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Abstract: Existing design codes for predicting the strength of stud shear connections in composite
structures are limited when adapting to constant changes in materials and configurations. Machine
learning (ML) models for predicting shear connection are often constrained by the number of input
variables, resembling conventional design equations. Moreover, these models tend to overlook
considerations beyond those directly comprising the connection. In addition, the data used in ML
are often biased and limited in quantity. This study proposes a model using AutoML to automate
and optimize the process for predicting the ultimate strength and deformation capacity of shear
connections. The proposed model leverages a comprehensive dataset derived from experimental
studies and finite element analyses, offering an advanced data-driven solution to overcome the
limitations of traditional empirical equations. A digital twin model for the static design of pushout
specimens was defined to replace existing empirical design codes. The digital twin model incorporates
predictions of the geometry model, ultimate strength, and slip as input parameters and provides
criteria for evaluating the limit state through a bilinear load–slip curve. This study advances predictive
methodologies in structural engineering by emphasizing the importance of ML in addressing the
dynamic and multifaceted nature of shear connection behaviors.

Keywords: machine learning; digital twin; stud shear connection; ultimate strength; deformation
capacity

1. Introduction

Steel–concrete composite shear connections in bridge structures comprise three com-
ponents: the concrete deck, the shear connectors, and the steel girder. The shear connector
is welded onto the steel girder and is either embedded or encased in the concrete girder
in order to resist horizontal shear forces in the composite structure as shown in Figure 1.
Various aspects related to each component have been investigated, with research primarily
focusing on two key areas. The first involves altering the type or shape of the components
in order to evaluate and predict increased shear capacity. Another area of focus has been on
enhancing shear strength by increasing the material strength of the components, leading to
improved results. Bridge composite structures use various types of connectors, such as an-
gles, channels, headed studs, and prefabricated ribs. Various studies have been conducted
on different connector types, with headed studs being classified as the most commonly
used connectors in bridge structures. Headed shear studs in composite structures have
been explored since 1956, as documented by Viest [1]. A pivotal parameter in these early
experiments was the depth-to-stud shank diameter ratio, which led to the identification of
three distinct failure modes. Subsequently, empirical equations incorporating key design
parameters, such as concrete strength, the area of the stud shank, and the tensile strength
of the stud material, were incorporated in prominent design specifications, including the
American Institute for Steel Construction (AISC) [2], Ollgaard et al. [3], and Eurocode4 [4]
specifications. Despite these advancements, Pallares et al. [5] reviewed 391 experiments
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from the literature and revealed significant variability in predictions among current de-
sign codes. This variability poses challenges for designers seeking to ensure the reliable
performance of shear connections, particularly considering recent innovations featuring
high-strength materials and novel details for prefabricated members.
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Figure 1. Geometric dimensions and the principle of the resistance of the pushout test specimen.

Empirical formulations for shear connections incorporating changes in geometry and
increases in material strength are continuously proposed. The evolving landscape of shear
connections necessitates a re-evaluation of existing design equations in order to incorporate
these advancements and provide a more accurate and comprehensive predictive framework
for designers. Tables 1 and 2 list the equations used to calculate shear connection strength.
Existing strength equations have a limited range because they are derived from experimen-
tal results from within a specific dataset, forming empirical equations. In addition, these
equations often incorporate only a few variables that have been experimentally analyzed,
restricting the consideration of variables within the conventional standard specimen system.
In essence, the strength equations in existing formulations do not consider all elements
comprising the shear connection and are limited by the variables considered in the respec-
tive experiments. This results in an ongoing demand for the continuous development of
strength calculation equations that incorporate new variables and have a broader range,
addressing the inherent limitations of conventional strength equations. However, integrat-
ing these formulations into design codes for use in the design phase is a time-consuming
process. Simultaneously, the applicable ranges of the geometry and material strengths must
be established, posing additional challenges. Empirical equations within the framework
of structural design codes represent mathematical relationships or equations derived, not
from theoretical principles, but from comprehensive observations and experimental data.
These equations evolve from empirical data, often acquired through the rigorous testing of
prototypes or by studying existing structures over extended periods. Widely employed
in structural engineering, these equations serve as invaluable tools within design codes.
They offer a simplified and practical means to predict crucial aspects of structural behavior,
including load-carrying capacity, deflections, and other performance criteria. However,
although empirical equations contribute significantly to practical design applications, they
have inherent limitations and may not fully capture the intricacies of specific structural
behaviors. Consequently, engineers commonly integrate empirical equations with more rig-
orous analytical methods and incorporate safety margins to ensure a practical and reliably
safe design.

Machine learning (ML) models offer a promising solution to overcome the inherent
limitations of traditional empirical equations by providing a more adaptive and data-driven
methodology. Unlike empirical equations, which are often constrained by simplicity for
ease of use, ML models exhibit greater flexibility in handling more parameters. This
expanded parameter capacity enables the inclusion of additional factors that considerably
influence structural behavior. In contrast to relying solely on predetermined equations,
ML models learn from datasets. This capability enables them to capture intricate and
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nuanced relationships that may prove challenging to express using conventional empirical
equations. Furthermore, the dynamic nature of ML allows for continual improvement, as
these models can be systematically updated and retrained when fresh data become available.
This adaptability ensures their relevance under evolving conditions and facilitates the
assimilation of information related to novel construction details, contributing to a more
robust and responsive approach to structural engineering applications.

Table 1. Equations for ultimate strength specified in design codes.

Eurocode 4 [4] AASHTO LRFD [6] GB50017 [7]
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Table 2. Proposed equations for ultimate strength in research.

