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Abstract: This paper examines the cracking behaviour of reinforced concrete beams strengthened by
externally bonded fiber-reinforced polymer. The crack opening of RC structures is a key parameter
for the durability of concrete structures. It is of vital importance for designers to be able to make
correct estimations of the crack opening values of strengthened structures. FRP strengthening affects
the cracking behaviour of RC beams with different steel percentages. Beams have been tested under
four-point bending mechanical tests until failure with three steel ratios and two layers of externally
bonded wet carbon fibers (CFRP). In order to measure the crack opening during loading, Digital
Image Correlation is used to obtain the crack opening along the beam during load functioning. The
results allow for a comparison of the RC beams with and without FRP and enhance the effect of FRP
on crack opening. The crack width was compared with the theoretical values obtained based on the
relation proposed by Eurocode 2 (EC2). The comparison enhanced the need to propose a modified
relation. Subsequently, an empirical model was established as a modification of EC2, considering the
presence of a CFRP system. The corresponding results were compared and discussed to validate the
model. For the same level of loads, the crack opening can be reduced by 20 to 50% depending on the
level of steel ratio.

Keywords: CFRP; digital image correlation; cracking; RC beams; strengthening

1. Introduction

In the past century, concrete structures have been used worldwide. The aging process
of concrete and the upgrade of loading conditions have enhanced the need to strengthen
these structures [1–6]. Since the 1990s, many structures have been strengthened to face these
problems using externally bonded material, such as steel cladding and fiber-reinforced
polymer. In the past 20 years, there has been an important research development in fiber-
reinforced polymer (FRP) systems that are bonded in different forms (i.e., rebars, plates,
fabrics, and grids) and with different fibers (i.e., carbon, glass, and aramid). These materials
have several advantages including high strength, low weight, and excellent resistance to
external agents [7]. Carbon fibers are preferred because of their properties and advantages
compared with other synthetic fiber composites, such as higher mechanical properties,
more excellent fatigue resistance, corrosion resistance, and creep resistance [8]. The main
advantage is that to increase the tension capacity of a beam, the FRP material acts like
an additional tension reinforcement; this allows for a slight improvement in the bending
stiffness and the ultimate load [9–13]. These systems improve the capacity of RC elements
with an increase in ductility and a limit in crack openings. Based on 30 years of research,
several design codes and testing procedures have been developed [14–17]. This research
has shown that failures in strengthened RC beams are obtained after large deflections and
steel rebars yielding with FRP debonding. This debond can occur in the concrete part of the
beam through intermediate debonding or through peeling-off at the end of the plate [18].
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In a beam strengthened by FRP, researchers have enhanced that crack behavior is modified,
crack spacing is modified with more small cracks in between the large cracks, and crack
opening is also modified. Based on this development, an improvement of the strengthening
technic has been performed with prestress FRP [11]. In this purpose anchorage system, a
prestress process has been developed with excellent results [11]. However, this technique is
not commonly used in the field because the process is not easy to implement in reality.

For durability purposes, the crack opening reduction is important to quantify. These
effects have not been studied deeply in the literature; thus, it is necessary to conduct intense
research to provide data that propose a design model suitable for RC strengthened by FRP.

At the same time, Digital Image Correlation has been developed in the construction
industry, in order to measure displacements or deflections, or to localize the presence of
cracks in reinforced concrete.

The feasibility of using an optical full-field Digital Image Correlation (DIC) technique
for the measurement of strain fields on FRP materials used in the civil engineering industry
has been investigated and the level of error in the DIC method when using more traditional
methods was determined by Del Rey Castillo et al. [19]. The main advantage of using
DIC over more traditional methods is the capacity to measure full field strains instead of
strains at local points, which has been enhanced by providing the measurements of various
specimens of FRP materials [20]. The reported strain fields are examples of what were
obtained during an experimental campaign to understand the behavior of strengthened
beams using externally bonded CFRP [21–23].

The present research program enhances changes in the mechanical behaviour of RC
beams strengthened by externally bonded FRP systems and focuses on crack opening using
DIC methods. The FRP considered in this study is a wet lay-up applied carbon sheet of 200
g/m2. Three sets of beams were prepared with steel ratios of 0.4%, 0.6%, and 0.8%. These
three levels of steel ratio correspond to structures with very low, low, and normal steel ratio
reinforcement in building structures. The CFRP is applied by the wait lay-up method. The
cross-section of the CFRP is fixed to 16.9 mm2, based on the Young modulus of Carbon
fibers (245 GPa) and the literature review. The FRP strengthening ratio is high enough to
obtain a real strengthening effect on RC beams whatever the level of the steel ratio. The
effects of applying two layers of CFRP were evaluated and discussed in detail regarding
the influence of the steel ratio using beams tested for four-point bending.

