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Abstract: Geopolymers assume an irreplaceable position in the engineering field on account of their
numerous merits, such as durability and high temperature resistance. Nevertheless, geopolymers also
demonstrate brittleness. In this study, geotextiles with different layers were added to geopolymer to
study its compressive strength and stability. Laboratory materials such as alkali activators, geotextiles
and granite residual soil (GRS) were utilized. The samples were characterized via XRD, TG-DTG,
SEM-EDS and FT-IR. The results indicate that the toughness of geopolymer is significantly enhanced
by adding geotextiles, and the strength increase is most obvious when adding one layer of geotextile:
the strength increased from 2.57 Mpa to 3.26 Mpa on the 14th day, an increase of 27%. Additionally,
the D-W cycle has a great influence on geotextile polymers. On the 14th day, the average strength of
the D-W cyclic sample (1.935 Mpa) was 1.305 Mpa smaller than that of the naturally cured sample
(3.24 Mpa), and the strength decreased by 40%. These discoveries offer a novel approach for further
promoting the application of geopolymers, especially in the field of foundation reinforcement.

Keywords: geotextile; granite residual soil; geopolymers; unconfined compression test; microanalysis

1. Introduction

With the swift economic growth China has experienced in recent years, the prevalence
of underground infrastructure like parking garages, shopping centers, and subway tun-
nels has surged [1,2]. However, the development of underground engineering generates
substantial volumes of excavated soil, which is often disposed of through landfilling. This
has led to numerous engineering mishaps due to inadequate waste management practices.
For instance, the 2015 landslide at the Hongao waste disposal site in Guangming New
District, Shenzhen, resulted in numerous fatalities, and the recent indiscriminate disposal
of construction waste in Shanghai, where it was intermingled with household waste, led
to significantly elevated levels of ammonia nitrogen [3,4]. Granite residual soil (GRS) is
mainly distributed in the Minyue area of China, and it easily collapses when encountering
water in engineering [5]. Over the past century, numerous scholars have investigated GRS
and discovered that its alkali activation can produce geopolymers. Geopolymer is a kind of
inorganic high polymeric gelled material which is usually composed of three-dimensional
network gels polymerized by silica tetrahedron and aluminum oxide tetrahedron prepared
by natural minerals or construction waste or aluminum silicate minerals formed by other
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effects [6]. It has the excellent characteristics of good stability, good durability, high strength,
permeability, and high temperature resistance.

In the field of the preparation of geopolymers, Perumal et al. [7] used alkali acti-
vation on geopolymers prepared from tailings from three different regions and found
that the strength was only 7 MPa in 7 days. Temuujin et al. [8] used fly ash to prepare
geopolymers, and the alkali intensification strength reached 9.2 MPa after calcination
at a high temperature. Compared with other waste soil materials, GRS is rich in clay
minerals, among which, kaolinite and alloxite account for more, and the Si and Al
content is higher. The amount of seepage of Si and Al directly affects the formation
of geopolymers [9], meaning that the compressive strength of geopolymers prepared
after calcination reaches 50 MPa [10]. So, GRS has a good application prospect in new
materials. Therefore, GRS is not only a common residue in southern China, but also has
a high geopolymer strength. Hayder et al. [11] found that adding fly ash to kaolin can
increase the strength of the material, but in this study, the influence of geotextiles on
GRS polymers is discussed. In summary, GRS is the preferred material.

In recent years, GRS has been studied as a new material to replace ordinary Portland ce-
ment, and it has been applied to the reinforcement of weak foundations [12]. For example, a
new type of cementitious material can be synthesized by using the alkali activation method
to prepare geopolymers in combination with southern GRS. Zhang et al. [13] studied waste
soil excavated with soil, which was thermally activated, and then, alkali excitation was used
to prepare new cementitious material. It has good hydrocoagulability, and its strength can
reach 65.63 MPa. When reviewing a study of the metakaolin preparation of geopolymers,
it was also clearly emphasized that the low carbon footprint and superior properties of
geopolymers render them a viable alternative to traditional Portland cement [8]. In the
future development of low-carbon requirements, the use of traditional Portland cement
will likely be phased out, thus positioning geopolymer materials as a promising avenue for
advancement [10].

