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Abstract: The collapse evaluation of the structural systems under seismic loading necessitates identi-
fying and quantifying deterioration components (DCs). In the case of steel w-section beams (SWSB),
three distinct types of DCs have been derived. These deterioration components for steel beams
comprise the following: pre-capping plastic rotation (θp), post-capping plastic rotation (θpc), and
cumulative rotation capacity (Λ). The primary objective of this research is to employ a machine
learning (ML) model for accurate determination of these deterioration components. The stacking
model is a powerful combination of meta-learners, which is used for better learning and performance
of base learners. The base learners consist of AdaBoost, Random Forest (RF), and XGBoost. Among
various machine learning algorithms, the stacking model exhibited superior functioning. The evalua-
tion metrics of the stacking model were as follows: R2 = 0.9 and RMSE = 0.003 for θp, R2 = 0.97 and
RMSE = 0.012 for θpc, and R2 = 0.98 and RMSE = 0.09 for Λ. The significance of input variables,
specifically the web-depth-over-web-thickness ratio (h/tw) and the flange width-to-thickness ratio
(bf/2tf), in determining the deterioration components was assessed using the Shapley Additive
Explanations model. These parameters emerged as the most crucial factors in the evaluation.

Keywords: deterioration components; machine learning; AdaBoost; random forest; XGBoost;
stacking; steel beams

1. Introduction

Nowadays, there has been a growing trend in employing machine learning techniques
to address challenges in the domain of seismic and structural engineering. Machine
learning offers the potential to supplant the reliance on current empirical and semi-empirical
prediction models, offering the advantage of highly accurate models. A novel artificial
intelligence approach, known as ICA–XGBoost, has been employed in studies to forecast the
strength of concrete containing recycled aggregates. This method combines the utilization
of a meta-heuristic algorithm called ICA with the machine learning algorithm XGBoost. The
outcomes demonstrated that this amalgamated algorithm outperformed other algorithms,
yielding superior results [1]. A comprehensive investigation was conducted to explore
the expanding applications of machine learning in the subject of structural engineering.
The research encompassed a systematic review of various machine learning techniques,
machine learning libraries, as well as Python resources, codes, and datasets pertinent to
structural engineering [2]. A scholarly discussion centered on implementing a machine
learning approach to calculate and optimize the modulus of elasticity of concrete containing
recycled aggregates. A comparative analysis was conducted to assess the performance of
the ensemble model against other algorithms, revealing that the ensemble model exhibited
more precise predictions than the individual models [3]. The algorithms of machine
learning were utilized to predict the shear strength of beams containing concrete with
recycled aggregates, both with and without shear reinforcement. The shear strength of
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reinforced concrete elements is obtained using the XGBoost model [4–6]. In addition,
researchers utilized an ensemble learning method to forecast the shear strength of deep
reinforced concrete beams, both with and without reinforced web. The findings revealed
that the ensemble method outperformed traditional machine learning methods, presenting
a superior performance [7].

Consumption of recycled aggregates as a replacement for natural aggregates in con-
crete preparation is recognized as an operative means to promote sustainability within the
construction industry. Liu et al. [8] applied machine learning models to forecast the stabil-
ity of concrete containing recycled aggregates. The outcomes revealed that the artificial
neural network (ANN) model achieved the uppermost level of predictive accuracy. Hu and
Kwok [9] employed machine learning techniques to predict the wind pressure distribution
around circular cylinders. They found that the gradient boosting regression trees model
had the most pronounced impact on predictive performance.

Pyakurel et al. [10] employed machine learning techniques to predict landslides acti-
vated by seismic actions. The conclusions revealed that the trees classifier model exhibited
a greater efficacy compared to other models. Feng et al. [11] investigated the uncertainty
of machine learning models when assessing the sensitivity of landslides caused by earth-
quakes. In assessing the design strength of cement-stabilized soft soil (cement soil) across
diverse application environments, several field and indoor geotechnical tests are typically
managed. However, these experiments often lead to inefficiencies in terms of resource
utilization, cost, and time, while also posing significant environmental pollution challenges.
The compressive strength of cement, the strength and hardness of cement-stabilized soils,
has been obtained using different machine learning methods. The obtained results display
that machine learning models are highly accurate in predicting the compressive strength of
cement [12–14].