Herein, the first section discusses the experimental program with material characteri-
zation and specimen setup. Next, the results are reviewed and deep analysis is performed
on the changes in cracking behaviour, strength improvement, and midspan deflection.

The last section proposes the model based on the Eurocode 2 [24] formula, which is
appropriately fitted for unstrengthened RC elements. In addition, the experimental and
calculated results are compared and discussed, and some perspectives are provided.

2. Experimental Program

Ten RC beams with rectangular cross-sections of 150 by 250 mm are strengthened using
two layers of CFRP sheets. Two layers have been retained in this study since, normally, 1 to
6 layers of CFRP can be added to RC structures, based on previous researchers’ experience.
Two layers of CFRP corresponds to a normal strengthening ratio.

2.1. Materials

The concrete used in this study has a characteristic concrete strength of C30/37, based
on European standard [24].

2.1.1. Reinforced Concrete

The beams were cast using concrete with a characteristic compressive strength (fck)
of 35 MPa as measured during the compression tests. The concrete mixtures used for the
beam casting are listed in Table 1.
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Table 1. Concrete composition.

Component Cement CEM I 52.5 R Sand Gravel Water

[kg/m3] 420 890 890 200

The compression tests on the concrete were performed according to the NF EN 12390-1
standard [25]. The standard specifies the size of the specimens, limiting conditions, test
velocity, and test procedure. The results are shown in Table 2 below.

Table 2. Concrete strength.

Specimen 1 2 3 4 5 6 Average Standard Deviation

σ [MPa] at 28 days 37.4 38.2 42.2 38.65 38.85 44.1 39.9→35 2.41

The steel reinforcement consists of high limiting S500B rebar, having a characteristic
yield strength (fyk) of 500 MPa.

2.1.2. CFRP Reinforcement Material

The elastic modulus (Ef) of carbon sheet was 245 GPa, whereas the composite single-
layer thickness was 0.169 mm, as reported in the technical datasheets provided by the
manufacturer (Fibre NET, Pavia di Udine (UD), Italy). The FRP was applied by wet lay-
up method of CFRP fabrics bonded using a bicomponent epoxy resin. The beams were
retrofitted using a carbon-fiber-reinforced polymer consisting of unidirectional carbon
fabric Betontex FB-GV330U-HT produced by Fiber Net s.p.a. The layers had a nominal
thickness of 0.169 mm and Young’s modulus (Ef) of 245 GPa, as reported in the technical
datasheets provided by the manufacturer. The fibers were glued using a bicomponent
epoxy resin Betontex FB-RC02 with a declared Young’s modulus (Em) of 3000 MPa and
an ultimate strain equal to 2.9%. To verify the material properties, tests were performed,
and results are given in Table 3. The elastic modulus was evaluated following the NF
EN ISO 527-5 standard [26]; test coupons were prepared with 2-layer of CFRP fabrics.
Uniaxial traction tests were performed using a universal testing machine (UTM). The
tensile strength and Young modulus are reported in Figure 1 and Table 3, respectively,
based on a calculation with an equivalent cross-section of the carbon fiber (thickness equal
to 0.338 mm).
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Table 3. Mechanical properties of 2-layer CFRP sheet.

Specimen Young’s Modulus—Ef [MPa] Maximal Strain—εu [%] Ultimate Stress—ftk [MPa]

1 225,000 1.23% 2786.4

2 247,000 1.38% 3363.4

3 242,200 0.88% 2141.2

4 247,700 1.28% 3329.5

5 239,400 1.20% 2891.3

Average 240,260 1.19% 2902.4

Standard deviation 9194.45 0.0018 496.99

Coeff. of variation 4% 16% 17%

2.2. Specimen Preparation

The concrete mix was used to prepare ten RC beams with a rectangular cross-section of
150 mm × 250 mm, a 2.00-m span, and two reinforcing steel bars. The beams were prepared
with different steel percentages: (i) 10 mm-diameter bars; (ii) 12 mm-diameter bars; and
(iii) 14 mm-diameter bars, and hence steel ratios of 0.41%, 0.60%, and 0.82%. Details of the
specimens are provided in Table 4.

