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Abstract: The furniture market is being conquered by the variety of wood-based composite
materials to the detriment of solid wood, which is considered expensive, but research has
yet to explain definitively why these two materials receive such disparate evaluations. This
study aims to evaluate the perception of wood by proposing an emotion-oriented research
method. It combines the esthetic appeal of wood products, the subjective emotions of the
subjects, and physiological emotions. We evaluated different wood materials using a multi-
sensory evaluation method that combines vision and touch during the experiment. Seven
specimens of solid wood and three of wood composite materials covered with synthetic
veneer with similar characteristics were evaluated, and we used subjective evaluations
and physiological responses (electroencephalography and electrodermal activity) from
twenty participants. Our analysis identified significant correlations between subjective
assessment and physiological responses, highlighting the influence of material appear-
ance on emotional reactions. Notably, rough-textured materials elicited higher positive
affectivity than smooth-textured ones, and bright materials were associated with more
positive emotions. This research elucidates the impact of material components on emotional
responses, offering insights into processing techniques that enhance the value of wood
product design.

Keywords: wood products; perception of wood; emotion; multisensory stimulation; wood
products design; subjective evaluation; physiological evaluation

1. Introduction
As one of Earth’s most abundant biological resources, wood holds tremendous poten-

tial for providing green energy and supporting a sustainable future [1]. Due to its unique
beauty, durability, and natural feel, wood has long been used in interior furnishings and is
even referred to as the “most human-friendly material” [2]. However, as resources become
increasingly scarce and environmental awareness grows, the high cost of natural wood has
led many consumers and designers to turn to artificial boards. Although artificial boards
offer advantages in terms of price and sustainability, they are often perceived as cheap and
lacking in texture [3,4]. This perceptual difference extends beyond functional comparisons
to include the impact of material properties on consumers’ emotions and psychology [5].

Wood can be classified as softwood or hardwood based on the species and texture.
Softwoods, typically from coniferous trees such as pine and cedar, are lighter and have
lower density. These trees generally grow faster and are more abundant, making them
easier and cheaper to harvest in large quantities. Softwoods have consistently been the
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primary type of log imported by China, with import volumes rising from 18.58 million
m3 in 2008 to 28.10 million m3 in 2023 [6]. Conversely, hardwoods come from deciduous
trees like oak, walnut, and cherry, which are usually denser and more esthetically pleasing,
thus commanding higher prices [7]. Hardwood species often have long growth cycles,
taking decades or even centuries to mature, which makes them scarcer and, consequently,
more expensive.

Despite the relative scarcity of wood resources in China, there has been a strong
demand for wooden furniture in the Chinese market. This is due not only to solid wood
furniture’s durability and esthetic appeal, but also to the cultural connection with wooden
furniture in Chinese tradition. To meet market demand and address the issue of limited
wood resources, artificial boards have gradually emerged in the home furnishings mar-
ket. Artificial boards typically comprise sustainable materials such as particleboard (PB)
and medium-density fiberboard (MDF). These boards come from fast-growing, low-cost
trees like poplar, eucalyptus, and pine. By processing these fast-growing woods into
chips or fibers and then shaping them under high temperature and pressure, these wood-
based board products exhibit excellent mechanical properties, such as high strength and
stability [8].

Due to these excellent properties and the fact they are composed of sustainable raw
materials, artificial boards have garnered significant attention in the fields of materials,
engineering, and environmental science [9–11]. However, the market price and acceptance
of artificial boards are generally lower than those of natural wood. For example, artificial
boards are often made from wood chips or fibers, resulting in an irregular surface texture
that contrasts sharply with the more uniform grain of natural wood. People prefer wood
with regular grain patterns, making artificial boards inferior and therefore cheap [3]. In
recent years, researchers have sought to improve the raw material form of artificial boards,
altering their mechanical properties and creating different visual effects [12,13]. For in-
stance, oriented-strand board (OSB) has a distinct wood chip form and relatively uniform
orientation, creating a unique natural and rugged esthetic [14], and is often used in deco-
rations. For interior furniture, manufacturers apply wood grain-like decorative veneers
to artificial board surfaces to make them more closely resemble natural wood [15]. This
approach can mitigate some of the negative perceptions of artificial boards, and decorative
veneers have gained wide acceptance. Current research on decorative veneers for artificial
boards primarily focuses on the effects of impregnation resins on decorative paper and the
performance of veneered artificial boards [16–19].

While veneers can mimic the look of various kinds of wood, they can feel and look
monotonous compared to real natural wood. In addition, the repetitive nature of veneer
patterns can make the decorative effect less unique than that of natural wood. Engaging in
a deep understanding of the evaluative differences between natural wood and veneered
artificial boards is particularly important as material processing technology and esthetic
preferences evolve.

Scholars have noted that, beyond functional differences, the perception of material
properties is a key factor influencing consumer evaluations [5]. The market success of new
materials depends not only on their functionality but also on the sensations they evoke.
The appreciation of a product partly stems from its material characteristics, which define its
appearance and elicit emotional responses that influence purchasing behavior [20]. Recent
studies indicate that the appeal of materials is determined by their semantic, expressive,
sensory, and emotional attributes, which are considered crucial components of purchasing
decisions [21]. As such, the sensory, expressive, and emotional dimensions of materials are
becoming important factors affecting their practical applications.
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Researchers have engaged in extensive discussions and conducted many experiments
on the relationship between materials and human evaluations, focusing primarily on the
psychological (subjective) and physiological levels. This article explores research methods
for investigating these two levels and provides examples of their combined use.

For the psychological level, researchers employ psychological scales and surveys as
powerful tools to investigate the relationship between materials and participants. These
instruments, designed to capture participants’ subjective emotional responses, play a
pivotal role in understanding how materials influence subjective evaluations [22–25].

For example, the Self-Assessment Manikin (SAM) (Bradley and Lang, 1994) [26], de-
signed by Professors Bradley and Lang from the Center for Emotion and Attention at the
University of Florida, is an emotion self-assessment rating system used to measure emo-
tional responses. The SAM scale is based on the PAD (pleasure, arousal, and dominance)
emotional dimension model [26]. SAM employs a series of images to represent varying
levels of each dimension, allowing participants to select the image that best represents their
emotional state. Initially, SAM was used in human–computer interaction evaluations and
was later adapted to a paper-and-pencil version for group and cluster screening.

Mainstream emotion theories posit that human emotions comprise two opposing
dimensions: positive affect and negative affect [27]. The former includes emotional experi-
ences such as enthusiasm, alertness, and liveliness, while the latter includes experiences
such as distress, numbness, and quietness [28]. The Positive and Negative Affect Schedule
(PANAS) scale, developed by Watson and colleagues in 1988, is the most widely used tool
for measuring these two dimensions of affect worldwide [29].

The SAM and PANAS scales differ in both their measurement dimensions and method-
ologies. Specifically, in terms of measurement dimensions, the SAM scale evaluates emo-
tions through three dimensions (pleasure, arousal, and dominance), although some re-
searchers simplify it to focus on just pleasure and arousal [20]. In contrast, the PANAS scale
assesses emotions using two dimensions: positive affect and negative affect. The SAM
scale employs a pictorial self-assessment method that emphasizes immediate emotional
responses. Participants choose the images that best represent their current emotional state.
The PANAS scale, on the other hand, uses a questionnaire format where participants rate
specific emotion-related words, emphasizing their emotional state over a specific period.
By combining these two scales, researchers can capture participants’ immediate emotional
reactions and overall emotional states within a defined timeframe, thus providing a more
comprehensive emotional profile. The pictorial assessment of the SAM scale can capture
subtle, instantaneous changes in emotion, while the lexical scoring of the PANAS scale
offers a detailed description of emotional experiences. Together, they complement each
other, enhancing the precision and reliability of the measurements.

Despite the potential for self-reports to introduce subjective bias (participants may
adjust their responses based on social or organizational expectations to meet others’ expecta-
tions of them or to avoid negative evaluations), these methods provide crucial preliminary
data and a theoretical foundation for understanding the emotional impact of materials.

On the physiological level, researchers reveal the impact of materials on people’s
emotions by recording and analyzing physiological indicators [30,31]. Variations in physio-
logical signals often accompany human emotional changes. Compared to facial expressions
or vocal signals, physiological signals more accurately reflect actual emotional states be-
cause facial and vocal representations are less nuanced and can be easily disguised [32].
Thus, physiological signals are crucial inputs in affective computing. In the context of
material emotion measurement, researchers have identified electroencephalography (EEG)
and electrodermal activity (EDA) as essential sources of information on people’s emotional
states [33–36].
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Hwang et al. noted that EEG holds inherent advantages in measuring emotions [37].
EEG directly detects brainwaves, or neural activity, from the central nervous system,
whereas other responses (such as EDA, heart rate, and blood volume pulse) originate from
peripheral nervous system activity. The central nervous system is linked to various aspects
of emotion (e.g., unpleasant or pleasant; relaxed or excited). In contrast, peripheral nervous
system activity only relates to arousal and relaxation. Therefore, EEG can provide richer
information about emotional states than other methods [38,39].