Sayed et al. [15] conducted a study utilizing machine learning models to forecast the
axial compressive load of concrete columns with FRP encasement. They reported that the
gradient boosting and random forest models achieved the highest accuracy in prediction.
Nguyen and Ly [16] conducted compressive strength and sensitivity analyses of fiber-
reinforced self-compacting concrete (FRSCC) using machine learning models. The outcomes
indicated that XGBoost exhibited the highest predictive performance. The estimation of
mechanical properties of concrete is often a crucial requirement in design codes. The
introduction of novel concrete mixes and applications has prompted scientists to seek
reliable models for predicting mechanical strength. Chaabene et al. [17] employed machine
learning methods to predict the mechanical properties of concrete. Jiang and Zhao [18]
applied machine learning methods to the design of stainless steel bolted connections.
The obtained results showed that the support vector machine has the finest accuracy
and performance.

In the other study, the chloride diffusion coefficient of concrete is predicted by Taffese
and Espinosal-Leal [19] based on machine learning techniques. The outcomes revealed that
the XGBoost model demonstrated the most predictive performance. Mousavi et al. [20]
applied machine learning methods to categorize the properties of wood derived from
ultrasonic tests. Li et al. [21] successfully determined the compressive strength of BFRC by
a combined algorithm of kernel extreme learning machine (KELM) and genetic algorithm
(GA). They found that the KELM–GA model exhibited strong predictive capabilities.

Sandeep et al. [22] utilized machine learning techniques to predict the shear strength of
reinforced concrete beams, presenting the capabilities of this approach. Kaveh et al. [23] em-
ployed machine learning methods to predict the shear strength of FRP-reinforced concrete
girders. They observed that the extreme gradient boosting model outperformed other ma-
chine learning models, demonstrating its superior predictive capabilities. Artificial neural
networks (ANN) are used to determine the shear strength of flexural members reinforced,
cold-formed steel structures and complex deformation of structural elements [24–26].

Jiang et al. [27] obtained the deterioration of a bridge through the hybrid method of
whale algorithm with other machine learning. The results demonstrated that the com-
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bined model performed better than the simple model. Hwang et al. [28] utilized machine
learning models to predict seismic responses and classify structural collapse for ductile
reinforced concrete buildings during seismic events, effectively accounting for the inherent
uncertainty. The compressive strength can differ depending on the composition and ratio
of the components and materials employed. Farooq et al. [29] employed machine learn-
ing methods for high-performance prediction. The results indicated that the function of
bagging and boosting methods had enhanced the response of the basic machine learning
models. Concrete-encased steel columns (CES), commonly referred to as concrete and
steel composite columns, exhibit excellent fire resistance attributed to the performance of
concrete. Li et al. [30] utilized the artificial neural network method to forecast fire resistance
in composite columns. Predicting the nominal shear capacity of deep reinforced concrete
beams with openings poses a complex challenge due to its highly nonlinear behavior. Li
et al. [31] investigated the progressive collapse performance of the planar frame structure
with engineered cementation composites (ECC) under the removal of the middle column
for normal concrete and ECC samples. The results have shown that the (ECC) sample has
limited cracking, and progressive collapse performance is also improved. Li and Song [32]
utilized the stacking ensemble learning method to forecast the compressive strength of
concrete incorporating rice husk ash. The results demonstrated that the proposed new
model exhibited a superior performance compared to other algorithms.

This paper will use machine learning techniques for the prediction of deterioration
components (DCs) of steel w-section beams. The source data are related to a Lignos and
Krawinkler [33] study that utilized analytical relations based on experimental tests to
ascertain the deterioration components of steel w-section beams data, namely Pre-capping
plastic rotation (θp, post-capping plastic rotation(θpc), and cumulative rotation capacity
(Λ). These parameters are critical for the collapse evaluation of structural elements that
require effective hysteretic models capable of summarizing the failure behavior of structural
components. Backbone curves delineate the boundaries of the hysteretic response of these
components, as depicted schematically in Figure 1.
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In this study, DCs are predicted through a stacking model. Specifically, three base
learners, namely AdaBoost, Random Forest (RF), and XGBoost, are selected as primary
predictors, with RF used as the meta-learner in the stacking model. Hyperparameter
optimization is conducted using grid search and 5-fold cross-validation methods. The
importance of features is assessed through the Shapley Additive Explanations model. The
dataset comprises 157 laboratory samples pertaining to steel w-section beams, which were
collected by Lignos and Krawinkler [33]. Empirical relationships presented by Lignos and
Krawinkler are considered for predicting DCs. A comparison between these empirical rela-
tionships and machine learning models reveals that the stacking model exhibits remarkable
accuracy and performance.
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2. Overview of the Machine Learning Techniques
2.1. Random Forest

Random forest is a user-friendly machine learning algorithm known for delivering
highly satisfactory results even without fine-tuning its meta-parameters. Owing to its
straightforwardness and practicality, this algorithm is widely regarded as one of the most
frequently employed machine learning methods for both classification and regression tasks.
Random forest is a supervised learning algorithm that derives its name from the creation
of a random forest. The forest itself is essentially a collection of decision trees generated
using the “bagging” method. This approach involves combining multiple learning models
to boost the overall performance of the model. In essence, the random forest constructs
numerous decision trees and integrates them to yield more precise and stable predictions.
A key advantage of the random forest algorithm lies in its versatility, as it can be effectively
employed for both classification and regression tasks, which form the core of numerous
contemporary machine learning systems. The impressive performance of random forest
has been extensively validated through comprehensive research studies.