Table 4. Specimen naming.

Specimen
Name R10-NR * R12-NR R14-NR R10-RB ** R12-RB0 R12-RB1 R12-RB2 R12-RB3 R12-RB4 R14-RB

Diameter of
reinforcing bars 10 12 14 10 12 12 12 12 12 14

Presence of
CFRP No No No Yes Yes Yes Yes Yes Yes Yes

* RXNR: Rebars × mm Non-Reinforced. ** RXRBY Rebars × mm Reinforced before loading number Y.

Before bonding the composite layers, the beam’s bottom surface was mechanically
grouted and then a first layer of polymer was applied to improve CFRP adhesive perfor-
mance onto the concrete. (Figure 2) The CFRP had a total final length equal to 1.9 m to
avoid having CFRP on the bearing support during the test.
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For each configuration, a beam was non-reinforced to be used as a reference. The test
set up is reported in Figure 3.
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Figure 3. Beam setup.

Strain sensors were placed in the central area on longitudinal steel rebar and on the
CFRP after the full polymerization of the CFRP.

The vertical displacement was monitored by two linear variable displacement trans-
ducers (LVDTs) placed in the mid part of the beam (Figure 4).
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2.2.1. Two-Dimensional Digital Image Correlation (DIC 2D)

The crack was measured on the lateral surface of the beam in the middle where
there is only normal stress without shear. The measurement techniques were based on
the comparison of two images at two different levels of load. This noncontact optical
technique was based on the theory of field displacement correlation to detect changes in
pixel positions in a comparison of two stages (i.e., displacements or deformations) through
consecutive image comparison. The surfaces of the specimens must be prepared with
a white background and black speckles [27,28]. The image acquisition procedure was
performed according to good practice for the DIC [29]. During the loading of beams, a
set of data was obtained with several grayscale photos captured using a standard high
resolution camera and a commercial correlation tools named GOM Correlate software 2015
was employed for post-processing [30]. The software algorithm requires the definition of a
region of interest (ROI). There are several small facets called areas of interest (AOI) with
well-defined pixel sizes [31]. The camera used was a Kramer electronics VP 211K with a
resolution of 2560 × 2048 pixels2 and a lens KOWA LM25HC:f = 25 mm; F 1.8–16. The focal
was between f/6 and f/9. The size of measurement (ROI) was 600 mm × 250 mm. The
density of the speckles was a fundamental factor in the accuracy of the results, which was
related to the camera’s proximity and resolution. Generally, as a guideline, A. D. Terani [29]
suggests using 5-pixel size speckles covering 50% of the investigated surface. The tested
specimens were inspected using the commercial software GOM Correlate®, which can
process a set of 2D images by defining a scale factor, an ROI, and several AOIs. The size
in pixels of the area of interest was equal to 30 px, with the distance of 20 px between
their middles. The size of the AOI was directly proportional to the speckle dimension
(large speckles correspond to large AOIs). Each AOI had a centre with a spatial location,
which was used as a reference for the following steps. The axial strain (εx) or longitudinal
displacement field map was obtained by comparing two images (see Figure 5). In Figure 5b,
red values correspond to 2 mm and blue values to less than 0.02 mm.
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2.2.2. Loading Device

The test set-up is based on a high stiffness steel frame equipped with a hydraulic
jack which has a load capacity of 200 kN. The beams were simply supported, and their
spans were 2 m. A four-point load was applied in the middle with a force distance of
600 mm [32–35]. Tests were performed using a displacement control system at a rate of
1 mm/min in isostatic conditions. The complete setup is illustrated in Figure 6.
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3. Results and Discussion

The data were analyzed based on the load-displacement curve and crack load–crack
opening curve. These allow for both global and local behaviour.

The load displacement curves were analyzed to obtain a different global mechanical
stage (cracking load, non-linear behavior, and failure). The different values for each stage
are given in Table 5, with the load and midspan deflection corresponding to the first
cracking, steel elastic limit strain, and failure.

Table 5. Representation of load and midspan deflection for key events during 4-point bending tests.

