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Abstract: The current decarbonization transition to be achieved by 2050 according to the European
Council has given great prominence to the use of Digital Twins as tools for energy management. For
their correct operation, it is essential to control the uncertainties of the energy models, which lead to
differences between the measured and predicted data. One of the key parameters that is most difficult
to assess numerically is air leakage. The existent infiltration models available in EnergyPlus were
developed to be applied in low-rise residential buildings with fewer than three stories. Therefore,
it is common to rely on air leakage equations employing predefined coefficients. This research
presents an empirical assessment of the performance of two EnergyPlus air leakage models, the
“Effective Leakage Area” and the “Flow Coefficient”, in predicting dynamic infiltration within the
attic of a seven-story building. Blower door tests, along with the application of CO2 tracer gas, were
conducted to establish coefficients for the models. Then, they were evaluated in three independent
periods according to the criteria established in the American Society for Testing Material D5157
Standard. Those models that only used in situ coefficients consistently met the standard across all
three periods, demonstrating for both equations their accurate performance and reliability. For the
best model derived from tracer gas data, the R² and NMSE values are 0.94 and 0.019, respectively. In
contrast, the model developed using blower door test data and EnergyPlus default values presented
a 64% reduction in accuracy compared to the best one. This discrepancy could potentially lead to
misleading energy estimates. Although other software options exist for estimating infiltration, this
study specifically targets EnergyPlus users. Therefore, these findings offer valuable insights to make
more informed decisions when implementing the infiltration models into energy simulations for
high-rise buildings using EnergyPlus.

Keywords: blower door; building energy model; decarbonization; decay method; digital twins;
infiltration modeling

1. Introduction

The European Union has begun a transition towards decarbonization that will culmi-
nate in 2050, reaching climate neutrality [1]. Among the targets established by the European
Commission to achieve this objective, improving the energy performance of buildings is
essential, since they account for 40% of overall energy consumption and 36% of greenhouse
gas (GHG) emissions produced in Europe [2]. This change from fossil fuels to zero or
nearly zero carbon emissions requires an accurate quantification and reduction of buildings’
energy demand, both in new and retrofit projects.

In this context, one useful tool for estimating loads and for understanding the electrical
and thermal behavior of a building is the “Digital Twin” (DT) [3]. Digital Twin is a term
referring to a virtual model ’that replicates a ’physical object or system, and the data
network between them. Among other uses, it allows managing the whole life-cycle of the
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represented object [4]. Over the last few years, Digital Twins have been successfully used for
the assessment of decarbonization strategies of buildings, cities, and other carbon emission
contributors [5,6]. Some examples are the research developed by Kaewunruen et al. [7], who
employed a DT to evaluate how to incorporate renewable energies into existing buildings to
move them towards being Net Zero Energy Buildings (NZEB). Qian et al. [8] studied, with a
significant level of precision, historic dwellings’ carbon emissions through an intelligent
Digital Twin platform. This quantification is essential to analyze the decarbonization
potential of different retrofit strategies. Zaidi and Haw [9] created a DT of the building
sector in Bertam, a Malaysian city, with the objective of estimating its energy consumption
and comparing several design strategies to address carbon reduction and energy savings.

Among other applications, DTs are used during the functioning phase of a building for
facilities and maintenance management, logistics processes, monitoring, and energy simula-
tion [10]. For that last purpose, the Digital Twin may have an incorporated Building Energy
Model (BEM) capable of performing instantaneous energy simulations using real-time
monitored data inputs delivered by the Building Management System (BMS). The complex
nature of buildings as well as the multitude of interacting independent variables mean
that there may be a difference between the simulated data delivered by the BEM and the
real measured data [11]. “Building Energy Performance Gap” (BEPG) is the term used to
refer to that difference [12]. To reduce this error, the model can be subjected to a calibration
process [11], which consists of adjusting some of the model’s parameters involved to those
present in the actual building.

1.1. Calibration Methodology

The calibration methodology for building envelopes developed by Ramos et al. [13]
and improved by Fernández et al. [14] in one study and by Gutiérrez et al. [15] in another
one is an inverse modeling approach. This means that under the guidelines of the American
Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), certain or all
parameters are derived through in situ measurements [16]. The methodology is based on a
white-box model; in other words, it relies on a transparent and detailed representation of
the physical characteristics of the building, with a physics-based equations approach.

The novelty of this calibration process is the reduced number of parameters used to
adjust the simulated data curve to align with the curve of the measured data, focusing solely
on four key parameters: thermal mass, capacitance, thermal bridges, and infiltration [15].
The building’s construction specifications are integrated into the model, according to the
technical documentation available, which constitutes the baseline BEM. Following this,
the calibration process begins to identify the optimal set of parameters. EnergyPlus 9.2
serves as the simulation engine and the calibration tool is executed using JePlus + EA
1.4 software [17] using the Non-Dominated Sorting Genetic Algorithm (NSGA-II) [18].
This adjustment process was demonstrated to be simple and cost-effective, compared to
previous studies [13,14].

The possible differences between the reality and the virtual model are absorbed by the
four variables analyzed in the calibration process. Both the capacitance and the thermal
mass are considered black-box parameters: frequently, they lack physical meaning since
the values introduced into the algorithm are unrestricted. On the other hand, for ther-
mal bridges and infiltration, the authors set a range of values within which they can
oscillate [15].

