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Abstract: Meningiomas represent the most common primary tumors of the central nervous system,
but few microRNA (miRNA) profiling studies have been reported so far. Deep sequencing of small
RNA libraries generated from two human meningioma biopsies WHO grades I (benign) and II
(atypical) were compared to excess dura controls. Nineteen differentially expressed miRNAs were
validated by RT-qPCR using tumor RNA from 15 patients and 5 meninges controls. Tumor suppressor
miR-218 and miR-34a were upregulated relative to normal controls, however, miR-143, miR-193b,
miR-451 and oncogenic miR-21 were all downregulated. From 10 selected putative mRNA targets
tested by RT-qPCR only four were differentially expressed relative to normal controls. PTEN and
E-cadherin (CDH1) were upregulated, but RUNX1T1 was downregulated. Proliferation biomarker
p63 was upregulated with nuclear localization, but not detected in most normal arachnoid tissues.
Immunoreactivity of E-cadherin was detected in the outermost layer of normal arachnoids, but
was expressed throughout the tumors. Nuclear Cyclin D1 expression was positive in all studied
meningiomas, while its expression in arachnoid was limited to a few trabecular cells. Meningiomas
of grades I and II appear to share biomarkers with malignant tumors, but with some additional tumor
suppressor biomarkers expression. Validation in more patients is of importance.

Keywords: meningioma; SOLiD deep sequencing; miRNA; RT-qPCR; cap cells and
Immunohistochemistry (IHC)
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1. Introduction

Intracranial meningiomas are slow-growing tumors arising from the outer layer of the arachnoid
(cap cells) that are non-neuroepithelial. These cap cells are a morphologically distinct and biochemically
active subgroup of arachnoidal cells [1]. Meningiomas are the most common (35.6%) of all primary
intracranial tumors by histology [2], and they are classified into grades I–III according to the WHO
grading system [3]. The proliferation rate in meningioma is known to increase from grades I–III
(Table S1a). The majority of clinically encountered meningiomas is benign, and corresponds to grade I.
These types of meningiomas have a slow growth rate with low risk of recurrence or a malignant
behavior. Despite their common origin, meningiomas present a wide variety of histological and
morphological appearances (Table S1b). Most meningiomas harbor at least one of these histological
characteristics, but they seldom occur in pure form.

Molecular studies on slowly growing non-malignant meningiomas could add important
knowledge about factors underlying tumor formation, as well as factors preventing benign tumors from
progression to malignancy. Our current knowledge about tumorigenesis is largely based on the study
of malignant tumors while the biology of benign neoplasms is rarely investigated [4]. Currently, only a
few reports have addressed the molecular biology of meningioma at the transcriptomic level, mainly
using microarray platforms [5–8]. Germline mutation in the NF2 gene is the most commonly identified
genetic risk factor for multiple meningioma disease [9]. However, in non-NF2 meningioma, somatic
mutations in TRAF7, KLF4, AKT1 and SMO genes were reported [9,10]. Recently it became clear that
epigenetic mechanisms such as DNA methylation, histone modifications and expression of microRNAs
(miRNAs) play an important role in cancer and contribute to malignant transitions [11,12]. The key
epigenetic factors and their role in meningioma initiation, progression and recurrence are recently
reviewed [13,14]. miRNAs are short non-coding RNAs of approximately 22 nucleotides, and the current
estimate is that 4552 different miRNAs are coded in the human genome[15]. Most miRNAs function by
base pairing to the 31-untranslated region (31UTR) of targeted mRNAs resulting in protein translation
arrest or mRNA degradation via the RNA-induced silencing complex [16]. Dysregulation of miRNA
expression or their biogenesis could lead to cancer, and miRNA biogenesis pathways in cancer have
recently been reviewed [17,18]. The repression of protein translation by miRNA depends on several
factors such as the levels of target mRNA and miRNA expression, the complexity of expressed miRNA
that can target the same mRNA, other expressed RNAs, or the physiological condition of the cell [19].
miRNAs and their dysregulation hold great potential as clinical biomarkers of physiological and
pathological states in cancer, in development, and in immunological inflammatory reactions [20–23].
Investigating and comparing expression profiles of miRNAs in non-malignant tumors with those of
malignant tumors would help clarify their role in tumorigenesis and growth, as well as in preventing
non-malignant tumors from progressing to malignancy. Here only a limited number of miRNAs were
investigated, but interesting differentially expressed candidates were detected.