Zhang et al. found that the heat treatment of kaolin is usually required to obtain more
reactive precursors, and thus, high-strength geopolymers [14]. Some scholars calcined
kaolin for 2 h at 600 ◦C, 700 ◦C, and 800 ◦C and selected one of the samples as the precursor
of geopolymer synthesis [11,15]. The results showed that calcination temperature plays an
important role in the polymerization of geopolymers. A solution of 10 mol/L NaOH leads
to the highest dissolution rate of Si4+ and Al3+ and the highest degree of polymerization of
geopolymers [12,16].

However, considerable challenges are often revealed in real-world applications. For
instance, geopolymers exhibit brittleness when utilized in foundation reinforcement, which
will reduce their durability [13,14,17,18]. This brittleness can be attributed to the disordered
nature of the geopolymer structure and the instability of the inorganic polymer composition,
especially in humid environments where microbial growth degrades the material [15,19].
In order to solve these problems, we investigated the development of a new material that
combines the advantages of geotextiles with the excellent properties of geopolymers.

In the field of civil materials, it is common to incorporate different fiber products
into cement to significantly improve the physical, mechanical, and durability properties of
cement fiber products [20]. Many studies have shown that adding fiber to geopolymers can
improve the properties of geopolymers [21–23]. Noushini [24] conducted a comprehensive
experimental study on the structure and material properties of synthetic fiber-reinforced
geopolymers, proving the toughening effect of geotextile synthetic fibers on geopolymers.
Korniejenko [25] studied the mechanical properties of fiber-reinforced geopolymers. The
results showed that the addition of synthetic fiber improved the mechanical properties of
the material. When the content of synthetic fiber was 0.5%, the compressive strength was
the best, which increased by 167% compared with the reference sample without fiber. When
the content of synthetic fiber was 0.75%, the flexural strength of the sample was the best and
increased by 100%. Nematolla-hi [26] studied the influence of fibers with different volume
fractions on the tensile, bending, and compression properties of geopolymer materials and
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found that the optimal content was 1%, and the compressive strength would be reduced
when the optimal content was exceeded. A geotextile is a common geomaterial, in which
the addition of geotextile synthetic fiber can improve the tensile and bending strength,
toughness, and impact resistance of a material through bridging cracks [23]. In addition,
geotextile synthetic fiber can maintain the drying and stability of soil structure through its
good water permeability and filtration. A geotextile is also a kind of fiber material, while
non-woven geotextile is often used for reinforced soil [25]. Gas composition can promote
material synthesis [27]. Due to its good permeability and relatively chaotic fiber structure,
it can be preferentially used for reinforcing polymer materials, especially polyester filament
geotextiles. At the same time, different layers of geotextiles also have a great impact on the
reinforcement of soil [28].

Therefore, combined with the pulling force of geotextile fiber, a geotextile-reinforced
geopolymer sample was prepared to compensate for the brittle damage prevalent in geo-
textiles. In order to study the enhancement effect of polymers with geotextiles, experiments
were conducted to investigate their performance and to evaluate their performance within
14 days, and the effects of different layers of geotextiles on the properties were studied.
Utilizing advanced laboratory techniques such as XRD, TG-DTG, SEM-EDS, and FT-IR,
the properties of geotextile-reinforced geopolymers have been investigated. The findings
indicate that geotextile incorporation substantially improves the toughness of geopolymers,
providing new insights into the structure and interaction mechanisms of these materi-
als. This innovative approach offers a potential solution for improving the durability of
geopolymers and advancing materials science.