The random forest model can be shown as below:

m̂ =
1
M ∑j m̂j(x) (1)

In the context of a random forest, m̂j represents a single-tree learner that relies on
a randomly selected subset of training data of size d, chosen using (f) features. Each tree,
denoted as (k), yields a corresponding leaf. Hence, the three key parameters for the random
forest are f, k, and d [34].

2.2. AdaBoost

AdaBoost, standing for Adaptive Boosting, represents a pioneering boosting algorithm
primarily designed for binary classification tasks. It serves as an excellent entry point for
grasping the fundamentals of boosting concepts. Additionally, contemporary boosting
techniques, such as stochastic gradient boosting machines, are built on the principles of
AdaBoost. The overall boosting method is based on AdaBoost, including random boosting
machines. The form of its receiver is as follows:

Ft(x) = ∑T
t=1 ft(x) (2)

In each iteration, a novel learner is employed to assess all samples that constitute the
training set. The misclassified sample’s weight is augmented, while the correctly classified
sample’s weight diminishes. With each iteration, a new weak learner is generated, and it is
allocated a coefficient to minimize the training error of the ensemble.

Et = ∑i E[Ft−1(xi) + ath(xi)] (3)

In this context, Ft−1 denotes the learner constructed from previous training iterations.
E(0) represents an error function, and ft(x) = ath(x) corresponds to a weak learner, aiding
the strong learner. In the adaptive reinforcement approach, the amalgamation of multiple
weak learners contributes to the formation of a robust and powerful learner [35].

2.3. XGBoost

The XGBoost algorithm is a recently employed process in the domain of machine
learning. It serves as an implementation of decision tree gradient boosting specifically
developed for achieving high speed and efficiency. Utilizing the XGBoost algorithm enables
us to enhance computational efficiency in terms of calculation time and memory utilization.
Further, this algorithm is designed to optimize the utilization of available resources during
model training. The objective function in XGBoost can be represented as follows:

obj = ∑n
i=1 L(ŷi, yi) + ∑k

t=1 ω(ft) (4)
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In this context, L denotes the cost function of the bias model, while ω signifies the
regularization term aimed at mitigating model complexity. The XGBoost algorithm em-
ploys gradient-boosted decision trees, which effectively enhance both speed and perfor-
mance. Further, the inclusion of the regularization term in this method aids in preventing
overfitting [36].

2.4. Stacking

Hybrid machine learning models are one of the machine learning models. In these
methods, weak learner models or base learner models are trained to solve a problem and
combined to achieve better results. When weak models are appropriately combined with
each other, they can generate more precise or stable models. The selection of appropriate
algorithms is a critical factor in achieving favorable outcomes within machine learning
models. The choice of model rests on many variables in the problem, such as the extent
of data, the dimensions of the data, and the distribution hypothesis. Having a model
with low bias and variance are two essential and required features. In hybrid machine
learning methods, base learners are combined with each other to create more complex
models. Frequently, these individual models do not exhibit satisfactory performance in
isolation, owing to their inherently high bias or variance. The stacking method is one of the
techniques employed to integrate elementary models effectively [37]. The stacking model
uses a heterogeneous model and different machine learning algorithms. Additionally, the
stacking method combines base models with each other using meta-models and provides
better prediction. When the base models (traditional empirical models) are properly
combined with each other, the result can create more precise or stable models. The core
principle behind stacking involves training multiple diverse basic models and subsequently
employing a meta-model to combine their predictions, thus yielding the final prediction.
To establish a stacking model, two essential components are required: (1) basic models,
trained on the training data, and (2) a meta-model designed to amalgamate the outcomes
of the basic models. In the stacking learning algorithm, the meta-learner training set is
derived from the base learner training. Use of the results obtained from the base learner
may lead to overfitting when applied to the new training set of the meta-learner. To address
this issue, k-fold cross-validation is employed. The stacking model is shown schematically
in Figure 2.
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2.5. k-Fold Cross-Validation