In the presented work we focused on non-malignant meningiomas grade I (benign) and grade II
(atypical) in order to investigate differentially expressed miRNAs by SOLiD deep sequencing of tumors
and excess dura from the same two patients (N), in addition to two patients without meningioma (NN).
Differentially expressed miRNAs was further assessed by RT-qPCR using tumors from fifteen patients
and five control tissues (dura), one of which was from a patient without meningioma. A selection of ten
putative mRNA targets was then evaluated by RT-qPCR in tumors of 15 patients relative to five dura
controls using GAPDH reference gene. RT-qPCR was subsequently repeated for five promising targets,
in addition to E-cadherin (CDH1) for all the 15 patient tumor samples and four dura controls, using
three reference genes (GAPDH, ACTB (β-Actin) and HPRT). Immunohistochemistry (IHC) was used to
further examine the expression of key differentially expressed genes from tumors (grades I and II) and
normal dura and arachnoid tissues.
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2. Results

2.1. Pathological and Histological Classifications

Meningiomas removed from patient 1 (grade I, subgroup A) and patient 2 (grade II) (Figure 1)
demonstrated different histological features. The IA tumor had histology of a classical meningothelial
meningioma with low cellularity, lobular growth pattern containing uniform cells, and showed no signs
of atypia. The nuclei were oval, occasionally with clear intranuclear inclusions (Figure 1C). Necrosis
or mitosis was not found, nor invasion of brain tissue. The proliferation marker Ki-67 was low, close
to 2% (Figure 1E). The tumor was diagnosed as a meningioma WHO grade I, and morphologically
further classified into the meningothelial subgroup (Table S1a,b).

Cancers 2016, 8, 31 3 of 18 

 

2. Results 

2.1. Pathological and Histological Classifications 

Meningiomas removed from patient 1 (grade I, subgroup A) and patient 2 (grade II) (Figure 1) 

demonstrated different histological features. The IA tumor had histology of a classical meningothelial 

meningioma with low cellularity, lobular growth pattern containing uniform cells, and showed no 

signs of atypia. The nuclei were oval, occasionally with clear intranuclear inclusions (Figure 1C). 

Necrosis or mitosis was not found, nor invasion of brain tissue. The proliferation marker Ki-67 was 

low, close to 2% (Figure 1E). The tumor was diagnosed as a meningioma WHO grade I, and 

morphologically further classified into the meningothelial subgroup (Table S1a,b). 

The pathological specimen from the grade II tumor from patient 2 harbored several atypical 

criteria that included a higher cellularity. Atypia with pleomorphic nuclei and prominent nucleoli 

were seen, as well as foci of necrosis. Scattered mitosis appeared, though not four or more per 10× 

40× magnification (Figure 1D). The expression of proliferation marker Ki-67 was elevated, focally 

close to 10%, supporting the diagnosis of an atypical meningioma (Figure 1F). The diagnosis 

concluded an atypical meningioma WHO grade II. Histological examination of normal dura (NN) 

revealed fibrous tissue consistent with dura, containing a small focus of arachnoid cells, 

morphologically consistent with cap cells. The specimens from the arachnoid contained normal 

arachnoid covering with an outer layer of horizontally oriented cap cells, and an inner looser part 

containing trabecular cells traversing the sub-arachnoid space, as shown in Figure 1G. 

 

Figure 1. Tumors of the two patients used for sequence analysis. Tumor from patient 1 (IA) presented
to the left (A, C and E), and tumor from patient 2 (II) to the right (B, D and F); (A) and (B) show the
Magnetic resonance imaging (MRI) for patients 1 and 2 (Table 1); (C) Meningothelial meningioma
grade I with lobules of uniform meningioma cells with typical intranuclear inclusions. Hematoxylin
and eosin stain (HE), 400ˆ; (D) Atypical meningioma grade II with atypical features and scattered
mitoses. HE, 600ˆ; (E) Very few immunoreactive tumor cells for the proliferation marker Ki-67 in this
grade I tumor, 200ˆ; (F) Elevated activity for the proliferation marker Ki-67 in this grade II meningioma
(200ˆ); (G) The normal arachnoid contains an external layer of horizontally oriented cap cells (200ˆ).
Traversing the subarachnoid, a loose web-like tissue containing trabecular cells, fibrous tissue and
vessels that fuse with the inner Pia mater covering the brain surface; (H) The enlarged marked section
in G at 400ˆ showing the horizontally oriented external cap cells in the arachnoid membrane.
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Table 1. List of meningiomas used for RNA isolation for SOLiD small RNA sequencing and for the
validation of miRNAs and mRNA expression studies by RT-qPCR, as well as IHC analysis.