2. Materials and Methods
2.1. Materials
2.1.1. Granite Residual Soil

The GRS was collected about 5 m from a foundation pit in Huolushan, Guangdong
Province, China. GRS is mostly mixed soil weathered by medium–fine granite, and the
particle size is mainly distributed below 1.18 mm. In order to better simulate the actual
foundation reinforcement situation, the experiment adopted GRS with a particle size of
less than 1.18 mm. Accordingly, the strength of the geopolymer prepared with a 0.075 mm
particle size was significantly reduced. The GRS was mechanically activated (particle size
less than 1.18 mm) and activated at a high temperature (calcined at 650 ◦C). It can be seen
from Figure 1b that there were various mineral components in the original soil. The GRS
had high metakaolin content. XRD analysis was carried out on the original soil, as shown
in Figure 2, which contained kaolinite, illite, microcline and quartz, with higher kaolinite
content. The collected GRS was put into an oven with a temperature of 105 ◦C for 24 h to
dry, and then ground by a ball mill to through a screen with an aperture of 1.18 mm. The
soil with particle sizes of less than 1.18 mm was put into a muffle furnace for calcination,
the calcination temperature was set at 650 ◦C for continuous calcination for 2 h, and the
heating rate was 10 ◦C/min. After calcination, the soil temperature was reduced to room
temperature and then sealed with a plastic bag and stored at room temperature for use.
The apparent characteristics of the screened soil after calcination at 650 ◦C were bright
yellowish-brown, as shown in Figure 1c.
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2.1.2. Geotextiles

The present study used non-woven PET 10–4.5–200 geotextiles, which were polyester
filament geotextiles (Figure 1d). The geotextiles needed to not be cut too large, so as not to
destroy the continuity of the geopolymer itself, which would have resulted in a significant
reduction in the compressive strength of the geopolymer. The geotextile used in the test
was 30 mm long and 30 mm wide, and the mass of each geotextile was about 0.07 g. Table 1
provides the properties of the tested geotextile.

Table 1. Properties of the tested geotextile.

Properties Value Test Method

Characteristic initial strength (kN/m) 10 ISO 10319 [29]
Nominal mass (g/m2) 200 ISO 9864 [30]

2.1.3. Alkaline Solution

The alkaline solution was prepared from NaOH solution with a concentration of
10 mol/L and Na2SiO3 with a modulus of 3.33 according to the mass ratio of 2:1 (the ratio
of silicon to sodium: 2:1).

2.2. Test Scheme

Using the above alkali solution, we prepared the polypropylene geotextile according
to a liquid-to-solid ratio of 0.5. According to the number of layers of geotextile added and
the curing conditions in the experiment, the samples were divided into 12 groups, marked
as N-1 to C-3 (Table 2). Keeping the geotextile material constant, the reinforcing effect of
the geotextile on the geotextile material was analyzed by changing the number of layers of
geotextile and curing conditions.

Table 2. Experimental scheme of dry and wet cycle.

Sample Number of Geotextile Layers Curing Condition Experiment Period/d

N-0 0

Natural curing 7 14
N-1 1
N-2 2
N-3 3

S-0 0

Soaking curing 7 14
S-1 1
S-2 2
S-3 3

C-0 0

D-W cycle curing 7 14
C-1 1
C-2 2
C-3 3

Preparation was carried out according to the proportions mentioned in Table 2. A
cylindrical three-valve mold with a diameter of 39.1 mm and a height of 80.0 mm was
selected as the sample mold. After the bubbles were discharged by stratified vibration, the
mold was released for 24 h after curing at 25 ◦C.

The natural curing method used in this test was closed-box curing at 25 ◦C temperature
and 60% humidity. The soaking curing of this test was carried out in a water curing box at
25 ◦C. The wet–dry cycle (D-W cycle) operation of this test was drying in an oven with a
set temperature of 50 ◦C for 12 h as a “dry cycle”; the sample was placed in water curing at
room temperature for 12 h as a “wet cycle”; this took place 24 h a day, with a “dry cycle
“and a “wet cycle “ constituting a “cycle”.

According to the Chinese standard ISO 679:2009 [31] “Cement strength test method–
Strength determination”, the compressive strength test was carried out on the sample after
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curing for 7 and 14 days. After strength testing, sample fragments were collected and
immersed in absolute ethanol to partition the reaction for retention. Subsequent XRD, SEM,
and TG testing and analysis took place.

The specific experimental steps are shown in Figure 3.
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2.3. Methods
2.3.1. Compressive Strength Test

The sample was put into a pressure testing machine for compression. The specific
steps and requirements of the test refer to the test standard of ASTM D2166-00 [32]. The
loading rate of the constant-pressure testing machine was 0.5 mm/min.

2.3.2. XRD Spectrum

An X-ray diffractometer was used for phase identification and analysis of the hydration
products of ground polymer powder under different curing times. The scanning range of
the diffractometer was set between 10◦ and 90◦, with a copper target for the measurements.