In scenarios where the training data in a machine learning problem are relatively
limited, or the results pertaining to the test data are not highly precise, it becomes essential
to conduct multiple tests and subsequently average the outcomes for the final evaluation.
In such cases, the cross-validation method is employed, wherein the data are divided into
K subsets. Subsequently, in K different iterations, one of the K subsets is designated as the
test set, while the remaining K-1 subsets function as the training data. Ultimately, the evalu-
ation results are averaged to yield the final evaluation outcome. Cross-validation serves as
a standard technique to assess the performance of a machine learning algorithm on
a dataset. An important aspect of this method involves exploring the impact of different
values for the parameter “k” when estimating model performance and comparing it with
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the outcomes under ideal test conditions. This helps in determining the appropriate value
for “k”. The k-fold method incorporates a parameter denoted as “k,” representing the
number of groups into which a given data sample is to be partitioned. Once a specific value
for “k” is chosen, it may be referenced accordingly, such as k = 5, indicating 5-fold cross-
validation [38]. The following Figure 3 shows the mentioned cross-validation schematically.
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2.6. Grid Search

Model parameters are characteristics of the training data that are acquired and fine-
tuned during the training process using machine learning algorithms. Examples of model
parameters include the slope and width from the origin in linear regression. Note that
model parameters vary across different experiments and are contingent upon the specific
dataset as well as the nature of the problem being referred. On the other hand, hyperpa-
rameters must be predetermined and specified by the data scientist before the training
phase commences. The Scikit-Learn Python library (or its counterparts in other software)
provides default hyperparameters for each model. However, these default values may not
be optimal for our specific problem. Finding the best hyperparameters is often challenging,
but through experience and iterative testing, one can eventually identify the most suitable
values. This necessitates conducting experiments and evaluating the performance of each
model resulting from a large number of hyperparameter combinations. To obtain the
optimal hyperparameters, one commonly employed approach is the grid search method.
Unlike random search, grid search systematically evaluates all possible combinations of
hyperparameter values within specified ranges, thereby making the search space more
comprehensive and exhaustive [39].

3. Research Significance

The primary objective of earthquake engineering has always been to comprehend,
predict, and prevent structural collapse. From a financial perspective, collapse refers to
a state in which a building, its contents, and its functionality are utterly destroyed, leading
to significant monetary loss. Moreover, collapse poses a threat to human safety, resulting in
injuries and fatalities. Thus, it becomes imperative to evaluate the level of life safety, as it is
a fundamental general concern. The assessment of structural collapse necessitates the use
of hysteretic models capable of capturing the failures occurring in structural components.
Backbone curves, representing the boundaries of hysteretic response, serve as a means to
depict the deterioration components within structural members, as depicted schematically
in Figure 1. The deterioration components, encompassing θp = pre-capping plastic rota-
tion, θpc = post-capping plastic, and Λ = cumulative rotation capacity, have a key role in
providing necessary information about the deterioration characteristics of steel moment-
resisting frames. To obtain comprehensive data regarding these parameters, a collection
of laboratory tests is imperative. The dataset comprises 157 tests of steel w-section beams,
thoughtfully compiled by Lignos and Krawinkler [33]. Using experimental data, empirical
relationships have been obtained for two types of beams: beams with other than reduced
beam section (RBS) and beams with RBS [33]. The resulting relationships are as follows:
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Beams other than RBS:

θp=0.318(h/tw)−0.55·(bf/2tf)−0.345·(Lb/ry)−0.023·(L/d)0.09·(c1
unit·d/533)−0.33 (c2

unit·Fy/355)−0.13 (5)

θpc=7.5(h/tw)−0.61(bf/2tf)
−0.71 (Lb/ry)−0.11 (c1

unit.d/533)−0.161 (c2
unit·Fy/355)−0.32 (6)

Λ=536(h/tw)−1.26 (bf/2tf)
−0.525 (Lb/ry)−0.13 (c2

unit·Fy/355)−0.291 (7)

Beams with RBS:

θp=0.19(h/tw)−0.314 (bf/2tf)−0.1 (Lb/ry)−0.185 (L/d)0.113 (c1
unit·d/533)−0.76 (c2

unit·Fy/355)−0.07 (8)

θpc=9.52(h/tw)−0.513 (bf/2tf)
−0.863 (Lb/ry)−0.108 (c2

unit·Fy/355)−0.36 (9)

Λ=585·(h/tw)−1.14 (bf/2tf)
−0.632 (Lb/ry)−0.205 (c2

unit·Fy/355)−0.391 (10)

The analytical relationships are derived from considerations of geometrical characteris-
tics and material properties. These relations specifically pertain to sections of the W-section
type. The resulting analytical equations encompass the following parameters:

h/tw is the web-depth-over-web-thickness ratio, Lb/ry is the ratio between beam
unbraced length Lb over a radius of gyration, bf/2tf is the flange width-to-thickness ratio
used for compactness, L/d is the shear span-to-depth ratio of the beam, d is the beam depth
of the cross section, Fy is the expected yield strength of the flange of the beam, which is
normalized by 50 ksi (typical nominal yield strength of structural us steel), and C1

unit and
C2

unit are coefficients for unit conversion. They both are 1 if inches and ksi are used, and
they are C1

unit = 0.0254 and C2
unit = 0.145 if d is the meter and Fy is in MPa.

