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Abstract: With the rapid proliferation of electric vehicles (EVs) in China, the landscape of
transportation carbon emissions has undergone significant changes. However, research on
the impact of the built environment on the carbon emissions of mixed traffic from gasoline
and electric vehicles remains sparse. This paper focuses on urban traffic scenarios with a
mix of gasoline and electric vehicles, analyzing the spatiotemporal distribution of carbon
emissions from both types of vehicles and their nonlinear association with the built envi‑
ronment. Utilizing trajectory data from gasoline‑powered and electric taxis in Chengdu,
China, we establish segment‑level carbon emission estimationmodels based on the vehicle‑
specific power of gasoline vehicles and the equivalent energy consumption of electric ve‑
hicles. Subsequently, we employ the XGBoost algorithm and SHapley Additive ExPlana‑
tion (SHAP) to analyze the nonlinear relationships between 13 built environment variables
and vehicle carbon emissions. This paper reveals that most built environment variables ex‑
hibit nonlinear relationships with traffic carbon emissions, with five factors—population
density, road density, residential density, metro accessibility, and the number of parking
lots—having a significant impact on road carbon emissions. Finally, we discuss the carbon
reduction benefits of EV adoption and propose policy recommendations for low‑carbon
initiatives in the transportation field.

Keywords: built environment; traffic carbon emissions; electric vehicle; nonlinear effects;
XGBoost

1. Introduction
Climate change represents one of the greatest challenges to global sustainable devel‑

opment, with controlling carbon dioxide (CO2) emissions recognized as a central strategy
to address this issue [1,2]. China has pledged to achieve peak carbon emissions by 2030
and carbon neutrality by 2060 [3]. Approximately 24% of energy‑related emissions are at‑
tributed to the transportation sector, with road transport accounting for 74% of the sector’s
total emissions [4–6]. In China, where road transportation emissions remain persistently
high, reducing emissions has become a critical focus for both policy and research [7].

To address climate change and promote “green development”, China has identified
the promotion of new energy vehicles (NEVs) as a pivotal measure under its carbon peak‑
ing and carbon neutrality strategies [8]. In 2024, China’s NEV fleet reached 10 million
vehicles, reflecting an annual growth rate of 59.25%, with battery electric vehicles (BEVs)
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accounting for 82% of the total. While BEVs achieve zero emissions during operation, the
emissions generated during electricity production cannot be overlooked [9]. In this con‑
text, the large‑scale adoption of BEVs contributes to carbon reduction. However, China’s
coal‑dominated power generation mix raises concerns that supplying electricity for BEVs
could contribute to air pollution concerns, posing potential threats to air quality and public
health [10,11]. Consequently, it is crucial to study the coupling effects of vehicle electrifica‑
tion (VE) and power generation mix (PGM) to evaluate the impact of electrification trends
on carbon and pollutant emissions. Investigating the carbon emissions of electric vehicles
on the consumption side, particularly during transportation, not only provides a more
comprehensive understanding of energy use and spatial distribution but also enables a
more accurate quantification of carbon reduction benefits.

Research on carbon emissions from single‑gasoline vehicles has extensively examined
spatiotemporal distribution and influencing factors. As electric vehicles (EVs) proliferate
in urban traffic, there is a pressing need to quantify their carbon footprint and elucidate
the coexistence of road carbon emissions from both EVs and internal combustion engine
vehicles. This analysis is crucial for understanding how urban spatial configuration affects
carbon emissions and guiding urban land use and infrastructure planning. Despite its
importance, this area of research remains largely unexplored.

Traditional studies have often assumed a linear or log‑linear relationship between the
built environment and carbon emissions, typically employing linearmodels to explore this
relationship in the context of transportation‑related emissions [12–14]. However, recent
findings suggest that linear assumptions may fail to fully capture the complexities of real‑
world scenarios, thereby compromising the accuracy of carbon emission predictions [15].
To address this limitation, researchers have begun exploring nonlinear relationships and
threshold effects to uncover the intricate characteristics of how built environment factors
influence carbon emissions. For instance, high levels ofmixed landuse, populationdensity,
employment density, and public transit route density are generally effective in reducing
private vehicle usage. However, once these factors exceed certain thresholds, their positive
effects may diminish rapidly [16–18].

Recent studies have highlighted the importance of non‑linear relationships in the con‑
text of urban environments and carbon emissions. For example, Yang et al. [19] employed a
gradient boosting decision tree (GBDT)method to investigate the nonlinear effects ofmulti‑
scale built environments on CO2 emissions from commuting, revealing complex and non‑
linear relationships between built environment factors and carbon emissions. Similarly,
Wu and Li [20] utilized GBDT to examine the nonlinear impacts of urban form factors
on transportation carbon emissions in 282 Chinese cities. The study highlights significant
threshold effects, particularly in polycentricity and urban dispersion, providing valuable
guidance for urban planning to reduce carbon emissions through optimized spatial strate‑
gies. These studies underscore the need to move beyond linear assumptions to better un‑
derstand and predict the impacts of urban development on carbon emissions.

Despite these advances, research on transportation carbon emissions remains lim‑
ited by the difficulty of fully incorporating built environment factors. Although re‑
cent studies have introduced machine learning techniques such as gradient boosting de‑
cision trees and random forests to enhance analysis [21–23], spatial heterogeneity in
carbon emissions—such as differences observed in urban canyons, high‑density areas, and
open spaces—remains inadequately addressed. Recent advances inmachine learning offer
promising tools to address these challenges. Song et al. [24] proposed a tree‑based MCST‑
tree model integrating multi‑source data for high‑resolution air pollution mapping. Sim‑
ilarly, Song et al. [25] introduced the Deep‑MAPS framework, which leverages urban big
data and machine learning to perform spatial inference of PM2.5 concentrations with fine
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granularity. However, while these studies have made significant strides in addressing the
spatial heterogeneity of air pollution, they primarily focus on PM2.5 concentrations and
do not directly address the specific challenges of carbon emissions in complex urban envi‑
ronments. Consequently, developing a comprehensive model that accounts for the spatial
variability of transportation carbon emissions is critical. Such a model would provide ro‑
bust scientific support for crafting more targeted and effective environmental policies.

This paper explores the nonlinear relationship between the built environment and
transportation carbon emissions, focusing on an urban road traffic scenariowhere gasoline
vehicles and electric vehicles coexist. Therefore, this paper addresses two key questions:
(1)Howdourban road carbon emissions evolve over time and spacewith the coexistence of
gasoline and electric vehicles? (2) How do built environment variables impact transporta‑
tion carbon emissions from gasoline and electric vehicles, and what spatial adjustments
effectively reduce traffic emissions?

Leveraging GPS data from both gasoline and electric taxis in Chengdu, this paper
adopts the XGBoost regression model along with the SHAP method to enhance the in‑
terpretation of complex nonlinear dynamics. By examining the spatiotemporal nonlinear
effects of built environment factors on transportation carbon emissions, this paper enriches
existing studies and provides deeper insights into global and local nonlinear interactions.
The results indicate that the built environment’s impact on carbon emissions varies signif‑
icantly across temporal and spatial scales, showing distinct threshold effects. These find‑
ings provide critical evidence for developing targeted carbon reduction policies tailored to
regional and temporal needs.

The structure of this paper is as follows. Section 2 reviews the literature on the relation‑
ship between road transportation carbon emissions and the built environment. Section 3
describes the data and variables included in the model. Section 4 outlines the research
methodology. Section 5 presents the detailed results. Finally, Section 6 summarizes the key
findings, proposes carbon reduction policy recommendations, and discusses directions for
future research.

2. Literature Review
2.1. Calculation of Road Traffic Emissions

Road transportation emissions are estimated using top‑down or bottom‑up methods,
selected based on geographic scale, data granularity, and availability [26]. Top‑downmeth‑
ods are effective for large‑scale analyses, such as at national, provincial, or county levels [2],
relying on total energy consumption and emission factors. For example, Alam et al. [27] cal‑
culated Ireland’s national road emissions using the 2016 emission inventory, while Singh
et al. [28] evaluated CO2 trends in India’s road transport sector through fuel consumption
data. In Tianjin, Sun et al. [29] developed a vehicle emission inventory using detailed lo‑
cal datasets. De Nunzio et al. [30] further introduced a framework to estimate road traffic
emissions using macroscopic traffic and road data.

Bottom‑up methods, utilizing detailed data such as vehicle type, travel distance, and
fuel consumption per unit, provide a more precise characterization of carbon emissions
from mobile sources [31]. For instance, Luo et al. [32] analyzed the spatial distribution of
taxi energy consumption and emissions in Shanghai using GPS data. Kan et al. [33] pro‑
posed a fine‑grained microscopic model to calculate vehicle fuel consumption and emis‑
sions. Liu et al. [34] reconstructed vehicle emission profiles by integrating taxi GPS trajec‑
tories with license plate recognition data. Pla et al. [2] developed a bottom‑up method to
quantify greenhouse gas emissions from urban road traffic.