EDA significantly aids in emotion recognition. It is one of the most sensitive emotional
feedback mechanisms, originating from the autonomic activation of sweat glands in the
skin. EDA is closely related to emotions, arousal, and attention, making it one of the most
widely used indicators of physiological response [40]. Due to its high stability, ease of
measurement, and high sensitivity, EDA is considered one of the most influential and
sensitive physiological parameters for reflecting changes in sympathetic nervous system
arousal. It is a reliable indicator for evaluating physiological arousal, cognitive load, effort,
emotional response, and stress capacity.

Some researchers combine subjective evaluations with physiological measurements to
obtain more comprehensive and objective emotional data [41]. The combined approach
of assessing subjective emotions using emotional scales while simultaneously recording
physiological data captures both participants’ subjective emotional experiences and their
physiological reactions, providing a more holistic emotional dataset. Through dual mea-
surement, researchers can more accurately assess the impact of materials on people’s
emotions, reducing the potential bias of a single-method approach. This methodology
offers new perspectives on the complex relationship between materials and emotions and
reveals new directions for future research on materials and their applications.

Combining psychological (subjective) assessments with physiological measurements
was performed to provide more comprehensive and objective data on emotional responses
to materials has numerous advantages. Individual biases or social expectations may in-
fluence subjective assessments, while physiological measurements provide unconscious,
non-verbal response data. Their combined use can correct or supplement biases in subjec-
tive reports and improve the accuracy of research. In addition, physiological measurements
can capture instantaneous and dynamic changes in emotions, while subjective assessments
usually reflect overall or retrospective emotions. Their combined use allows for a more fine-
grained analysis of emotional responses. However, such studies still need to be conducted
for wood. The emotional responses elicited by materials are crucial in shaping human
interactions and experiences within designed environments. While previous research has
explored various aspects of material perception, a significant gap exists in understanding
how psychological and physiological factors influence these emotional responses. This
study addresses this gap by examining the subjective and objective dimensions of emo-
tional responses to natural wood and artificial boards. A particular uncertainty lies in how
natural wood’s inherent properties, such as its organic texture and warmth, compare to the
synthetic characteristics of artificial boards in evoking emotional responses.

Additionally, there is a lack of clarity regarding which elements within these
materials—visual appearance, tactile feedback, or olfactory cues—contribute most sig-
nificantly to emotional experiences. By employing advanced methodologies, including
emotional experience questionnaires and wearable physiological devices, this study seeks
to uncover the nuanced relationship between material properties and human emotions. The
objectives are twofold: first, to analyze how subjective evaluations align with physiological
indicators when interacting with different materials; second, to identify key factors within
these materials that influence emotional responses. This research contributes to a deeper
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understanding of emotional–material interactions and opens new avenues for designing
wood materials that evoke desired emotional states.

This research innovates by establishing a methodology to support the development
of emotion-driven innovation in wood materials. By integrating research methods for
studying both psychological and physiological levels, we conducted a comprehensive and
multi-faceted analysis of the relationship between material characteristics and participants’
emotions. We utilized emotional experience questionnaires to capture participants’ sub-
jective emotional responses while recording their physiological reactions using wearable
physiological measurement devices, ensuring data synchronization and integration. We
accounted for individual differences and strictly controlled the experimental environment.
Our use of advanced data analysis techniques, coupled with our adherence to rigorous
ethical standards, ensures the robustness of our results and provides new theoretical
foundations and practical guidance for the design and application of wood materials.

2. Materials and Methods
This study involved showing participants different samples of natural wood and

artificial boards and recording their physiological and subjective emotional responses to
viewing each sample (Figure 1).
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2.1. Participants

Regarding the number of participants, relevant research suggests that at least 10 sub-
jects are needed to obtain statistically significant emotional research results [19]. Further-
more, the study in [42] found that the most used range of study participants is 10–30 (46.15%
of the papers used this number range). Additionally, after reviewing recent studies on
emotional research [41,43,44], we ultimately recruited 24 university students to participate
in the emotional stimulation experiment. However, due to equipment malfunction (some
electrodes fell off during EEG data monitoring) and abnormal participant data (outliers
caused by signal interference) during the experiment, the final valid sample size was 20
(including 15 undergraduates and 5 postgraduates, 10 males and 10 females) aged 18 to
25. All participants had normal or corrected-to-normal vision, no tactile impairment or
history of neurological disorders, and normal olfactory function. To ensure the accuracy of
data collection, we required all participants to abstain from drinking alcohol and coffee and
staying up late within the 24 h before the experiment. Each participant was informed about
the procedures required for the experiment and provided written consent. This study was
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conducted in accordance with the Declaration of Helsinki and received approval from the
Research Ethics Committee of Shantou University.

2.2. Experimental Sample Selection and Classification

The experimental samples included ten wood-based materials, including both natural
wood and artificial boards (7 natural and 3 artificial). Specifically, the natural wood samples
selected were ash, elm, red oak, black walnut, white oak, pine, and cherry. The artificial
boards consisted of three veneer-faced panels imitating North American black walnut,
using particleboard as the base and different types of veneers for decoration, labeled
Veneer A, Veneer B, and Veneer C. In this experiment, we deliberately selected materials
with hues similar to those of the experimental samples. Color has been proven to be an
important indicator that affects people’s preference for wood [24]. This study hopes to
analyze how other wood components with the same tones affect people’s evaluation of it.
We set the sample size based on Harumi et al.’s study on wood tactile properties [45], with
each of the ten samples cut to a size of 30 × 30 cm and a thickness of 2 cm.

We collaborated with material suppliers and faculty members with wood research
backgrounds to analyze the selected samples’ constituent elements. Through extensive
discussions with experts, we identified the categories that most strongly influence the
sensory impact of materials in the visual and tactile dimensions: tactile sensation, texture,
and brightness. The tactile dimension corresponds to the sense of touch; we classified the
materials into three tactile categories: smooth, grainy, and rough. Texture and brightness
primarily correspond to the sense of vision. For texture, we categorized the materials into
three types based on the fineness and arrangement of the grain: fine texture, coarse texture,
and mixed texture. Regarding brightness, we divided the materials into two categories:
bright and dull.

The classification results of the experimental samples for this study are shown
in Table 1.

Table 1. Classification of natural wood and artificial board samples.

Sample Name Material
Source

Tactile
Sensation Category

Texture
Category

Brightness
Category Sample Image

Ash Nature Smooth Coarse texture Bright
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Table 1. Cont.

Sample Name Material
Source

Tactile
Sensation Category

Texture
Category

Brightness
Category Sample Image

Elm Nature Grainy Coarse texture Bright
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Table 1. Cont.

Sample Name Material
Source

Tactile
Sensation Category

Texture
Category

Brightness
Category Sample Image

Pine Nature Smooth Coarse texture Dull
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2.3. Subjective Emotion Evaluation Items

To enhance the accuracy and reliability of the subjective emotion measurement, we
adopted a combined approach using two emotional assessment scales, as referenced in
existing research [41]. These scales were the SAM and the PANAS (the scales are detailed
in Appendix A).

2.4. Physiological Emotion Measurement

Regarding EEG data, the theory of frontal EEG asymmetry has been effectively used
to understand various emotional states [46]. This theory suggests that left frontal activity is
associated with approach behaviors and positive emotions, while right frontal activity is
linked to withdrawal behaviors and negative emotions. Based on this theory, researchers
have developed methods to calculate emotions using EEG data [37,47,48]. Specifically, in
terms of power, features such as power spectral density (PSD) have been widely used to
classify emotional valence and arousal levels based on their correlation with the alpha
(8–13 Hz) and beta (13–30 Hz) frequency ranges.

Regarding the electrodes used for emotion analysis, researchers commonly extract
power in the alpha and beta bands from the AF3, F3, F4, and AF4 electrodes [48]. They
calculate emotional valence by comparing the power in the alpha and beta bands between
the F3 and F4 electrodes (Formula (1)). To measure emotional arousal, they use Formula (2),
which calculates the ratio of the sum of beta band power to the sum of alpha band power
from the AF3, F3, F4, and AF4 electrodes. Similarly, this study employs Formulas (1) and (2)
to calculate EEG valence and arousal.