Author Equation Author Equation

Viest [1]

Qnv = 5.25d2 f ′c
√

4000
f ′c

(i f . . . d < 1)

Qnv = 5d f ′c
√

4000
f ′c

(i f . . . d > 1)
(units: pounds, inches)

Ollgaard et al. [3] Qnvs = 0.5As
√

f ′cEc < AsFu
(units: kips, inches)

Driscoll and
Slutter [8]

Qnv =
932d2

√
f ;
c

As

(
i f . . . f

d > 4.2
)

Qnv =
222hd

√
f ;
c

As

(
i f . . . f

d < 4.2
)

(units: kips, inches)

Oehlers et al. [9] PRd = k fu
πd2

4

[
Ecm
Esc

]0.4[ fck
fu

]0.35 1
γv

(units: MPa, mm)

Döinghaus [10] PRd =
(

0.92 fu
πd2

4 + η fckddohw

)
1

γv

(units: MPa, mm)
Hicks [11]

PRd =
0.25d2

√
fck Ecm

γv
f or hsc

d > 4(concrete f ailure)

PRd =
(

0.92 fu
πd2

4 + η fckddohw

)
1

γv
(steel f ailure)

(units: kips, inches)

ML models can provide insights into the importance of different features, aiding
engineers in understanding the parameters with the most significant impact on structural
response. This information can guide the development of more accurate and targeted
empirical equations. ML models, particularly advanced models such as neural networks,
can achieve a higher prediction accuracy than traditional empirical equations. This is
particularly valuable when dealing with complex structural behaviors.

However, applying ML to engineering presents challenges. Some ML models, par-
ticularly complex ones, such as deep neural networks, can be challenging to interpret.
Engineers may need to understand the model’s decisions and ensure that they align with
engineering principles. The success of ML models depends on the quality, quantity, and
representativeness of the training data. Data bias can also lead to biased predictions. ML
models often require large amounts of data for training. Obtaining sufficient high-quality
data on specific construction details is challenging.

The traditional paradigm for acquiring data in ML involves a dual approach: data-
driven methods, and the use of physics-informed neural network (PINN) models. Data-
driven methods face challenges due to the high costs associated with the collection of
experimental data, whereas the latter approach, relying on PINN models grounded in
physical knowledge, faces challenges in adapting to structurally complex models [12].
Consequently, structural assessment follows a historical methodological continuum. This
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encompasses empirical formulations derived from experiments and the exploration of
strategies involving the creation of finite element method (FEM) models. This dualistic
strategy aims to overcome the challenges posed by limited data availability and the intri-
cate nature of structural behaviors, providing a comprehensive framework for structural
evaluation from past to the present.

Various advanced and continually evolving ML models have been proposed. They
include standalone models, such as linear and nonlinear regression models, and models
adept at handling many features, such as decision tree models. Subsequently, the emergence
of ensemble models, in which diverse independent models are amalgamated, have marked
a significant development. An ensemble model integrates multiple individual models
in order to collectively enhance predictive performance. Notably, using various well-
performing models culminates in an ensemble approach. Finally, the refinement journey
reaches its peak through the implementation of a voting mechanism, wherein a diverse
ensemble of models actively participates in the decision-making process. This strategic
amalgamation harnesses the strengths of multiple models in order to yield a final prediction,
considering their diversity.

This study introduces the development of an augmented data-driven digital twin
for stud shear connections. First, various elements comprising the shear connection are
considered as input data and treated as parameters for strength prediction. Subsequently, a
method is proposed to address the challenges of limited and biased datasets by utilizing
the components of pushout tests as inputs to finite element models and their resulting
ultimate strength values. This approach supplements the conventional data collection
process by filling in information within relatively scarce and biased data ranges using finite
element data. This mitigates the issues of underfitting or overfitting in ML models, caused
by insufficient data, and compensates for the limitations of hard-to-obtain experimental
data. Furthermore, this study introduces an ML prediction model based on experimental
data related to deformation capacity. The model employs the AutoML approach using the
PyCaret library (Python Library for Classification and Regression Train) [13], selects the
five best models from various ensemble models, based on the decision tree model, and
derives results through voting. This method reduces overfitting and model dependency,
ensuring that future model improvements do not disrupt the overall framework. Through
continuous data collection and ML model updates, this approach presents a stable proce-
dure and suggests a process for replacing design codes. Therefore, a framework capable
of continuous data collection and improved machine model acceptance is defined as a
one-way digital twin at the design stage. A digital twin model predicts the ultimate states
of the model based on input variables, using bilinear load–slip curves during the design
phase. The overall process and flow of this study are as shown in Figure 2.
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2. Literature Review

Ultimate shear strength prediction in current design codes relies on experimental
investigation results. Most design codes propose predictive equations based on pushout
tests. Viest [1] developed the first pushout test involving headed-stud connector capacity.
Ollgaard et al. [3] performed 48 pushout tests for normal-weight and lightweight concrete
and developed predictive equations for ultimate shear strength and the load–slip relation-
ship. Li [14] investigated normal-strength concrete (NSC) and high-strength concrete (HSC),
revealing a significant influence on the shear capacity of headed-stud connectors. Kim
et al. [15] tested 15 thin ultra-high-performance concrete (UHPC) slab specimens. Wang
et al. [16] investigated the use of large-diameter studs (30 mm) in UHPC slabs.

Considering the effect of reinforcement in concrete slabs is crucial, as it is related to
the concrete failure mode and significantly influences shear capacity. Oehlers et al. [17]
confirmed the significance of transverse reinforcement for controlling cracks in NSC, which
can reduce the ultimate strength of stud connectors. Prakash et al. [18] considered the
confinement ratio calculated using transverse reinforcement as a means to improve shear
capacity, particularly for high-strength studs. Kumar et al. [19] examined the impact of
reinforcement details.

The geometric properties of stud connectors also affect shear capacity. Okada et al. [20]
examined the arrangement of studs grouped together and concluded that the shear re-
sistance was lower than the shear strength required for shear failure in a standard stud
arrangement. Similarly, Xu et al. [21] observed a decrease in shear strength when studs
were arranged in groups. Xue et al. [22] recommended emphasizing the quality control of
the influence of a stud-welding collar. Xue et al. [23] investigated the quantity and spacing
of studs and confirmed that shear resistance was higher in single-stud arrangements than
in multi-stud arrangements. Huang et al. tested 13 pushout specimens and found that
the spacing and position of stud connectors have a significant influence on stiffness and
strength [24].