This novel approach has effectively minimized uncertainties about the required num-
ber of variables for calibrating building envelopes. Additionally, it has addressed the
influence of input data, also considering the impact of solar radiation in dynamic building
simulations [19] and the weather forecasts [20]. Despite these achievements, there are
still some questions to be resolved, particularly those regarding the interpretation of the
air infiltration values and the thermal inertia [21]. The present study is a step towards
obtaining infiltration values adjusted to reality, which will possibly allow for an even more
efficient calibration process to be carried out in EnergyPlus.
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1.2. Literature Review

Airtightness is recognized as a key indicator of both the quality and energy efficiency
of buildings and air leakage values represent crucial data to be implemented into BEMs.
However, the physical forces behind infiltration are really complex, making it a challenging
parameter to measure due to its dependence on a high number of variables. Some of the
factors that must be considered for estimating air leakage are the topography, wind direction
and speed, outdoor and indoor temperatures, location and dimensions of openings, local
climate, and seasonal fluctuations [22,23]. This great complexity surrounding the air
leakage values leads modelers to often use default values [21,24] provided by simulation
tools, or to solely focus on infiltration through window frames [25], ignoring other sources
of leakage such as unintentional openings, cracks, regular use of exterior doors [16], or the
joints between floors, ceilings, and walls [26].

Despite these difficulties, air leakage has been demonstrated to be an important param-
eter to be considered for a high-quality calibration [27]. The airflow across the building’s
envelope plays a crucial role in determining the usage of heating or cooling energy, and can
significantly affect the BEM’s precision and highly impact the estimated energy consump-
tion, leading to an increase in the BEPG [28]. Some modeling investigations indicate
that infiltration could be responsible for 15–45% of annual space conditioning demand,
with variations based on the building type [23,29]. The study of Feijó-Muñoz et al. [30]
showed that air leakage may account for 2.43 to 16.44 kWh/m2year of heating loads. Ad-
ditionally, air infiltration calculation methods can be derived in higher or lower energy
demand [31]. Happle et al. have found that using an Equilibrium Pressure Model (EPM)
calculation with dynamic values of infiltration rate, which depend on wind pressures and
air temperatures, can reduce the annual heating demand, in comparison to using a Simple
Infiltration Model (SIM) calculation with static values of infiltration rate [32].

There are several approaches to calculate infiltration, from empirical to theoretical
methods. The empirical methods include pressurization test data, the assessment of
individual components, and the statistical characterization of a built environment [33].
Theoretical approaches encompass airflow models, in one or more zones, along with
computational fluid dynamics (CFD). The latter is the most accurate method but also
requires more resources and computing time [34]. One example of applying a CFD tool
for the estimation of the wind pressure coefficient is observed in Han et al.’s research [28].
The calculated coefficient and the multi-zone airflow modeling were introduced into
the EnergyPlus environment, producing more accurate results. However, as stated by
Choi et al. [35], CFD calculations are deemed more suitable for simulating large areas
than for tall buildings, with multiple vertical spaces and voids. Also, since it is a very
sophisticated and complex method, requiring high computational times, it is common that
modelers use a simplified approach to estimate the air change rate.

Over the last decades, several methods have been devised for the estimation of infiltra-
tion considering different variables: the BRE model, developed by Warren and Webb in the
UK in 1980 [36], and the LBL, created in the USA in 1980 by Sherman and Grimsrud [37],
are based on fan pressurization tests. The NRC model was formulated by Shaw in Canada
in 1985, where the researcher calculated the rates of stack and wind flow by applying
coefficients tailored to monitored data obtained from a unique case study. Another model
is the one developed by Walker and Wilson in 1998, the AIM-2 model, which introduces
new concepts such as the power law envelope leakage, the fireplace flue, or the differences
between crawlspaces, basements, and slab-on-grade [38].

At this stage, it is noteworthy that, as is commonly known by the scientific commu-
nity, there are programs like CONTAM or FLUENT that allow the creation of detailed
and rigorous airflow simulations. Nevertheless, the present research is focused on the
simulation tool EnergyPlus, and despite the improvements in recent years, there are cur-
rently some difficulties in coupling it with the aforementioned programs [39]. Some of the
challenges include the necessity to ensure the system synchronization of both software
programs, the important increase in computational loads, and the demanding validation
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that requires field data. These models have not yet gained widespread adoption in the in-
dustry, and consequently, modelers still use the existing simplified empirical or theoretical
approaches [23].

EnergyPlus has different infiltration models, and it is essential to comprehensively
grasp their limitations and their potential impact on results. The study of Bae et al. [40]
demonstrated that the selected EnergyPlus infiltration model significantly impacts both
the estimated infiltration rate and the predicted heating energy consumption. Among the
options offered by EnergyPlus to address precise air leakage values, one is the Hybrid
Object, which is based on measured temperature. The main issue posed by this method
is that the object needs at least seven days without using the HVAC system, which is not
always possible [41,42]. EnergyPlus also has the AirFlowNetwork model (AFN), which
is an advanced infiltration and mixing calculation, capable of simulating wind-driven
airflows in multi-zone environments and modeling the effects of forced air distribution
systems [43,44]. AFN is a detailed but complex approach; an example can be found in
the study performed by McLeod et al. [45], who modeled a flat in EnergyPlus using AFN
and different infiltration scenarios to understand the airflow pathways in the prediction
of interior temperatures. The outcomes indicated that predicted data were very sensitive
to how the AFN model was set. Similarly, Monari et al. [46] defend that conducting
a sensitivity analysis at a detailed level is necessary to take into account some highly
uncertain parameters (wind directions, airflow pathways, moisture flow, and convective
heat transfer, among others), particularly when the analysis aims to perform a calibration
of a BEM.