Valence =
α(F4)
β(F4)

− α(F3)
β(F3)

(1)

Arousal =
β(AF3 + F3 + F4 + AF4)
α(AF3 + F3 + F4 + AF4)

(2)

Regarding EDA data, the skin conductance level (SCL) is the most used indicator of
EDA. Applying a small constant voltage across two points on the skin makes it possible
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to measure the skin’s ability to conduct electricity. Since the nervous system regulates
EDA, the SCL is linearly correlated with arousal levels. Changes in the SCL can reflect
emotional experiences over time (as emotions like happiness and sadness can lead to a
higher SCL) [49]. In human–computer interaction, SCL is often used to study psychological
load and emotional states. For instance, during the brief period when a user is about to
score a goal in a computer game and immediately afterward, the user’s SCL response
peaks, indicating a high level of emotional excitement [49]. The mean SCL can also reflect
the participant’s overall skin conductance level, with higher mean values potentially indi-
cating higher physiological arousal or prolonged stress levels [50]. The skin conductance
response (SCR) is an extremely sensitive indicator of emotional arousal. It is controlled
by the sympathetic nervous system and manifests through the activation of sweat glands.
Typically, changes in skin conductance (i.e., the difference between experimental values
and baseline values) indicate the degree of somatic physiological activation [51]. The SCL
part of the EDA complex represents the slower aspect of the EDA signal (subtle changes
occur within tens of seconds to minutes), while the SCR part indicates more rapid changes
(these data peaks occur 1–5 s after a specific time). Both are crucial arousal dimensions and
are believed to depend on distinct neurological mechanisms [52].

2.5. Physiological Data Collection Equipment

This experiment used the ErgoLAB Human–Machine–Environment Synchronization
Platform V3.0 (ErgoLAB 3.0) from Kingfar International Inc. (Bejing, China). It can simulta-
neously record subjective scale ratings, questionnaire and behavioral experiment paradigm
results, and objective multi-channel data, including eye movements, electroencephalograms
(EEGs), physiological signals, functional near-infrared spectroscopy (fNIRS), biomechanics,
human–computer interactions, spatiotemporal trajectory, physical environment measure-
ments, etc.

The platform also includes analysis modules for heart rate variability (HRV), electroen-
cephalograms (EEGs), electrodermal activity (EDA), electromyograms (EMGs), behavior
coding, motion capture, eye tracking, and spatial–temporal behaviors, as well as interaction
behavior and sequence analysis. Meanwhile, it enables custom editing and design un-
der various research conditions, including laboratory, virtual reality, mobile device-based
testing, and real-world environments.

In this experiment, we used the design module of ErgoLAB 3.0, EDA and PPG sensors
from a wearable physiological recording system (Kingfar International Inc.), and a 16-
channel semi-dry EEG system (Kingfar International Inc.). The data were processed with
ErgoLAB 3.0 data analysis modules, and the statistical tests were conducted with SPSS 19.

2.6. Experimental Process

The experiment assistant guides participants into the laboratory and seats them in
the preparation area. First, participants are given a personal information form to fill
out, which includes the following: basic information, including age, name, and gender;
physical condition information, including physical health, mental health, vision status, and
dominant hand (right or left); and an informed consent signature. Participants fill out the
form, sign it, and return it upon completion. Next, the experiment assistant explains the
procedure and requirements of the experiment in detail.

The assistant then equips the participant with the data collection devices (Figure 2).
For the EEG setup, participants should wear their hair down, remove any hair clips and
left-ear earrings, and wear the EEG device, which is adjusted until a stable EEG signal is
achieved. For the EDA setup, the EDA device is placed on the non-dominant hand, and the
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signal is adjusted until it is stable. Once all the equipment is adjusted correctly, the formal
experiment begins.
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The formal experimental procedure is illustrated in Figure 3. During the experiment,
to ensure consistency, the participant is guided entirely by pre-recorded voice prompts.
The experiment assistant is responsible for changing the experimental materials (boards),
controlling the playback of prompts, monitoring and recording physiological signals, and
distributing and collecting the subjective scales.
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Figure 3. Experimental flow chart.

The assistant activates the camera, and the computer recording switches to ensure
adequate data recording, positioning the camera lens to capture the computer’s time bar.
This setup facilitates the later division of time segments and the calculation of any time
discrepancies. The assistant plays a voice prompt to explain the experimental procedure
again and instructs the participant to close their eyes and rest for 30 s. This step prevents
excessive tension or excitement that might inflate the baseline physiological data.
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After the rest period, participants open their eyes and begin evaluating the experimen-
tal samples. First, the experiment assistant places Sample 1 in the positioning frame in front
of the participant. A prompt is played to signal the start of the viewing and touching phase;
this prompt constitutes a “ding” sound, which indicates the start and end of this phase.

The experiment proceeds in the same manner for Samples 2 to 10, with the assistant
guiding the participant through the same procedure for each sample until all 10 samples
have been tested. The formal experimental phase lasts approximately 15 min. To ensure
that participants have no subjective bias regarding the experimental samples, the names
and sources of the materials (including whether they are artificial boards or natural wood)
are not disclosed during the experiment.

2.7. Data Extraction and Analysis

For subjective data extraction, we utilized the SAM scale to record the valence and
arousal levels during the experiment. The participants’ valence and arousal scores for
each sample were entered into a table, and the average valence and arousal levels for each
sample were calculated. Additionally, we used the PANAS scale to sum the scores from the
five positive and five negative affectivity items, obtaining a total score. These established
scales added scientific rigor to our research.

We reviewed the video recordings for physiological data extraction to exclude unus-
able data (such as equipment power failure or external disturbances affecting participants).
We then segmented the usable data, identifying the time markers for each segment. The
video recordings were imported into editing software to compare the computer-recorded
time with the camera’s recording time. This resulted in 11 segments for each participant
(one 30-second baseline segment and ten 12-second experimental segments). Using the
ErgoLAB 3.0 data analysis modules (Kingfar International Inc.), we processed and extracted
the physiological data for the 20 participants in the “Record Playback” module. This in-
volved segmenting the data according to the identified time markers, ensuring precise
analysis of each participant’s physiological responses during the experiment.

The EEG data collected during the experiments were preprocessed in data playback
using ErgoLAB 3.0 data analysis modules. This software was employed to filter out data
from subjects with dislodged or incomplete recordings (using four electrodes in this study).
We removed noise artifacts recorded during the experiment, and we extracted the average
power data for the alpha (8–13 Hz) and beta (13–30 Hz) bands from each subject at electrode
positions AF3, AF4, F3, and F4 (as shown in Figure 4). The software automatically converted
these average power data to decibels (dB). The preprocessing steps were as follows: for α
wave extraction, a high-pass filter at 8 Hz, a low-pass filter at 13 Hz, and a notch filter at
50 Hz were applied; for β wave extraction, a high-pass filter at 13 Hz, a low-pass filter at
30 Hz, and a notch filter at 50 Hz were employed. After filtering, electrode amplitude data
showing excessively high voltage values were deemed unusable and excluded, and the
remaining viable recordings were used in the following analysis phase.

Ultimately, for each of the 20 subjects, we extracted the average power (in dB) data
for alpha (F3, F4, AF3, and AF4) and beta (F3, F4, AF3, and AF4) waves (totaling 8 values)
obtained for the 10 different materials, resulting in a total of 1600 data points. Using
Formulas (1) and (2), we calculated each subject’s EEG emotional valence and EEG arousal
when presented with each material.

In the data playback process, we first used ErgoLAB 3.0 data analysis modules to filter
and exclude disconnected or incomplete records (specifically for SCL and SCR) for the
collected EDA data. We then extracted the average SCL and SCR values (unit: µS) for each
of the 20 subjects when presented with the 10 different materials, as well as the baseline
SCL and SCR values during the 30-second resting state. By subtracting the baseline data
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from the raw data, we obtained 400 data points. These data were obtained to help assess
the arousal levels elicited by the materials.
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After the experiment, we obtained three different sets of data: categorical data from the
experimental samples (including material source, tactile sensation, texture, and brightness)
as well as subjective evaluation data (using the SAM and PANAS scales) and physiological
data (EEG and EDA data) from the subjects. To analyze the impact of the material samples
on the participants’ emotions, we used SPSS Statistics Version 19.0 for statistical analysis.
First, we conducted a correlation analysis to explore the relationships between the subjects’
subjective and physiological data. Subsequently, using the source of the experimental sam-
ples as a grouping variable, we analyzed whether there were differences in the subjective
and physiological data between the natural wood and artificial board materials. Finally, we
performed one-way ANOVA and independent-sample t-tests, using sample composition
as a factor and subjective and physiological data as dependent variables, to investigate the
impact of sample differences on the subjects’ subjective and physiological evaluations.

3. Results
3.1. Correlation Analysis Between Subjective Evaluation and Physiological Indicators

In this section, we analyze the data from three perspectives: the internal relationships
among the subjective evaluations, the internal relationships among the physiological
indicators, and the relationships between the subjective and physiological data.

3.1.1. Internal Relationships Among the Subjective Evaluations

Figure 5 shows significant correlations among the subjective evaluations. Specifically,
subjective valence and subjective arousal show a significant positive correlation (r = 0.310,
p < 0.001), indicating that pleasant emotions are related to arousal levels.

Moreover, our data indicate that valence has a positive correlation with positive
affectivity (PA) scores on the PANAS scale (r = 0.297, p < 0.001), and arousal also shows a
positive correlation with PA (r = 0.457, p < 0.001). On the other hand, negative affectivity
(NA) scores from the PANAS scale are negatively correlated with valence (r = −0.308,
p < 0.001) and positively correlated with arousal (r = 0.258, p < 0.001).
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3.1.2. Internal Relationship of Physiological Indicators

Figure 6 shows a significant negative correlation among the physiological indicators
between EEG valence and SCR (r = -0.213, p < 0.01). Regarding electrodermal signals, there
is a significant correlation between SCL and SCR (r = 0.423, p < 0.01).