Previous studies have proposed various methods for calculating road transportation
emissions, but limitations remain in terms of spatiotemporal resolution, particularly at the
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road level [2]. High‑resolution road‑level emission data are crucial for advancing sustain‑
able urban development. Onboard GPS data, which accurately captures vehicle driving
states, has gradually become a focal point of research. The vehicle specific power (VSP)
model, based on regression analysis of measured emission data, establishes the relation‑
ship between driving parameters and average emissions. It has emerged as a key tool for
studying road emissions, demonstrating high accuracy in fuel consumption estimation for
public vehicles [35] and light‑duty taxis [36]. In recent years, researchers have applied
the VSP model to analyze urban travel activities and associated emissions. For example,
Zhang et al. [37] used taxi trajectory data to estimate fuel consumption and carbon emis‑
sions, visualizing the spatial distribution of emissionswithin traffic networks. Xia et al. [38]
developed a method to calculate daily travel emissions using taxi records, exploring the
relationship between urban morphology and carbon emissions. Similarly, Chen et al. [39]
analyzed the temporal characteristics of multimodal commuters, investigating the poten‑
tial impact of low‑carbon travel on emission reductions.

However, current GPS‑based emission studies primarily focus on emissions at the ad‑
ministrative scale or within traffic networks. Research on the spatial distribution of emis‑
sions from daily travel sources at finer resolutions remains limited, highlighting the need
for more detailed and localized analyses.

2.2. Driving Factors Analysis on Road Traffic Emissions

Transportation emissions have been extensively studied in relation to the built envi‑
ronment, with a particular focus on the role of density. Zahabi et al. [40] found that a 10%
increase in residential density can lead to a 2.5% reduction in carbon emissions. Similarly,
Wu et al. [22] observed that both high population density and high employment density
contribute to reducing carbon emissions, with employment density having a more signifi‑
cant impact. However, the relationship between density and emissions is not straightfor‑
ward. Some studies suggest that increased population density can lead to higher energy
consumption and emissions from transportation [12,41].

In areas with diverse land use, optimizing land allocation reduces travel distances,
which in turn decreases car dependency and related carbon emissions. A study found
that increasing land use diversity by 10% can result in a 2.5% reduction in transportation‑
related carbon emissions [42]. Another study observed that combining different land
uses boosts subway usage, thereby lowering emissions [43]. It was highlighted that a
greater concentration of workplaces relative to residential areas can shorten commute dis‑
tances and cut down greenhouse gas outputs [44]. Another study noted that the influence
of land use mix on carbon emissions is notable only when the index surpasses 0.4 [22].
Furthermore, studies suggested that if land use diversity exceeded a certain threshold,
it might lead to congestion and parking issues, impacting emissions [45]. This sug‑
gested a potentially nonlinear relationship between land use diversity and transportation
carbon emissions.

With increasing distance from the city center, automobile use tended to rise, exacer‑
bating environmental pollution [46]. However, researchers found that the distance from
city center was negatively correlated with the proportion of people using cars at work. On
the whole, there was a complex nonlinear relationship between traffic carbon emissions
and the distance from city center and transportation carbon emissions [22,23].

2.3. Research Method Development in Built Environment and Carbon Emissions Studies

The relationship between the built environment and carbon emissions has been
widely researched, with initial studies primarily using linear models to assume a direct
and proportional link between characteristics like density, diversity, and design, and car‑



Buildings 2025, 15, 488 5 of 37

bon emissions. For example, Ewing andCervero [47] used linear regression to demonstrate
that higher urban density and diversity were associated with lower vehicle miles traveled
(VMTs) and reduced carbon emissions. Li et al. [48] employed linear regression to exam‑
ine how 13 factors impact traffic CO2 emissions, highlighting economic scale, population
density, transportation structure, and energy consumption as critical influences. However,
these linear models were limited by their simplicity, inability to capture threshold effects,
and lack of interaction effects among variables.

Recognizing these limitations, researchers have increasingly turned to nonlinearmod‑
els to more accurately capture the complex dynamics between the built environment and
carbon emissions. Nonlinear models, such as machine learning techniques like random
forests and gradient boosting machines, offer a more nuanced approach. These models
can account for threshold effects and interactions, providing a better fit to the data and en‑
hancing predictive accuracy. He et al. [49] utilized the random forest method to examine
the influence of key variables on the three travel patterns of short‑distance car users, ex‑
ploring the nonlinear correlations and interactions amongdifferent variables. Wu et al. [50]
constructed a tree‑boosting algorithmbased onGPS taxi trip data fromDalianCity to inves‑
tigate the spatiotemporal heterogeneity of taxi travel carbon emissions and their nonlinear
relationship with the built environment.

Despite the advantages of nonlinear models, current research still faces challenges.
Nonlinear models require larger and more detailed datasets to accurately estimate com‑
plex relationships, which can be difficult to obtain. Additionally, these models are more
complex and harder to interpret than linear models, making it difficult for policymakers
and practitioners to understand and apply the results. Many nonlinear studies are also
context‑specific and may not be generalizable to other regions or settings.

The above review highlights several limitations of existing research. Firstly, most
studies used linear models to analyze the relationship between the built environment and
transportation carbon emissions, overlooking potential nonlinearities. Secondly, tradi‑
tional machine learning research had not adequately considered the spatial heterogeneity
of the built environment, limiting its effectiveness for spatial policy decisions. Addition‑
ally, commonly used PDP interpreters face limitations due to independence assumptions.
To address these gaps, this paper introduces an optimized gradient boosting decision tree
model and compares its performancewith existingmachine learningmodels. Using SHAP
interpreters, we explore the complex impacts of built environment factors on traffic carbon
emissions across different spatial and temporal dimensions, reveal threshold effects and
simultaneously explain spatiotemporal heterogeneity and nonlinear relationshipswith the
built environment, which greatly expands the depth of existing literature.

3. Study Area and Data Sources
3.1. Study Area

Chengdu is the provincial capital of Sichuan Province, the central city in Southwest
China, and an international comprehensive transportation hub city. Its urban function
is the “Western Economic and Technological Innovation Center, Western Center for For‑
eign Exchanges, and National Advanced Manufacturing Base”. By the end of 2023, the
permanent resident population in Chengdu had reached 21.403 million, among which
the urban permanent resident population was 17.229 million, and the urbanization rate
was 80.5% [51]. In 2023, Chengdu’s regional gross domestic product (GDP) reached
CNY 2.20747 trillion. By the end of 2023, the number of automobiles in Chengdu had
reached 6.7406 million, ranking first in China. The study area is shown in Figure 1.
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Figure 1. Study area.

Figure 1a,b show the geographical location and scope of Sichuan Province and
Chengdu City; Figure 1c shows the central area of Chengdu; Figure 1d shows the taxi
types of Chengdu.

The study area comprises the five central urban districts of Chengdu: Chenghua, Jin‑
niu, Qingyang, Wuhou, and Jinjiang. These districts cover an area of 424.06 km2, with a
population of 6.5 million, accounting for 30% of the city’s total population. The central
urban area constitutes 3% of Chengdu’s total area but contributes 35% of the city’s GDP,
amounting to CNY 764.164 billion. Economically, this region is the most developed, with
high‑end services predominating and focusing on three high‑tech industries: electronic
information, biomedicine, and digital economy.

To accurately analyze the taxi carbon emissions of the study area and investigate the
relationship of urban infrastructure, we divided the study area into 500 m × 500 m grids.
The 500 m grid division is widely used in studies of urban spatial regression [50,52,53].
The smaller grid enriches the spatial difference [54] in each region, which helps the regres‑
sion model to better capture the difference features. This division resultedj in 2096 grids,
enabling us to find carbon emission characteristics across the entire city more accurately.

3.2. Data Resource and Processing
3.2.1. Taxi GPS Data

In this paper, the GPS data of taxis across thewhole area of Chengdu from 30thMarch
to 5th April 2022, a total of seven days, are selected to analyze the road carbon emission
situation in the central area of Chengdu. There are approximately 12,000 taxis in Chengdu,
generating about 9.05 million pieces of trajectory data daily. Taxi GPS data are collected
by the on‑board positioning equipment and sent to the data center regularly (the data sam‑
pling interval is 30 to 60 s). The data includes nine fields, namely generation time, license
plate number, longitude and latitude, driving speed, direction angle, operating status, and
data availability. Table 1 is a sample of the original taxi GPS data.
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Table 1. Taxi GPS data sample.

Date Time Vehicle_ID Lon Lat Speed Angle Status Avail
2022
0601 51,919 川ADU**1 104.031197 30.639927 49.0 103 1 1

2022
0601 51,935 川ADT0**2 104.109182 30.686768 0.3 105 1 1

2022
0601 52,235 川ADT3**6 103.882307 30.814181 23.0 76 1 1

The dataset spans seven days and coversmanyurban areas, providing comprehensive
spatio‑temporal characterization. As shown in Table 1, each Vehicle_ID is unique, starting
with “川A” for Chengdu, Sichuan Province, followed by five characters for gasoline taxis
and six for electric taxis. The Time column represents GPS timestamps. Lat and Lon indi‑
cate vehicle coordinates. Angles is the azimuth describing the direction of the taxi. Speed
denotes the instantaneous velocity of the taxi. Status indicates the taxi’s operation mode,
with 0 for empty and 1 for occupied. Avail reflects the device status, with 0 for offline due
to malfunction and 1 for normal operation.