Research on using large-diameter studs with high ultimate strengths has gained
attention owing to their potential advantages in practical applications. Badie et al. [25]
confirmed the effectiveness and safety of the 1998 version of the AASHTO LRFD for
predicting ultimate shear strength, particularly for large-diameter studs (31.8 mm). Shim
et al. [26] found that Eurocode4 tended to underestimate the shear strength of studs with
25, 27, and 30 mm diameters. Wang et al. [27] performed 12 pushout tests in order to
investigate the effects of large-diameter and high-strength headed studs. Yang et al. [28]
investigated large-diameter and high-strength welded stud connectors through 14 tests.

Several studies have been conducted on the applications of precast concrete slabs.
Shim et al. [29] performed pushout tests on precast decks using non-shrink mortar. The
thickness of the bedding layer was found to have a significant impact, with higher bedding
layers resulting in reduced shear capacity. Wang et al. [30] investigated the arrangement of
large-diameter studs in precast UHPC slabs filled with UHPC mortar. Semendary et al. [31]
investigated UHPC prefabricated deck shear pockets with large-diameter studs.

Numerical methods, such as finite element modeling, offer viable alternatives widely
applied in engineering. Structural analysis often employs the finite element method (FEM)
to simulate structural and material behaviors. Lam et al. [32] used the FEM to replicate past
pushout tests and investigate stud connectors in composite structures. Nguyen et al. [33]
utilized FE modeling for large-diameter studs, and investigated 32 parametric cases with
stud diameters ranging from 22 mm to 30 mm and concrete compressive strengths ranging
from 25 MPa to 65 MPa. Qi et al. [34] examined the static behavior of headed studs through
numerical simulations using an FE model.

In the ML domain, supervised learning algorithms, such as regression and classifica-
tion models, are powerful tools for predicting outcomes based on input data. These models
can identify patterns and relationships within the training data, uncovering potential hid-
den connections that may challenge conventional analytical equations. A notable feature of
ML models is their remarkable strength in handling a multitude of features. This capability
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enhances the accuracy of shear capacity predictions, allowing the model to encompass a
broader spectrum of factors and intricate interactions.

ML has applications in various domains, particularly in structural fields. ML models
for classification have proven valuable for damage detection in structures, as evidenced by
studies on bridges [35–38], beam/column members [39–41], plate/panel members [42,43],
and joints [44,45]. Regression models have applications in various predictive tasks, address-
ing shear resistance in beams [46,47], slabs [48], joints [49,50], axial strength of concrete
columns [51], steel columns [52], concrete-filled steel tube (CFT) columns [53], deflection of
concrete beams [54], and data-driven optimization for torsion design of CFRP-CFST [55].

The application of ML regression models for estimating the shear resistance of stud
connectors in composite structures has also been explored. Table 3 lists the relevant ML
study for prediction of shear resistance in shear connection. Abambres et al. [56] proposed
an artificial neural network (ANN) model to predict shear resistance. Setvati et al. [57] used
six ML regression models to demonstrate the superiority of ML models over current design
codes. In addition, Degtyarev et al. [58] expanded research on two typical cases (NSC and
light-strength concrete (LSC)), with a reliability evaluation, according to design codes using
nine ML regression models. Avci-Karatas et al. [59] highlighted the use of advanced ML
techniques, such as minimax probability machine regression and extreme ML, in order to
enhance the accuracy and precision of ML models. Zhu et al. [60] developed an ML model
that combines an ANN model with several advanced hyperparameter optimizations, such
as an ANN-particle swarm optimization (PSO) and an ANN-improved eliminate particle
swamp optimizer (IEPSO). Zhang et al. [61] studied shear resistance predictions for specific
types of concrete strength (including HPC and UHPC) with ML models. Yosri et al. [62]
used an adaptive network-based fuzzy inference system (ANFIS) in order to focus on the
sensitivity of input parameters and the optimal combination for model performance.

Table 3. Various research on shear resistance prediction using machine learning.

Research Number of Data and Features ML Models

Abambres et al. (2019) [56] - Number of data: 242
- Features: D, h, fcm, Ecm, Fu, ddom, hdom

- Artificial Neural Network (ANN)

Setvati et al. (2022) [57]
- Number of data: 242
- Features: D, h, fcm, Ecm, Fu, ddom, hdom

- Linear Regression
- Decision Tree
- Ensemble Decision Tree
- Support Vector Machine
- Gausian Pross
- ANN

Degtyrev et al. (2022) [58]

- Number of data: 242 (NWC), 90 (LWC)
- Features: fcm, Ecm, Fu, h, ddom, hdom,

h/D, concrete density (only LWC)

- KNN
- Decision Tree
- Random Forest
- GBR
- XGBoost
- LightGBM
- CATBOOST
- SVR
- ANN

Avci-karata et al. (2022) [59]
- Number of data: 215
- Features: D, fcm, Fu

- Minimax Probability Machine
Learning (MPMR)

- Extreme Learning Machine (ELM)

Zhu et al. (2023) [60]
- Number of data: 232
- Features: fcm, Fu, D, h, s, n

- ANN-IEPSO
- ANN-PSO
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Table 3. Cont.

Research Number of Data and Features ML Models

Zhang et al. (2023) [61]
- Number of data: 428
- Features: D, h, fcm, Ecm, Fu, n

- SVM
- ANN
- Decision Tree
- Random Forest
- GBDT

Yosri et al. (2023) [62]
- Number of data: 232
- Features: fc, Fu, h, s, n, ϕ

- ANFIS
- ELM
- ANN

3. Dataset

The data collection process involved performing separate tests for ultimate strength
and ultimate slip. However, data collection for the ultimate slip through FEM was not
performed owing to the significant influence of the input values related to the weld joint
of the studs, the interface between the concrete slab and steel girder, and the yield range
of the material model. In addition, the data collection process did not include collecting
data for slip or strength in the elastic range. The elastic range was not considered for the
direct elastic values of the connection because it was heavily influenced by the initial and
boundary conditions of the model.