Patient No. Sample Type Histology Grade/Subclass * Gender Age Notes

1 T + N IA M 71 + Deep sequencing
2 T + N II M 74 + Deep sequencing
3 T II M 60
4 T IA + D F 70
5 T IB F 68
6 T II M 75
7 T IA M 69
8 T IC F 55
9 T + N *** IC F 42
10 T + N IA M 68
11 T IC F 62
12 T IC M 47
13 T + N IA F 35
14 T *** IC F 43
15 T + N IC M 59
16 NN Normal M 80 + Deep sequencing

17 (cadaver) NN-a Arachnoid M 55
18 (cadaver) NN-a Arachnoid M 59
19 (cadaver) NN-a Arachnoid M 73
20 (cadaver) NN-a Arachnoid M 49
21 (cadaver) NN-a Arachnoid M 54

22 NN Normal M 64
23 NN ** Normal M 76 Only Deep sequencing

*: WHO grades I and II according to criteria given in Table S1a; Subgroup according to letters given in
Table S1a and S1b. T refers to tumor sample, N refers to dura control from patient with tumor, NN refers to
dura control from patient without tumors. NN-a samples are arachnoid controls from cadavers. **: This patient
NN Dura was used for SOLiD sequencing, but not for RT-qPCR analysis. ***: The N-sample from patient nine
and the T-sample from patient 14 were manually removed from the mRNA analysis due to technical variations.

The pathological specimen from the grade II tumor from patient 2 harbored several atypical
criteria that included a higher cellularity. Atypia with pleomorphic nuclei and prominent nucleoli
were seen, as well as foci of necrosis. Scattered mitosis appeared, though not four or more per
10ˆ 40ˆ magnification (Figure 1D). The expression of proliferation marker Ki-67 was elevated, focally
close to 10%, supporting the diagnosis of an atypical meningioma (Figure 1F). The diagnosis concluded
an atypical meningioma WHO grade II. Histological examination of normal dura (NN) revealed fibrous
tissue consistent with dura, containing a small focus of arachnoid cells, morphologically consistent
with cap cells. The specimens from the arachnoid contained normal arachnoid covering with an outer
layer of horizontally oriented cap cells, and an inner looser part containing trabecular cells traversing
the sub-arachnoid space, as shown in Figure 1G.

2.2. MiRNA Expression Profile from SOLiD Deep Sequencing

Libraries of small RNAs from tumors (IA and II), normal dura (N) outside tumors of same
patients, and normal dura (NN) of patients without meningioma (Table 1) were deep sequenced.
Comparing the two types of controls by using the complete set of detected miRNAs suggest no
significant differences in expression at the global level (Table S2c). From the analysis of the small RNA
sequencing (Table S2a,b), differentially expressed miRNAs with at least five folds change (Table 2),
were selected for re-examination by RT-qPCR.

2.3. RT-qPCR Re-Evaluation of Differentially Expressed miRNAs in Meningioma Versus Normal

The top19 differentially expressed miRNAs from SOLiD deep sequencing (Table 2) were examined
by RT-qPCR in all 15 meningioma tumor samples and five dura controls N and NN (Table 1 and
Table S3a). Human miR-191, miR-16 and let-7a were used as reference miRNA genes [42] for
normalization. A fold change of ´81.56 between the grade II meningioma tumor sample and the
normal sample (Table 2) for miR-122 was identified by deep-sequencing. However, this feature was
not found in any of the other tumor samples by a preliminary test RT-qPCR and thus excluded from
further analysis. The miRNA validation results for the 18 miRNAs are listed in Table 3 and Table S3a.
miRNA expression with fold change values above three relative to normal dura (N and NN), are given
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as ∆Cq values with Standard deviation in Figure S1. The RT-qPCR data for these miRNAs did not
show any significant difference between grades I and II (Table S3b).