Moreover, EnergyPlus has three airflow models to calculate infiltration, namely: Zone-
Infiltration: DesignFlowRate, ZoneInfiltration: FlowCoefficient (hereafter denoted as IFC),
and ZoneInfiltration: EffectiveLeakageArea (ELA) [44]. The correct use of these models
relies on the use of the appropriate coefficients for each case of study, considering that they
were developed from research in low-rise residential buildings, that is, lower than three
stories according to ASHRAE [16,47]. Frequently, the modeling practitioners use constant
values from regulations or existing field tests, since establishing the correct values of the
coefficients for a specific building is a complex process [47]. Both the IFC and the ELA mod-
els calculate the airflow resulting from wind and air buoyancy differences independently.
Then, they are merged through a simple quadrature superposition [23,38,48]. However,
these models were developed for small structures featuring a solitary, well-mixed zone and
minimal internal resistance to airflow.

Several variables cause uncertainty in EnergyPlus infiltration models; the building
leakage distribution, the envelope properties, and the wind speed are some of them [49,50].
Measurement of the infiltration parameters is the best approach to introducing consistent data
into the BEM environment. For experimentally measuring the infiltration rate on-site, two
primary methods are employed [16]:

1. The blower door test, which gives an average infiltration value after the building
has undergone pressurization and depressurization with high-pressure differences
between indoor and outdoor (e.g., 10 to 300 Pa) [51].

2. Tracer gas experiments that can determine the air change rate without necessarily
requiring knowledge of the airflow pathways [52]. The experiment consists of intro-
ducing a tracer gas, for example, CO2, into space at normal conditions (e.g., 3–4 Pa)
and can be performed using one of the following three methods: constant concentra-
tion, constant injection, and decay. In the last one, the decay equation can be used for
the calculation of the infiltration value [16].

There are several examples in the literature where one or both of these methods are
applied. The study by Roberti et al. [53] applied the two tests to measure infiltration
in a historic building. They found that air infiltration predominantly contributed to the
hourly fluctuations and daily peaks in indoor air temperature. Taddeo et al. [54] used
the decay method and a blower door to compare the results of air change rate, and they
concluded that both experiments produced similar constant values. There are also several
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studies that apply the EnergyPlus infiltration models, such as the research performed by
Shrestha et al. [51], where the infiltration rate of eight one-story case studies was analyzed
with two different approaches: using a tracer gas test under standard performing conditions
and flow coefficients from a blower door test with the IFC model provided by EnergyPlus.
The first one produced more accurately forecasted values. Bae et al. [40] studied the
behavior of the three EnergyPlus infiltration models in a two-story research platform, using
different coefficients: those derived from the blower door experiment, those found in the
literature, and the regression coefficients. After the analysis, the authors stated that the
regression coefficients might not be reliable if applied to different weather data, for example,
another season with different climate conditions. Furthermore, Gutiérrez et al.’s [15]
calibration methodology for BEMs applies the ELA model in two distinct three-story single-
family houses. They dynamically adjusted the leakage area based on outdoor conditions
(exterior temperature, wind speed, and wind direction). However, the authors did not
validate the estimated air leakage area and infiltration rate with actual measurements.

Although, as discussed in this section, several studies apply the EnergyPlus infiltration
models (IFC and ELA), there is no literature on their use in high-rise buildings, where the
behavior of the airflow is particularly difficult to predict [45]. A common phenomenon
that occurs in multi-family and tall residential buildings is that the external wind pressure
and stack effect create complex airflow paths, which lead to indoor air problems inside
the dwellings [55]. Prior to the present research, an analysis was conducted in an attic
located in a seven-story building to obtain the coefficients of the DesignFlowRate model,
applying a blower door test and a tracer gas experiment [56]. This study replicates the
successful methodology for achieving the coefficients, aiming to verify whether it applies
to the equations of the remaining models: ZoneInfiltration: FlowCoefficient (IFC) and
ZoneInfiltration: EffectiveLeakageArea (ELA).

1.3. Originality of the Research

As detailed in Section 1.2, the quantification of dynamic infiltration, particularly in
high-rise buildings, is a big challenge for modelers. The present research is a step forward
in the process of bringing together in situ measurements and two of the infiltration models
offered by EnergyPlus: FlowCoefficient and EffectiveLeakageArea. The final goal is to
verify, through empirical experiments, whether these models are reliable for estimating the
dynamic infiltration that takes place in a dwelling located in a tall building. To achieve this
goal, the performance of both models is assessed using the coefficients acquired from the
experiments (tracer gas and blower door) and combined with off-the-shelf values. Three
different seasons (summer 2021, winter 2021–2022, and spring 2022) are used, to validate
the robustness of the in situ coefficients and to avoid coincidences in the results.

The empirical evaluation of infiltration models is achieved by fulfilling the require-
ments established in the document of the American Society for Testing Material (ASTM)
D5157: Standard Guide for Statistical Evaluation of Indoor Air Quality (IAQ) Model [57].
This standard is commonly employed in Indoor Air Quality models, wherein the compari-
son between the contaminant measurements and predictions [58,59] is assessed through the
application of three statistical tools: the coefficient of determination (R²), the normalized
mean square error (NMSE), and the line of regression. In this investigation, the ASTM
D5157 Standard is applied by analogy to CO2 concentrations. Considering the influence
of infiltration on the decay curve, it becomes feasible to assess infiltration models based
on standard criteria. As stated in the documents, a main prerequisite for performing the
evaluation is the independence of the data used for the construction of the model. For that
reason, in the present study, the summer period is used for training the model, and the
other two are used as checking periods.