Before conducting data analysis, it is essential to process the raw taxi GPS data. The
data processing involves data organization, cleaning, and trajectory extraction. During
the data organization phase, since time segments store the original trajectory data, we first
merge the data by date, select the complete daily trajectory data for each vehicle based
on the license plate number, and store them in groups sorted by time order. In the data
cleaning phase, we remove data with a device status of 0 and blank fields. Additionally,
trajectory points with speeds exceeding 120 km/hwill be removed by the speed limits of ur‑
ban roads in China [34,55]. Error filtering is applied to each vehicle’s order trajectory data.
If a taxi order mainly consists of location data with a speed of 0 and a constant position,
then the order will be deleted. Furthermore, data for single‑order trips with distances less
than 300m or greater than 350 kmwill be filtered out [33]. After the completion of data pre‑
processing, taxi trajectory data for different time periods were obtained as 260,010, 491,358,
197,888, 447,221, 256,652, and 466,871 records, respectively.

3.2.2. Built Environment Data

This paper acquires land development data for the central urban area of Chengdu in
April 2022. According to the Chinese national standard “Classification of Land Use Status
(GB T 2010–2017)” [56], various types of land are categorized and merged, ultimately re‑
taining four types of construction land: public management and service land, commercial
land, residential land, and transportation land.

Population data are obtained through the WorldPop project of the University of
Southampton (https://www.worldpop.org/, accessed on 1 December 2024). TheWorldPop
project is an open, high‑resolution geospatial dataset from the University of Southampton
that generates information on population distribution and demographics using various
statistical and simulation methods. This dataset is widely used by scholars worldwide for
scientific research [57,58]. This paper obtained the 2022 China 100m∙100mgrid population
spatial dataset corrected by the United Nations.

The urban road network is a ground road structure composed of roads of different
grades, functions, and locations distributed across various urban areas with a certain den‑
sity and form. The density of the road network also reflects the convenience and accessi‑
bility of travel in different urban areas and is one of the important bases for guiding and
formulating urban traffic regulations. The road network data in this paper comes from

https://www.worldpop.org/
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the OpenStreetMap. OpenStreetMap is an open‑source map that can be downloaded from
the web.

The POI data in this paper comes from Amap, one of China’s largest online map ap‑
plications. The Chengdu POI data for April 2022 includes 14 major categories: shopping
services, medical services, residential communities, and others. To improve the sample’s
representativeness, we screen and classify the POIs based on their actual operating hours,
effectiveness, and relevant regulations [59]. Among the 14major categories, the life service
category mainly includes facilities such as public toilets, which have a weak correlation
with travel and thus were removed from the study.

In most Chinese cities, there is a lack of statistical data that can quantify the economic
level of smaller‑scale areas. Since housing prices reflect residents’ income to a certain ex‑
tent [60], they are used in this paper to reflect residents’ economic levels. The housing price
data in this paper comes from the Chinese real estate intermediary website Beike, and the
Chengdu housing price data for April 2022 are crawled.

This paper obtain data on subway and bus stations in Chengdu in April 2022 through
Amap. Considering the different impacts of buses and subways on taxi travel, the two are
processed separately. Existing studies generally believe that the impact of the subway has
a range of effects. The “Urban Rail Transit Line Planning and Design Guidelines” issued
by theMinistry of Housing and Urban–Rural Development in 2015 defines the area within
500–800 m around urban rail transit stations (a 15‑min walkable distance) as the traffic
impact zone of urban rail transit stations. In domestic and international studies, the impact
radius of rail transit stations often adopts an 800m radius. Therefore, this paper constructs
a buffer zone with an 800 m radius around each subway station as the impact range of the
subway station. Figure 2 shows the spatial distribution and heatmap of the above data in
the study area.

3.2.3. Variables

Numerous studies have demonstrated the significant role of the built environment
in effective urban planning, with a scientific distribution of buildings capable of reducing
traffic‑related carbon emissions [61]. This paper employs a nonlinear model to analyze
the relationship between traffic carbon dioxide emissions and the built environment. The
dependent variable is the carbon dioxide emissions of vehicles in the study area grid. The
explanatory variables of the built environment mainly include five dimensions: facility
density, facility diversity, transportation service level, road network coverage level, and so‑
cial population. These dimensions are based on the 5D theory [62]. It specifically includes
13 factors, including land type, population, road density, public transportation accessibil‑
ity, and residential and work facility coverage density [22,38,63,64]. Table 2 provides a
descriptive analysis of each variable.

Table 2. Built environment variable definition and statistics.

Variable Variable Description Mean S.D. Min Max

Density

Work poi Locations related to work or
business activities 569.02 721.10 0.00 7933.09

Live poi Locations that are primarily
residential or related to living 36.52 52.43 0.00 376.24

Government land Area designated for government
buildings or public institutions 0.20 0.32 0.00 1.00

Business land Area designated for business or
commercial use 0.09 0.22 0.00 1.00

Live land Area designated for
residential use 0.43 0.38 0.00 1.00
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Table 2. Cont.

Variable Variable Description Mean S.D. Min Max

Work land Area designated for industrial 0.11 0.27 0.00 1.00

Diversity

HHI
A measure of concentration or
diversity of land use or business

types in an area
1.55 0.56 0.00 2.33

Transportation service

Parking density The number of parking spaces per
unit of area. 39.57 47.36 0.00 1129.17

Bus stop density The number of bus stops per unit of
area. 8.22 6.45 0.00 40.02

Subway buffer zone ratio The proportion of area within a
certain distance 39.57 47.36 0.00 1129.17

Road network coverage

Road diversity The variety of road types or road
functions in an area 12.01 7.96 0.00 88.89

Social population

Population density The number of people living per unit
of area 14,123.86 15,820.99 40.00 98,216.00

Average house price The average price of houses in the
area. 18,084.17 7928.91 5700.00 65,121.81
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4. Methodology
4.1. Study Framework

Figure 3 illustrates the research framework, which consists of three main steps:
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Figure 1. Custom-built experimental apparatus.

2.4. Moisture Buffer Value

The moisture buffering capacity should be investigated to indicate the hygroscopic
behaviour of a material. Hygroscopic materials have a strong affinity for the adsorption and
desorption of moisture upon exposure to ambient air, reaching equilibrium with the relative
humidity in the surrounding environment. Several methods exist to assess a material’s
moisture buffering capacity [27]. In light of this study’s focus on evaluating the moisture
buffering capacity of hygroscopic materials within real-world settings, the selected method
is the practical moisture buffer value MBVpractical derived from the Nordtest approach [28].

Practical moisture buffer value, MBVpractical , is defined as the amount of mois-
ture absorbed by the material when exposed to variation in relative humidity of the
surrounding air.

MBVpractical =
∆m

A · ∆RH · 100
(2)

where MBVpractical is practical moisture buffer value [g/(m2.%RH)], ∆m is moisture up-
take/release during the period (g), A is open surface area (m2, RH is relative humidity level
(%). For the present study, MBVpractical values of samples are determined.

In addition to the direct description of the assemblies’ moisture buffer values, the
capacity of materials can also be categorized in terms of their moisture buffer classes [19].
As shown in Table 2, the materials’ moisture buffer values are classified into the following
categories [27]:

Table 2. Moisture buffer value standard [27].

Standard Value

Negligible 0.0–0.2
Limited 0.2–0.5

Moderate 0.5–1.0
Good 1.0–2.0

Excellent 2.0–upwards

Figure 3. Study methodology.

(1) Trajectory Matching
This paper converts discrete trajectory points into continuous road sequences, as cal‑

culating the distance between two adjacent points alonemay underestimate the mileage of
motor vehicles. This matching process transforms point‑to‑point linear connections into
actual road‑based travel distances.

(2) Road Traffic Carbon Emission Accounting
This paper establishes a carbon emission accounting model for electric and tradi‑

tional gasoline vehicles based on trajectory data is established. For gasoline taxis, the VSP
model calculates traffic carbon emissions for each road segment using vehicle trajectories
and emission factors. For electric taxis, this paper follows the Chinese national standard
“GBT37340‑2019 Calculation Method for Energy Consumption of Electric Vehicles” [65],
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electricity consumption is first converted into equivalent fuel consumption, and then car‑
bon emissions are estimated by the IPCCmodel. After calculating the carbon emissions of
both vehicles, the study area is divided into several grids for grid allocation of road traffic
carbon emissions and analysis of the spatiotemporal characteristics of carbon emissions.

(3) Driving Factor Analysis
This paper examines 13 key built environment factors, and the impact of each fac‑

tor on road traffic carbon emissions is analyzed using the XGBoost algorithm, with the
SHAPmodel used for nonlinear interpretation and analysis of intrinsic characteristics and
relationships from PDP plots. Finally, the spatiotemporal heterogeneity of the built envi‑
ronment’s impact on urban traffic emissions is analyzed by comparing algorithms such as
random forests.