Buildings 2025, 15, x FOR PEER REVIEW 13 of 25 
 

 

Figure 5. Correlation coefficients of various data within the subjective evaluation. 

Moreover, our data indicate that valence has a positive correlation with positive af-
fectivity (PA) scores on the PANAS scale (r = 0.297, p < 0.001), and arousal also shows a 
positive correlation with PA (r = 0.457, p < 0.001). On the other hand, negative affectivity 
(NA) scores from the PANAS scale are negatively correlated with valence (r = −0.308, p < 
0.001) and positively correlated with arousal (r = 0.258, p < 0.001). 

3.1.2. Internal Relationship of Physiological Indicators 

Figure 6 shows a significant negative correlation among the physiological indicators 
between EEG valence and SCR (r = -0.213, p < 0.01). Regarding electrodermal signals, there 
is a significant correlation between SCL and SCR (r = 0.423, p < 0.01). 

 

Figure 6. Correlation coefficients of various data within the physiological indicators. Figure 6. Correlation coefficients of various data within the physiological indicators.

3.1.3. The Relationship Between Subjectivity and Physiology

Figure 7 presents the results of the correlation analysis between subjective emotions
and physiological data. By examining the correlation coefficients and significance levels, it
can be observed that there are correlations between some subjective and objective parame-
ters. Specifically, subjective valence is not significantly correlated with other physiological
indicators. Similarly, physiological valence is not correlated with other subjective emotions.
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Moreover, there is a significant positive correlation between subjective SAM arousal
and physiological arousal (r = 0.140, p < 0.05) and a significant positive correlation with
SCR (r = 0.165, p < 0.05). Subjective positive emotions are significantly positively correlated
with physiological arousal (r = 0.286, p < 0.01), and subjective negative emotions also show
a significant positive correlation with physiological arousal (r = 0.183, p < 0.01).

3.2. Analysis of Differences in Emotional Responses to Material Sources

In our study, we used the source of the samples as a key grouping variable to compare
natural wood and artificial boards, using subjective and physiological evaluation data as test
variables. To conduct an in-depth analysis of the impact of the sample sources on various
data, we employed an independent-sample t-test. Figure 8 reveals the differences between
natural wood and artificial boards regarding subjective evaluations and physiological
indicators. Specifically, there were no significant differences between natural wood and
artificial boards in the subjective evaluations concerning subjective valence, arousal, and
positive emotion scores. These results indicate that participants’ emotional responses to
the two materials were relatively consistent across these dimensions, showing no clear
preference or aversion.

However, we observed a more pronounced difference in subjective negative emotion
scores. The negative emotion scores for artificial boards were significantly higher than
those for natural wood (p < 0.05). This result suggests that artificial boards can still evoke
more negative emotions even when participants are not informed about the source of
the material.

Regarding the differences in physiological indicators, there were no significant differ-
ences between natural wood and artificial boards across several physiological measures.
Specifically, the EEG valence, arousal, and SCL scores were relatively consistent between
the two materials, showing no statistically significant differences. However, regarding SCR
scores, natural wood scored significantly higher than artificial boards (p < 0.01). This result
suggests that natural wood elicits a higher physiological arousal level than artificial boards.
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3.3. Analysis of Differences in Materials’ Tactile Sensations

The results of the one-way analysis of variance (ANOVA), with tactile sensation as the
factor, are presented in Figure 9. The different tactile sensations of the material samples
exhibited significant differences in PA (F (2,197) = 3.599, p < 0.05). Post hoc comparisons
revealed that samples with a rough texture elicited higher PA than those with a smooth
texture. Specifically, the experimental samples with rough textures included red oak
and Veneer B. These two materials were derived from natural wood and artificial board,
respectively. Veneer B, formed using a PVC film vacuum-molding process, has a surface
texture with a rich three-dimensional feel. In contrast, red oak has a coarser and more
prominent grain than white oak and other woods, resembling a wavy pattern. On the other
hand, the samples with a smooth texture were white ash, pine, and cherry wood, all of
which are natural woods.
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3.4. Analysis of Differences in Emotional Responses to Material Texture

Figure 10 presents the results of the ANOVA with texture classification as the fac-
tor. The different textures of the material samples showed significant differences in PA
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(F (2,197) = 5.751, p < 0.01). Post hoc comparisons revealed that samples with coarse and
mixed textures elicited higher PA than those with fine textures. Since there was no signifi-
cant difference between coarse and mixed textures, but both differed significantly from fine
textures, we focused on analyzing the lower-scoring fine-texture samples.
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3.5. Analysis of Differences in Emotional Responses to Material Brightness

In this experiment, we used the brightness of materials as the grouping variable
and conducted independent-sample t-tests using various subjective and physiological
data as test variables. The results are shown in Figure 11. The findings indicate that
material brightness significantly differs between PA and SCL values (p < 0.01). Specifically,
regarding PA, a comparison of the means reveals that brighter samples evoke more positive
emotions in participants. This result suggests that participants generally exhibit more
positive emotional responses when exposed to brighter materials.
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Furthermore, we found that dull surfaces elicit higher SCL values. An increase in SCL
is typically considered a marker of emotional arousal and implies increased stress [50].
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4. Discussion
4.1. Correlation Analysis Between Subjective Evaluation and Physiological Indicators
4.1.1. Internal Relationships Among the Subjective Evaluations

Regarding the internal relationships of subjective evaluations, it is important to note
that extensive research has demonstrated a quadratic relationship between subjective
valence and arousal [53–55], where both pleasant and unpleasant feelings can result in
higher subjective arousal scores. Yee found that the relationship between valence and
arousal follows a U-shaped curve [56], meaning both low and high valence can induce
high arousal.

Subjective PA and NA showed significant correlations with subjective valence and
arousal. These findings, which align with the research of Hutchison et al. [57], shed light on
the relationships among subjective evaluation metrics. They also suggest that enhancing
subjective pleasurability regarding the experimental samples can boost PA and alleviate
NA. However, it is important to note that the subjective arousal regarding the experimental
samples lacks directionality, meaning that samples with high arousal may receive high
scores in both positive and negative emotions.

4.1.2. Internal Relationship of Physiological Indicators

EEG valence is an effective measure for detecting emotions ranging from pleasant
to unpleasant. Research has shown that EEG valence is closely related to stress, where
low valence indicates high stress [58], which is consistent with the findings of this study.
Therefore, the relationship between EEG valence and SCR values suggests that when the
experimental sample puts the subjects in a low-SCR state, it may evoke more pleasant
emotions. The low SCR values of the subjects may be due to the characteristics of the
experimental sample surface, such as texture or tactile sensation.

Research by Hot et al. [59] found that when subjects evaluated unpleasant images, their
SCL and SCR values were positively correlated. Combined with the negative correlation
between EEG valence and SCR observed in this study, it can be inferred this finding is
consistent with theirs in terms of negative emotions and SCL/SCR.

4.1.3. The Relationship Between Subjectivity and Physiology

The relationship between subjectivity and physiology results differs from some ex-
isting studies. For instance, Wang et al. found a significant positive correlation between
subjective and physiological valence when studying facial creams [48]. The reasons for
these differences are multifaceted. Compared to Wang et al.’s study, our experimental
samples differed significantly in content and quantity. Additionally, to avoid overly com-
plicating the experimental process, this study used only the visual and tactile dimensions
for evaluation, excluding other dimensions such as olfactory and auditory. Due to the
complexity of the subjective SAM valence assessment, including different dimensions could
lead to varying evaluation results.

In addition, this experiment’s results show a certain degree of correlation between
subjective and physiological data, particularly in arousal. Research indicates increased
arousal can signify positive and negative emotions [60,61]. Using the PANAS scale, this
study demonstrates this point by showing the correlation between arousal and positive
and negative directions.

4.2. Analysis of Differences in Emotional Responses to Material Sources

The emotional properties of materials reflect the individual needs and desires humans
attribute to objects, ultimately making materials carriers of emotions. In the emotional
experience of materials, sensory characteristics such as touch and smell play a crucial role.
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For instance, natural materials like concrete and wood are imbued with special emotional
value due to their sensory traits [62]. On this basis, interdisciplinary approaches have been
widely applied in effective material research.

On one hand, the integration of materials science with design tools, such as the Percep-
tion Evaluation Kit, helps designers better understand users’ emotional needs and translate
them into ways to utilize and improve materials [63]. On the other hand, researchers
use neuroimaging techniques such as EEG and functional magnetic resonance imaging
(fMRI), which are more objective methods of quantifying emotional responses to track
the emotional responses triggered by these materials. By combining neuroscience and
materials science, measuring users’ emotional activation when interacting with different
materials can facilitate the development of new material forms that resonate with users’
emotions [64].