Table 2. Differentially expressed miRNAs based on SOLiD sequencing data. The selection of putative
mRNA targets is based on publications in the field of cancer and cell proliferation, not on target
prediction tools.

miRNA Change Related to * Fold Change Selected 10 Putative Target mRNA for Analysis
by RT-qPCR

let-miR-7g II/N +10.48 Cyclin D, E2F, p53 [24]

miR-1221 II/N ´81.56 Cyclin G1 [25]

miR-17 II/N ´10.34 Cyclin D1, E2F1, PTEN [26]

miR-130a II/N +6.32

miR-143 IA/N ´5.17

miR-148b II/N ´6.02

miR-152 II/N +6.31 E2F3, RICTOR [27]

miR-193b IA/N ´5.76 RUNX1T1 (Cyclin D-related) [28], (Cyclin D1) [29]

miR-199a-5p IA/N ´6.20 E2F3 [30]

miR-21 IA/II: ´5.45 PTEN [31]

miR-218 II/N +8.55 RICTOR [32,33], mTOR [32], regulating p53 [34]
IA/N +7.59

miR-26b IA/II +8.86 Activation of PTEN–Akt pathway [35]

miR-34a IA/II ´8.51 Sirt1 [36]

miR-342-3p IA/N +7.52

miR-376c II/N +8.14 ALK7 [37]
IA/II ´7.92

miR-424 II/N +6.33

miR-451 IA/N ´10.07 PI3K/Akt/mTOR signaling pathway [38]
IA/II ´6.90

miR-574-3p IA/II +13.12 P63 [39]

miR-99a IA/II ´6.09 mTOR [40,41]
II/N +5.42

1: This large drop of expression was not found in any other tumor sample in a preliminary RT-qPCR and was
not included in further validation experiments. *: Fold change ˘5.17 folds, selected for validation by RT-qPCR.

Table 3. Overview of the RT-qPCR validation of miRNA expression with fold change and p-value,
average tumor vs. average normal dura. Summary of significant (p-value <0.05) miRNAs with fold
change above three are marked in bold. Human miR-191, miR-16 and let-7a are reference miRNA
genes [42]. 15 tumor samples were used (12 different grade I tumors, and three grade II tumors) in
comparison to five normal dura controls (see Table S3a).

miRNA Fold Change p-Value

let-7g 1.132 0.444
miR-130a 2.254 0.004
miR-143 ´3.867 0.001
miR-148b 1.522 0.041
miR-152 2.218 0.000
miR-17 ´2.089 0.000

miR-193b ´4.063 0.007
miR-199a-5p ´1.548 0.325

miR-21 ´3.710 0.003
miR-218 4.473 0.003
miR-26b 1.156 0.377

miR-342-3p 1.146 0.496
miR-34a 3.133 0.002
miR-376c 1.372 0.395
miR-424 1.806 0.103
miR-451 ´18.452 0.000

miR-574-3p ´1.286 0.212
miR-99a 1.110 0.760
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2.4. RT-qPCR Evaluation of Expression of Selected mRNA Targets in Meningiomas

Ten putative mRNA targets, predicted by the identified differentially expressed miRNAs were
selected for further analysis by RT-qPCR using 15 tumor samples and five controls (Table S4a). The
mRNA expressions of ALK7 (ACVR1C), Cyclin G1 (CCNG1), E2F5, mTOR, PTEN, RICTOR, RUNX1T1
(Cyclin D-related), SIRT1, p53, and p63 were evaluated by RT-qPCR in meningioma and normal
dura using GAPDH as a reference gene (Table S4a). This preliminary experiment did not show
significant differences between Grade I and grade II, in these mRNAs (Table S4b). The experiment
was repeated using three reference genes (GAPDH, ACTB and HPRT) and the five most promising
targets mRNAs (PTEN, p53, RICTOR, RUNX1T1 and p63), using 15 meningioma tumor samples and
four dura controls N and NN (Table S5a). E-cadherin (CDH1) was included to assess and compare the
expression in non-malignant meningiomas grades I and II with normal dura (N and NN). Validated
mRNAs expression indicated that only three mRNA targets (p63, PTEN and RUNX1T1), in addition
to E-cadherin, were significantly differentially expressed with fold changes larger than 3.7 (Figure 2;
Table 4 and Table S5a). Grade I showed a significant difference versus grade II only in RUNX1T1
(3.3 fold change) (Table S5b). mRNA expression shown in Figure 2, is given as ∆Cq values with
Standard deviation in Figure S2.