This research employs machine learning techniques to determine the deterioration
components of w-section steel beams. As Lignos and Krawinkler [33] used five numbers
of parameters (h/tw, bf/2tf, L/d, d, Lb/ry), these parameters have the most effect on the
deterioration components. But the number of experimental data had similar input parame-
ters; therefore, machine learning models made mistakes in training. For this purpose, three
parameters (connection type, test configuration, and yield moment) have been added to the
input. In addition to the parameters proposed by Lignos and Krawinkler [33], this study
introduces three additional parameters, namely connection type, test configuration, and
yield moment (MY). The connection type encompasses approximately 29 distinct connec-
tion types, as detailed in Table 1, while the test configuration includes around 8 different
configurations listed in Table 2. To incorporate the connection type and test configuration
into the machine learning models, each type is assigned a corresponding label. For instance,
the 29 connection types are designated with numbers 1 to 29, and the 8 formation types are
assigned numbers 1 to 8 [40].

Table 1. Connection Type (Adapted from [40]).

Connection Type

Welded Unreinforced Flanges-Bolted Web
Welded Unreinforced Flange-Welded Web
Free Flange
Reduced Beam Section
Bolted Flange Plate
Bolted Unstiffened End Plate
Bolted Stiffened End Plate
Welded Flange Plate
Welded Flange Plate-Free Flange
Double Split Tee
Slotted Web Connection
Bolted Bracket Connection
Welded Stiffened End Plate



Buildings 2024, 14, 240 8 of 21

Table 1. Cont.

Connection Type

Welded Unreinforced Flange-Bolted Web, Welded Plate
Ribs-Welded Unreinforced Flange-Bolted Web
Bottom Haunch-Welded Unreinforced Flange-Bolted Web
Haunches-Welded Unreinforced Flange-Bolted Web
Haunches-Bolted Flange-Bolted Web
Haunches-Bolted Flange-Bolted Web, Bottom
Cover and Side Plate
Japanese Welded Unreinforced Flange-Welded Web
Japanese Welded-Bolted Web
Japanese Welded-Bolted Web-Tapered Flange
Korean-T-Stiffener-Welded
Extended Tee
Extended Tee with Taper
Bolted Split-Tee with Shear Tab
Bolted Split-Tee without Shear Tab
Tee-Bolted

Table 2. Test configuration description (adapted from [40]).

Test Configuration Description

Standard, single beam, no slab
Standard, two beams, no slab
Non-Standard-1, column end fixed, single beam, no slab
Non-Standard-1, column end fixed, two beams, no slab
Non-standard-2, single beams, no slab
Non-standard-2, two beams, no slab
Non-standard-3, column stub, single beam, no slab
Double curvature assembly

4. Data Preprocessing

The current investigation centers around a dataset derived from laboratory experi-
ments [33]. The number of laboratory data is 157. Among the 157 data, some data are
similar, and some others are not reported, so the averaging method has been used for the
data. Thus, there are 96 samples available for θp, 91 samples for θpc, and 96 samples for
Λ. The experimental collected data can be accessed in the Lignos thesis dissertation [40].
The input data considered in this study encompass several factors, including the web-
depth-over-web-thickness ratio (h/tw), the ratio between beam unbraced length Lb over
a radius of gyration (Lb/ry), the flange width-to-thickness ratio used for compactness
(bf/2tf), the shear span-to-depth ratio of the beam (L/d), the beam depth of the cross
section (d), connection type, test configuration, and yield moment (My). The outputs of
interest consist of θp, θpc, and Λ. An overview of the features is presented in Table 3.
In total, there are eight types of input parameters and three types of output parameters
under consideration.

Table 3. Description of the input and output parameters.

Describe of Column Parameter Unit

the web-depth-over-web-thickness ratio h/tw
the flange width-to-thickness ratio used for compactness bf/2tf
the shear span-to-depth ratio of the beam L/d
the beam depth of the cross section d in
the ratio between beam unbraced length Lb over radius of gyration Lb/ry
Yield moment My Kips-in
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Table 3. Cont.