4.2. Map Matching for Taxi Trajectory Data

Some taxi positioning devices are unstable, leading to resulting in trajectory point loss
and drift. Additionally, due to urban multipath propagation loss, especially in areas with
high road network density and complex urban overpasses, the raw taxi trajectory may
significantly deviate from the actual roads, resulting in a large discrepancy between the
connected distance of trajectory points and the actual travel distance [34]. The sampling
interval of onboard devices is often more than 30 s, leading to a sparse distribution of
trajectory points. In urban areas with dense road networks, multiple potential paths may
emerge, necessitating accurate identification of the actual travel path. Figure 4 illustrates
the phenomena of trajectory data drift and multipath selection. As shown in Figure 4, at
points A and B, there are two possible travel paths, and incorrect path selection can lead
to errors in travel distance calculations. For instance, Chengdu’s Second Ring Road is
an elevated expressway with arterial roads constructed beneath it, overlapping with the
overpass. Surrounding commercial and residential buildings interfere with positioning
signals, resulting in extensive trajectory point loss and drift when vehicles traverse this
area. These conditions prevent accurate travel path identification.
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In response to the issues above, this paper employs a map‑matching algorithm for
identifying the true taxi trajectory. After map matching, the raw taxi location line can be
converted into a real road connection, so as to extract the accurate driving distance and
reduce the error of carbon emission calculation.

Mapmatching algorithms encompassmapping, geometric similarity and distribution
probability [66–69]. This paper selects a hiddenMarkovmodel (HMM)‑based probabilistic
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map‑matching algorithm. The hidden Markov model is a statistical model that describes
a Markov process with hidden, unknown parameters. In practical applications, the inter‑
nal states of certain systems and processes are not fully observable, and HMM is used to
describe the transition of these states and the generation process of observations. HMM is
widely applied in natural language processing, speech recognition, and time series analy‑
sis. The concept of HMM is that the current state of a system depends solely on the state
of the previous moment, forming a Markov chain with hidden states that are not directly
observable but can be inferred from a set of generated observation data. HMM consists
of three basic elements: states, observations, and three types of probabilities (observation
probabilities, state transition probabilities, and initial state probabilities). The set of states
comprises all hidden states; the set of observations represents the observable manifesta‑
tions of each state; observation probability is the likelihood of observing a specific obser‑
vation given a particular state; state transition probability is the likelihood of the system
transitioning from one specific state to another; and initial state probability refers to the
probabilities of the system being in various states at the beginning.

In the context of map‑matching, HMM functions as a decoding problem, determining
true travel segments from GPS trajectory points. Figure 5 presents the Viterbi algorithm‑
based framework for hidden Markov map matching:
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(1) Hidden States
Hidden states refer to the potential locations of a moving object. These states are

not directly observable but are inferred based on the observed states. Each hidden state
corresponds to a specific location on the road network. In this paper, the projection point
of the observed position onto a road segment is considered as the hidden states (i.e., the
candidate point).

(2) Observation States
Observation states are the positions directly observed through trajectory data, which

are the vehicle’s latitude and longitude information, as shown in Figure 6. Although obser‑
vation states can be directly obtained throughpositioningdevices, they are often inaccurate
due to multipath effects, signal attenuation, and environmental factors. In the HMM sys‑
tem, observation states are used to infer the most probable hidden state, representing the
moving object’s true location.
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(3) Observation Probability Matrix
The observation probability matrix maps the relationship between hidden states and

observation states. The elements in the matrix represent the probability of observing
the current GPS position, given the assumption that the moving object is in a specific
hidden state.

The observation probability is calculated based on a normal distribution, as shown in
Equation (1). In the equation, B(k) represents the observation probability, Pi represents the
observation point, PC

i represents the hidden state (mean of the distribution),DE represents
the distance from the observation state to candidate road segments, and σ represents the
standard deviation.

B(k) = P(Ok = Pi|Hk = Pc
i ) =

1√
2πσ2

e−
DE(Pi−Pc

i )
2

2σ2 (1)

(4) Transition Probability Matrix
Road segment transition probabilities constitute a key parameter reflecting hidden

state dependencies and transition patterns in the HMM framework. The transition prob‑
ability aij indicates the likelihood of moving from state i to state j in the subsequent time
step. The configuration of transition probabilities must consider both the topological re‑
lationships inherent in the road network and the similarity between the time differences
of adjacent data points and the corresponding travel times between road segments. The
calculation formula is as follows:

P(Sj, Sk) =

{ 1
|ti,i+1−Tj,k| Tj,k ̸= ti,i+1

1 Tj,k = ti,i+1

}
(2)

Tj,k represents the average travel time from road segment j to road segment k, ti,i+1

represents the time interval between the ith observation point and the (i + 1)th observa‑
tion point. Using this approach, the HMM can estimate the most likely sequence of road
segments based on the GPS trajectory points and the statistical model of the observation
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probabilities. This method helps to correct for inaccuracies in GPS data and provides a
more reliable representation of the vehicle’s actual path.

4.3. Vehicle Trajectory‑Based Emission Model
4.3.1. Gasoline Vehicle Carbon Emissions Calculation Method

The calculation of carbon emissions of gasoline vehicles is based on the vehicle spe‑
cific power (VSP). This model first inputs vehicle speed, acceleration, road slope and other
data to estimate the fuel consumption of vehicles. After obtaining the fuel consumption,
the carbon emission is calculated by superimposing the carbon emission factor of the gaso‑
line [35,62]. The optimized VSP carbon emission model is shown in Equation (3).

VSP = v × [1.1a + 9.8a × grade (%) + 0.132] + 0.000302 × v3 (3)

v is the speed of the vehicle, m/s. The grade is a dimensionless parameter, taking 0 in
the application. a is the instantaneous acceleration, m/s2.

Due to difficulties in inputting some data (e.g., grade, acceleration), many scholars
have optimized the carbon emission model based on VSP and established fuel consump‑
tion correction factors for different speed ranges. Therefore, this paper builds on these
findings [70,71]. The instantaneous fuel consumption calculation incorporates the vehicle
fuel consumption correction factor for each speed range. Then base on the carbon emis‑
sion factor corresponding to each type of gasoline, we calculate the carbon emission of
the vehicle.

Step1: Fuel consumption calculation. Fuel consumption of each section is determined
as shown:

fi,l = ER0 × NFCRl × Ti,1 (4)

In the equation, fi,l represents the actual fuel consumption of the segment l of the taxi
order i; ER0 denotes the average fuel consumption rate of the taxi when VSP is 0, set to
0.274; NFCRl indicates the normalized fuel consumption rate for the average speed range,
which is shown in Table 3; Ti,1 represents the travel time (seconds) of the taxi order i in the
trajectory interval l.

Table 3. NFCR values for the different velocity intervals.

Speed
(km/h) NFCR Speed

(km/h) NFCR Speed
(km/h) NFCR

0–2 1.085 28–30 2.187 56–58 2.756
2–4 1.259 30–32 2.251 58–60 2.810
4–6 1.311 32–34 2.329 60–62 2.865
6–8 1.476 34–36 2.338 62–64 2.914
8–10 1.573 36–38 2.361 64–66 2.956
10–12 1.646 38–40 2.395 66–68 3.049
12–14 1.730 40–42 2.441 68–70 3.136
14–16 1.807 42–44 2.470 70–72 3.289
16–18 1.841 44–46 2.538 72–74 3.334
18–20 1.923 46–48 2.566 74–76 3.370
20–22 1.997 48–50 2.581 76–78 3.410
22–24 2.045 50–52 2.596 78–80 3.439
24–26 2.092 52–54 2.680 above80 3.551
26–28 2.163 54–56 2.716

Step2: Carbon emissions calculation

CEi,l = fi,l × EFk (5)
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CEi,l represents the carbon emissions of the trajectory segment l of the order i;
EFk is the carbon emission factor for 92# gasoline. According to the national standard
GB 19578‑2021 “Fuel Consumption Limits for Passenger Cars” [72] in China, which speci‑
fies the conversion relationship between CO2 emissions and fuel consumption, 1 L of gaso‑
line emits 2.21 kg of carbon dioxide. Therefore, EFk equals 2.21 kg/L [38].

Step3: Calculate the total carbon emissions of the taxi order i
The total carbon emissions of of the taxi order i from the starting point (xo,i, yo,i) to

the ending point (xd,i, yd,i) is the sum of the carbon emissions of each trajectory segment l,
which can be expressed as shown in Equation (6):

CEi =
n

∑
l=1

CEi,l (6)

whereCEi is the total carbon emissions for the taxi order i, andCEi,l is the carbon emissions
of the segment l in the taxi order i. n represents the total number of trajectory segments in
the taxi order i.

4.3.2. Carbon Emission Calculation of Electric Taxis

Regarding the calculation method for electric vehicle carbon emissions, according to
the national standard “GBT37340‑2019 Calculation Method for Energy Consumption of
Electric Vehicles” [65], a carbon dioxide emission conversionmethod is used. This method
first converts the vehicle’s electrical consumption into equivalent fuel consumption before
calculating carbon emissions.