Cancers 2016, 8, 31 6 of 18 

 

miR-152 2.218 0.000 

miR-17 −2.089 0.000 

miR-193b −4.063 0.007 

miR-199a-5p −1.548 0.325 

miR-21 −3.710 0.003 

miR-218 4.473 0.003 

miR-26b 1.156 0.377 

miR-342-3p 1.146 0.496 

miR-34a 3.133 0.002 

miR-376c 1.372 0.395 

miR-424 1.806 0.103 

miR-451 −18.452 0.000 

miR-574-3p −1.286 0.212 

miR-99a 1.110 0.760 

2.4. RT-qPCR Evaluation of Expression of Selected mRNA Targets in Meningiomas 

Ten putative mRNA targets, predicted by the identified differentially expressed miRNAs were 

selected for further analysis by RT-qPCR using 15 tumor samples and five controls (Table S4a). The 

mRNA expressions of ALK7 (ACVR1C), Cyclin G1 (CCNG1), E2F5, mTOR, PTEN, RICTOR, RUNX1T1 

(Cyclin D-related), SIRT1, p53, and p63 were evaluated by RT-qPCR in meningioma and normal dura 

using GAPDH as a reference gene (Table S4a). This preliminary experiment did not show significant 

differences between Grade I and grade II, in these mRNAs (Table S4b). The experiment was repeated 

using three reference genes (GAPDH, ACTB and HPRT) and the five most promising targets mRNAs 

(PTEN, p53, RICTOR, RUNX1T1 and p63), using 15 meningioma tumor samples and four dura 

controls N and NN (Table S5a). E-cadherin (CDH1) was included to assess and compare the 

expression in non-malignant meningiomas grades I and II with normal dura (N and NN). Validated 

mRNAs expression indicated that only three mRNA targets (p63, PTEN and RUNX1T1), in addition 

to E-cadherin, were significantly differentially expressed with fold changes larger than 3.7 (Figure 2; 

Table 4 and Table S5a). Grade I showed a significant difference versus grade II only in RUNX1T1 (3.3 

fold change) (Table S5b). mRNA expression shown in Figure 2, is given as ΔCq values with Standard 

deviation in Figure S2. 

 

Figure 2. RT-qPCR re-evaluation of differentially expressed mRNA in meningioma. Fold changes of 

analyzed mRNA expression relative of 15 tumors, compared to four normal dura (3N +1NN) (see 

Table 1 and Table S5a). Three reference genes were used (GAPDH, ACTB (β-Actin) and HPRT). One 

asterisk (*) indicate p-value < 0.05 and two asterisk (**) indicate p-value < 0.001. 

Figure 2. RT-qPCR re-evaluation of differentially expressed mRNA in meningioma. Fold changes
of analyzed mRNA expression relative of 15 tumors, compared to four normal dura (3N +1NN)
(see Table 1 and Table S5a). Three reference genes were used (GAPDH, ACTB (β-Actin) and HPRT).
One asterisk (*) indicate p-value < 0.05 and two asterisk (**) indicate p-value < 0.001.

Table 4. RT-qPCR analysis of mRNA expression, average tumor vs. average normal dura. mRNAs
with significant p-values (<0.05) are in bold. Three reference genes were used (GAPDH, ACTB (β-Actin)
and HPRT).

mRNA Fold Change p-Value

p63 5.7 0.044
E-Cadherin (CDH1) 13.4 0.000

PTEN 5.6 0.000
RUNX1T1 (Cyclin D related) ´3.7 0.021

RICTOR 1.5 0.298
p53 1.5 0.213

2.5. Immunohistochemical Examination

IHC was included to further assess the increased expression of p63 in meningiomas grades I and
II compared to normal arachnoid and dura membranes. Expression of p63 showed a various degree of
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density of nuclear distribution throughout the tumors (Figure 3A,B). Four of the normal arachnoid
samples were negative for p63. However, one was positive for this marker in the external arachnoid
cap cells (Figure 3C,D; Table 5). This high expression of cytoplasmic E-cadherin (13.4 fold; Figure 3,
Table 4) was also observed by IHC (Figure 3E,F). In normal arachnoid E-cadherin expression was
found in the external layer containing cap cells (Figure 3G,H; Table 5). Furthermore, IHC was used to
detect the expression of Cyclin D1 (Figure 4, Table 5). Nuclear expression of Cyclin D1 was present as
a strong or moderate signal throughout the meningiomas regardless of being grades I or II. In four of
the normal arachnoid autopsies, no signal for Cyclin D1 could be detected in the external cap cells, but
some of the trabecular cells in the internal layer stained positive (Figure 4, Table 5). In one arachnoid
sample, we found positivity related to the external cap cells, noting that this was the same sample that
stained positive for p63 in Figure 3D.