Describe of Column Parameter Unit

Connection type Con-type
Test configuration Test-conf
pre-capping plastic rotation θp rad
post-capping plastic θpc rad
cumulative rotation capacity Λ

5. Model Building and Evaluation

Prior to extending the model, the dataset is divided into two subsets: the training
data and the test data. The training set was utilized to train the employed model, while
the test set was applied to assess the operation of the constructed model. In this paper,
90% of the data was assigned to the training set, and the remaining 10% constituted the
test set. Hyperparameters play a pivotal role in determining the model’s performance.
To achieve optimal performance, an optimization method can be used to determine the
hyperparameters of the machine learning model. This ensures that the model operates
at its best capacity. Accordingly, the efficacy of the utilized model’s feature is enhanced.
The optimization of hyperparameters for the machine learning model is achieved through
a combination of grid search and 5-fold cross-validation. The grid search method involves
evaluating all possible combinations of hyperparameters, as opposed to random sampling.
Meanwhile, the cross-validation technique entails dividing the dataset into K parts and
performing K iterations, wherein each time, one of the K parts is designated as the test set,
and the remaining K-1 parts serve as training data. The evaluation results obtained from
each iteration are then averaged to stipulate the final evaluation result. For the present
study, a value of k = 5 is employed for the cross-validation process. The performance
evaluation criteria chosen for this study consist of the coefficient of determination (R2) and
root-mean-square error (RMSE), as represented by Equations (11) and (12). The coefficient
of determination (R2) quantifies the relationship between the predicted and actual values,
yielding a value within the range of 0 to 1. In these equations, M denotes the total number
of samples, y′

j represents the real value of the data, yj shows the predicted value of the data,
and y stands for the average of the predicted values.

RMSE =

√√√√∑M
j=1

(
y′

j − yj

)2

M
(11)

R2 = 1 −
∑M

j=1

(
y′

j − yj

)2

∑M
j=1

(
y′

j − y
)2 (12)

6. Results and Discussion
6.1. Empirical Relationships Prediction Results

The empirical relationships for obtaining deterioration components in two types of
steel beams, referred to as “other than RBS” and “reduced beam section (RBS),” have
been developed based on the data obtained from tests [33]. The results from these em-
pirical relationships indicate that for θp, the coefficient of determination (R2) is 0.49 with
a root-mean-square error (RMSE) of 0.01 in the “other than RBS” mode, and R2 is 0.47 with
an RMSE of 0.0051 in the “with RBS” mode. Furthermore, for θpc, the R2 value is 0.4 with
an RMSE of 0.051 in the “other than RBS” mode, and R2 is 0.51 with an RMSE of 0.049 in the
“with RBS” mode. Lastly, for Λ, the R2 value is 0.43 with an RMSE of 0.38 in the “other than
RBS” mode, and R2 is 0.502 with an RMSE of 0.33 in the “with RBS” mode. A summary of
these results is presented in Figure 4.
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Figure 4. Predictions of empirical relationships obtained by Lignos and Krawinkler. (a): Equation (5),
(b):Equation (6), (c): Equation (7), (d): Equation (8), (e): Equation (9), (f): Equation (10) [33].

This study has employed machine learning methods to achieve more accurate predic-
tions of the deterioration components. The following sections elaborate on these findings.

6.2. Base Learners Prediction Results

To ensure that the characteristics of the base learners affect the stacking model, the
performance of these base learners is evaluated for prediction on both the train and test
datasets. The hyperparameters are optimized using a combination of 5-fold cross-validation
and grid search. The coefficient of determination (R2) is chosen as the primary evaluation
metric. Figures 5–7 present the results obtained from the base learners for the train and
test datasets, specifically for θp, θpc, and Λ. Further details of the results can be found in
Tables 4–6. For this research, the base learners selected are AdaBoost, Random Forest, and
XGBoost. These learners are utilized as the foundation on which the stacking model is built
to enhance the prediction performance.
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Figure 6. Prediction for θpc. (a): AdaBoost, (b): Random Forest, (c): XGBoost.
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Figure 7. Prediction for Λ. (a): AdaBoost, (b): Random Forest, (c): XGBoost.

Table 4. Prediction performance of the stacking model versus existing empirical model for θp.

Regression Method Training Set

R2 RMSE

Equation (5) 0.49 0.203
Equation (8) 0.47 0.0051

Stacking 0.9 0.003
Improvement Equation (5) (%) 45.56 98.52
Improvement Equation (8) (%) 47.78 41.18

Table 5. Prediction performance of the stacking model versus existing empirical model for θpc.