It should be emphasized that our intent was to conduct the experiment in a real-life
scenario rather than within a laboratory environment. This level of experimentation is
considered a Technology Readiness Level (TRL) number 5, indicating that the technology
is at a breadboard stage and demands more rigorous simulations in environments as close
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to reality as feasible. TRL is a metric system that assesses the maturity of a technology,
from concept formulation to real-world application [60]. The experiment focused on a
specific area within a dwelling, allowing for precise control of the test-site environment
and facilitating the interpretation of results. By conducting experiments in a limited or
controlled environment, researchers can efficiently evaluate the functionality and viability
of a technology at its early stages. In this particular case, this decision also considered
that future works must be focused on introducing the obtained coefficients into the BEM’s
calibration, where each zone is analyzed individually. Nevertheless, it is crucial to em-
phasize that the research does not aim to apply the findings to other similar case studies,
and there are limitations associated with focusing solely on a single zone. These limitations
are addressed in future work, through the application of the described methodology to
bigger areas and multi-zone spaces.

2. Methodology

Two empirical experiments were performed to estimate infiltration: tracer gas and
blower door tests. The first one was designed according to previous studies [61,62], while
the blower door test was performed by a professional. All experimental, quantitative,
and primary data were gathered on-site and organized using a spreadsheet program.

Figure 1 indicates the main steps and sub-steps performed in this study, which are
detailed below.

1

Data collection and management:
- Install sensors and conduct in situ tests.
- Filter, clean, and appropriately select the data.
- Perform uncertainty analysis on the measurements.

State of the art research:
- Design the experiment and monitoring system.
- Study of EnergyPlus infiltration models along with their off-the-
shelf coefficients.

Multi-variable regression:
- Determine site-specific coefficients using measured data 
through multi-variable regressions.

EnergyPlus infiltration models:
- Integrate EnergyPlus infiltration models with a combination 
of in situ and off-the-shelf coefficients.

Model validation:
- Analyze the training and checking periods using ASTM Standard 
D5157 statistical indexes and criteria.

2

3

4

5
Figure 1. Method flowchart.

2.1. Infiltration Model Equations

As previously stated, the present research is centered on IFC and ELA, two infiltration
models available in EnergyPlus.
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The IFC model is appropriate for smaller, residential-type buildings, and can be
expressed as:

I = (Fschedule)

√
(cCs∆Tn)2 +

(
cCw(s × WS)2n

)2
(1)

where
FSchedule represents a value from a schedule defined by the user;
c: Flow coefficient. Units: m3/(sPan);
Cs: Coefficient for stack-induced infiltration. Units: (Pa/K)n;
∆T: Absolute difference between the average dry bulb temperature within the zone and
the average exterior dry bulb temperature. Units: ºC;
n: Pressure exponent. Dimensionless;
Cw: Coefficient for wind-induced infiltration. Units: (Pas2/m2)n;
s: Shelter factor;
WS: Local wind speed. Units: m/s.

On the other hand, the ELA model is based on the ASTM Standard E779 effective
leakage area calculation [63] and its equation is as follows:

I = (Fschedule)
AL

1000

√
Cs∆T + Cw(WS)2 (2)

where
FSchedule represents a value from a schedule defined by the user;
AL: Effective air leakage area corresponding to a 4 Pascal (Pa) pressure differential. Units:
cm²;
Cs: Coefficient for stack-induced infiltration. Units: (L/s)2/(cm4K);
∆T: Absolute difference between the average dry bulb temperature within the zone and
the average exterior dry bulb temperature. Units: ºC;
Cw: Coefficient for wind-induced infiltration. Units: (L/s)2/(cm4(m/s)2);
WS: Local wind speed. Units: m/s.

2.2. Test Site Description

The experimental site is a 29.5 m2 living room situated in the loft of a residential
building in the north of Spain, which has a southeast, a northwest, and a southwest façade.
The fourth façade is shared with the adjacent building (Figure 2). The reasons for choosing
this space are the following:

1. The authors had access to monitoring it and to carry out in situ tests;
2. Since it is a real space, there are imperfections in the thermal envelope. Three of its

façades are exterior and exposed to weather conditions; only the east side adjoins the
building’s vertical circulation lobby;

3. The test site is located at the top of a high-rise building, which is surrounded by other
constructions with different heights: 25 m from the southeast, 27 m from the west,
and 55 m from the northwest façade, approximately;

4. The dwelling was unoccupied during the on-site experiments.
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Figure 2. View from the ground towards the southeast and southwest façades of the building.

The building was constructed in 1992, according to the Government of Navarre’s
cadaster. By that date, the Spanish building code (CTE) required façade insulation. The resi-
dential building is composed of seven floors and two apartments per floor. Each apartment
has two bathrooms, a kitchen, a storage room, a living room, and two bedrooms.

The studied living room is oriented to southeast and southwest. The composition
of the façades, from exterior to interior, is as follows: 11.5 cm of perforated brick, an air
cavity of 3 cm, insulation (5 cm of EPS foam), 7 cm of hollow brick, and 1.5 cm of gypsum
plaster. Regarding the interior partitions, they are made of two layers of gypsum plaster,
each of them measuring 1.5 cm, covering 7 cm of hollow brick. There are three windows
with aluminum frames and two interior wooden doors.

2.3. Monitored Data

The collected data include indoor and outdoor measurements recorded at 1 min
intervals. The dataset was finally made up of 48.439 time-steps. Figure 3 illustrates the
3D view of the living room and the position where the sensors were installed. As can
be observed, the indoor air temperature sensors (HOBO ZW-006) were placed at two
different heights in order to measure the temperature stratification. These heights were
1.75 m and 0.80 m, which is approximately equal to two-thirds of the floor-to-ceiling height.
Concerning the outdoor weather measurements, two air temperature sensors and one wind
speed sensor were positioned on the southeast façade. The first two were installed at a
height of 2.32 m above ground level, and the third one at a height of 1.90 m.