2.3.3. Thermogravimetric Analysis

The hydration product samples of the terpolymers were analyzed using the Germany
NetZ’s TG 209 F1 Libra vacuum-sealed high-precision thermogravimetric analyzer (TGA)
in Shiyanjia Lab. In the temperature range of 10–800 ◦C, N2 was used as a protective gas at
a heating rate of 10 ◦C min.

2.3.4. Scanning Electron Microscope

The microstructure of hydrated products reinforced with geotextiles was studied using
an Hitachi SU8010 (Hitachi, Tokyo, Japan) field emission scanning electron microscope
(FE-SEM) in Shiyanjia Lab. A 15 nm Au-Pd coating was applied before testing to improve
electrical conductivity and image quality.

2.3.5. Mass Loss

For samples with W-D cycles, after each cycle, the sample was removed from the oven,
cooled to room temperature, and weighed using an electronic scale with an accuracy of
±0.01 g prior to being re-immersed in the water. Mass loss was the percentage of mass lost
from each cycle to the first cycle drying.

2.4. Experimental Scheme

The geotextile reinforcement test group was set to 12 groups. Each group is named
in the format ‘M-No.’, where ‘M’ stands for the curing method (natural curing, soaking
curing, or D-W cycle curing) and ‘No.’ stands for the number of geotextile layers (0, 1, 2,
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or 3). The distribution diagram of the number of geotextile layers is shown in Figure 4.
Among them, each group of samples was divided into 7-day curing and 14-day curing. The
specific experimental scheme is shown in Table 2.
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3. Results and Discussion
3.1. Compressive Strength
3.1.1. Influence of Geotextile Layers on Compressive Strength

The experimental results are shown in Figure 5. By comparing the 14-day compres-
sive strength of specimens measured in groups N-0, N-1, N-2, and N-3 with the 14-day
compressive strength measured in other groups, S-0 to S-3 and C-0 to C-3, it is evident
that the compressive strength of groups N-1, N-2, and N-3 was significantly higher than
that of group N-1 under the same curing conditions and curing time. Combined with
other maintenance conditions, it can be seen that the reinforcement effect of the geotextile
was brought by the geotextile itself. At the same time, it can be seen that the compressive
strength measured with geotextile inclusion was higher than that without adding geotex-
tiles; that is, geotextiles have a certain effect on improving the compressive strength of
geopolymer. For materials without geotextiles, the form of failure is mainly shear failure
close to 45◦, accompanied by a slight bulge, as shown in Figure 6a. However, for the
samples with geotextile added, the geotextile had anti-shear properties, which limited the
swelling in the middle of the sample. Huang et al. [33] also clearly pointed out that fiber
can inhibit the development and uplift of cracks. The failure form is the splitting failure at
the top of the sample, which significantly increases its strength and does not cause a sudden
stress drop, as shown in Figure 6b. This shows that geotextiles can be well combined with
polymers, similar to the reinforced concrete structure of “steel” and “concrete”; with the
geotextile acting as “steel” and the polymer as “concrete,” they can be effectively combined
to leverage their respective strengths in a collaborative effort, so as to achieve the effect of
improving the bearing capacity of members. Geotextiles are combined with geopolymers
and work together to reinforce the geopolymer [34]. Under high pressure, the embedding
effect of its fibers is more obvious [35]. Furthermore, it is worth noting that under the same
curing conditions and curing time, the compressive strength of the N-3, S-3, and C-3 groups
is a little different from that of the N-2, S-2, and C-2 groups. It can be concluded that under
the same curing time and curing conditions, when the number of geotextile layers is greater
than or equal to two layers, the effect of the number of geotextile layers and the distribution
mode on the compressive strength of the geopolymer is almost negligible. This is mainly
due to the loose structure around the fibers which weakens the bond of the material [33].
In the experimental study on the mechanism of the geotextile reinforcement of soft soil
foundations, when the vertical pressure is constant and the number of layers added to the
geotextile is no less than two layers, the improvement effect on the interface friction is not
significant [17,18,36,37]. This conclusion is consistent with the results of this experiment.
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At the same time, small deviations in the direction of the geotextile during the sampling
process have a significant impact on the reinforcement effect [19,38]. As shown in Figure 5a,
the strength of N-1 is anomalous, possibly due to the shift of the geotextile.
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3.1.2. Effect of Curing Conditions on Compressive Strength