Name
First Crack Steel Yielding Failure

Load
[kN]

Deflection
[mm]

Load
[kN]

Deflection
[mm]

Load
[kN]

Deflection
[mm]

R10-NR 25 1.85 57.8 7.21 70.58 31.61

R12-NR 25 1.55 63.4 6.16 92.57 31.10

R14-NR 30 1.26 85.1 6.84 112.11 27.72

R10-RB 40 3.30 55.50 5.48 126.25 27.82

R12-RB0 35 2.49 69.12 6.78 114.20 20.81

R12-RB1 45 3.13 68.40 5.71 120.81 19.43

R12-RB2 50 3.77 67.53 5.82 110.97 17.80

R12-RB3 45 3.20 69.14 5.96 121.28 21.12

R12-RB4 50 3.80 70.55 6.16 109.65 17.18

R14-RB 55 4.10 67.84 5.27 148.24 24.15
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3.1. Ultimate Load

A CFRP external strengthening system allows for the modification of flexural be-
haviour in an RC beam in accordance with the literature review [35–40]. The increase in
bending stiffness and/or ultimate bending moment is more effective for beams with a low
steel ratio (0.4%). In this case, the ultimate capacity was increased by 80%. When the steel
ratio is equal to 0.6% or 0.80% of the concrete section, the increase is given to be equal
to 30%. Figure 7 demonstrates that ultimate load improvement was evident in the R10
beam, reaching almost 80% of the corresponding reference. By contrast, in the R12 and R14
groups, the ultimate load was not significantly different; both achieved a 30% improvement.
Comparable results were obtained in the R12 group. The R12 and R14 group results were
very close because the steel ratios (0.6% and 0.8%, respectively) were very close and the
more the beam is already strengthened by longitudinal steel rebars the less FRP is efficient.
The load–displacement curve clearly enhanced the effect of FRP on the ultimate load, as
mentioned before. These results are comparable to those obtained by previous researchers;
for example, Chajes et al. [41] shows that CFRP is more effective for load capacity increases
than for increasing the stiffness.
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Since the design according to Eurocode 2 is based on behaviour governed by steel
yielding and not on concrete crushing, the ultimate load of an RC beam is mostly dependent
on the tensile capacity of the cross-section of the beam. The limit of the strengthening by
externally bonded CFRP is the compressive strength of the top part of the beam to avoid
concrete crush in compression zone.

3.2. Mid-Span Displacement

The strengthening using FRP modifies the bending stiffness of the beam because of
externally bonded carbon fiber strengthening. Figure 8 enhances the load displacement
curve, before the steel rebars yielding the bending stiffness is slightly increased by only
10%; at this stage, the bending stiffness value mainly depends on the concrete being under
compression and the steel rebars being under tension. FRP contribution is low. Based
on the cross-section on the beam, steel ratio, and FRP ratio reinforcement, the cracking
inertia of the non-strengthened beam is around 93.106 mm4 while it grows to 116.106 mm4

when two layers of FRP are applied. When steel yields, its Young Modulus decreases to a
low value, and, at this stage, all additional loss is undertaken by the CFRP and then the
strengthening material is dependent on the highest second slope of the load displacement
curve for the beams strengthened by CFRP. The R10-RB group exhibits a more significant
improvement after strengthening. Therefore, the deflection is proportionally higher in the
R10 beams. It is also important to outline that the more the beams are strengthened, the
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more the ultimate deflection is reduced with a loss in beam ductility. This observation is
linked to the failure mode of the beam with FRP debonding.
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Composite Strain

In flexural strengthening, the task of the composite material is to increase the tensile
strength of the section, which is partially guaranteed by the steel reinforcement. Knowledge
of the stress level plays a crucial role in understanding the material’s behaviour. For
example, traction in the fiber produces shear stress within the resin used for bonding. An
increase in the tangential stress is consequently the cause of the premature debonding
of the reinforcement. Externally bonded fabric was applied on the concrete surfaces as
presented in Section 2.2. The FRP is not prestressed before bonding and needs a crack to
appear to develop tension [37].

In addition, due to the higher stiffness, when compared with the steel, the composite
strain at a reference load is less than the corresponding steel strain. Similarly, as far as the
influence of the steel ratio is concerned, due to what has been folded in the previous section,
the composite is activated by reaching higher values in beams with less steel. Table 6 shows
the difference in strain between steel and composite for several load levels for each test
group. It can be seen that the composite exhibits more significant deformation than steel in
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the early stages of loading. This inconsistency may be due to the strain gauge’s positioning,
which is not aligned with the correspondent placed on the steel bar.