The experiment shows that the source of the material may subconsciously influence
individuals’ emotional experiences, thereby affecting their psychological state. Further
analysis indicates that these negative emotions could be related to the characteristics of the
artificial boards. Research has pointed out that non-wood materials are more likely to elicit
negative emotions than wood [65]. Natural wood typically imparts a sense of nature and
warmth, whereas artificial boards might cause users to feel a certain level of discomfort or
aversion due to their synthetic nature. The artificial feeling conveyed by artificial board
veneers might also generate negative emotions.

Shiv et al. studied the effects of different surface treatments on wood and their impact
on people’s emotions. Their research showed that maintaining the natural texture of the
wood surface during treatment can enhance positive tactile experiences and avoid negative
tactile experiences [66]. This finding underscores the importance of selecting and designing
wooden building materials that preserve their natural texture to enhance user experience
and provides valuable insights for further research in the field of wood-related emotions.
There is not yet a consensus among researchers regarding the relationship between SCR and
emotion types. Douglas et al. used SCR values to indicate stress in participants and found
that SCR is associated with subjective stress levels and subjective negative arousal [67].
Several studies have also indicated that negative emotions can increase SCR values [68–70].
However, some researchers argue that SCR varies with the intensity of emotions, with
more intense reactions noted in unpleasant and pleasant environments, particularly in
high-arousal situations [70]. In other words, SCR primarily reflects differences in emotional
arousal rather than pleasure levels.

Based on the analysis of physiological indicators, our results indicate that natural materi-
als elicit higher emotional arousal than artificial board materials. However, this finding does
not directly suggest that natural materials induce positive emotions. Natural materials are
often believed to evoke feelings of pleasure, and some studies have suggested that natural
wood materials are more effective at reducing stress compared to other materials [65,66].

It is important to note that the materials selected for this study were similar, which
means that the characteristics exhibited by all samples are ultimately related to the wood
material elements. Participants were not informed of the specific material source of the
sample during the experiment. Therefore, we hypothesize that the observed differences are
not solely due to the material source but also involve various factors related to the charac-
teristics of the materials. We will analyze and discuss these aspects in the following section.

This nuance is crucial, as it suggests that factors beyond just the material type, such as
texture, appearance, and possibly even unconscious associations or expectations, play a
role in how these materials affect emotional and physiological responses. Further research
could explore these additional factors to provide a more comprehensive understanding of
the emotional impacts of natural versus artificial materials.
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4.3. The Differences in Materials’ Tactile Sensations

An intriguing result emerged from this experiment. It is often assumed that the natural
texture of wood is more capable of evoking positive emotions and is considered more
esthetically pleasing [65]. However, this study found that the three-dimensional surface
texture created through artificial veneering techniques also stimulated positive emotions
in terms of touch. Furthermore, the average scores indicated that Veneer B received the
highest positive emotion score (14.20), surpassing the second highest-scoring material,
elm, which scored 12.45. This result suggests that we can enhance positive emotional
responses by manipulating the three-dimensional quality of a material’s surface through
manufacturing techniques. This finding also provides a theoretical basis for developing
high-value-added products in the artificial board industry.

4.4. The Differences in Emotional Responses to Material Texture

In this experiment, the samples classified as having fine textures were Veneer A and
Veneer C, which were artificial materials. For the “texture” factor, because there is no
significant difference between the natural samples, there is no perceived difference in the
emotional and texture response of the natural samples. Notably, Veneer B, an artificial
material, had a coarse texture and achieved the highest PA. As mentioned earlier, Veneer B’s
use of a PVC film vacuum molding process resulted in a three-dimensional surface texture,
enhancing its tactile sensation and visual perception and providing a significant textural
appearance. In contrast, Veneers A and C used digitally printed wood grain stickers that
were adhered to the artificial boards’ surfaces, thus lacking a pronounced three-dimensional
effect. Although the textures of these two boards were smooth, the clarity of the textures
on Veneers A and C was far inferior to that of natural wood due to the limitations of the
printing process. Finally, while no specific research links texture coarseness or fineness
with perceived value, the repetitive nature of digitally printed fine-textured surfaces often
conveys a sense of cheapness.

4.5. The Differences in Emotional Responses to Material Brightness

We identified two main reasons for the differences in the emotional responses to bright-
ness. First, the brightness of printed decorative veneers on artificial boards is generally low,
especially in Veneers A and C. Their lower brightness makes these veneers dull, affecting
participants’ evaluations of these materials. Second, the variation in natural wood texture
brightness also plays a crucial role. For example, the contrast in texture brightness of black
walnut, cherry wood, and pine is less pronounced than that of white ash or red oak, making
the visual impact of these woods weaker than the latter.

Our experimental results also indicate that the overall brightness of a material is an
essential factor influencing participants‘ evaluations. However, the contrast between light
and dark areas in the same sample affected the participants. In a study on wood images,
Akira et al. found that variations in wood texture brightness significantly influence partici-
pants’ preferences [24]. Our experiment also confirmed this phenomenon, demonstrating
that overall brightness and local contrast are crucial in visual evaluations.

In conclusion, our experiment revealed the significant impact of material brightness on
participants’ emotional and physiological responses. Bright materials stimulated positive
emotional reactions, while dull materials increased emotional arousal and stress responses.
Artificial and natural materials’ texture and brightness had a similar influence on partici-
pants’ evaluations. This result suggests that carefully considering these factors is essential
in material design and selection to optimize the user experience. The psychological and
physiological effects of material brightness and texture changes observed in this study pro-
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vide specific theoretical support for selection, as well as practical guidance for optimizing
user experience through material selection.

5. Conclusions
This study provides a new perspective on the emotional effects of wood materials

by analyzing the impact of solid wood and artificial boards on participants’ emotions. By
combining subjective evaluation and physiological measurements, we identified key factors
influencing emotional responses, providing valuable insights for material design and selection.

Firstly, this study found significant correlations between specific subjective and physio-
logical data. For example, a positive correlation exists between subjective and physiological
arousal and SCR. Additionally, PA and NA positively correlate with physiological arousal.
This result indicates consistency between the level of arousal participants subjectively
experience and their physiological responses. However, the relationship between subjective
and physiological measures of valence is more complex; in this experiment, no significant
relationship was observed between them, suggesting that material composition does not
directly enhance overall subjective and physiological evaluations. However, increasing
participants’ arousal levels regarding the material can indirectly improve these evaluations.

Secondly, independent-sample t-tests conducted on the sources of the experimental
samples revealed significant differences between natural wood and artificial boards in
terms of subjective NA and SCR. Artificial boards tend to elicit higher negative emotions,
whereas natural materials can evoke a more robust arousal response in participants.

Finally, using the composition elements of the experimental samples as grouping
variables, we tested for differences in subjective and objective data across different elements.
We found significant differences in PA based on the tactile qualities of the samples; samples
with more intense tactile sensations were more effective at eliciting positive emotions
from participants. Additionally, there were significant differences in SAM arousal and
PA concerning the texture of the samples. Coarser textures, due to their higher visual
recognizability, led to greater emotional arousal, thereby generating positive emotions. In
contrast, finer textures, which are less recognizable, tended to induce cognitive stress in
participants, resulting in lower evaluations. The brightness of the samples also showed
significant differences in PA and SCL; brighter samples were more effective in stimulating
positive emotions, while dull samples were more likely to cause cognitive stress.

This experiment showed that the samples’ tactile sensation, texture, and brightness
primarily affected subjective positive emotions, subjective arousal, and SCL and SCR
values. In contrast, their impact on pleasurable emotions (SAM and EEG valence) was
relatively minor. This suggests that the visual and tactile characteristics of the materials
primarily influenced participants’ subjective and psychological arousal levels rather than
directly affecting their sense of pleasure. Therefore, we can conclude that while altering the
composition of materials may not directly enhance subjective and physiological valence,
increasing participants’ arousal levels or reducing the pressure levels indicated by skin
conductance can indirectly improve these evaluations.

The conclusions of this study have practical applications in several areas. Firstly,
regarding the design and promotion of wood materials, particularly artificial boards,
understanding the impact of surface treatment on the emotional response of wood is of
great significance for the design and selection of wooden building materials. This research
provides scientific evidence that enhancing the visual characteristics of materials can
improve consumers’ emotional experiences, thereby increasing the market competitiveness
of products. Secondly, this study also provides valuable insights for further research in the
field of wood-related emotions. Our findings suggest that, in fields such as interior design
and furniture manufacturing, paying attention to the visual characteristics of materials,
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such as color and texture, can effectively elevate users’ emotional arousal, enhancing their
overall experience.

Although this study presents significant findings, there are areas that warrant further
exploration: (1) Future research could further explore the emotional effects of other sensory
dimensions, such as smell and sound, to enhance the overall emotional effects of materials.
(2) Research on the emotional impact of other sustainable materials. (3) Analysis of age, gender,
and cultural differences in material perception among different user groups. By addressing these
areas, future research could further enhance our understanding of how materials affect emotions,
explore the psychological and physiological effects of materials in practical applications, provide
stronger theoretical support and practical guidance for materials science and design, and lead to
more informed material choices and improved user experiences.