Step1: Calculation of the equivalent fuel consumption (FCCO2 )

Calculate the equivalent fuel consumption
(

FCCO2

)
according to the

following : FCCO2 = E × FCO2

(7)

where:
FCCO2 is the equivalent fuel consumption in L/100 km;
E is the vehicle’s electric energy consumption in kW·h/100 km;
FCO2 is the carbon dioxide conversion factor in L/(kW·h).
Step2: Calculation of the carbon dioxide conversion factor FCO2 The carbon dioxide

conversion factor FCO2 is calculated according to the following:

FCO2 =
TE × TC × ϕ

TF × tM × ich × (1 − itr)
(8)

where:
FCO2 is the carbon dioxide conversion factor, in units of L/(kW·h);
E is the vehicle’s electric energy consumption, in units of kW·h/100 km;
TE is the coal consumption per unit electricity generated by thermal power plants, in

units of kg/(kW·h);
TC is the carbon dioxide emission factor of coal gasoline, in units of kgCO2/kg coal;
φ is the percentage of electricity generated by thermal power plants (%);
TF is the carbon dioxide emission factor of the gasoline used in power generation, in

units of kgCO2/kWh;
tM is the conversion factor between gasoline coal and standard coal;
ich is the charging efficiency (%);
itr is the transmission loss rate (%).
The value of FCO2 obtained from this calculation is 0.31 L/(kW·h), based on the param‑

eter values provided in Table 4.
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Table 4. Parameter values.

ID Variable Variable Description Value
1 FE Gasoline energy factor 92 # gasoline:0.1161
2 ich Charge efficiency 100%
3 itr Line loss rate 6.34%

4 φ
The proportion of thermal power

generation 75.2%

5 sge Power supply efficiency 38.63%
6 rP Refinery efficiency 92.8%
7 tP Delivery and filling efficiency 95%

8 TE
Standard coal consumption for

thermal power supply 0.318

9 TC
Carbon dioxide emission factor of

gasoline coal 3.09

10 tM
Discount coefficient of gasoline coal

and standard coal 1.07

11 TF
Carbon dioxide emission factor of

the gasoline
92 # gasoline: 2.38

kg/L
The density of 92# gasoline is referenced fromGB 17930 [73], taken as 720 kg/m3; the average lower calorific value
of gasoline is referenced from GB/T 2589 [74], taken as 43,070.

Step3: Carbon emissions calculation base on the equivalent fuel consumption
According to the IPCC carbon emission calculationmethod, based onGB/T37340 “Cal‑

culation Method for Energy Consumption of Electric Vehicles” [65] and GB 19578‑2021
“Fuel Consumption Limits for Passenger Cars.” [72], the carbon emission of electric
vehicles is calculated according to the actual energy consumption distance, as shown
in following.

Fj,b = Dj,b × FCCO2 × EFk (9)

where Fj,b represents the total carbon emission of the order j of the electric taxi b from the
starting point to the destination; Dj,b represents the order j travel distance of the electric
taxi b.

Given that there are no significant differences in themodels and engine of electric taxis,
the same emission coefficient and electricity consumption values are used to calculate the
carbon emissions. The WLTC electricity consumption for the standard electric taxi (Geely
Dihao new energy edition) in Chengdu is 11.9 kWh/100 km. The equivalent carbon dioxide
emission factor for fuel consumption is 3.689 L/100 km, and the carbon emission factor is
8.1158 kg/100 km.

According to the different carbon emission calculation methods for gasoline vehicles
and electric vehicles, within a complete trajectory of an order, each pair of trajectory po‑
sitioning points is considered a carbon emission unit. The carbon emission of each unit
is allocated to the road section [33,56,75] or area grid [32,34]. In this paper, we divide the
study area into numerous grids with 500∙500 m, and then the CO2 emissions of trajectory
unit are allocated to each grid. Finally, the grid carbon emissions (GCE) are calculated by
summing up all the carbon emissions unit on the grid. The principle of grid allocation of
taxi carbon emissions is illustrated in the Figure 7.
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4.4. Non‑Linear Geographic Regression Model
4.4.1. XGboost

XGBoost (eXtreme gradient boosting) represents an efficient implementation of the
gradient boosting algorithm and serves as an enhancement of the gradient boosting de‑
cision tree (GBDT) algorithm. XGBoost’s improvements are specifically manifested in its
parallel processing design, regularization modules, and loss function optimization. Com‑
pared to GBDT, the regularization modules reduce the likelihood of overfitting, while the
optimized loss functions yield superior predictive performance. Due to its parallel process‑
ing architecture, XGBoost also demonstrates enhanced computational efficiency, enabling
rapid processing of large datasets and meeting the performance requirements of this mod‑
eling task.

The XGBoost computation method involves calculating the value of each data sample
on every regression tree, and the final prediction for the sample is obtained by summing
up the values from each tree. The calculation formula for the XGBoost model is shown in
Equation (9).

ŷi =
K

∑
k=1

fk(xi) (10)

Here ŷi is the predicted value of themodel, xi represents the eigenvector of the sample
i, and is the expression of the tree k.

The objective function of the XGBoost model is shown in Equation (11).

Obj = ∑n
i=1 L(yi, ŷi) +

K

∑
k=1

Ω( fk) (11)

Here ŷi is the predicted value of the sample i, n represents the number of samples,
yi is the observed value of the sample i, k represents the number of trees, and fk is the
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expression of the tree k; L(yi, ŷi) represents the loss function, Ω( fk) is the regularization
function.

The XGBoost algorithm decomposes the objective function using a Taylor expansion,
relying on the first and second derivatives of the loss function at each data point. This ap‑
proach allows XGBoost to train in a parallel manner, significantly improving the efficiency
of the training process. Its form is shown in Equation (12).

Obj(t) = ∑n
i=1 L

[(
yi, ŷ(t−1)

i

)
+ gi ft(xi) +

1
2

hi f 2
t (xi)

]
+ Ω( ft) + const (12)

gi is the first partial derivative of the loss function L, and hi is the second partial deriva‑
tive of the loss function L. Just know the Ω( ft), to get the result.

Ω( ft) is a regular term of the model. The regularization term in the XGBoost model is
implemented by adding the complexity of the tree as a regularization term to the objective
function and pruning the tree in the later stages of model training to control the complex‑
ity of the model. This can result in a simpler final trained model, effectively preventing
overfitting. The formula for the regularization term is shown in Equation (13):

Ω( ft) = γT +
1
2

λ
T

∑
j=1

ω2
j (13)

In the expression, ft is the expression for the tree t, T represents the number of leaf
nodes in the tree t, ωj represents the score on the leaf node j, γ and λ is the penalty factor.
The larger their values, the greater the penalty for the complexity of the tree. Incorporating
the regularization term into the objective function yields the final objective function as
shown in Equation (14).

Obj(t) = ∑n
i=1[giωq(xi)

+
1
2

hiω
2
q(xi)

] + γT +
1
2

λ
T
∑

j=1
ω2

j

= ∑T
j=1[

(
∑

i∈Ij

gi

)
ωj +

1
2

(
∑

i∈Ij

hi + λ

)
ω2

j ] + γT
(14)

According to the objective function formula, Ij is the leaf node j corresponding to the
sample set. The optimal solution obtained is follows:

ω = −
∑

i∈Ij

gi

∑
i∈Ij

hi + λ
, ◦ Obj = −1

2

T

∑
j=1

(
∑

i∈Ij

gi

)2

∑
i∈Ij

hi + λ
+ γT (15)

At the same time, XGBoost adopts a segmentation search algorithm that can sense the
sparse features to adapt to the high‑dimensional sparse features of variables. This algo‑
rithm can learn the sparsity of data and conduct parallelization learning, which enables
XGBoost to reduce memory and obtain better training effects when computing.

4.4.2. Model Interpretation Using SHAP

Understanding the influence of various built environment factors and their combined
effects is crucial for informing practical policy decisions. In this study, we utilize the SHAP
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(Shapley additive explanations) model, an innovative additive explanation method rooted
in game theory. SHAP values are computed as follows:

φi = ∑
D⊆Q\{i}

|D|!(Q − |D| − 1)!
Q!

(
PD∪{i}(χD∪{i})− PD(χD)

)
(16)

The SHAP scatter dependence plot shows how each independent variable affects traf‑
fic carbon emissions, accounting for the influence of other variables. Analyzing these plots
helps determine whether these variables control carbon emissions within certain ranges.

5. Result
5.1. Spatiotemporal Analysis of Taxi Operations

InApril 2022, an average of 12,078 taxis operated daily inChengdu,with 4429 (36.67%)
being traditional gasoline‑powered vehicles and 7649 (63.33%) being electric vehicles (EVs).
The traditional gasoline‑powered taxis are primarily FAW‑Volkswagen Jetta sedans with
1.5 L engines, while the electric taxis are exclusively EVs, primarily consisting of Geely
Emgrand and Dongfeng Fukang E600 models.

Operational performance analysis shows that gasoline‑powered taxis operate for an
average of 17.75 h daily, EVs operate for 19.64 h. The average daily mileage per gasoline‑
powered taxi is 152.44 km, while for EVs, it is slightly higher at 160.23 km. Additionally,
the average daily order count for gasoline‑powered taxis is 11 trips, whereas EVs average
10.6 trips. When analyzing average trip distances, gasoline‑powered taxis cover 13.97 km
per order, while EVs average 14.99 km.

In terms of revenue, EV taxis generate an average daily income of approximately CNY
370, compared to CNY 338.8 for gasoline‑powered taxis. EV taxis attract more passengers
due to better conditions, smoother operation, and greater ride comfort, resulting in higher
order counts and daily revenue.