As depicted in Figure 5, under the condition that the number of geotextile layers and
the distribution mode are the same, the curing conditions and curing time have obvious
influences on the compressive strength of geopolymers. The strength of the geopolymer
was strongest under natural curing, followed by D-W cycle curing, and it was weakest
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under water curing. In addition, under the same conditions regarding the number and
distribution of geotextile layers, the curing time differentially impacts the compressive
strength of geopolymers based on the curing method. Under natural curing conditions, the
strength after 14 days was obviously higher than that after 7 days. Under the condition
of D-W cycle curing, the strength after the curing time of 14 days was higher than that
after the curing time of 7 days. Under the condition of soaking water curing, the strength
after the curing time of 14 days decreased slightly compared with that after 7 days, but
the decrease was not obvious. It is worth noting that in the D-C cycle, the strength of the
samples without geotextiles increased from day 7 to day 14, but the strength of the samples
with geotextiles decreased. It is obvious that soaking water maintenance has a certain
negative impact on geotextiles. The effect is mainly due to the D-W cycle, which makes
water continuously carry away the incomplete geopolymer precursor and then inhibits the
geopolymer reaction. Moreover, Wu et al. also pointed out that soil particles containing
water have a supporting effect on shear strength [20,39]. In this experiment, there may
have been unreacted soil particles that experienced a decrease in strength due to water.

The air-entraining effect theory involves the incorporation of air-entraining agents
within cementitious materials to stabilize microbubbles, which, upon the material’s set-
ting, form intricate porosities. This phenomenon substantially augments the durability
of the cementitious materials [40]. During the fabrication of samples, the introduction
of geotextiles into the geopolymer can adsorb these minuscule bubbles, potentially
enhancing the material’s endurance. When subjected to D-W cyclic curing, the samples
exhibited a relatively minor decline in compressive strength due to the interplay be-
tween the beneficial air-entraining effect and the detrimental dilution of the alkaline
solution concentration from water immersion. It is hypothesized that once the alkaline
solution has fully reacted during the geopolymerization process, there will be a marked
increase in the specimen’s durability.

3.2. Hydration Mechanism of Geotextile-Enhanced Geopolymer
3.2.1. XRD Analysis

Figure 7a shows the XRD analysis results of GRS after calcination at 650 ◦C. Compared
with the XRD results of the original soil, it can be seen that the characteristic diffraction
of kaolinite at 12.26◦ disappeared, while the amorphous structure appeared at 30◦~40◦,
indicating that kaolinite forms an amorphous structure at high temperatures during the
process of heating and calcination [10]. Compared with the XRD of calcined soil at 650 ◦C
(Figure 7a), the wave peaks of the geopolymers (Figure 7b) showed more peaks, which were
mainly the polymers generated by the geopolymerization reaction. The mineral, which was
mainly quartz stone, did not react, which is because quartz stone still has a high degree of
stability at high temperatures.
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3.2.2. TG-DTA

In order to study the thermal mass loss process of geopolymers prepared from GRS, a
TG test was carried out, and the test results are shown in Figure 8.
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As can be seen from the TG curve in the figure, in the range of 30~200 ◦C, the residual
mass decreased from 99.97% to 90.58%, which was due to the removal of free water
adsorbed on clay minerals, resulting in a mass loss of 9.39% [21,41]. In the range of
200~400 ◦C, the mass loss was relatively small, because the interlayer water was removed,
and the residual mass dropped to 88.40%; that is, the mass loss was 2.18%. When the
temperature was 800 ◦C, the residual mass fraction of the TG curve decreased to 86.16%;
that is, in the range of 400~800 ◦C, the residual mass decreased by 2.24%. When the
calcination temperature reached 1000 ◦C, the residual mass fraction decreased to 85.93%,
which indicated that the mass loss in the whole process of heating calcination was 14.04%. It
can be seen that the geopolymer showed very strong thermal stability at high temperatures.