Overall, this study reveals the different impacts of solid wood and artificial boards
on people’s emotions through multidimensional analysis, offering valuable theoretical
and practical references. These explorations of the emotional impact of materials on the
sensory dimension have deepened our understanding of the complex relationship between
materials and emotions.

Author Contributions: Methodology, P.G.; Software, S.T., Z.F. and N.L.; Validation, S.T.; For-
mal analysis, S.T.; Investigation, Z.F. and N.L.; Data curation, S.T.; Writing—original draft, P.G.;
Writing—review & editing, P.G.; Visualization, P.G. and Z.L.; Project administration, P.G. All authors
have read and agreed to the published version of the manuscript.

Funding: This project is funded by the Guangdong Provincial Department of Science and Technology
and the Guangzhou Academy of Fine Arts Art and Technology Support Platform (221101CZ03).

Institutional Review Board Statement: This study was conducted in accordance with the Declaration
of Helsinki and approved by the Research Ethics Committee of Shantou University (protocol code
STU202406002, 28 June 2024).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The datasets generated and analyzed during the current study are
available from the corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Buildings 2025, 15, x FOR PEER REVIEW 22 of 25 
 

Author Contributions: Methodology, P.G.; Software, S.T., Z.F. and N.L.; Validation, S.T.; Formal 
analysis, S.T.; Investigation, Z.F. and N.L.; Data curation, S.T.; Writing—original draft, P.G.; Writ-
ing—review & editing, P.G.; Visualization, P.G. and Z.L.; Project administration, P.G. All authors 
have read and agreed to the published version of the manuscript. 

Funding: This project is funded by the Guangdong Provincial Department of Science and Technol-
ogy and the Guangzhou Academy of Fine Arts Art and Technology Support Platform (221101CZ03). 

Institutional Review Board Statement: This study was conducted in accordance with the Declara-
tion of Helsinki and approved by the Research Ethics Committee of Shantou University (protocol 
code STU202406002, 28 June 2024). 

Informed Consent Statement: Informed consent was obtained from all subjects involved in the 
study. 

Data Availability Statement: The datasets generated and analyzed during the current study are 
available from the corresponding author upon reasonable request. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A  

 

Figure A1. The SAM and PANAS scales used in this study. 

References 
1. Mao, Y.; Hu, L.; Ren, Z.J. Engineered Wood for a Sustainable Future. Matter 2022, 5, 1326–1329. 

https://doi.org/10.1016/j.matt.2022.04.013. 
2. He, R.; Xu, J. Research on the Application of Visual Semantics of Wood in the Design of Cultural and Creative Products. Furnit. 

Inter. Decor. 2021, 5, 108–110. https://doi.org/10.16771/j.cn43-1247/ts.2021.05.020. 
3. Gao, P.; Zhang, Y.; Long, Z. Kansei Drives Sustainable Material Innovation—An Approach to Enhance the Added Value of 

Biomass Materials. Sustainability 2024, 16, 5546. https://doi.org/10.3390/su16135546. 
4. Gao, P.; Yang, L.I.; Ming, H.U.; Dai, X.D. Bio-Based material design: Development of a model for enhancing the perceptual 

value of materials. J. Environ. Prot. Ecol. 2023, 24, 145–155. 

Figure A1. The SAM and PANAS scales used in this study.



Buildings 2025, 15, 846 22 of 24

References
1. Mao, Y.; Hu, L.; Ren, Z.J. Engineered Wood for a Sustainable Future. Matter 2022, 5, 1326–1329. [CrossRef]
2. He, R.; Xu, J. Research on the Application of Visual Semantics of Wood in the Design of Cultural and Creative Products. Furnit.

Inter. Decor. 2021, 5, 108–110. [CrossRef]
3. Gao, P.; Zhang, Y.; Long, Z. Kansei Drives Sustainable Material Innovation—An Approach to Enhance the Added Value of

Biomass Materials. Sustainability 2024, 16, 5546. [CrossRef]
4. Gao, P.; Yang, L.I.; Ming, H.U.; Dai, X.D. Bio-Based material design: Development of a model for enhancing the perceptual value

of materials. J. Environ. Prot. Ecol. 2023, 24, 145–155.
5. Sauerwein, M.; Karana, E.; Rognoli, V. Revived Beauty: Research into Aesthetic Appreciation of Materials to Valorise Materials

from Waste. Sustainability 2017, 9, 529. [CrossRef]
6. [Log Topic] Wood Water Source: Pre-Launch Warm-up for Log Futures—Supply and Demand Structure. Available online:

https://finance.sina.com.cn/money/future/fmnews/2024-10-31/doc-incumwnf9691939.shtml (accessed on 28 February 2025).
7. Houck, J.E.; Eagle, B.N. Hardwood or Softwood? Sci. Technol. 1998, 32, 13–22.
8. Jones, D.; Brischke, C. Performance of Bio-Based Building Materials; Woodhead Publishing: Cambridge, UK, 2017.
9. Chen, B.; Mohrmann, S.; Li, H.; Gaff, M.; Lorenzo, R.; Corbi, I.; Corbi, O.; Fang, K.; Li, M. Research and Application Progress of

Straw. J. Renew. Mater. 2022, 11, 599–623. [CrossRef]
10. Deng, N.; Wang, J.; Li, J.; Sun, J. Straw Density Board vs. Conventional Density Board: Is Straw Density Board More Sustainable?

Sci. Total Environ. 2023, 888, 164020. [CrossRef]
11. Li, Y.; Zhu, N.; Chen, J. Straw Characteristics and Mechanical Straw Building Materials: A Review. J. Mater. Sci. 2023, 58,

2361–2380. [CrossRef]
12. Febrianto, F.; Hidayat, W.; Samosir, T.P.; Lin, H.; Soong, H. Effect of Strand Combination on Dimensional Stability and Mechanical

Properties of Oriented Strand Board Made from Tropical Fast Growing Tree Species. J. Biol. Sci. 2010, 10, 267–272. [CrossRef]
13. Nishimura, T. Chipboard, Oriented Strand Board (OSB) and Structural Composite Lumber. In Wood Composites; Elsevier:

Amsterdam, The Netherlands, 2015; pp. 103–121.
14. Mu, T. Research on the Visual-Tactile Properties of Wood Doors with Oriented Strand Boards. Ph.D. Thesis, Nanjing Forestry

University, Nanjing, China, 2023.
15. Wang, R.; Lv, B. China’s Wooden Home Surface Decoration Industry Development Status and Thinking. Chin. Wood Based Panel

2019, 26, 10–14. Available online: https://wenku.baidu.com/view/46e3e269a75177232f60ddccda38376baf1fe098?fr=xueshu&
_wkts_=1741276738785&needWelcomeRecommand=1 (accessed on 3 February 2025).

16. Kandelbauer, A.; Teischinger, A. Dynamic Mechanical Properties of Decorative Papers Impregnated with Melamine Formaldehyde
Resin. Eur. J. Wood Wood Prod. 2009, 68, 179–187. [CrossRef]

17. Amor, A.B.; Cloutier, A.; Beauregard, R. Determination of Physical and Mechanical Properties of Finishing Papers Used for
Wood-Based Composite Products. Wood Fiber Sci. 2009, 23, 117–126. [CrossRef]

18. Shen, C. Research on High Abrasion-Resistant Impregnated Paper and Its Production Process. For. Sci. Technol. Dev. 2001, 15,
33–34. [CrossRef]

19. Gu, Z.; Jiang, B.; Zhu, P.; Sun, X.; Lian, H. Preparation of Mg/Al-LDHs Nanoflame Retardants and Their Application in Veneered
Artificial Boards. J. For. Eng. 2016, 1, 39–44. [CrossRef]

20. Bertheaux, C.; Zimmermann, E.; Gazel, M.; Delanoy, J.; Raimbaud, P.; Lavoué, G. Effect of Material Properties on Emotion: A
Virtual Reality Study. Front. Hum. Neurosci. 2024, 17, 1301891. [CrossRef]

21. D’Itria, E.; Colombi, C. Biobased Innovation as a Fashion and Textile Design Must: A European Perspective. Sustainability 2022,
14, 570. [CrossRef]

22. Takashi, S.; Akiko, K.; Fumio, T.; Mitsunori, K. Texture Expression by Composite of Silicone Resin and Filler. Des. Stud. 2015, 61,
6_85–6_92. [CrossRef]

23. Shen, D.; Takuro, I.; Koichiro, S.; Fumio, T.; Mitsunori, K. Investigation of Dyeing Method Focusing on the Structure of Bamboo
and Evaluation of the Impression of Dyed Bamboo Wood. Des. Stud. 2017, 63, 6_65–6_72. [CrossRef]

24. Satoshi, N.; Kei, M.; Shintaro, N. Evaluation of Visual Desirability of 50 Japanese Wood Species Using Digital Images. J. Soc. Wood
Sci. Technol. 2016, 62, 301–310. [CrossRef]

25. Gao, P.; Ogata, M. Research on the Visual Impression and Preference of Biomass Material “Tea Wood”. Design 2020, 33, 60–63.
Available online: https://qikan.cqvip.com/Qikan/Article/Detail?id=7101261529 (accessed on 3 February 2025).