As shown in Figure 8, an analysis of speed at various times of the day reveals that
there is little difference between the average speeds of gasoline‑powered and electric taxis
during off‑peak hours, with the speeds being 17.83 km/h and 16.66 km/h, respectively.
Also, during peak hours, gasoline‑powered taxis average 15.43 km/h, whereas electric ve‑
hicles (EVs) average 16.37 km/h. Themaximumobserved speed for gasoline‑powered taxis
within urban areas is 52.13 km/h, slightly lower than the 55.35 km/h maximum speed for
EV taxis.
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Additionally, as shown in Figure 9, an analysis of the data sampling frequency for
taxi GPS positioning reveals that electric taxis generate approximately 2000 data points per
vehicle per day, with an average sampling interval of 32 s. In contrast, traditional gasoline‑
powered taxis have a stable data generation rate of around 2000 points per vehicle per
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day, with a slightly longer average sampling interval of 40 s. The average interval between
consecutive trajectory records for taxis is approximately 30 s.
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Based on the aforementioned findings, electric taxis in Chengdu demonstrate poten‑
tial advantages in operational efficiency and revenue generation compared to traditional
gasoline‑powered vehicles. This study recommends accelerating Chengdu’s taxi electrifi‑
cation process and increasing financial subsidies to reduce operators’ vehicle acquisition
costs, with the goal of achieving complete electrification by 2025. This initiative would
effectively leverage the advantages of electric taxis, enhance road traffic efficiency, facil‑
itate low‑carbon transition in the transportation sector, and promote high‑quality urban
transportation development.

5.2. Analysis of Carbon Emission Results
5.2.1. Time Distribution for Carbon Emission

Using the VSP model, the total carbon emissions on one typical workday in 2022
are estimated and measured, results are shown in Figure 10. The results of carbon emis‑
sions for two types of vehicles at different time periods show significant temporal vari‑
ation, with multiple peaks and troughs. There is a carbon emission trough in the early
morning (4:00–6:00), a peak in the morning (8:00–10:00), and another emission peak at
night (21:00–23:00).
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The morning peak in emission is strongly correlated with commuting patterns, and
the variation in carbon emissions from gasoline‑powered taxis is more significant com‑
pared to than that of new energy vehicles. The emission peak at night is related to
leisure and entertainment activities, as Chengdu has many recreational parks and a well‑
developed night market. This period is the peak time for returning home after entertain‑
ment, and with public transportation services like buses and subways having ended, the
demand for taxis increases, leading to a carbon emission peak.

Overall, vehicle carbon emissions exhibit significant temporal variation, with gasoline‑
powered taxi emissions significantly higher than those of new energy vehicles. Based on
this finding, it is recommended to prioritize electric vehicle deployment during morning
and evening peak hours when transport demand is concentrated, thereby reducing per‑
vehicle carbon emission intensity. This differentiated dispatch model enhances vehicle uti‑
lization efficiency, simultaneously reducing costs while maximizing emission reductions.

5.2.2. Spatial Distribution for Carbon Emission

Based on the model’s calculations, Table 5 presents a statistical analysis of the total
carbon emissions from gasoline and electric vehicles at various times of the day. When
examining total carbon emissions across different periods, weekday morning peak hours
show the highest emissions, followed by weekends, with weekday off‑peak hours having
the lowest emissions. This pattern aligns with real‑world observations. The high carbon
emissions during morning rush hours are driven by increased commuting demand. Sim‑
ilarly, weekends see elevated emissions due to leisure and entertainment activities that
boost travel demand. In contrast, off‑peak hours have lower emissions because of reduced
travel demand.

Table 5. Statistics of total carbon emissions.

Period of Time Electric Vehicle
(kg)

Gasoline Vehicle
(kg) Total (kg)

Weekend 5292.57 10,540.71 15,833.28
Weekday Morning Peak 5458.74 10,806.50 16,265.24

Weekday Off‑peak 5466.23 9273.13 14,739.36

In analyzing the differences in carbon emissions between gasoline and electric vehi‑
cles across various time periods, it is clear that gasoline vehicles remain the dominantmode
of transportation, with their quantity being approximately twice those of electric vehicles.
Additionally, the lower carbon emissions from gasoline vehicles during off‑peak hours are
likely due to decreased travel demand and favorable road conditions.

Spatial distribution maps of carbon emissions across different times of the day indi‑
cate that taxi emissions are primarily concentrated in central urban areas. Carbon emis‑
sions generally decrease from the city center towards peripheral areas, with a strong corre‑
lation tomajor and arterial roads. Specifically, high‑emission zones are concentrated along
the first, second, and third ring roads, which serve as major traffic arteries. The density of
the road network is a key factor affecting the spatial distribution of carbon emissions.

(1) Weekend carbon emissions (14:00–16:00)
As shown in Figure 11, the carbon emissions from electric taxis are mainly concen‑

trated in the city center, showing a pattern of high emissions in central areas and lower
emissions towards the outskirts. This indicates that electric taxis contribute less to carbon
emissions overall. In contrast, gasoline‑powered taxis exhibit a pronounced concentra‑
tion of emissions in the city center and along major traffic corridors, with high emissions
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particularly along Tianfu Avenue, South Third Ring Road, and Shudu Avenue. Gasoline‑
powered taxis contribute significantly more carbon emissions than electric taxis.
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(2) Weekday morning peak carbon emissions (8:00–10:00)
Figure 12 is the spatial distribution of carbon emissions during weekday morning

peak. As shown in Fighue 12, carbon emissions patterns on weekdaymornings are similar
to those on weekends, with a strong correlation to the main road network. Carbon emis‑
sions are especially high along Tianfu Avenue, Shudu Avenue, and the elevated Second
Ring Road.
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(3) Weekday off‑peak carbon emissions (14:00–16:00)
Figure 13 is the spatial distribution of carbon emissions during weekday off‑peak

hours. As shown in Fighue 13, compared to the weekday morning peak, off‑peak emis‑
sions exhibit a different spatial pattern, with lower emissions in the northern and higher
in the southern areas. Notable areas of high emissions include the major connecting roads,
such as Tianfu Avenue and Shudu Avenue, as well as popular downtown destinations
like Chunxi Road and Taikoo Li. This pattern reflects the travel demand for leisure and
recreational activities among residents.



Buildings 2025, 15, 488 24 of 37

Buildings 2025, 15, x FOR PEER REVIEW 24 of 37 
 

  
(a) Electric vehicle (b) Gasoline vehicle 

Figure 12. Spatial  distribution of carbon emissions during weekday morning peak 

(3) Weekday off-peak carbon emissions (14:00–16:00) 

Figure 13 is the spatial  distribution of carbon emissions during weekday off-peak 
hours. As shown in Fighue 13, compared to the weekday morning peak, off-peak emis-
sions exhibit a different spatial pattern, with lower emissions in the northern and higher 
in the southern areas. Notable areas of high emissions include the major connecting roads, 
such as Tianfu Avenue and Shudu Avenue, as well as popular downtown destinations 
like Chunxi Road and Taikoo Li. This pattern reflects the travel demand for leisure and 
recreational activities among residents. 

  
(a) Electric vehicle (b) Gasoline vehicle 

Figure 13. Spatial  distribution of carbon emissions during weekday off-peak hours. 

Analysis of spatial distribution patterns of carbon emissions between electric and 
gasoline-powered taxis reveals that gasoline-powered taxi emissions are highly concen-
trated along major urban arteries such as Tianfu Avenue and the Third Ring Road, as well 
as popular commercial districts like Chunxi Road and Taikoo Li. Electric vehicles demon-
strate notably lower emission intensity in these areas. This indicates that in high-traffic, 
low-speed road segments, gasoline-powered vehicles generate higher carbon emissions 
due to frequent idling and low-speed operations. 

Figure 13. Spatial distribution of carbon emissions during weekday off‑peak hours.

Analysis of spatial distribution patterns of carbon emissions between electric and
gasoline‑powered taxis reveals that gasoline‑powered taxi emissions are highly concen‑
trated along major urban arteries such as Tianfu Avenue and the Third Ring Road, as well
as popular commercial districts like Chunxi Road and Taikoo Li. Electric vehicles demon‑
strate notably lower emission intensity in these areas. This indicates that in high‑traffic,
low‑speed road segments, gasoline‑powered vehicles generate higher carbon emissions
due to frequent idling and low‑speed operations.

For these hotspot areas, it is recommended that taxi platforms implement electric
taxi voucher programs to increase the proportion of electric taxi operations in popular
areas, thereby reducing inefficient operational modes of gasoline‑powered vehicles such
as empty cruising and idling.

5.3. Spatial Correlation Analysis of Carbon Emissions
5.3.1. Model Selection

Based on 5D elements, 13 variables representing the urban built environment were se‑
lected, and XGBoost, GBDT, and RF models are used to construct carbon emission predic‑
tion models for different periods in order to analyze the heterogeneity of factors affecting
taxi emissions in different regions.

In this paper, we use mean squared error (MSE), root mean square error (RMSE), and
R‑squared (R2) as metrics to assess the predictive performance of various models. We
evaluate the performance of the gradient boosted regression trees (GBRT) model against
random forest (RF) and XGBoost models. As shown in Table 6, the XGBoost model out‑
perform GBDT and RF, evidenced by its lower MSE and RMSE values and a higher R2.
Therefore, we selected the XGBoost model for subsequent analysis.

Table 6. Comparison of Results from Multiple Machine Learning Models.

