_GS −3.51 × 10−4 (3.61 × 10−4) −6.76 × 10−4 *** (2.52 × 10−4)
S_GS × M_BH_L −8.25 × 10−4 ** (3.55 × 10−4)

S_GS × N_BULD_L −3.76 × 10−4 (2.67 × 10−4)
N_GS 1.09 × 10−1 *** (2.36 × 10−2) 1.17 × 10−1 *** (2.38 × 10−2)

N_BULD 2.67 × 10−4 * (1.39 × 10−4) 3.52 × 10−4 ** (1.71 × 10−4)
DD_BULD 2.86 × 10−1 (3.06 × 10−1) 3.96 × 10−1 (3.11 × 10−1)

M_BA −6.63 × 10−5 (5.70 × 10−5) −4.21 × 10−5 (5.73 × 10−5)
M_BH 5.92 × 10−3 (9.19 × 10−3) 8.19 × 10−3 (8.40 × 10−3)
SD_BH −1.35 × 10−2 * (8.04 × 10−3) −1.43 × 10−2 * (8.03 × 10−3)
SHR_I 2.19 × 10−1 (2.87 × 10−1) 2.80 × 10−1 (2.88 × 10−1)
SHR_C 1.16 × 100 ** (4.23 × 10−1) 1.04 × 100 ** (4.19 × 10−1)

M_BH_L 4.46 × 10−1 * (2.42 × 10−1)
N_BULD_L −1.19 × 10−1 (2.08 × 10−1)

Control variables Yes Yes
Constant 1.67 × 101 *** (3.24 × 10−1) 1.71 × 101 *** (2.53 × 10−1)

R2 0.12 0.12
N 659 659

Note: standard errors are in parentheses; *, **, and *** indicate significance at the 10%, 5%, and 1% levels,
respectively.

5. Discussion
5.1. Significance and Implications

The significance of this study lies in two aspects. From the academic perspective, it
enriches the empirical literature on the effects of air pollution on the building environment
and urban green spaces by further uncovering their interaction effects and the nonlinearity
underlying the nexus between building environment features and urban air pollution.
In addition, our use of high-resolution PM2.5 grids tends to supplement the findings
drawn from previous monitoring-station-based studies and extend the spatial scope for
the analysis.

From the policy perspective, the findings extracted from our multivariate regressions
convey several important policy implications. Firstly, the results suggest that increasing
the size of urban green spaces can contribute to reduced local air pollution. This finding
highlights the importance of allocating sufficient land for the creation and preservation of
green spaces within urban areas [49]. Policymakers should prioritize the development of
parks, gardens, and green roofs as part of urban planning strategies to mitigate air pollution.
Secondly, the study reveals that the standard deviation of building height also plays a
role in reducing air pollution. This implies that incorporating a mix of building heights
can promote better dispersion of pollutants and improve air quality. Urban planning
policies should encourage the integration of different building heights and avoid excessive
uniformity to create a more diverse and effective urban form in terms of air pollution
mitigation. Thirdly, the positive associations between building density, scatteredness of
urban green spaces, and the share of commercial buildings with air pollution levels suggest
the need for careful land use planning. Policymakers should consider the optimal density
of buildings and the distribution of commercial activities to minimize their contribution
to air pollution [50]. This may involve implementing regulations on building height,
floor area ratios, and commercial zoning to control the overall intensity and distribution
of development.

Furthermore, the U-shape relationship between building height and PM2.5 concen-
trations suggests that there is an optimal range of building heights that can effectively
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reduce air pollution levels. Policymakers should carefully consider the potential impacts of
tall buildings on air circulation and pollutant dispersion. This may involve setting height
restrictions or incorporating design guidelines that promote better ventilation and pollutant
dispersion in high-rise developments [51]. Finally, the study highlights the importance of
considering the interaction between building height and the size of urban green spaces.
The negative association between the size of urban green spaces and air pollution tends to
be amplified in districts with more low-rise buildings. This finding suggests that low-rise
developments can enhance the air-purifying effects of green spaces. Policymakers should
encourage the integration of green spaces in low-rise areas and promote the preservation of
existing green spaces in these districts to maximize their potential to mitigate air pollution.

5.2. Limitations

Despite the valuable insights provided by this study, there are also some limitations
that need to be acknowledged. Firstly, this is a cross-sectional study focusing on only one
year; thus, it may not fully capture the temporal heterogeneity of the effects of air pollution.
To address these problems, future studies are encouraged to incorporate time-series data
together with fixed-effects model settings. Secondly, the chosen multivariate regression
model for empirical analysis exhibits some potential limitations. For example, it may not
effectively control for omitted variable problems and spatial autocorrelation of air pollution
levels. Coupling spatial econometric models with the inclusion of more external influencing
factors of air pollution levels may be a possible solution to address these methodological
constraints and should be performed in future research. Thirdly, the study focuses on a
specific city, Hong Kong, which may limit the generalizability of the findings to other urban
areas with different geographical and socio-economic characteristics. Replication studies in
different cities can provide more comprehensive evidence and enhance the understanding
of the relationship between building environment, urban green space, and air pollution.
Finally, the study primarily focuses on the physical characteristics of building environments
and urban green spaces and does not consider other factors, such as human behavior and
socio-economic factors, that may influence air pollution levels [52]. Future research could
explore the interplay between these factors to provide a more holistic understanding of the
complex dynamics between urban form, human activities, and air pollution.

6. Conclusions

This study investigates the impacts of building environment and urban green space
features on urban air pollution levels, taking a multivariate regression analysis of satellite-
based high-resolution PM2.5 data. The baseline results show that the size of urban green
space and the standard deviation of building height are two factors that contribute to
urban air pollution alleviation. This can be attributed to the pollution removal potentials
of vegetation cover and the improved ventilation system deriving from building height
diversity. In contrast, the scatteredness of urban green space, building density, and share
of commercial buildings are positively related to urban air pollution. On the one hand,
the positive association between the scatteredness of urban green spaces and air pollution
may be explained by the fact that aggregated urban green spaces have greater pollution
removal effects than scattered urban green spaces. On the other hand, the increased air
pollution brought by rising building density and the share of commercial buildings may be
interpreted in terms of the growing demand for energy consumption. Finally, the results of
nonlinearity reveal that building height has a U-shape relationship with urban air pollution,
with increased building height first contributing to reduced air pollution, then driving up
air pollution levels after a certain point. In addition, the results of interaction effects show
that increasing urban green space in districts with more low-rise or mid-rise buildings
would be an effective strategy to mitigate air pollution.
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