3.2.3. SEM Analysis

The samples reinforced with geotextiles were compressed and destroyed by uncon-
fined compression experiments, and the geotextiles inside the samples, including some
geotextiles bonded to the geotextiles, were taken out as experimental materials for scanning
electron microscope analysis. The SEM imaging results of the sample from this study
are presented in Figure 9. It can be seen that there were many traces of fiber pull in the
damaged section. Through SEM images (Figure 10a), it can be clearly seen that the fibers
provided pulling force inside the ground polymers. Despite the internal fiber net weaving
being chaotic and disordered, most of the fibers were covered by geoprene, and there were
many geoprene particles attached to the geoprene, resulting in grain accumulation, and the
bonding between the geoprenes was relatively sufficient (Figure 11), which is conducive
to the conduction of force. Thus, the tensile properties of geotextiles can be utilized in
practical engineering applications. The compressive strength test results provide theoretical
support for the use of geotextiles to improve the compressive strength of geopolymers.

Geotextiles themselves are often used as the “anti-filter layer” of drainage systems to
meet the requirements of tunnel drainage by inhibiting the massive loss of soil particles
caused by the permeability caused by water flow [25,26,42,43]. From the scanning electron
microscope image with a magnification of 500 times (Figure 10b), it can be seen that multiple
tiny pores formed due to the existence of the geotextiles, and no crystallization blockage
was caused, leaving enough channels for the drainage of the geotextiles [27,44].
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Obviously, the reduction in geopolymer strength with curing time may have been due
to the presence of geotextiles forming more water channels. The polymer reaction of the GRS
base was different from the cement reaction, and no hydration reaction occurred [12,16]. The
silicon ion concentration of liquid in the sample affected the strength of the geopolymer, and
the formation of the geopolymer was not promoted by water curing. Instead, the diluted
concentration of silicon ions affected its strength [28,45]. Compared with Figure 10c,d, the fiber
surface in C-1 was smoother than that of C-1, and there was less adhesion of the geopolymers.
Therefore, under the condition of dry and wet cycle maintenance, because the free water
infiltration specimen was repeatedly tested, the above dilution effect on aluminum and silicon
ions was more significant, which greatly reduced the internal polymerization reaction, thus
reducing its integrity [46,47].

3.2.4. EDS Analysis of Geotextile Geopolymer

According to the sample spectrum analysis in Figure 11, it can be seen that Al/Si
values at #1, #2, and #3 were all 72–78%, and it can be seen that the chemical composition
distribution inside the geopolymer was relatively uniform, and the proportions of Na
and Si elements were smaller than those at #2 and #3 in the grain accumulation part
due to the lack of grain accumulation in part #1. It can be inferred that the scanning
electron microscope image here is the scanning image of the geopolymer attached to
the geotextile fiber, the crystal accumulation part of the surface is the geopolymer, and
the interior is the geotextile.

Based on the analysis of the elemental composition of the local polymer map, it can be
determined that in addition to the main C and O elements, #1 and #3 contain a small amount
of K element, including Na, Al, and Si elements, indicating that the main component here
is kaolinite. The presence of K element was not detected in #2, while Al and Si elements
were also present. The main composition of the surface here was alum inosilicate mineral,
namely quartz. Quartz has the property of high temperature resistance. Under the high-
temperature calcination of 650 ◦C, its internal structure did not change. Therefore, it still
showed an obvious granular structure in #2. In #1 and #3, there were obvious plate or
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layer structures, which were similar to those in the SEM images of kaolinite. From the EDS
analysis and microscopic results (Table 3), it is easy to see that the geopolymer after the
reaction could be more effectively bonded with the fibers of the geotextile to achieve the
reinforcement effect.

Table 3. EDS analysis results.

#1 #2 #3

Atom Ratio/% Atom Ratio% Atom Ratio%

C 76.78 C 73.36 C 74.39
N 0.00 N 0.00 N 0.00
O 18.11 O 19.62 O 18.57

Na 2.05 Na 2.57 Na 2.57
Al 1.30 Al 1.93 Al 1.93
Si 1.68 Si 2.51 Si 2.65
K 0.08 K 0.00 K 0.05