Model RMSE MSE R2

XGBoost 40.27 1621.62 0.6387
Random Forest 41.25 1701.63 0.6209

Gradient Boosting 40.85 1668.34 0.6283

To ensure themodel’s generalizability and prevent overfitting, we apply a grid search
method and five‑fold cross‑validation to determine the optimal hyperparameters. In each
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iteration, the original training samples are randomly divided into five subsets, with four
subsets (80% of the data) used for training and the remaining subset (20%) used for testing.

The five key hyperparameters are: maximum tree depth (max_depth), the number
of estimators (n_estimators), subsample ratio, learning rate, and column sample ratio per
tree (colsample_bytree). The max_depth determines the maximum depth of trees and con‑
trols model complexity. Higher values can capture more complex relationships but risk
overfitting, while lower values offer better generalization but may lead to underfitting.
The n_estimators determines the number of trees. While more trees generally improve
model performance, there are diminishing returns and increased training time. Too few
trees may result in underfitting. The colsample_bytree determines the proportion of fea‑
tures randomly sampled for each tree, while the subsample determines the proportion of
training instances randomly sampled for each tree. Lower values introduce randomness
to reduce overfitting, but excessively low values might ignore important features. The
learning_rate is the step size shrinkage used to prevent overfitting. Lower values require
more iterations but typically yield better generalization performance, though extremely
low values can lead to slow model training.

Based on the function and significance of XGBoost hyperparameters, and balancing
performance with generalization capability, the parameter thresholds are set as follows:
learning rate (0.001, 0.01, 0.05, 0.1), tree depth (3, 5, 7, 10), number of trees (100, 300, 500),
subsample ratio (0.8, 0.9, 1.0), and column sample ratio per tree (0.8, 0.9, 1.0). The optimal
hyperparameter combination obtained through grid search is shown in the Table 7.

Table 7. Hyperparameter selection for XGBoost model.

Max_Depth N_Estimators Colsample_BytreeLearning_Rate Subsample
5 500 0.9 0.01 0.80

The XGBoost model, retrained with these optimized parameters, exhibits a gradually
decreasing RMSE during iterations, indicating continuous improvement in the training
process, as shown in Figure 14. In the final prediction, the model achieves an R2 of approx‑
imately 69.25%, demonstrating good fit and accurate target value predictions. Figure 15
compares the actual values with predicted values, showing close alignment and further
validating the model’s effectiveness.
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5.3.2. Variable Analysis

To clarify how each building environment variable affects carbon emission prediction,
the characteristic importance diagram is generated as shown in Figure 16.
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Figure 16. Feature importance plot.

Analysis of both the feature contribution plot and SHAP plot indicates that the fea‑
tures “road”, “park_station”, and “poi_live” are the most influential in the model’s pre‑
dictions with high F‑scores. Furthermore, the SHAP plot shows substantial variation in
their impact values, which underscores their substantial contribution to the model’s out‑
put. Collectively, these features are essential for accurate model predictions and warrant
further detailed examination and analysis.The force plot provides a detailed view of each
feature’s specific contribution to the model’s prediction, as shown in Figure 17. In this vi‑
sualization, red sections indicate features that positively influence the predicted value (i.e.,
positively correlated), while blue sections represent features that decrease the predicted
value (i.e., negatively correlated). In this case, “park_station”, “poi_live”, and “road” con‑
tribute notably to the increase in predicted values, with “park_station” having the greatest
impact. Conversely, features that reduce the predicted value have a lesser effect. Together,
these features elevate the final predicted value to 175.47, higher than the baseline. This plot
enables a straightforward understanding of each feature’s importance and directional in‑
fluence in a specific prediction.
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5.3.3. Nonlinear Impacts

The layout of urban roads, building density, and public transportation accessibility
significantly influence residents’ travel choices and energy demand, impacting local car‑
bon emissions. For instance, high‑density development areas attract larger crowds and
generate greater travel demand, which may result in traffic congestion and higher carbon
emissions. By utilizing SHAP and XGBoost model, we can capture how these spatial het‑
erogeneities affect carbon emissions, providing scientific insights for further analysis of
localized carbon emission characteristics. This paper offers crucial support for optimizing
public transportation planning and green building design, aiding in the effective reduc‑
tion of carbon footprints. In this paper, five key variables are selected for visualization and
analysis, with the dependence plot clearly demonstrating the impact of individual features
on the model’s predictive outcomes.

(1) POI live density
Overall, as residential POI density increases, taxi carbon emissions rise correspond‑

ingly. In areas where residential density is below 25 units/km2, carbon emissions remain
low and increase gradually, likely due to low demand for taxis in these less dense areas,
as shown in Figure 18. When residential density exceeds 25 units/km2, emissions signifi‑
cantly increase as taxi demand rises with higher population density. At densities around
100 units/km2, emissions stabilize, likely due to road capacity limits and the diversion of
travel demand to mass transit options like subways and buses, resulting in a saturation of
taxi demand and a peak in carbon emissions.

Analysis reveals that a residential POI density of 25/km2 represents a critical thresh‑
old. Above this value, travel demand increases significantly, leading to markedly higher
taxi carbon emission intensity, indicating that taxi‑dominated transportation systems be‑
come unsuitable. For high‑density communities inmain urban districts such as Chenghua,
Jinniu, and Wuhou, it is essential to optimize public transit layout and enhance high‑
capacity public transportation services. This involves accelerating the development of a
multi‑level, integrated public transit system to encourage modal shift from taxis to public
transportation, thereby alleviating congestion and carbon emissions.
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tion of carbon footprints. In this paper, five key variables are selected for visualization and 
analysis, with the dependence plot clearly demonstrating the impact of individual fea-
tures on the model’s predictive outcomes. 
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taxi carbon emission intensity, indicating that taxi-dominated transportation systems be-
come unsuitable. For high-density communities in main urban districts such as 
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lots/km2, carbon emissions experience significant jumps, as shown in Figure 19. This indi-
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(2) Parking lot density
An increase in parking availability leads to a rise in taxi carbon emissions, which

has a noticeable threshold effect. When parking lot density reaches 64 lots/km2 and
88 lots/km2, carbon emissions experience significant jumps, as shown in Figure 19. This
indicates that within certain density ranges, increased parking supply induces greater taxi
travel demand, resulting in rapid carbon emission growth. Urban parking policies should
carefully consider this non‑linear effect and rationally control parking supply in key areas
to prevent uncontrolled carbon emissions.

It is found that the density of parking lots decreases from the city center to the out‑
skirts, indicating a strong correlation between parking lot density and urban development
intensity. High‑density parking areas also mean higher development and stronger travel
attraction, resulting in increased taxi demand and thus higher CO2 emissions. When
parking lot density exceeds 100 per km2, the attraction of developed areas to private
cars increases, thereby suppressing the growth in taxi demand, resulting in stabilized
carbon emissions.
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Future strategies should strengthen parking demand management in central urban
areas, such as moderate parking fee adjustments, to encourage adoption of green trans‑
portation modes like buses and metros.

(3) Subway buffer zone ratio
In areas where the subway buffer zone ratio is below 0.6, carbon emissions are rela‑

tively stable and low, as shown in Figure 20. This stabilitymay be attributed to the fact that
these areas are farther from subway stations, leading residents to rely on other transporta‑
tionmodes rather than taxis for their journeys. Consequently, this results in lower demand
and activity for taxis and hence lower carbon emissions. However, when the buffer zone
ratio reaches 0.6, a significant increase in emissions occurs, likely indicating strong passen‑
ger dependence on taxis for metro connectivity.

In addition, the large buffer zone around the subway station is usually prone to con‑
gestion, where taxis driving at a low speed will increase fuel consumption and carbon
emissions. As the subway buffer zone ratio increases, carbon emissions increase, which
illustrates this trend.

This research recommends improving slow‑traffic systems around metro stations to
provide more green connection options. Actively promoting flexible “micro‑mobility” so‑
lutions like shared bicycles and electric scooters can create seamless green transportation
networks connecting with metro systems, reducing excessive taxi dependence.
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(4) Population density
Increased population density is closely linked to higher carbon emissions, as it el‑

evates travel demand and subsequently raises carbon emissions. Overall, emissions in‑
crease with population density, indicating that areas with higher population density have
more frequent taxi usage, raising trip frequency anddrivingdistances, which causes higher
carbon emissions.Notably, when population density surpasses 20,000, the rate of increase
in emissions accelerates, suggesting that carbon emissions grow faster beyond a certain
population density threshold, as shown in Figure 21. At densities above 50,000, emission
growth tends to stabilize, potentially due to the marginal effect of carbon reduction mea‑
sures or the intervention of alternative transportation modes. Based on the analysis, this
study proposes the following policy recommendations:

Buildings 2025, 15, x FOR PEER REVIEW 31 of 37 
 

  
(a) Continuous dependence plot (b) Discrete dependence plot 

 
(c) Spatial distribution of subway population density 

Figure 21. Non-linear impact analysis of population density. 

 
(5) Road network density 
The density of road networks, particularly main roads and expressways, significantly 

increases carbon emissions. Higher road density improves regional accessibility, thus in-
ducing more traffic demand, which results in greater carbon emissions, Figure 22c intui-
tively reflects this conclusion. Based on this, we recommends scientific road network plan-
ning to avoid excessive expansion. In central urban areas with already high road network 
density, focus should be on improving traffic efficiency and optimizing existing network 
resources rather than continuous expansion. 