3.1. Preprocessing

After data collection, preprocessing was performed in order to structure the dataset for
input into the ML model. The mean compressive strength of concrete in a cubic specimen
is often converted into that of a cylindrical specimen using a ratio. No universal rule has
been established for NSC and HSC, resulting in variations of approximately 0.8. Elwell [63]
proposed a range of ratios from 0.65 to 0.9, while CP110 [64] suggested a value of 0.85. For
the data representing the compressive strengths of the cylindrical ( fcylinder) and cubic ( fcube)
specimens applied during the shear connection studies, the values were processed into
cylinder strengths using the transformation in Equation (1).

fcylinder= 0.85 fcube. (1)

Furthermore, when the characteristic and mean experimental strengths of concrete
were cited concurrently or separately, the data preprocessing involved Equation (2) from
Eurocode2 [65] or the direct utilization of the mean experimental strength values.

For studies that explicitly present the modulus of elasticity of concrete through experi-
mental tests, the values were directly cited. However, for studies that did not specify the
modulus of elasticity, Equation (3) from Eurocode2 [65] was used to calculate the modulus
of elasticity.

fcm = fck + 8 (MPa), (2)

Ecm = 22, 000 ×
(

fcm

10

)0.3
(MPa) (3)

where
fcm = Mean value of concrete compressive strength;
fck = Characteristic value of concrete compressive strength.

The transverse reinforcement ratio for the lateral confinement effect of the transverse
core reinforcement, which provides confinement to the shear connection, was incorporated
into the data structure by converting it into a confinement ratio. The confinement ratio was
calculated using Equation (4) [66].

ρ =
As

sbc
, (4)
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where
s = Pitch of lateral confinement steel;

bc = Core dimension, center-to-center perimeter of lateral confinement;
As = Area of lateral confinement steel.

The tensile strengths of the steel studs were converted from nominal values to real
or test mean values. Some studies have provided a nominal value, guaranteed to be the
minimum value in the test sample, which may not reflect actual material behavior in
experiments. The conversion between two values was formulated based on a collection of
the mean and nominal values of the stud ultimate strength in over 100 pushout experiments.
Normally, steel studs are fabricated according to ASTM A108 [67]. The nominal ultimate
strength of this steel is 400 MPa, with real values ranging from 430 MPa to 600 MPa. This
study used a conversion factor of 0.83, the median value of the lognormal probability
density function, within the tensile strength range of all the studs in the dataset.

In cases where the components and material strengths constituting the pushout model
were not mentioned, the missing data for the respective features were replaced with the
mean values of those features. Figure 3 represent the correlation matrices for each feature
in the dataset collected for the prediction of strength and slip.
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3.2. Dataset for Strength Prediction

Data collection involved obtaining 431 records from experimental pushout tests, de-
noted as the pushout experimental dataset [1,3,14–16,20,23,25–28,30,68–99], and 139 records
from the FEM, referred to as the FEM dataset [32,33,91,98,100–104]. The experimental
dataset was specifically named as the “pushout experimental data,” while the combined
set of experimental and FEM data was called the “augmented data.” The collected and
preprocessed data comprised twelve features, organized into four input variables and one
target variable. The input variables included the geometric dimensions of the concrete slab
(b(mm), d(mm), t(mm)), the geometry-related values of the studs (Dsc, hsc), the configu-
ration parameters of the internal restraints in the slab (confinement ratio and diameter),
and the material properties of various components (tensile strength (fu) and modulus
of elasticity (Es) of the stud, concrete modulus of elasticity (Ecm), average compressive
strength of concrete cylinders (fcm), and yield strength of confinement reinforcement (fy)).
The target variable was the ultimate shear strength (Qu) of the shear connection. Figure 4
shows the data distribution for each feature.
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The distribution of the collected experimental data revealed a significant bias, particu-
larly concerning the diameter, height, and strength of the studs, as well as the compressive
strength and the modulus of elasticity of the concrete, elements emphasized in existing de-
sign codes. Notably, the collected data exhibited a strong bias toward experimental setups
that directly or indirectly influenced the design code, with a relatively limited representa-
tion of data for larger diameters or high-strength materials. Figure 3 shows the correlation
matrices for various data characteristics before and after the augmented integration. The
results confirmed that the composition of the collected data and characteristic values within
the data significantly influenced the correlation. In the correlation matrix of the augmented
data, the relationship between shear strength and larger diameters was further accentuated,
whereas the tensile strength of the studs negatively affected the strength. The collected
FEM data, designed to study the influence of stud diameter and concrete strength rather
than the tensile strength variables within the analysis, demonstrated unexpected effects
because they were fixed at the same tensile strength across the analyses. In addition, the
relationship between stud diameter and shear strength was found to have a more signifi-
cant influence than the proportional relationship between the concrete and shear strengths.
This resulted in the relatively lower impact of concrete strength in the final augmented
data. Such variations in the correlations indicate that the predicted strength can change
significantly based on data composition.

3.3. Dataset for Slip Prediction

Data for the ultimate slip were collected from 194 pushout tests [1,15,16,20,22,23,25,
28,69,78,80–84,87,90–93,97–99,105–110]. The target feature was the ultimate slip value (Su)
of the shear connection. The ultimate slip values measured in the pushout experiments
exhibited considerable variability. Various factors, including the criteria for assessing
ultimate slip and deciding to terminate the experiments at different time points, influenced
the determination of slip values. Consequently, the slip values provided may not necessarily
represent the true ultimate slip values inherent to the actual specimen. Similar to the dataset
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for strength prediction, the experimental slip data comprised the dimensional and material
values applied to typical specimens, as shown in Figure 5. Data on high-strength and large-
diameter specimens are relatively scarce. Owing to the limited amount of data, confirming
the overall correlation between the input features and slip was challenging. Nevertheless,
the correlation coefficients among the features within the experimental data composition
for slip prediction, as illustrated in Figure 3c, revealed that unlike strength, the thickness
of the concrete slab and the height of the stud, which are related to stiffness, exhibited a
directly proportional relationship with the ultimate slip.
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3.4. Data Split for Training and Testing

In the ML model, the overall data composition for learning was divided into training
and test datasets. This study used a 0.75:0.25 training-to-test data ratio. In order to divide
the data, a stratification method was employed by selecting a single feature as the criterion.
In addition, to prevent overfitting and ensure generalization with a limited amount of data,
cross-validation was performed using the K-fold method with 10 folds (cv = 10).