Table 6. Comparison of strain between steel and composite for several load levels.

Load [kN]

R10-RB R12-RB R14-RB

Steel Strain
[µm/m]

Composite
Strain [µm/m]

Steel Strain
[µm/m]

Composite
Strain [µm/m]

Steel Strain
[µm/m]

Composite
Strain

[µm/m]

10 19 22 58.19 70.46 63 68

35 1299 1696 1083 1350 1071 651

60 2730 2837 2112 2378 2132 1296

80 5433 4491 3314 3296 3020 1968

100 9798 7591 8257 6055 4398 2850

120 17,836 10,186 - - 8379 4593

140 - - - - 12,931 7161

3.3. Failure Modes

For all the strengthened beams using externally bonded CFRP, failure occurs during
the debonding of the concrete covering at the end of the FRP layers near the beam support.
This mode of failure is commonly called peeling-off in the literature. The shear stress in
this area is located between the FRP and is caused when the steel longitudinal rebar is too
high in comparison with the concrete tensile-shear strength (Figure 9).
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3.4. Cracking Behaviour

The crack width was calculated thanks to the DIC method by obtaining images from a
virtual displacement sensor located at 25 mm from the bottom right of the cracking zone.
The displacement length of the displacement sensor was 1 cm so that the change in value
was assumed to be only due to crack opening and not tensile concrete stress. The results
were then analysed based on load–crack opening curves. The presence of CFRP fabric was
found to influence the cracking behaviour of the tested beams, with a significant impact
on the crack formation phase (CFP) [42,43]. Typically, when a crack appears, the effect of
FRP allows to bridge the crack and limit the opening. For the cracking load, the FRP strain
increased and controlled the tension in the steel rebars [44,45]. The load was transferred
along the FRP bond length and when the load increased a new crack was initiated; this
explained that the crack spacing was reduced [46]. In non-strengthened beams, the crack is
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controlled around steel rebars in tension. Hognestad et al. [44] fixed the minimum value,
amin, given by Equation (1)

amin =
Ae f ′t
uΣo

(1)

where Ae is the effective area of concrete in tension, f ′t is the concrete tensile strength, u is
the average bond stress, and Σo represents the sum of the bar perimeters.

In the experimental tests, strengthening further reduced the crack width in the R10
group compared with the other groups. The group with the lowest steel ratio exhibited a
more significant effect at low-load levels. In fact, in the R10 group, steel yielding occurred
at a lower load level, and the crack behaviour exhibited a divergent trend from 40 kN.
However, the R12 and R14 groups did not exhibit consistent improvement in the first crack
load because of the better steel–concrete adherence owing to the higher stiffness of the
beam. In addition, the crack behaviour diverged for higher load values because of the later
yielding of the steel bars (see Figure 10).
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Figure 10. Crack–load curve.

A detailed overview of the crack width values for different load levels is provided in
Table 7 and Figure 11.

Table 7. Values of crack opening values in function of loads.

Load
[kN]

Crack Width [µm]

R10-NR R12-NR R14-NR R10-RB R12-RB1 R14-RB

25 133 124 137 3 72 7

30 169 145 166 7 115 37

40 334 190 210 33 161 142

50 1221 237 258 122 191 188

60 - 278 311 200 226 236

70 - 335 355 244 255 284

80 - 877 398 313 312 316

90 - - 451 444 458 364

100 - - 545 516 618 394

110 - - - - 776 446

120 - - - - - 514
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3.5. Model Proposal

Several codes have been proposed to predict bent RC crack spacing and the width
of RC beams [24,47–49] under flexural loading. However, the presence of a strengthening
system changes the usual crack behaviour, reducing the crack spacing and width [50,51].
The Eurocode 2 (EC2) model [24] is based on the principle of strain distribution between
two adjacent cracks, between concrete and steel. The crack width is calculated as the
product of the maximum spacing (Sr,max) and the steel–concrete mean strain difference
(εsm − εcm), written as Equation (2).

wk = Sr,max·(εsm − εcm) (2)

In this study, an EC2-modified model was proposed that considers the presence of
a reinforcing system. The main hypothesis is that stress in steel rebar is reduced on the
same level of load due to the hypothesis that the sum of the tensile force in a cross-section
should be equal before and after strengthening under the same bending stiffness. Then the
tensile strain in steel is also reduced. The simplicity of the model was maintained, and only
a modification of the factor was presented to consider the effect of CFRP.