Regarding the CO2 sensors, two different models were installed: two Delta OHM
HD37VBTV.1 sensors that were linked to the HOBO room’s monitoring system and three
units of EXTECH CO210. Both types have a precision of ±5%. The sensors were placed
in different positions within the living room, trying to gather as much data as possible
on the homogeneity of the gas in the room. The distance between the sensors and the
ground was determined by the availability provided by the space, such as connections
to electrical outlets and structural support locations. We used the average data of the
Delta OHM sensors to calculate infiltration, as it proved to be more efficient for handling
their information. For recording the CO2 concentration outside the room, a Delta OHM
HD37VBTV sensor was placed on the southeast façade. Table 1 shows the technical
specifications of each sensor.
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Figure 3. Living room 3D view. Numbers indicate the height of the CO2 sensor above the ground,
measured in meters.

Table 1. Technical information of the installed sensors.

Data Sensor Model Unity Precision Range Resolution

CO2
Delta OHM HD37VBTV.1 ppm ±50 ppm 0 to 5000 ppm 1 ppmEXTECH CO210 0 to 9999 ppm

Temperature HOBO ZW-006 °C ±2% −20 to 50 °C 0.02 °C

Wind Speed AHLBORN FVA 615-2 m/s ±0.5 m/s 0 to 50 m/s 0.1 m/s

As was mentioned in Section 1.3, the monitored data were collected over three different
seasons:

• P_1_T: Training period of 9 days in summer: from 20 June 2021 to 2 July 2021;
• P_2_C: Checking period 01 of 11 days in spring: from 10 December 2021 to 9 January

2022;
• P_3_C: Checking period 02 of 11 days in spring: from 24 March 2022 to 24 April 2022.

Utilizing these three distinct periods enables us to employ the first one for model train-
ing, and the remaining two for evaluation purposes, avoiding coincidences and complying
with the prerequisite established in the ASTM D5157 Standard.

2.4. Tracer Gas Test

In the living room, the tracer gas experiment using CO2 was conducted with a fire
extinguisher. Only the uniform mixture of the tracer gas was taken into account for the
calculations; therefore, the initial 40 min of concentration peaks were excluded. The experi-
ment adhered to the ASTM E741 Standard test method [64,65].

This approach enables the determination of the most suitable coefficients for the test
space and contributes to the empirical validation of the models by contrasting the measured
CO2 with the estimated concentration. For this purpose, the following decay Equation (3),
established by ASHRAE [16], was used:

Cp =
(

Co − Cbg

)
e−It (3)
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where in this study:
Cp: Estimated CO2 concentration at time, t;
Co: Average of measured interior CO2 concentration;
Cbg: Daily average of measured exterior CO2 concentration;
t: Time, s;
I: Infiltration of each time-step determined through IFC or ELA methods.

The decay method was calculated using the multi-point approach to mitigate the
measurement errors in contrast to the two-point method [61].

As will be detailed below, an uncertainty analysis was performed to ensure that the
tracer gas experiment was designed to comply with the three requirements established by
Sherman et al. [52,65]:

• The injected CO2 has an homogeneous distribution;
• All the living room’s exterior openings are closed, interior doors are properly sealed,

and the area is not occupied; therefore, there is only air exchange with the outside;
• The outside air needs to be adequately blended throughout the test area.

2.5. Blower Door Test

A blower door test was also performed by a professional on the test site. This experi-
ment allows the practitioner to have ad hoc coefficients. The test was made following the
requirements established at ISO9972 [66]. The HVAC system was deactivated throughout
the experiments. The exterior openings were shut, and interior doors were sealed off
with paper tape. Then, the room experienced pressurization and depressurization, with a
differential of 50 Pa between the indoor and outdoor environments.

2.6. Coefficients of the Equations
2.6.1. Off-the-Shelf Coefficients

In the Input Output document [44], EnergyPlus (E+) provides predefined coeffi-
cients values for both models: Flow Coefficient (Equation (1)) and Effective Leakage Area
(Equation (2)). ASHRAE (2017) establishes some specific values for stack (Cs) and wind
(Cw) coefficients, as well as the shelter factor (s), determined by factors such as the number
of floors in the building, the presence of a crawl space or a basement with or without a flue,
and the shelter class. For this particular test site, the value for the maximum number of
stories (3) was selected, since there is no coefficient for a seven-story area. A crawlspace
lacking a flue and a shelter class of 3 were the other coefficients chosen. Although the
coefficient names may sound alike in both equations, it is crucial to note that they are
not interchangeable.

2.6.2. In Situ Coefficients

The site-specific coefficients for both equations were obtained after performing mathe-
matical multi-variable regressions (herein referred to as REG) of the coefficients. The least
mean absolute error (MAE) was used as the objective function of the regressions. The
iterative process is as follows: The infiltration values calculated using the ELA and IFC
models are inserted in the decay equation which results in the predicted CO2 concen-
tration. The operation is repeated until the MAE between the estimated and measured
concentrations of CO2 is reduced for all the decay days within the training period.