3.4.1. Data Split for Training and Testing (Ultimate Strength)

In order to configure the experimental data for strength prediction, the correlations
between features were considered, and the stratification method was employed to partition
the data, considering the stud diameter feature (Dsc). As shown in Figure 6, the stud
diameter ratio in the training and test datasets was maintained at 0.75:0.25.

3.4.2. Data Split for Training and Testing (Ultimate Slip)

In order to predict the ultimate slip in the dataset, the data was split based on the
thicknesses of the concrete components exhibiting the highest proportional relationship
with the target feature, slip (Su). To achieve this, the thickness range was uniformly divided
into intervals, and each section was assigned a class. The training and test datasets were
then structured using a class-specific stratification method in order to ensure a consistent
distribution across the split sections.
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4. Machine Learning Model
4.1. AutoML–PyCaret Library

In contrast to conventional ML models that first select a high-accuracy model and
subsequently perform an optimal hyperparameter tuning procedure for evaluation, this
study adopted and applied a model that automatically optimizes classical ML procedures,
as shown in Figure 7. Automated ML (AutoML) refers to the automated process of selecting,
training, and evaluating ML models. It automates tasks, such as hyperparameter tuning,
feature engineering, and algorithm selection, minimizing user intervention and aiding
in the optimization of the models. AutoML is commonly used to make ML accessible to
nonexperts by simplifying the model development process for various ML tasks. This
study developed the ML models using the PyCaret library. PyCaret is a Python-based
AutoML library designed to rapidly build and optimize ML models.
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4.2. Decision Tree Model

Considering the composition of a dataset, selecting a suitable model becomes an
additional requirement, particularly when dealing with multiple features. In training a
linear regression model on a dataset with many features, various problems can arise, such
as the removal of features with a relatively low impact on the target feature or the risk of
overfitting owing to an excessive fitting of features. In order to address these challenges, a
model capable of handling datasets with many features and capturing nonlinear trends,
such as decision-tree-based models, was selected from the models provided by PyCaret. The
Decision Tree model offers a comprehensive and adaptable solution for classification and
regression tasks. Its hierarchical tree structure, with internal nodes representing features,
branches embodying decision rules, and leaf nodes culminating in predictions, facilitates
an intuitive representation of decision-making processes. Central to the functionality of
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the decision tree is the selection of the splitting criteria at each internal node. This strategic
decision, often based on optimizing information gain or minimizing variance, governs the
partitioning of data and ultimately defines the structure of the tree. The PyCaret library
supports six tree-based models: CatBoost, XGBoost, Random Forest, LightGBM, ExtraTrees,
and Decision Tree. The top five models were selected, except the Decision Tree model.

CatBoost is a gradient-boosting algorithm that minimizes the loss function using
the gradient direction. Each tree is constructed to reduce the residuals of the previous
tree, and categorical feature handling involves converting categorical features into binary
codes [111].

XGBoost is a gradient-boosting algorithm that minimizes the loss function and con-
structs trees. Each tree is trained in a direction that reduces the residuals (difference between
the predicted and actual values) of the previous tree. Mathematically, it utilizes a gradient
and Hessian to train trees [112].

Random Forest constructs multiple decision trees in order to enhance predictive
performance. Each tree is trained on a bootstrapped sample (randomly selected data with
replacement), and random subsets of features are used to find the optimal split points at
each node [113].

LightGBM is an efficient gradient-boosting algorithm that uses a leafwise tree-
construction method for faster training. Each tree is split leafwise using the gradient
information of the loss function, and boosted tree predictions are combined for the final
prediction [114].

ExtraTrees is an ensemble technique that constructs decision trees using randomly
selected feature subsets. Each tree is trained on a bootstrapped sample, and random feature
subsets are considered at each node in order to determine the optimal split points. This
diversity enhances predictive performance [115].

4.3. Ensemble (Voting)

Ensemble learning, exemplified by the voting technique, is a powerful ML approach,
particularly in the context of classification tasks. This methodology combines the predic-
tions from diverse base models in order to form a unified and robust final model. Two
notable variants, hard and soft voting, offer distinct strategies for decision consolidation.
In hard voting, the prediction of each model is treated as a discrete vote, and the ultimate
prediction is determined by the majority vote. For instance, if the three models forecast
classes A, A, and B, then the hard-voting mechanism would favor class A as the conclusive
prediction. By contrast, soft voting assigns weights to individual models and considers the
average predicted probabilities across classes. The class with the highest average probability
influences the final prediction. The assignment of weights often depends on the historical
performance of each model. Encompassing diverse models through voting provides an
avenue for performance enhancement and serves as a mechanism for mitigating overfitting
by introducing model diversity. However, this technique assumes equal importance for all
constituent models, and its efficacy is constrained in scenarios where the models exhibit
similar performances or deliver unreliable predictions. In conclusion, voting is a straight-
forward yet potent ensemble learning method that offers a versatile means of leveraging
the strengths of multiple models in order to obtain more robust and stable predictions. The
selection between hard and soft voting is contingent on the unique characteristics of the
problem at hand and the preferred strategy for aggregating predictions.

4.4. Hyperparameter (Autotuning)

The proper tuning of hyperparameters is an indispensable aspect of ML and is often
the most time-consuming phase in traditional ML pipelines. Hyperparameter tuning is
currently performed using three primary approaches: GridSearch, RandomGridSearch,
and Bayesian Optimization, with each method contingent on the selected learning model.
This study used the RandomGridSearch method for tuning in order to prioritize learning
time in the automated process. Table 4 lists the hyperparameter values used in each model.
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Table 4. Hyperparameters of the ensemble model.