26. Lv, J.; Chen, D. Emotional Apparel Evaluation Based on Consumer Psychological Perception. J. Text. 2015, 36, 100–107. [CrossRef]
27. Wei, H.; Chen, W.; Wei, J.; Zhang, J. Reliability Test of the Children’s Version of the Positive-Negative Affect Scale in a Group of

Middle School Students. Chin. J. Clin. Psychol. 2017, 25, 105–110. [CrossRef]
28. Ebesutani, C.; Regan, J.; Smith, A.; Reise, S.; Higa-McMillan, C.; Chorpita, B.F. The 10-Item Positive and Negative Affect Schedule

for Children, Child and Parent Shortened Versions: Application of Item Response Theory for More Efficient Assessment. J.
Psychopathol. Behav. Assess. 2012, 34, 191–203. [CrossRef]

https://doi.org/10.1016/j.matt.2022.04.013
https://doi.org/10.16771/j.cn43-1247/ts.2021.05.020
https://doi.org/10.3390/su16135546
https://doi.org/10.3390/su9040529
https://finance.sina.com.cn/money/future/fmnews/2024-10-31/doc-incumwnf9691939.shtml
https://doi.org/10.32604/jrm.2022.022452
https://doi.org/10.1016/j.scitotenv.2023.164020
https://doi.org/10.1007/s10853-023-08153-8
https://doi.org/10.3923/jbs.2010.267.272
https://wenku.baidu.com/view/46e3e269a75177232f60ddccda38376baf1fe098?fr=xueshu&_wkts_=1741276738785&needWelcomeRecommand=1
https://wenku.baidu.com/view/46e3e269a75177232f60ddccda38376baf1fe098?fr=xueshu&_wkts_=1741276738785&needWelcomeRecommand=1
https://doi.org/10.1007/s00107-009-0356-7
https://doi.org/10.1007/s00468-008-0292-x
https://doi.org/10.3969/j.issn.1000-8101.2001.04.015
https://doi.org/10.13360/j.issn.2096-1359.2016.04.006
https://doi.org/10.3389/fnhum.2023.1301891
https://doi.org/10.3390/su14010570
https://doi.org/10.11247/jssdj.61.6_85
https://doi.org/10.11247/jssdj.63.6_65
https://doi.org/10.2488/jwrs.62.301
https://qikan.cqvip.com/Qikan/Article/Detail?id=7101261529
https://doi.org/10.13475/j.fzxb.20140500608
https://doi.org/10.16128/j.cnki.1005-3611.2017.01.024
https://doi.org/10.1007/s10862-011-9273-2


Buildings 2025, 15, 846 23 of 24

29. Watson, D.; Clark, L.A.; Tellegen, A. Development and Validation of Brief Measures of Positive and Negative Affect: The PANAS
Scales. J. Personal. Soc. Psychol. 1988, 54, 1063. [CrossRef]

30. Babiker, A.; Faye, I.; Malik, A. Pupillary Behavior in Positive and Negative Emotions. In Proceedings of the 2013 IEEE international
conference on signal and image processing applications, Melaka, Malaysia, 8–10 October 2013; IEEE: Piscataway, NJ, USA, 2013;
pp. 379–383.

31. Francis, S.; Rolls, E.T.; Bowtell, R.; McGlone, F.; O’Doherty, J.; Browning, A.; Clare, S.; Smith, E. The Representation of Pleasant
Touch in the Brain and Its Relationship with Taste and Olfactory Areas. Neuroreport 1999, 10, 453–459. [CrossRef]

32. Quan, X.; Zeng, Z.; Jiang, J.; Zhang, Y.; Lv, B.; Wu, D. A Review of Research on Physiological Signal-Based Affective Computing. J.
Autom. 2021, 47, 1769–1784. [CrossRef]

33. Hu, X.; Yu, J.; Song, M.; Yu, C.; Wang, F.; Sun, P.; Wang, D.; Zhang, D. EEG Correlates of Ten Positive Emotions. Front. Hum.
Neurosci. 2017, 11, 26. [CrossRef]

34. Yasemin, M.; Sarıkaya, M.A.; Ince, G. Emotional State Estimation Using Sensor Fusion of EEG and EDA. In Proceedings of the
2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany,
23–27 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 5609–5612.

35. Gupta, K.; Zhang, Y.; Gunasekaran, T.S.; Krishna, N.; Pai, Y.S.; Billinghurst, M. CAEVR: Biosignals-Driven Context-Aware
Empathy in Virtual Reality. IEEE Trans. Vis. Comput. Graph. 2024, 30, 2671–2681. [CrossRef]

36. Sargent, A.; Watson, J.; Ye, H.; Suri, R.; Ayaz, H. Neuroergonomic Assessment of Hot Beverage Preparation and Consumption:
An EEG and EDA Study. Front. Hum. Neurosci. 2020, 14, 175. [CrossRef]

37. Hwang, S.; Jebelli, H.; Choi, B.; Choi, M.; Lee, S. Measuring Workers’ Emotional State during Construction Tasks Using Wearable
EEG. J. Constr. Eng. Manag. 2018, 144, 04018050. [CrossRef]

38. Zhai, J.; Barreto, A.B.; Chin, C.; Li, C. Realization of Stress Detection Using Psychophysiological Signals for Improvement of
Human-Computer Interactions. In Proceedings of the Proceedings. IEEE SoutheastCon, Ft. Lauderdale, FL, USA, 8–10 April 2005;
IEEE: Piscataway, NJ, USA, 2005; pp. 415–420.

39. Chanel, G.; Rebetez, C.; Bétrancourt, M.; Pun, T. Emotion Assessment from Physiological Signals for Adaptation of Game
Difficulty. IEEE Trans. Syst. Man. Cybern. Part A Syst. Hum. 2011, 41, 1052–1063. [CrossRef]

40. Caruelle, D.; Gustafsson, A.; Shams, P.; Lervik-Olsen, L. The Use of Electrodermal Activity (EDA) Measurement to Understand
Consumer Emotions–A Literature Review and a Call for Action. J. Bus. Res. 2019, 104, 146–160. [CrossRef]

41. Marschallek, B.E.; Löw, A.; Jacobsen, T. You Can Touch This! Brain Correlates of Aesthetic Processing of Active Fingertip
Exploration of Material Surfaces. Neuropsychologia 2023, 182, 108520. [CrossRef] [PubMed]

42. Suhaimi, N.S.; Mountstephens, J.; Teo, J. EEG-Based Emotion Recognition: A State-of-the-Art Review of Current Trends and
Opportunities. Comput. Intell. Neurosci. 2020, 2020, 8875426. [CrossRef]

43. Xie, X.; Cai, J.; Fang, H.; Wang, B.; He, H.; Zhou, Y.; Xiao, Y.; Yamanaka, T.; Li, X. Affective Impressions Recognition under
Different Colored Lights Based on Physiological Signals and Subjective Evaluation Method. Sensors 2023, 23, 5322. [CrossRef]

44. Wang, J.; Lu, J.; Xu, Z.; Wang, X. When Lights Can Breathe: Investigating the Influences of Breathing Lights on Users’ Emotion.
Int. J. Environ. Res. Public Health 2022, 19, 13205. [CrossRef]

45. Ikei, H.; Song, C.; Miyazaki, Y. Physiological Effects of Touching Wood. Int. J. Environ. Res. Public Health 2017, 14, 801. [CrossRef]
46. Palmiero, M.; Piccardi, L. Frontal EEG Asymmetry of Mood: A Mini-Review. Front. Behav. Neurosci. 2017, 11, 224. [CrossRef]
47. Al-Nafjan, A.; Hosny, M.; Al-Wabil, A.; Al-Ohali, Y. Classification of Human Emotions from Electroencephalogram (EEG) Signal

Using Deep Neural Network. Int. J. Adv. Comput. Sci. Appl. 2017, 8, 419–425. [CrossRef]
48. Wang, F.; Ma, X.; Cheng, D.; Gao, L.; Yao, C.; Lin, W. Electroencephalography as an Objective Method for Assessing Subjective

Emotions during the Application of Cream. Ski. Res. Technol. 2024, 30, e13692. [CrossRef] [PubMed]
49. Ge, Y.; Chen, Y.; Liu, Y.; Li, W.; Sun, X. Electrophysiological Measures Applied in User Experience Studies. Adv. Psychol. Sci. 2014,

22, 959. [CrossRef]
50. Sánchez-Reolid, R.; López de la Rosa, F.; Sánchez-Reolid, D.; López, M.T.; Fernández-Caballero, A. Machine Learning Techniques

for Arousal Classification from Electrodermal Activity: A Systematic Review. Sensors 2022, 22, 8886. [CrossRef]
51. Harley, J.M.; Jarrell, A.; Lajoie, S.P. Emotion Regulation Tendencies, Achievement Emotions, and Physiological Arousal in a