During model fitting, the coefficients were not subject to any range restrictions, ex-
cept for the n value which was confined to a range of 0.60 to 0.70, based on EnergyPlus [44]
recommendation. In addition, the blower door test results can be utilized as coefficients
in the equations: two applying to the IFC model (n value of 0.704 and c value of 0.00788
at depressurization mode), and one to the ELA model (AL of 75.60 cm2 at 4 Pa). Table 2
presents all models with the source of their coefficients.
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Table 2. Sources of coefficients for IFC (Equation (1)) and for ELA (Equation (2)).

Model
IFC Coefficients ELA Coefficients

c s Cs Cw n AL Cs Cw

1. REG REG REG REG REG REG REG REG REG
2. REG + E+ REG E+ E+ E+ REG REG E+ E+

3. BWD + REG BWD REG REG REG BWD BWD REG REG
4. BWD + E+ BWD E+ E+ E+ BWD BWD E+ E+

2.7. Model Validation

The ASTM D5157 Standard Guide [57] was used for the validation of the models.
Several studies have applied this standard before for the assessment of measurement and
prediction of tracer gas [58,59,67].

As was mentioned before, three statistical tools are used to evaluate the concordance
between in situ measurements and estimations. These tools are R², NMSE, and the line
of regression. Also, two additional statistical indices are applied for assessing bias: the
normalized or fractional bias of the mean concentration (FB) and the fractional bias based
on the variance (FS). The values that they should comply with are shown in Table 3.

Table 3. Statistical tools outlined in the ASTM D5157 Standard.

Index Description Limitation

R2 Square of the correlation of predictions and measurements ≥0.90

NMSE Normalized mean square error ≤0.25

m Slope of the line of regression 0.75 ≤ m ≤ 1.25

FB Normalized or fractional bias of the mean concentration ≤0.25

FS Fractional bias based on the variance ≤0.50

In addition, an uncertainty analysis of the measurements was conducted to ensure that
the data were proper to generate the models. To achieve this purpose, we calculated the
standard deviation of the measurements σ by the International Performance Measurement
and Verification Protocol (IPMVP) [68], using the following equation:

σ =

√
∑
(
Coi − Co

)2

n − 1
(4)

where
n: Number of time-steps of each period;
Coi: Observed CO2 concentration in ppm;
Co: Mean observed CO2 concentration in ppm.

This value permits the assessment of the data deviation in comparison to the average
value of the dataset. In addition, to evaluate the accuracy of the collected data, the mean (µ)
was calculated. As can be seen in Table 4, P_1_T corresponds to 70% of the peak σ values,
affirming its suitability as the training period.
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Table 4. Standard deviation (σ) and mean (µ) values for each measured data point in every period.

Parameter Index P_1_T P_2_C P_3_C

CO2
σ (ppm) 316.80 378.57 278.47
µ (ppm) 613.75 561.14 629.78

∆T σ (ºC) 10.29 3.17 3.85
µ (ºC) 4.80 13.08 11.26

Wind speed σ (m/s) 0.33 0.11 0.16
µ (m/s) 0.18 0.13 0.13

Furthermore, the IPMVP [68] was also used to perform an uncertainty analysis for
both the CO2 sensors and the average data. The coefficient of determination (R²) should
be above 0.90 and the root mean square error (RMSE) should be as low as possible. This
analysis justifies the fulfillment of the requirements explained in Section 2.4.

• The uniformity of CO2 dispersion is illustrated by the fact that sensors 4 and 5, placed
in distinct areas within the living room, exhibited the same deviation from the average
(Table 5).

• CO2 concentration curves from from each sensor were analyzed using the R² value.
All the values were higher than 0.94 and 80% were higher than 0.96. That means that
the different measured curves were similar, indicating that outside air was infiltrating
evenly into the room.

Table 5. Results from the uncertainty analysis reveal the variation between the average data employed
in the calculus of infiltration and the concentration of CO2 recorded by every sensor.

Sensor Number and Model R² RMSE

1. Delta OHM 0.99 0.23
2. Delta OHM 0.99 0.23
3. EXTECH 0.98 0.39
4. EXTECH 0.98 0.46
5. EXTECH 0.96 0.46

3. Results and Discussion

The first (“REG”) and third (“BWD + REG”) IFC and ELA models are the only ones that
meet the criteria of ASTM D5157 Standard in the training and checking periods, as specified
in Tables 6 and 7. It is noteworthy that the tracer gas and the blower door tests were
performed during different indoor–outdoor pressure conditions. However, combining their
coefficients resulted in the best models, as they are tailored to the site, which might explain
the accuracy of these models. In the ELA model “BWD + REG”, the AL value is established
at 4 Pa, which is a normal pressure condition that could align with the conditions during
the tracer gas test.

In contrast, when combining the site-specific coefficients with off-the-shelf coefficients
determined for spaces up to three stories, the models did not meet the standard criteria,
as is the case of “REG + E+” and “BWD+E+” for both models, IFC and ELA. The second
ELA model (“REG + E+”) nearly complied with the standard requirements (b/Co equal
to 28.83% and R² equal to 0.72), which confirms the methodology of finding appropriate
coefficients for the room. In addition, despite having values found at natural conditions
in the ELA, the “BWD + E+” shows the highest NMSE value of 2.735 and the lowest R²
value of 0.60, being the least precise model in representing dynamic infiltration across
both equations.

Although the regression attempts to offset the other EnergyPlus coefficients, it is
evident that the most accurate models are those exclusively utilizing site-specific values.
Despite the fact the default coefficients were calculated for low-rise buildings, they were
also tested under different outdoor and indoor conditions. Being situated in an attic within
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the building exposes the case study more significantly to the influences of wind and the
stack effect. Therefore, the data for the external conditions differ from those on other floors
of the building or of lower buildings. It was possible to obtain specific coefficients for
the case study because, in addition to the in situ experiment, we utilized measured data
collected on-site.