Hyperparameter Catboost XGBoost LightGBM Random Forest ExtraTrees

Learning_rate 0.034/0.036/0.01 0.15/0.3/0.01 0.1
subsample 0.8 0.2/1/0.9 1.0

n_estimators 140/100/110 100/230/100 100/100/210 100/100/210
L2_leaf_reg 3

Depth
Border_count 254

Objective Reg_squarederror Regression
Colsample_bynode 1

Eval_metric RMSE RMSE
iterations 1000
Gamma 0

Max_features 1.0 1.0
Max_depth 5/6/3 None/None/7 None/None/7

Min_child_weight 2/1/4 0.001
Min_child_samples 20/26/20
Min_sample_leaf 1/1/2 1/1/2

Min_samples_split 2/2/2 2/2/2
Reg_alpha 0.2/0/0.0005 0.0/0.005/0.0

Reg_lambda 0.001/1/0.15 0.0/4/0.0
Scale_pos_weight 1.6/1/26.6

Num_leaves 31
Boosting type gbdt

boostrap True False

Experimental data for strength/augmented data for strength/experimental data for slips.

4.5. Model Pipeline

The models in the AutoML were evaluated using one of the evaluation metrics, R2.
For models based on experimental data for strength prediction, the order of accuracy was
CatBoost, ExtraTrees, XGBoost, LightGBM, and Random Forest. However, for models
based on augmented data, the order was CatBoost, ExtraTrees, XGBoost, Random Forest,
and LightGBM. The framework for slip prediction comprised LightGBM, Random Forest,
CatBoost, ExtraTrees, and XGBoost. The pipelines for the training models were identical,
and preprocessing for missing data was performed using a simple imputation function
within the pipeline, as shown in Figure 8.
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5. Prediction of Strength and Deformation Capacity
5.1. Metrics for Performance Evaluation

Six metrics were used to evaluate the ML results, and SHapley Additive exPlanations
(SHAP) values were applied to each ensemble model and voting for visualization in order
to assess the relationships between the features and the target values within the data.
Table 5 lists the metrics for the training datasets of the three prediction models.

Table 5. Metrics for the prediction of ultimate strength and slip.

Catboost XGBoost Random Forest LightGBM ExtraTrees Voting

Prediction for
ultimate strength

(Experimental data)

MAE 4.6739 6.6095 5.8284 7.9378 2.8303 5.117
MSE 49.0446 84.1003 77.5727 145.6685 36.8210 58.0090

RMSE 7.0032 9.1706 8.8075 12.0693 6.0680 7.6164
R2 0.9875 0.9785 0.9802 0.9628 0.9906 0.9852

RMSLE 0.0655 0.0860 0.0845 0.1004 0.0562 0.0707
MAPE 0.0426 0.0612 0.0540 0.0961 0.0251 0.0458

Prediction for
ultimate strength

(Experimental data)

MAE 4.5702 2.8028 5.2054 6.0641 2.4839 4.1127
MSE 43.2715 29.4825 66.3492 83.3793 29.0910 41.4577

RMSE 6.5781 5.4298 8.1455 9.1392 5.3936 6.4388
R2 0.9892 0.9926 0.9834 0.9791 0.9927 0.9890

RMSLE 0.0597 0.0477 0.0739 0.0840 0.474 0.0569
MAPE 0.0400 0.0240 0.0460 0.0528 0.0213 0.0538

Prediction for
ultimate slip

(Experimental data)

MAE 1.1446 1.3073 1.0479 1.0805 1.2649 1.3768
MSE 2.6340 3.2825 2.6683 2.5315 3.4954 3.2119

RMSE 1.6229 1.8118 1.6335 1.5911 1.8696 1.7922
R2 0.5782 0.4744 0.5727 0.5947 0.4403 0.5838

RMSLE 0.1443 0.1638 0.1432 0.1437 0.1673 0.1675
MAPE 0.1307 0.1503 0.1186 0.1262 0.1448 0.1573

Mean absolute error (MAE) represents the average of the absolute errors between
the predicted and actual values. This metric treats the errors between each data point
independently and is not heavily influenced by outliers. A lower MAE indicates a more
accurate prediction.

MAE =
∑n

i=1
∣∣Yi − Ŷi

∣∣
n

. (5)

Mean square error (MSE) represents the average of the squared errors between the pre-
dicted and actual values. Squaring the errors makes them more sensitive to large errors and
can be heavily influenced by outliers. A lower MSE indicates a more accurate prediction.

MSE =
∑n

i=1
(
Yi − Ŷi

)2

n
. (6)

Root mean square error (RMSE) is the square root of MSE, representing the square
root of the average squared errors between the predicted and actual values. The RMSE
scales the error in the same unit as the actual values, making the interpretation relatively
straightforward. A lower RMSE indicates a more accurate prediction.

RMSE =

√
∑n

i=1
(
Yi − Ŷi

)2

n
. (7)

R2 indicates the explanatory power of a regression model and measures how well the
predicted values explain the variance of the dependent variable. R2 values range between
0 and 1, with higher values indicating a better model fit.
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R2 = 1 − ∑i(yi − ŷi)
2

∑i(yi − y)2 . (8)

Root mean square logarithmic error (RMSLE) represents the square root of the average
squared logarithmic errors between the logarithm-transformed predicted and actual values.
It is commonly used in regression problems involving positive values in order to mitigate
sensitivity to large values through log transformation.

RMSLE =

√
1
N ∑N

i=1(log(pi + 1)− log(ai + 1))2. (9)

Mean absolute percentage error (MAPE) represents the average of the absolute per-
centage errors between the predicted and actual values. It measures the relative error as a
percentage, providing insights into the accuracy of the predictions on a percentage scale. A
lower MAPE indicates a higher model accuracy.

MAPE =
100
n

× ∑n
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣, (10)

where
Yi, yi, ai = Actual value;

Ŷ, pi = Predicted value
y mean value of actual value;
n = Number of data.

5.2. SHapley Additive exPlanations (SHAP) Value

The SHAP model is a tool for interpreting the predictions of ML models and explain-
ing the contribution of each feature to the predictions of a model. This model assesses
the importance of each feature individually and reasonably distributes contributions by
considering the interactions between features based on the principles of the Shapley values.
The SHAP model enhances the interpretability of black-box ML models and provides a
comprehensive overview of feature importance across the entire dataset, aiding in under-
standing the behavior of the model. It applies to various types of ML models and facilitates
clear understanding of the contribution of each feature [116].