3.3. Mass Loss Research

It can be observed from Figure 12 that the samples lost mass after each D-W cycle. It
can be seen that the mass loss with two or three layers of geotextile polymer reached 3%
during the tenth cycle. Under the same D-W cycle curing conditions, with the increase in
the number of geotextile layers, the greater the increase in mass loss became. As shown
in Figure 13, the D-W cycle significantly increased the development of cracks. From the
perspective of the overall data, the quality of the samples had a downward trend during
the D-W cycles, which was consistent with the disintegration of the samples themselves
during the D-W cycles. The more reinforced layers of geotextile there were, the greater
the proportion of the sample that fell off. Combined with the microstructure analysis, the
addition of geotextile fibers led to the increase in the permeability of the sample. In the
process of D-W cycles, the water of the sample was more volatile, which was accompanied
by faster small-scale soil disintegration, but this situation is optimistic [30,48].
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The crack rate of soil is one of the most important macroscopic performance indexes
under D-W cycles [31,49]. The crack rate reflects the degree of dry shrinkage cracking
of soil under D-W cycles. The fractal dimension can characterize the disordered class of
soil fracture growth under dry and wet cyclic action [32,50]. By observing the surface
of a sample, it can be found that after several D-W cycles, cracks will appear on the
surface, which will affect the mechanical properties such as the compressive strength of the
geopolymer, and this influence is often unfavorable to the structural system in general.

Since the drying time, soaking time, and other conditions were the same, it can
be considered that the possible water in the sample that had not completely dried was
approximately the same; that is, it can be considered that the mass reduction in the sample
was caused by the disintegration of the sample soil.

4. Conclusions

Geotextile-reinforced geopolymers, prepared using an alkali solution from GRS, were
subjected to compression tests and microscopic analysis under varying curing durations
and conditions. Based on the experimental outcomes, the following conclusions are drawn:

1. The geotextile has a strengthening effect on the geopolymer. Under the same curing
time and conditions, the unconfined compressive strength of the samples with the
geotextile was higher than that without the geotextile, and the compressive strength
of the sample under 14-day natural curing increased from 2.57 Mpa to 3.26 Mpa, an
increase of 27%.

2. The compressive strength of the geopolymer did not increase directly with the increase
in the number of geotextile layers. With consistent curing time and conditions, the
compressive strength of the geopolymer sample with a layer of geotextile cured for
14 days increased by 23% on average compared with the sample without geotextiles,
while the subsequent increase in the number of geotextile layers resulted in a small
increase in compressive strength, and the optimal average value only increased by
9%. Once the number of geotextile layers in the sample reached two or more layers,
the impact on the geopolymer strength became negligible and gradually decreased.

3. The longer the curing time, the higher the polymer strength. But increasing the
number of D-W cycle exacerbated the destruction of geopolymers. On the 14th day,
the average strength of the D-W cyclic sample (1.935 Mpa) was 1.305 Mpa smaller
than that of the naturally cured sample (3.24 Mpa), and the strength decreased by
40%. Under the condition of natural curing and soaking curing, the compressive
strength of the geopolymer increased with the increase in time within 14 days.
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However, the compressive strength of the geopolymer decreased slightly under
the D-W cycle condition.

4. D-W cycles are unfavorable to geopolymers with geotextiles. With equal geotextile
layer counts, distribution patterns, and curing times, the compressive strength of
geopolymers cured naturally was markedly higher than those cured under D-W cycle
conditions, which in turn were lower than those of geopolymers cured under the
first two curing scenarios. But the strength of the geopolymer without geotextiles
increased from day 7 to day 14. This was attributed to the effect of the geotextile on
the concentration of alkali solution due to the enhanced penetration strength of the
sample. This could be attributed to the wet–dry cycle which intensified the shedding
of geopolymers.

5. Obviously, the layering of a whole geotextile added fine fibers to the sample to im-
prove the compressive properties of the sample, which could effectively inhibit the
development of cracks in the material. Geopolymers and geotextiles can strengthen a
foundation together, which is of great significance for developing common technology
involving geopolymer reinforcement and geotextile layering in foundation reinforce-
ment. Both are environmentally friendly materials, which can reduce environmental
pollution. Although the results show positive results regarding the geopolymerization
and strength enhancement of residual soil reinforced by geotextiles, the results may
be limited by the size of the laboratory, and it is suggested that to address the latter,
we could appropriately increase the sample size to better simulate the field situation.
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