Table 6. Results of IFC models following the ASTM D5157 Standard. (Models and values not in
compliance with the standard are highlighted in red).

Model Period Co (ppm) Cp (ppm) R² m b b/Co (%) NMSE FB FS

1. REG
P_1_T 613.87 637.80 0.94 1.05 −4.96 −0.81 0.019 0.037 0.149
P_2_C 559.27 382.23 0.96 1.00 −179.76 −32.14 0.177 −0.376 0.027
P_3_C 627.72 577.88 0.94 1.09 −107.86 −17.18 0.026 −0.083 0.121

2. REG + EP
P_1_T 613.87 637.80 0.72 0.81 163.71 26.67 0.077 0.069 −0.100
P_2_C 559.27 305.98 0.91 0.94 −219.32 −39.22 0.452 −0.585 −0.014
P_3_C 627.72 511.22 0.89 1.11 −182.63 −29.09 0.079 −0.205 0.156

3. BWD + REG
P_1_T 613.87 637.80 0.94 1.05 −7.86 −1.28 0.021 0.037 0.164
P_2_C 559.27 398.97 0.96 1.00 −160.78 −28.75 0.139 −0.335 0.019
P_3_C 627.72 551.07 0.93 1.11 −142.57 −22.71 0.040 −0.130 0.136

4. BWD + EP
P_1_T 613.87 637.80 0.64 0.86 −86.69 −14.12 0.276 −0.333 0.141
P_2_C 559.27 174.57 0.74 0.72 −226.69 −40.53 1.895 −1.048 −0.181
P_3_C 627.72 286.59 0.76 1.01 −346.58 −55.21 0.785 −0.746 0.147

Table 7. Results of ELA models following the ASTM D5157 Standard. (Models and values not in
compliance with the standard are highlighted in red).

Model Period Co (ppm) Cp (ppm) R² m b b/Co (%) NMSE FB FS

1. REG
P_1_T 613.87 637.80 0.94 1.03 8.64 1.41 0.018 0.039 0.111
P_2_C 559.27 470.40 0.99 1.03 −106.68 −19.07 0.038 −0.173 0.038
P_3_C 627.72 601.13 0.94 1.08 −75.83 −12.08 0.019 −0.043 0.109

2. REG + EP
P_1_T 613.87 637.80 0.72 0.80 176.98 28.83 0.077 0.080 −0.129
P_2_C 559.27 390.62 0.96 1.00 −166.81 −29.83 0.159 −0.355 0.019
P_3_C 627.72 541.76 0.90 1.10 −146.86 −23.40 0.053 −0.147 0.144

3. BWD + REG
P_1_T 613.87 637.80 0.94 1.03 8.61 1.40 0.018 0.039 0.111
P_2_C 559.27 470.39 0.99 1.03 −106.68 −19.07 0.038 −0.173 0.038
P_3_C 627.72 601.13 0.94 1.08 −75.84 −12.08 0.019 −0.043 0.109

4. BWD + EP
P_1_T 613.87 637.80 0.60 0.81 −172.89 −28.16 0.651 −0.612 0.099
P_2_C 559.27 143.27 0.68 0.64 −213.84 −38.24 2.735 −1.184 −0.252
P_3_C 627.72 231.27 0.70 0.92 −347.35 −55.34 1.278 −0.923 0.097

Even though we are checking the models in three distinct periods, a consistent pattern
of behavior is observed across all of them. Figures 4–9 clearly illustrate the model’s
performance, contrasting the measured (black line) and predicted CO2 concentrations from
the eight models. In all periods, we can conclude that the IFC and ELA equations are
efficient for accurately predicting air leakage in this test case in a high-rise multi-family
building, particularly when employing in situ coefficients. Particularly, the “REG” models
in both IFC and ELA fit the measured CO2 curve with an accuracy of 0.94 R², making it
unable to discern the green curve in the graphs.

A blower door test is not necessary for estimating dynamic infiltration in this case
study, because the optimal models are those that rely on regression coefficients. However,
without the possibility of conducting a tracer gas test or gathering monitored data, com-
bining the results from a blower door test with EnergyPlus coefficients would become a
requirement for generating the infiltration models. Considering the calibration of BEMs
by time-dependent building energy simulations, taking into consideration the potential
inaccuracies in air leakage estimations is crucial. For this particular case study, the great-
est discrepancy in estimated infiltration reaches 64%, a consequence of the least precise
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model, “BWD+EP”, in ELA. This value could lead to misleading energy estimations since
infiltration significantly impacts energy demand and consumption.
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Figure 4. IFC model results: CO2 concentrations curves (measured and estimated) during P_1_T. h
means hours.

400

800

1200

1600

41 h 43 h 19 h 36 h 51 h 34 h 44 h 33 h 38 h 32 h 38 h

0
Test days
Duration

1 2 3 4 5 6 7 8 9 10 11

(p
pm

)
C

O
2 

 c
on

ce
nt

ra
tio

n

REG REG+E+ BWD+REG BWD+E+Measured CO2

Figure 5. IFC model results: CO2 concentrations curves (measured and estimated) during P_2_C. h
means hours.
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Figure 6. IFC model results: CO2 concentrations curves (measured and estimated) P_3_C. h
means hours.

The results and in situ coefficients presented in Tables 8 and 9 are particular to this test
case, without the aim of extending their applicability to other spaces with the same charac-
teristics.
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Table 8. IFC coefficients. (Highlighted in bold are those provided in the EnergyPlus Input Output
Document).