3.5.1. Eurocode Model

The EC2 formulation can predict the crack opening in an RC beam under a bending
moment. The assumption is the relative difference between the steel strain and the concrete
tensile strain before crack, and the difference is due to crack opening. The difference
between the mean strains of the materials is based on a hypothesis of the perfect bonding
of steel rebars with concrete. Then, a crack occurs when the steel strain is incompatible
with the admitted concrete tensile strain [52]. EC2 provides a formula for calculating the
mean strain difference between the RC constituent materials, depending on the geometrical
and mechanical properties, given by Equation (3)

(εsm − εcm) =

σs −
kt

( fct,e f f
ρp,e f f

)(
1 + nρp,e f f

)
Es

 ≥ 0.6σs

Es
(3)

where σs is the stress in the steel rebar, fct,e f f is the tensile concrete strength, n is the steel–
concrete elastic modulus ratio, ρp,e f f is the steel–concrete geometrical ratio referred to as
the effective concrete area around the steel rebar Ac,e f f , Es is the steel elastic modulus, and
kt is a coefficient that considers the load duration (0.6 and 0.4 for short and long duration,
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respectively). The value of Ac,e f f is also provided by EC2 with reference to the American
Concrete Institute (ACI) [47] and is given by Equation (4)

Ac,e f f = bw Min
{

2.5(h − d);
h − x

3
; 0.5h

}
(4)

Here, h is the height of the cross-section, d is the distance measured from the centroid
of the steel reinforcement to the top concrete fiber, bw is the minimum section width, and x
is the neutral axis depth.

Meanwhile, the maximum crack spacing was calculated using Equation (5)

Sr,max = 3.4c +
0.425k1k2k4

ρp,e f f
(5)

where c is the concrete cover, ϕ is the reinforcing steel diameter, and k1, k2, and k4 are the
factors given by EC2.

The proposed equation fits the experimental data for the non-strengthened beams
but is too conservative for beams strengthened using FRP. In particular, as illustrated in
Figure 12, the EC2 formula is too conservative in the case of group R10, whereas it deviates
less from the overall behaviour in the case of group R14, where the steel ratio is the highest.
However, this result is understandable if one refers to Section 3.2, noting that the influence
of the composite material was less evident in the group with a higher reinforcement level.
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3.5.2. Modified Model

The EC2 model accurately predicted the cracking evolution in an RC beam subjected
to a bending moment. However, the increasing use of CFRP external strengthening of
concrete structures highlights the need to adopt a new crack model for more extensive use
by taking into consideration the strengthening effect. To consider the effect of strengthening
by FRP and to input the geometrical and mechanical factors, a new relation was proposed
that can better fit the model in this study. A new equation was proposed to modify the
equation of steel strain (relation 6). The main objective was to introduce the effect of FRP
on the changes in steel stress, to introduce the FRP cross-section in the equation, and to
consider the modification of the neutral axis position due to FRP to obtain a better accuracy.
The main objective was to introduce the geometrical properties of FRP in the model for
design purposes.
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The Young modulus of steel was modified to introduce FRP and a new model would
consider the steel and composite moduli and material volume ratio. The homogenization
factor n∗ was the ratio between the equivalent and concrete elastic moduli, and the geo-
metrical reinforcement ratio. The percentage of tensile reinforcement was also modified to
consider the effect of FRP ρp,e f f (relation (8)).

(εsm − εcm)
∗ =

σ∗
s −

kt

(
fct,e f f
ρ∗p,e f f

)(
1 + n∗ρ∗p,e f f

)
Er

 ≥ 0.6σ∗
s

Er
(6)

Er =
Es As + E f A f

As + A f
=

Es As + E f A f

Ar
(7)

ρp,e f f =
Ar

Ac,e f f
(8)

Ceroni and Pecce [50] also modified the reinforcement ratio, which considers the use
of CFRP written as Equation (9).