∅i = ∑
S⊆F\{i}

|S|!(|F| − |S| − 1)!
|F|! [ fS∪i(xS∪i)− fs(xs)], (11)

where
∅i = The Shapley value for the “I” data;

F = The entire set;
S = All subsets of the entire set with the i-th data removed;

fS∪i(xS∪i) = The overall contribution, including the i-th data;
fs(xs) = The contribution of the remaining subset without the i-th data.

5.3. Strength Prediction with Experimental Data

The experimental data for the strength prediction were used to train the ML models,
and the results were visualized in residual graphs (Figure 9). The outcomes of the top five
ensemble decision tree models selected through AutoML, and the results obtained from
these five models using the uniform-weight voting technique, are presented sequentially.
Despite using the same data, diverse results were observed across the models; however, an
overall high accuracy was noted. In this framework, the CatBoost model demonstrated
the highest accuracy (R2 = 0.987 (training dataset) and 0.948 (test dataset)). The accuracy
of the Voting Regressor was also found to be nearly comparable (R2 = 0.984 (training
dataset) and 0.986 (test dataset)). Because this model is designed for strength prediction,
despite CatBoost exhibiting the highest R2 value for the test dataset, an evaluation of
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the actual residual values for the training dataset suggests the ExtraTrees model was the
most accurate.
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Figure 9. Residuals of ensemble models for ultimate strength prediction using the experimental
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Figure 10 shows the SHAP value graphs for each ensemble model. The features
reflected in the existing design code included the stud diameter, height, tensile strength,
concrete strength, and elastic modulus. By analyzing the impact of features through
ML, all models identified the diameter of the stud as the most highly correlated factor.
However, in a few models, the thickness of the concrete member was considered as the
second most important factor. In addition, the models evaluated features, such as the
elastic modulus and compressive strength of concrete, the height and elastic modulus of
the connector material, and the dimensional characteristics of the concrete component,
as influential factors. Ultimately, an examination of the evaluation graph (Figure 11)
for the ensemble model revealed that the diameter of the connecting material and the
material properties of concrete were sequentially considered significant. Subsequently, the
dimensional characteristics of the concrete component, such as thickness and width, were
recognized as significant from the next order onwards.
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5.4. Strength Prediction with Augmented Data (Experimental and Finite Element Method)

The ML models were trained using the augmented data for strength prediction, and
the results were visualized in residual graphs (Figure 12). Despite using the same dataset,
diverse results were observed among the models. In the ML architecture of the augmented
dataset composition, CatBoost exhibited the highest predictive performance (R2 = 0.989
(training dataset) and 0.939 (test dataset)). In contrast to the ML setup with the traditional
experimental dataset composition, the accuracy of the Voting Regressor stood out with
the highest R2 = 0.990 (training dataset) and 0.989 (test dataset). The R2 metric for the test
dataset in the Voting Regressor was higher than that of the individual ensemble models.
An examination of the metric evaluations of the training dataset revealed that the accuracy
of each ensemble model improved across all aspects. Particularly noteworthy was the
improvement in the MSE values, indicating the average squared residuals for the strength
values in specific models.
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Figure 12. Residuals of ensemble models for ultimate strength prediction with the augmented dataset:
(a) CatBoost; (b) ExtraTrees; (c) XGBoost; (d) Random Forest; (e) LightGBM; (f) Voting.

An examination of the SHAP values for the framework evaluation with the augmented
data composition (Figure 13) revealed that the importance of the features was assessed
more similarly to the actual structural behavior compared with the models based on the
experimental data composition. The importance of features related to concrete components
decreased, whereas the influence of the material properties of concrete and the tensile
strength of the connecting elements became more prominent. The top SHAP value features
of the LightGBM model generally included the diameter and strength of the connections,
as well as the compressive strength and elastic modulus of concrete. These trends indicate
the dependence of the model on data quantity and model specifications. Furthermore,
except for the top four features, the predictions did not appear to proceed correctly from a
mechanical perspective. By contrast, models, such as the ExtraTrees and XGBoost, properly
evaluated the mechanical aspects. The SHAP value graph (Figure 14), which evaluated the
final model by averaging the impact of each model, revealed that the values assessed by
each ensemble model were reflected. The use of FEM data can potentially address issues
inherent to ML, such as bias in existing data and the dependence on data quantity.
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Figure 13. SHAP value of each ensemble model for ultimate strength prediction with the augmented
dataset: (a) CatBoost; (b) ExtraTrees; (c) XGBoost; (d) Random Forest; (e) LightGBM.
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Figure 14. SHAP value of the Voting Regressor for ultimate strength prediction with the
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5.5. Slip Prediction with the Experimental Data

The ML models were trained using the experimental data for slip prediction, and the
results were visualized in residual graphs (Figure 15). In this prediction task, LightGBM
demonstrated the highest predictive performance (R2 = 0.595 (training dataset) and 0.470
(test dataset)). Notably, the Voting Regressor exhibited the highest accuracy, with R2 = 0.582
(training dataset) and 0.584 (test dataset). Owing to the relatively small amount of data
available for training, the performance of the slip prediction model was inferior to that of
the strength prediction model. When evaluating the metrics, interpreting the numerical
values in terms of absolute magnitude is challenging, because the target feature, Su, has
units in millimeters with generally small values. In addition, based on the MAPE value,
the slip prediction model required more data for prediction, predicting values that were
more than twice as large as those of the strength prediction model.
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Figure 16. SHAP value of each ensemble model for ultimate slip prediction with the experimental 
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Figure 15. Residuals of ensemble models for ultimate slip prediction with the experimental dataset:
(a) LightGBM; (b) Random Forest; (c) CatBoost; (d) ExtraTrees; (e) XGBoost; (f) Voting.