Model
IFC Coefficients

c s Cs Cw n

1. REG 9.9 × 10−3 1.29 0.038 0.344 0.600
2. REG + E+ 0.00500 0.70 0.098 0.151 0.600
3. BWD + REG 0.00788 1.26 0.041 0.382 0.704
4. BWD + E+ 0.00788 0.70 0.098 0.151 0.704

Table 9. ELA coefficients. (Highlighted in bold are those provided in the EnergyPlus Input Output
Document).

Model
ELA Coefficients

AL Cs Cw

1. REG 104.46 0.00002 0.00197
2. REG + E+ 27.31 0.00044 0.00027
3. BWD + REG 75.60 0.00003 0.00377
4. BWD + E+ 75.60 0.00044 0.00027
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Figure 7. ELA model results: CO2 concentrations curves (measured and estimated) during P_1_T. h
means hours.
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Figure 9. ELA model results: CO2 concentrations curves (measured and estimated) during P_3_C. h
means hours.

4. Conclusions

This study has shown that the FlowCoefficient and EffectiveLeakageArea equations
can reliably estimate dynamic infiltration for this test site located in the attic of a tall
building, particularly when using site-specific coefficients obtained after conducting blower
door and tracer gas experiments in the case-study. The models demonstrated consistency
across different periods. The tracer gas test provided the most accurate results, according
to the ASTM D5157 Standard. Consequently, this test is crucial to obtain more precise
infiltration values. The ELA model with regression coefficients showed the best results,
with 0.94 of R² and 0.018 of NMSE in the training period. On the other hand, the combination
of blower door results with the off-the-shelf coefficients of EnergyPlus represents only an
accuracy of 60% of R². The obtained results are consistent across the three analyzed periods,
demonstrating the robustness of the models.

Regarding the IFC model, employing regression coefficients showed the best results,
achieving an NMSE of 0.019 and an R² of 0.94 during the training period. Nevertheless,
these coefficients might not be universally accessible across all building types. Therefore, it
was pertinent to analyze the performance of the blower door values along with off-the-shelf
coefficients. This combination led to a 64% decrease in accuracy based on R².

It is noteworthy to mention that while discrete values from these results may not
be directly extended to similar spaces or buildings surpassing three stories, the patterns
observed in the best-performing models are expected to remain consistent when employing
the methods outlined in this research for other case studies. Further research is needed to
confirm this hypothesis. In addition, more investigation is required to enhance the applica-
tion of the methodology, considering the potential challenges associated with conducting
tracer gas tests in larger, higher, and occupied spaces.

Limitations and Future Work

One of the main restrictions of this research is its application solely to a single zone
of an apartment in a high-rise building. As a single-zone experiment and analysis, it
simplifies and overlooks potential interactions that could arise between zones, such as
airflows, indoor thermal conditions, and contaminant transfer. Nevertheless, single-zone
experiments are required for an initial approach to addressing the problem at hand. Once
validated, the method can be applied to larger-scale buildings and multiple zones. In addi-
tion, conducting a tracer gas test in occupied spaces and complex multi-story buildings
may not be feasible for obtaining infiltration values, as was the case in this study’s test
scenario. In such instances, utilizing metabolic CO2 data with the decay method would be
a more practical approach, enabling the analysis of whole dwellings and multiple zones
simultaneously [69].

Additional research into different methods for finding ad hoc coefficients is necessary
to enhance the cost-effectiveness of the methodology applied in this study. Moreover, while
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inserting the in situ coefficients into EnergyPlus is straightforward, the next step would be
to assess whether they improve the calibration process of BEMs. The forthcoming flowchart
(Figure 10) outlines the subsequent steps in model calibration, based on the translation
of field measurements into the coefficients and exponents required by the EnergyPlus
infiltration equations.

1

Model in EnergyPlus:
- Generate a building energy model (BEM) for the test case.
- Within the IDF file, incorporate the infiltration models along 
with temperature (ºC) and wind speed schedules used in the 
multi-variable regressions.
- Insert the site-specific coefficients into the infiltration models.

Find the site specific coefficients for the EnergyPlus 
infiltration models:
- Collect and manage data from indoor and outdoor thermal 
conditions, as well as from in situ experiments.
- Apply multivariable regressions utilizing tracer gas decay to 
determine the site-specific coefficients.

Calibration process:
- Perform the calibration process of the BEM by integrating the 
IDF file containing the infiltration models and their site-specific 
coefficients.
- Compare the baseline model with the calibrated model to assess 
the enhancement achieved by incorporating the infiltration models.

2

3

Figure 10. Flowchart of the model calibration with EnergyPlus infiltration models.
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GHG Greenhouse Gas Emissions
DT Digital Twin
NZEB Net Zero Energy Buildings
BEM Building Energy Model
BMS Building Management System
BEPG Building Energy Performance Gap
ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers
EPM Equilibrium Pressure Model
SIM Simple Infiltration Model
CFD Computational Fluid Dynamics
HVAC Heating, Ventilation, and Air Conditioning
AFN AirFlowNetwork
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IFC DesignFlowRate
ELA ZoneInfiltration:EffectiveLeakageArea
ASTM American Society for Testing Material
IAQ Indoor Air Quality
NMSE Normalized Mean Squared Error
TRL Technology Readiness Level
◦C Celsius Degrees
m Meter
T Temperature
t Time
I Infiltration
WS Wind Speed
m/s Meters per Second
% Percentage
REG Multi-variable Regression
E+ EnergyPlus
BWD Blower Door
MAE Mean Absolute Error
IPMVP International Performance Measurement and Verification Protocol
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