Specifically, carbon emissions increase as road density rises, but different density 
ranges show varying rates of increase: at lower densities (5–10 km/km2), the rise in emis-
sions is moderate; however, starting from 10 km/km2, the emission growth rate sharply 
accelerates, likely due to a sudden increase in traffic activity beyond a certain road density 
threshold. At high densities close to 20 km/km2, the increase in emissions exhibits some 
fluctuations, potentially due to factors like road congestion and reduced vehicle speeds. 
To mitigate this situation, vehicular management policies can be implemented to reduce 
taxi proportions, thereby decreasing carbon emissions. It is recommended to establish 
dedicated bus lanes or reversible lanes on major and secondary arterial roads with high 
emission intensity, while prioritizing bus passage through traffic signal systems to en-
hance transportation efficiency and reduce emissions. 

Figure 21. Non‑linear impact analysis of population density.



Buildings 2025, 15, 488 31 of 37

Focus on high‑density areas (population density above 20,000) for priority emission
reduction measures, implementing targeted interventions such as accelerating taxi electri‑
fication and optimizing vehicle dispatch efficiency through big data.

Additionally, improving public transit services in high‑density areas, enhancing
bus and metro system coverage and service quality, and optimizing first/last‑mile con‑
nections with transit hubs can effectively share taxi travel demand. Beyond “supply‑
side” interventions, policymakers should consider “demand‑side” transportationmanage‑
ment measures in densely populated areas, such as encouraging carpooling to increase
occupancy rates.

(5) Road network density
The density of road networks, particularly main roads and expressways, significantly

increases carbon emissions. Higher road density improves regional accessibility, thus in‑
ducing more traffic demand, which results in greater carbon emissions, Figure 22c intu‑
itively reflects this conclusion. Based on this, we recommends scientific road network plan‑
ning to avoid excessive expansion. In central urban areas with already high road network
density, focus should be on improving traffic efficiency and optimizing existing network
resources rather than continuous expansion.
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Specifically, carbon emissions increase as road density rises, but different density
ranges show varying rates of increase: at lower densities (5–10 km/km2), the rise in emis‑
sions is moderate; however, starting from 10 km/km2, the emission growth rate sharply
accelerates, likely due to a sudden increase in traffic activity beyond a certain road density
threshold. At high densities close to 20 km/km2, the increase in emissions exhibits some
fluctuations, potentially due to factors like road congestion and reduced vehicle speeds.
To mitigate this situation, vehicular management policies can be implemented to reduce
taxi proportions, thereby decreasing carbon emissions. It is recommended to establish ded‑
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icated bus lanes or reversible lanes on major and secondary arterial roads with high emis‑
sion intensity, while prioritizing bus passage through traffic signal systems to enhance
transportation efficiency and reduce emissions.

Table 8 clearly presents various critical thresholds based on research findings and their
associated policy recommendations.

Table 8. Policy recommendations from key findings.

Key Findings Policy Recommendations

Residential POI density: 25/km2 Optimize public transportation layout

Parking facility density: 64/km2
Rationally control parking supply in key

areas Strengthen parking demand
management in central urban districts

Metro buffer zone coverage ratio > 0.6 Improve slow‑traffic systems around
metro stations

Population density > 20,000/km2 Prioritize emission reduction measures

Road network density > 10 km/km2 Scientific road network planning to avoid
excessive expansion

5.4. Emission Reduction Benefits

By the end of 2020, Chengdu had 5.98 million motor vehicles, and the average daily
travel volume in the central urban area reached 27.9 million trips. While this has brought
tremendous pressure on urban traffic operations, it has also result in a continuous increase
in urban transportation carbon emissions and a worsening of regional air pollution.

According to data from theChengduEnvironmental Protection ScienceResearch Insti‑
tute, the contribution rate of motor vehicle emissions to carbon dioxide (CO2) among local
emission sources in Chengdu was 31% between 2019 and 2020. The transportation emis‑
sions have gradually become the fastest‑growing source of carbon emissions in the city.

The Chengdu Green and Low‑Carbon Development Report (2022) indicates that the
annual market penetration rate of new energy vehicles (NEVs) in Chengdu has reached
31%. According to a document from the Chengdu Environmental Protection Bureau,
Chengdu’s cruising taxis will achieve full electrification by 2025. Additionally, the Special
Plan for Electric Vehicle Charging and Swapping Infrastructure in Chengdu (2023–2025),
issued by the Chengdu Economic and Information Technology Bureau, states that under
stable growth conditions, logistics delivery vehicles, buses, and cruising taxis inChengdu’s
central urban area will essentially transition to new energy vehicles by 2025. Taxis in
Chengdu are predicted to number between 15,000 and 17,000 by 2025.

Furthermore, the granular carbon emission calculation methodology established in
this study enables precise tracking of emission reductions achieved through electrification
initiatives. This methodology has significant implications for policy refinement, transpar‑
ent emission reduction reporting, and quantifiable demonstration of environmental bene‑
fits to stakeholders. After full electrification, compared to the current 1:2 ratio of gasoline
to electric vehicles, it is conservatively estimated that the daily reduction in emissions will
reach 99.04 tons, assuming an average of 16,000 operating vehicles per day and an average
daily mileage of 180 km per vehicle. The environmental benefits will be significant.

6. Discussion and Conclusions
Lowering carbon emissions from road traffic is crucial for mitigating global warm‑

ing. Using taxis trajectory data, this paper proposes a bottom‑up CO2 emission calcula‑
tion method for traditional fuel vehicles and electric vehicles at the road level and ana‑
lyzes their spatiotemporal variation characteristics. Building on this, this paper employs
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XGBoost and SHAP explanation models to analyze the impact of the built environment on
road carbon emissions.

This paper successfully identifies the spatiotemporal characteristics and emission
hotspots of road carbon emissions in Chengdu. CO2 emissions rise between 06:00 and
09:00 and peak between 15:00 and 18:00. Emission hotspots are primarily concentrated
on major urban roads, such as Tianfu Avenue, the Second Ring Road, and the Third Ring
Road. This paper examines how elements of the built environment influence road carbon
emissions at the grid level and explains the relationships between various influencing fac‑
tors. The results indicate that workplaces, main roads, residences, and bus stations have
significantly positive impact coefficients, while population density has a significantly neg‑
ative impact coefficient. Moreover, access to subway stations has a bidirectional impact on
road carbon emissions.

This paper highlights the significant impact of urban spatial layout and transportation
infrastructure on the spatiotemporal distribution of road carbon emissions. Specifically,
the clustering of commercial and residential areas leads to a marked increase in carbon
emissions. By optimizing regional characteristics and improving the diversity and coor‑
dination of internal facilities, carbon emissions can be effectively reduced. Additionally,
this paper reveals that carbon emissions are notably higher on major roads and ring roads,
a result primarily attributed to the combination of concentric and radial road networks
in Chengdu.

For future urban land use and spatial development policies in Chengdu, the following
recommendations are proposed: First, optimize the distribution of population by encour‑
aging the relocation of certain facilities and industries from the city center to new urban
districts, such as government offices, universities, and high‑tech industries. These new
districts, located in the eastern and southern parts of Chengdu, have been developed in
recent years and are equipped with residential, commercial, and public service infrastruc‑
ture, along with comprehensive public transportation services, including bus and rail sys‑
tems. Connecting these newly developed districts to the city center via major roads and
ring roads can not only reduce road carbon emissions in the central urban area but also
foster rapid development in the new districts, promote a balanced industrial distribution,
and narrow regional disparities. Second, in the central urban areas with high popula‑
tion density and development intensity, it is recommended to reduce traffic‑related car‑
bon emissions by improving road traffic efficiency, creating street parks and recreational
green spaces, building cycling and walking greenways, developing shared slow transport
systems, expanding rail transit, and optimizing the balance between public and private
transportation. These measures can help lower carbon emissions during peak hours and
mitigate traffic congestion.

Current research mainly focuses on the spatiotemporal distribution of urban traffic
carbon emissions and the influence of the built environment, using data from travel sur‑
veys, ride‑hailing, and taxi trajectories [70,71]. However, with the widespread adoption of
electric vehicles in China, studies have yet to fully address the carbon emission distribu‑
tion patterns and influencing factors of electric vehicles. This paper integrates multi‑day
trajectory data from both conventional gasoline taxis and electric taxis to investigate their
respective carbon emission patterns. It quantitatively estimates the carbon reduction ben‑
efits of electric vehicles and analyzes the impact of the built environment on the emissions
from both vehicle types. Existing carbon emission estimation methods, such as IVE and
VSP [68,75], are highly sensitive to input data, and fine‑grained data significantly improves
accuracy. In this paper, vehicle emissions are estimated based on trajectory data andHHM
road matching, minimizing errors from location deviations and incorrect linkages, ensur‑
ing the reliability and precision of the built environment impact analysis.
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This paper can be further refined. For example, multi‑source data such as street cam‑
eras and sensors can be used to improve the accuracy of model results. More comprehen‑
sive GPS trajectory data and vehicle type information would deepen the analysis of carbon
emission characteristics. In addition, other greenhouse gases can also be analyzed in depth.
Future research could concentrate on addressing these issues.
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