Medical Diagnostic Reasoning Simulation. Instr. Sci. 2019, 47, 151–180. [CrossRef]
52. Dawson, M.E.; Schell, A.M.; Filion, D.L. The Electrodermal System. In Handbook of Psychophysiology; Cambridge University Press:

Cambridge, UK, 2007; Volume 2, pp. 159–181.
53. Ho, S.M.; Mak, C.W.; Yeung, D.; Duan, W.; Tang, S.; Yeung, J.C.; Ching, R. Emotional Valence, Arousal, and Threat Ratings of

160 Chinese Words among Adolescents. PLoS ONE 2015, 10, e0132294. [CrossRef]
54. Xu, X.; Li, J.; Chen, H. Valence and Arousal Ratings for 11,310 Simplified Chinese Words. Behav. Res. 2022, 54, 26–41. [CrossRef]
55. Chan, Y.-L.; Tse, C.-S. Decoding the Essence of Two-Character Chinese Words: Unveiling Valence, Arousal, Concreteness,

Familiarity, and Imageability through Word Norming. Behav. Res. 2024, 56, 7574–7601. [CrossRef]

https://doi.org/10.1037/0022-3514.54.6.1063
https://doi.org/10.1097/00001756-199902250-00003
https://doi.org/10.16383/j.aas.c200783
https://doi.org/10.3389/fnhum.2017.00026
https://doi.org/10.1109/TVCG.2024.3372130
https://doi.org/10.3389/fnhum.2020.00175
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001506
https://doi.org/10.1109/TSMCA.2011.2116000
https://doi.org/10.1016/j.jbusres.2019.06.041
https://doi.org/10.1016/j.neuropsychologia.2023.108520
https://www.ncbi.nlm.nih.gov/pubmed/36813106
https://doi.org/10.1155/2020/8875426
https://doi.org/10.3390/s23115322
https://doi.org/10.3390/ijerph192013205
https://doi.org/10.3390/ijerph14070801
https://doi.org/10.3389/fnbeh.2017.00224
https://doi.org/10.14569/IJACSA.2017.080955
https://doi.org/10.1111/srt.13692
https://www.ncbi.nlm.nih.gov/pubmed/38650354
https://doi.org/10.3724/SP.J.1042.2014.00959
https://doi.org/10.3390/s22228886
https://doi.org/10.1007/s11251-018-09480-z
https://doi.org/10.1371/journal.pone.0132294
https://doi.org/10.3758/s13428-021-01607-4
https://doi.org/10.3758/s13428-024-02437-w


Buildings 2025, 15, 846 24 of 24

56. Yee, L.T. Valence, Arousal, Familiarity, Concreteness, and Imageability Ratings for 292 Two-Character Chinese Nouns in Cantonese
Speakers in Hong Kong. PLoS ONE 2017, 12, e0174569. [CrossRef]

57. Hutchison, K.E.; Trombley, R.P.; Collins, F.L., Jr.; McNeil, D.W.; Turk, C.L.; Carter, L.E.; Ries, B.J.; Leftwich, M.J. A Comparison
of Two Models of Emotion: Can Measurement of Emotion Based on One Model Be Used to Make Inferences about the Other?
Personal. Individ. Differ. 1996, 21, 785–789. [CrossRef]

58. Hou, X.; Liu, Y.; Sourina, O.; Mueller-Wittig, W. CogniMeter: EEG-Based Emotion, Mental Workload and Stress Visual Monitoring.
In Proceedings of the 2015 International Conference on Cyberworlds (CW), Visby, Sweden, 7–9 October 2015; IEEE: Piscataway,
NJ, USA, 2015; pp. 153–160.

59. Hot, P.; Leconte, P.; Sequeira, H. Diurnal Autonomic Variations and Emotional Reactivity. Biol. Psychol. 2005, 69, 261–270.
[CrossRef]

60. Russell, J.A.; Weiss, A.; Mendelsohn, G.A. Affect Grid: A Single-Item Scale of Pleasure and Arousal. J. Personal. Soc. Psychol. 1989,
57, 493. [CrossRef]

61. Burkhardt, F. Simulation of Emotional Speech with Speech Synthesis Methods; Shaker: Maastricht, The Netherlands, 2001.
62. Nilawati, S.; Amri, S.; Hasanah, N.; Saodah, S.; Juliati, J.; Sapnita, S. Unraveling Emotional Regulation through Multimodal

Neuroimaging Techniques. BrainBridge Neurosci. Biomed. Eng. 2024, 1, 1–26. [CrossRef]
63. Abella, A.; Araya León, M.; Marco-Almagro, L.; Clèries Garcia, L. Perception Evaluation Kit: A Case Study with Materials and

Learning Styles. Int. J. Technol. Des. Educ. 2022, 32, 1941–1962. [CrossRef] [PubMed]
64. Cavdan, M.; Freund, A.; Trieschmann, A.-K.; Doerschner, K.; Drewing, K. From Hate to Love: How Learning Can Change

Affective Responses to Touched Materials. In Haptics: Science, Technology, Applications, Proceedings of the 13th International Conference
on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2022, Hamburg, Germany, 22–25 May 2022; Nisky, I.,
Hartcher-O’Brien, J., Wiertlewski, M., Smeets, J., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 60–68.

65. Demattè, M.L.; Zucco, G.M.; Roncato, S.; Gatto, P.; Paulon, E.; Cavalli, R.; Zanetti, M. New Insights into the Psychological
Dimension of Wood–Human Interaction. Eur. J. Wood Prod. 2018, 76, 1093–1100. [CrossRef]

66. Bhatta, S.R.; Tiippana, K.; Vahtikari, K.; Hughes, M.; Kyttä, M. Sensory and Emotional Perception of Wooden Surfaces through
Fingertip Touch. Front. Psychol. 2017, 8, 367. [CrossRef]

67. Douglas, I.P.; Murnane, E.L.; Bencharit, L.Z.; Altaf, B.; dos Reis Costa, J.M.; Yang, J.; Ackerson, M.; Srivastava, C.; Cooper, M.;
Douglas, K. Physical Workplaces and Human Well-Being: A Mixed-Methods Study to Quantify the Effects of Materials, Windows,
and Representation on Biobehavioral Outcomes. Build. Environ. 2022, 224, 109516. [CrossRef]

68. Silva, C.; Ferreira, A.C.; Soares, I.; Esteves, F. Emotions Under the Skin: Autonomic Reactivity to Emotional Pictures in Insecure
Attachment. J. Psychophysiol. 2015, 29, 161–170. [CrossRef]

69. Jindrová, M.; Kocourek, M.; Telenskỳ, P. Skin Conductance Rise Time and Amplitude Discern between Different Degrees of
Emotional Arousal Induced by Affective Pictures Presented on a Computer Screen. BioRxiv 2020. [CrossRef]

70. Gomez, P.; Zimmermann, P.; Guttormsen-Schär, S.; Danuser, B. Respiratory Responses Associated with Affective Processing of
Film Stimuli. Biol. Psychol. 2005, 68, 223–235. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1371/journal.pone.0174569
https://doi.org/10.1016/0191-8869(96)00107-9
https://doi.org/10.1016/j.biopsycho.2004.08.005
https://doi.org/10.1037/0022-3514.57.3.493
https://doi.org/10.35335/a0cfda08
https://doi.org/10.1007/s10798-021-09676-4
https://www.ncbi.nlm.nih.gov/pubmed/34413577
https://doi.org/10.1007/s00107-018-1315-y
https://doi.org/10.3389/fpsyg.2017.00367
https://doi.org/10.1016/j.buildenv.2022.109516
https://doi.org/10.1027/0269-8803/a000147
https://doi.org/10.1101/2020.05.12.090829
https://doi.org/10.1016/j.biopsycho.2004.06.003

	Introduction 
	Materials and Methods 
	Participants 
	Experimental Sample Selection and Classification 
	Subjective Emotion Evaluation Items 
	Physiological Emotion Measurement 
	Physiological Data Collection Equipment 
	Experimental Process 
	Data Extraction and Analysis 

	Results 
	Correlation Analysis Between Subjective Evaluation and Physiological Indicators 
	Internal Relationships Among the Subjective Evaluations 
	Internal Relationship of Physiological Indicators 
	The Relationship Between Subjectivity and Physiology 

	Analysis of Differences in Emotional Responses to Material Sources 
	Analysis of Differences in Materials’ Tactile Sensations 
	Analysis of Differences in Emotional Responses to Material Texture 
	Analysis of Differences in Emotional Responses to Material Brightness 

	Discussion 
	Correlation Analysis Between Subjective Evaluation and Physiological Indicators 
	Internal Relationships Among the Subjective Evaluations 
	Internal Relationship of Physiological Indicators 
	The Relationship Between Subjectivity and Physiology 

	Analysis of Differences in Emotional Responses to Material Sources 
	The Differences in Materials’ Tactile Sensations 
	The Differences in Emotional Responses to Material Texture 
	The Differences in Emotional Responses to Material Brightness 

	Conclusions 
	Appendix A
	References