ρp,e f f =
As +

A f E f
Es

Ac,e f f
=

As + n f A f

Ac,e f f
(9)

The CFRP also modified the mechanical properties of the beam. Due to the addition of
the tensile force on the bottom, the neutral axis position was changed to a lower position in
comparison with non-strengthened beams. To calculate the new position of the neutral axis
position, a numerical calculus process was proposed to obtain the neutral axis depth for
each load level. At each step, compression and tensile forces were calculated to obtain the
force cross-section equilibrium (10). The Bernoulli hypothesis and perfect bond between
the steel and concrete was assumed. This allowed all strains to be written as functions
of the steel strain (11). The material constitutive laws for concrete is linear-parabolic and
the steel mechanical law is considered to be elastic-plastic, with an elastic behaviour for
FRP. Therefore, three steps of calculation were undertaken: (i) all materials are elastic, (ii)
concrete overpasses the pseudo-elastic range, and (iii) reinforcing steel yields.

The calculation process provided the assignment of steel strain. Then, starting from
the geometrical centre yg, a neutral axis depth was given, and the equilibrium was verified.
A new neutral axis value was assigned if the section was not equilibrated. The flexural
moment was calculated using the rotational equilibrium when the translational equilibrium
was reached.

As·Es·εs + A f ·E f ·ε f = Ac·Ec·εc + A′
s·Es·ε′s (10)

εs

d − x
=

ε f

H − x
=

εc

x
=

ε′s
x − c

(11)

The corrected neutral axis position changed the post-cracking behaviour of the beam
cross-section because of the change in the damaged section inertia II I , calculated as in (12).
This value will change for each load level influencing the steel stress, calculated using
Navier’s Equation (13), where Mser is the flexural moment obtained from the rotational
equilibrium, II is the moment of inertia of the undamaged cross-section, and Mcr is the flex-
ural moment corresponding to the first cracking calculated using Equation (14) including
the concrete mean tensile strength fctm.

II I =
bwh3

3
+ nAs(d − x)2 + n f A f (h − x)2 (12)

σ∗
s =

n∗Mser

II I
·(d − x) +

n∗Mcr

II
·
(
d − yg

)
(13)
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Mcr =
fctm

yg
·II (14)

The crack spacing value was determined using the same formulation reported in (5),
substituting the ρp,e f f coefficient with the modified one.

The results accurately represent the crack behaviour until the steel yielded; however,
the curve trend was linear rather than a double slope. Thus, the formulation was again
modified to consider non-linear behaviour. The weight of the reinforcement materials
(i.e., steel and concrete) in the equivalent elastic modulus following steel yielding was
considered and discussed. Equation (7) was used in the steel elastic range and replaced
with (15) following its yielding.

Er =
α ·

√
β·As·Es + A f E f

A f + As
(15)

The β factor considers potential damage in the beam after the first cracking and is
the ratio between the first cracking moment Mcr and the effective load at the time of
verification Mser. Finally, α had an experimental value of 2.1. As illustrated in Figure 13,
the theoretical model predicted an earlier failure than the observed behaviour. However,
because the cracking phenomenon mainly affected the service limit states, it was considered
that assessing the accuracy of the empirical model up to theoretical failure was sufficient to
describe the phenomenon. For each load level, a pair of crack width values were analysed
to estimate the coefficient of determination R2 and root mean square error (RMSE). The
results are listed in Table 8 for each specimen group. In Figure 14, a comparison between
the experimental- and model-obtained values is presented for the load level of 60 kN using
the average value of the R12 series.
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4. Conclusions

The present study aimed to evaluate the effect of externally bonded FRP on the
cracking behaviour of reinforced concrete beams. Tests were undertaken on ten beams with
three ratios of steel reinforcement and the FRP were reinforced by two layers of CFRP. The
experimental results demonstrate the influence of the steel ratio on strength improvement,
loss of ductility, and crack opening. The main results show that

■ with a lower level of steel reinforcement, the contribution of the composite material
was more significant.

■ the beams with a low steel ratio (0.4%) suffered less loss in ductility and cracking.
■ the crack opening calculation based on Eurocode 2 formula is too conservative com-

pared with those measured.
■ an empirical model was proposed based on the formulation of the Eurocode with

appropriate modifications, taking into account the geometric and mechanical aspects
of a strengthened structure. The calculated values were compared with the measured
values and showed good agreement.

The presented model is proposed as an easy-to-use tool for design, allowing for
the consideration of FRP for crack opening calculations. Future developments can be
accomplished by comparing the model to others and comparing with other results from
the literature review to validate this model and to introduce the effect of FRP on beams
already damaged before strengthening. The model should also be extended to all kinds of
FRP (laminate, higher or lower FRP ratio).
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