Regression Method Training Set

R2 RMSE

Equation (6) 0.4 0.051
Equation (9) 0.51 0.049

Stacking 0.97 0.012
Improvement Equation (6) (%) 58.76 76.47
Improvement Equation (9) (%) 47.42 75.51
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Table 6. Prediction performance of the stacking model versus existing empirical model for Λ.

Regression Method Training Set

R2 RMSE

Equation (7) 0.43 0.38
Equation (10) 0.502 0.33

Stacking 0.98 0.09
Improvement Equation (7) (%) 56.12 76.32

Improvement Equation (10) (%) 48.78 72.73

6.3. Stacking Model Prediction Results

In accordance with Section 6.2, AdaBoost, Random Forest, and XGBoost are chosen
as the base learners for the stacking model, with Random Forest being designated as the
meta-learner. The prediction results obtained from the stacking model are presented in
Figure 8. The stacking model’s predictions for the deterioration components based on the
train and test datasets are as follows: For θp, the R2 value is 0.9 with an RMSE of 0.003 for
the train data and an R2 of 0.81 with an RMSE of 0.0032 for the test data. For θpc, the R2 is
0.97 with an RMSE of 0.012 for the train data and an R2 of 0.77 with an RMSE of 0.04 for the
test data. Finally, for Λ, the R2 is 0.98 with an RMSE of 0.09 for the train data and an R2 of
0.64 with an RMSE of 0.22 for the test data. A comparative analysis of the three models, i.e.,
base learners, empirical relationships, and stacking, reveals that the stacking model exhibits
superior performance and greater accuracy compared to the other models. Detailed results
are shown in Figures 9–11.
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Figure 8. Prediction based on Stacking for: (a): θp, (b): θpc, (c): Λ.



Buildings 2024, 14, 240 14 of 21

Buildings 2024, 14, x FOR PEER REVIEW 17 of 25 
 

 

  

  

Figure 9. Prediction results on the train and test sets for Ɵp, (a):R2-Ɵp-Train, (b): R2-Ɵp-Test, 
(c):RMSE-Ɵp-Train, (d):RMSE-Ɵp-Test. 

  

0
0.2
0.4
0.6
0.8

1
AdaBoost

Random
Forest

XGBoost

Stacking

Eq.1

Eq.4

(a)

0
0.2
0.4
0.6
0.8

1
AdaBoost

Random
Forest

XGBoost

Stacking

Eq.1

Eq.4

(b)

0
0.002
0.004
0.006
0.008

0.01
AdaBoost

Random
Forest

XGBoost

Stacking

Eq.1

Eq.4

(c)

0
0.002
0.004
0.006
0.008
0.01

AdaBoost

Random
Forest

XGBoost

Stacking

Eq.1

Eq.4

(d)

Figure 9. Prediction results on the train and test sets for θp, (a):R2-θp-Train, (b): R2-θp-Test, (c):RMSE-
θp-Train, (d):RMSE-θp-Test.
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Figure 10. Prediction results on train and test sets for θpc, (a):R2-θpc-Train, (b): R2-θpc-Test, (c):RMSE-
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Figure 11. Prediction results on train and test sets for Λ, (a):R2-Λ-Train, (b): R2-Λ-Test, (c):RMSE-Λ-
Train, (d):RMSE-Λ-Test.

6.4. Comparison of the DCs Models with the Stacking Model

This section evaluates the prediction performance of the proposed model against the
experimental model. Mathematical relationships proposed for predicting deterioration
components are presented in Equations (5)–(10). Notably, all predictions are within the
range of y = x. The stacking model exhibits a significant improvement in R2 and RMSE
contrasted to the analytical models. The comparative performance of the stacking model
with the analytical models is as follows: For θp, the R2 values were 45.56% and 47.78%,
and the RMSE values were 98.52% and 41.18% for the other than RBS and with RBS modes,
respectively. For θpc, the R2 values were 58.76% and 47.42%, and the RMSE values were
76.47% and 75.51% for the other than RBS and with RBS modes, respectively. For Λ, the R2

values were 56.12% and 48.78%, and the RMSE values were 76.32% and 72.73% for the other
than RBS and with RBS modes, respectively. The results are summarized in Tables 4–6.

6.5. Feature Importance Analysis

The feature importance indicates their contribution to the model’s prediction. Basi-
cally, it determines the usefulness of a particular variable for a current and forecast model.
Typically, importance is represented by a numerical score, where a higher score corresponds
to greater significance. Feature importance scores offer several benefits. They help estab-
lish the relationship between independent variables (attributes) and dependent variables
(objectives). By analyzing the importance scores of variables, irrelevant features can be
identified and removed. This reduction of irrelevant variables in the model may enhance its
performance and speed up computations. Further, feature importance performs as a means
for interpreting machine learning models. In this section, we evaluate the importance of
variable characteristics using the SHapley Additive exPlanations (SHAP) model. SHAP is
a versatile method that can interpret any machine learning model, elucidating the impact
of each feature on the target. The SHAP method generates a weighted linear model that
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assigns Shapley values to different features. Features with higher Shapley values bear more
influence on the model’s results, while those with lower values are less influential [41].