Despite LightGBM exhibiting the highest R2 value, an analysis of feature importance
using the SHAP values in the slip prediction model (Figure 16) revealed that the yield
strength of the confinement reinforcement contributed the most. Contrary to expectations
based on mechanical judgment, features directly related to stiffness, such as the thickness
of the components or elastic modulus, were not highly ranked. This underscores the
importance of considering the accuracy of the model and the significance of the features
considered when constructing and using the model. An examination of the SHAP values of
other models comprising the Voting framework revealed features related to stiffness as the
most prominent (Figure 17). Approaches that utilize averages or medians for outstanding
models are desirable in order to prevent the dependency of the results on individual models
in the two aspects of model improvement.
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6. Digital Twin for Stud Shear Connection
6.1. Application of Machine Learning to Replace a Design Code

In order to mitigate the significant biases within the existing experimental data range,
this study proposed a system that supplements the data for regions with substantial bias
using FEM or additional experimental data. Following the optimization of the ML models, a
what-if simulation was employed to estimate the strength and slip values of the connections
in the pushout experiments (Figure 18). The system operates by inputting variables and
deriving the corresponding output values. The contribution of features comprising the
input data and range-based variations of features in terms of the results were examined
using partial dependence plots (PDP).
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6.2. Digital Twin for Design of Static Composite Shear Connection

In addition, slip and strength prediction simulations provided the behavior of static
shear connections in composite structures in the form of a load–slip curve. Considering
the elastic and inelastic regions is necessary in order to characterize the behavior of the
connections. In the elastic region of actual steel composite bridges, the influence of ad-
hesion/friction effects and the design impact of the full shear connection are substantial,
making the impact of the connection on the elastic range almost negligible [117]. Shim [26]
proposed the limit state of the static behavior of the connection as a trilinear load–slip
curve, validating the effectiveness of the proposed model by comparing it with actual
experimental data. A simplified load–slip curve and the experimental data from this study
are cited in order to propose and compare it as a bilinear curve. The information required
to draw the graph included the ultimate strength, ultimate slip, and slope of the elastic
region. The first two data points were obtained using the predictive models, and the initial
stiffness value of the elastic region was determined using Equation (12) [117].

ksi(Initial Sti f f eness) = Pmaxdsh(0.16 − 0.0017 fc), (12)

where
Pmax = Ultimate strength;

dsh = Diameter of stud;
fc = Mean value of concrete compressive strength.

In practical terms, when experimental data are incorporated into design codes, a con-
servative evaluation is performed by applying factors such as strength reduction coefficients.
Existing design codes commonly use values, such as 0.85 and 1/1.25, to conservatively
assess strength. This study proposes a strength reduction coefficient of 0.9 when the MAPE
value from the strength prediction model is below 0.1. This choice is made in order to
counteract outliers during the data collection process. When values deviate from the data
trend, the results from the trained data would tend to significantly deviate from the actual
values. This measure prevents random or exaggerated data inputs. Figure 19 illustrates the
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load-slip data obtained from the pushout experiment of the shear connection [26] and the
bilinear load-slip curves predicted by machine learning models.
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7. Conclusions

Existing design equations for static strength estimation rely on empirical expressions
based on a limited range of experimental data, introducing constraints on the applicable
features. Moreover, these equations typically incorporate only a few features considered
crucial in the experiments. This results in a lack of consideration for the many elements
comprising the shear connection. This study aimed to develop an augmented data-driven
digital twin for stud shear connections. Initially, numerous elements constituting the
shear connection were included as input data and considered as parameters for strength
prediction. This approach allows for target prediction, even with future feature expansions.
Subsequently, the ultimate strength and slip were proposed as indices to evaluate the
limit state of shear connections, and a dataset was constructed to predict these indices. In
order to enhance the ultimate strength prediction, FEM data were incorporated into the
dataset to address the significant deviations in the experimental data. Slip prediction used
experimental data. The ML model used the PyCaret library from AutoML, and voting was
employed to evaluate the final performance of the ensemble models based on the decision
tree models. Decision tree models can effectively capture nonlinearity when dealing with
high feature counts.

The following conclusions can be drawn:

(1) AutoML models streamline and automate the optimization process by integrating
the steps required in traditional ML models. They automatically evaluate the results,
allowing for the replacement of conventional design codes. Furthermore, they serve
as flexible tools for handling continuous data and model updates. In instances where
a more accurate model is proposed, it can be added to or replaced existing models
within the blended model system, potentially yielding superior results compared to
the conventional approach.
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(2) The data-driven approach in ML requires a substantial amount of data, which often
poses challenges. However, proposing empirical codes and design equations, particu-
larly those encompassing parameters such as diameter and high strength based on
existing experiments, requires numerous experiments, presenting practical challenges.
In order to address this problem, an augmented dataset is created using FEM models
to mitigate biases in the existing experimental dataset. This approach improves the
dataset and fills gaps in the experimental data, addressing issues related to data model
overfitting. Consequently, the performance of the model, evaluated through accuracy
metrics and SHAP values, which indicate feature importance, demonstrated superior
results from a mechanical perspective.

(3) A comparison of the accuracy of the models for strength and slip predictions revealed
that the evaluation metrics, accuracy, and importance of features in the SHAP values
significantly differed based on the amount of data. Initially, a notable uncertainty
in the collected data for the ultimate slip was observed, resulting in less accurate
results. Therefore, substantial amounts of clear experimental data are crucial for
precise predictions, particularly owing to the initial uncertainty in the collected data
for extreme slips.

(4) A model trained on an augmented or experiment-based dataset applies only within
the range of the applied data. The predictive errors inherently increase for outlier data
points outside this range. In order to address this problem, information regarding
such data must be incorporated into the existing datasets. An evaluation of the
proposed model revealed its feasibility for application to outlier data. In addition,
the inclusion of data within this range can improve the evaluation indices and SHAP
values, allowing for the application of less conservative strength reduction coefficients.

(5) This study proposed a method for predicting the ultimate value through a what-if
simulation using a set of input features within the dataset range. A strength reduction
factor of 0.9 was suggested when the MAPE of the predicted value fell below 10%. In
summary, the proposed comprehensive process involves taking the feature input from
the dataset, using AutoML for the predictive model, and transforming the predicted
values of the ultimate strength and slip by applying the strength reduction factor. This
process forms a digital twin model that replaces the design code, expressed through a
bilinear load–slip curve.

(6) The number of features for strength prediction had no constraints, and incorporated
the 12 features used in this study, as well as additional shape information related to
the spacing and welding of connectors. This approach enables the creation of strength
prediction models tailored to specific the stated purpose. Furthermore, the strength
prediction model can be extended to include composite connections with precast
decks, where the connections are composited using pockets.
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