The schematic representation of the SHAP method is shown in Figure 12.
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The significance of each input variable is computed as a Shapley value, which can be
positive or negative depending on the impact on the output.

The basic explanation model function, g(x′), can be defined as:

g
(
x′
)
= φ0 + ∑N

i=1 x′i (13)

where x′ is the simplified input variables in vector format acquired from input variables,
M is the number of features in the set, φ0 =, and φi denotes the attribution value of each
variable. Additive feature attribution methods comprise three desirable properties in the
form of local accuracy, messiness, and consistency. A unique explanation to the explanation
model g(x′) can be obtained if all three properties are constrained. The explanation model
can be expressed as:

φi(φ, x) = ∑ z′∈ x′
|z′!(M − |z′|)− 1|!

M!
[
φx(z′) +φx

(
z′\i

)]
(14)

where z′∈x′ represents z′ is a subset of x′ and (z′\i) denotes z′i = 0.
The equation is computationally rigorous due to the multiple possibilities of the

subsets of features. Thus, different approximation methods, such as KernalSHAP and
TreeSHAP, were proposed to compute the Shapley value. In this study, TreeSHAP was
adapted. Shapley values of each input variable were obtained based on the XGBoost model
predictions. The analysis reveals that the primary inputs influencing the deterioration
components of steel beams are h/tw for θp, bf/2tf for θpc, and h/tw for Λ. Also, the
experimental results show that h/tw has the greatest impact in determining the components
of deterioration [40] which are illustrated in Figures 13–15. On the other hand, in the
sensitivity analysis performed by the SHAP, the analysis showed that h/tw and bf/2tf
parameters have the most impact. These results are displayed in Figure 16.
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Figure 13. Dependence of θp on h/tw for the all data set (data from [40]), (a): other than RBS,
(b): with RBS.
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Figure 14. Dependence of θpc on h/tw for the all data set (data from [40]), (a): other than RBS,
(b): with RBS.
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Figure 15. Dependence of Λ on h/tw for all datasets (data from [40]), (a): other than RBS,
(b): with RBS.
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Figure 16. Mean SHAP values of each input parameter in components of deterioration, (a): for θp,
(b): for θpc,(c): for Λ.

7. Conclusions

This study employed the stacking method to predict the deterioration of components
of steel beams. The investigation dealt with the performance assessment of both base
learners and meta-learners. The stacking model was compared with key machine learning
models and analytical relationships related to the deterioration components. Additionally,
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the importance of input variables was evaluated using the Shapley Additive Explanation
model. The stacking model can appropriately merge the prediction outcomes of the base
learners and improve the prediction property of the model. The comparison of base learners
with the stacking model indicated that the stacking model has high performance compared
to other base algorithms. The outstanding findings of this study are summarized as follows:

1. The improvements in performance evaluation with the stacking model compared to
analytical relationships were as follows:

• For θp, there was a 45.56% increase in R2 and a 98.52% reduction in RMSE for the
mode other than RBS, and a 47.78% rise in R2 and a 41.18% decline in RMSE for
the mode with RBS.

• For θpc, there was a 58.76% increase in R2 and a 76.47% drop in RMSE for the
mode other than RBS, and a 47.42% rise in R2 and a 75.51% decrease in RMSE for
the mode with RBS.

• For Λ, there was a 56.12% growth in R2 and a 76.32% decline in RMSE for the
mode other than RBS, a 48.78% increase in R2, and a 72.73% reduction in RMSE
for the mode with RBS.

2. Through a comparative analysis, it was observed that the stacking model outper-
formed all of the base learners. Furthermore, the stacking model exhibited supe-
rior prediction accuracy compared to the AdaBoost, Random Forest, and XGBoost
models. The evaluation metrics of the stacking model were as follows: R2 = 0.9
and RMSE = 0.003 for θp, R2 = 0.97 and RMSE = 0.012 for θpc, and R2 = 0.98 and
RMSE = 0.09 for Λ.

3. Based on the Shapley Additive Explanation model, the variable h/tw (the ratio of web
depth to beam web thickness) for θp, the variable bf/2tf (the ratio of flange width to
beam flange thickness) for θpc, and the variable h/tw (the ratio of web depth to beam
web thickness) for Λ were found to have the most significant impact on determining
the deterioration components.
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