Table 5. Immunohistochemistry of p63, E-Cadherin and Cyclin D1 of meningioma (grades I and II),
and biopsies of dura and arachnoid autopsies of non-meningioma patients. See Table 1.

Patient NO. Sample Type Histology P 63
(Nucleus)

E-Cad
(Membrane) Cyclin D1 (Nucleus)

1 T IA ++ ++(+) ++

2 T II + ++ ++(+)

3 T II + ++(+) +

4 T IA+IB ++ ++(+) +

5 T IB - + ++(+)

6 T II +++ +++ +++

7 T IA + ++(+) +++

8 T IC + ++ ++

9 T IC ++ ++ ++

10 T IA+II + +++ +++

11 T IC ++ ++ +++

12 T IC ++ ++ ++(+)

13 T IA ++(+) +++ +

14 T IC + +++ ++(+)

15 T IC ++ ++ ++(+)

17 Arachnoidea
Autopsy Normal (NN-a) + + +

18 Arachnoidea
Autopsy Normal (NN-a) - +

Negative in cap cells.
Positive in some of the
trabecular cells in the
subarachnoidal space

19 Arachnoidea
Autopsy Normal (NN-a) - + As previous

20 Arachnoidea
Autopsy Normal (NN-a) - + As previous

21 Arachnoidea
Autopsy Normal (NN-a) - + -

22 Dura Normal NN - + Positive in single cells,
not well oriented

For tumor samples: - : no cells positive; +: focal positivity; ++: positivity in close to 50% of tumor cells;
++ (+): Positivity in most cells, but areas with weak staining; +++: Strong positivity in over 50% of tumor cells;
For arachnoidea and dura controls: +: indicates positive cap cells; -: indicates negative cap cells.
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Figure 3. Immunohistochemistry of p63 (A–D) and E-cadherin (E–H) in meningioma (A, B, E, F)
compared to normal arachnoid membranes (C, D, G, H). (A) Strong nuclear signal of p63 expression
in this section of the tumor (200ˆ); (B) Another tumor with both a moderate and a low signal for the
nuclear p63 expression; (C) Immunohistochemistry p63 in arachnoid membrane from cadaver with
no meningioma. No nuclear p63 expression in cells of the arachnoid membrane was observed in four
different arachnoid autopsies as represented in C, at magnification of 400ˆ; (D) Immunohistochemistry
p63 in arachnoid from one sample with no meningioma a nuclear p63 expression in the external
cap cells 400ˆ; (E) Strong cytoplasmic signal of E-cadherin expression in this tumor (200ˆ); (F) A
tumor section with low E-cadherin expression; (G) Immunohistochemistry E-cadherin in arachnoid
membrane from cadaver with no meningioma. Cytoplasmic E-cadherin expression is also limited to
the outer layer of the arachnoid (200ˆ); (H) Immunohistochemistry E-cadherin in arachnoid from
cadaver with no meningioma in higher magnification (400ˆ).
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Figure 4. Immunohistochemistry of Cyclin D1 (A–D) in meningioma (A–B) compared to normal
arachnoid membranes (C–D). (A) Meningioma with strong nuclear signal of Cyclin D1 expression
(200ˆ); (B) Another tumor with moderate signal for the nuclear Cyclin D1 expression (200ˆ);
(C) Immunohistochemistry Cyclin D1 in arachnoid membrane from cadaver with no meningioma.
The external cap cell layer of the arachnoid membrane is negative, while some of the trabecular cells in
the internal layer stain positive (200ˆ); (D) The same as shown in C with higher magnification (400ˆ).

3. Discussion

3.1. Differentially Expressed Micro RNAs

Deep sequencing analysis of small RNAs of meningioma grades I and II revealed differentially
expressed miRNAs when comparing meningioma (grade I or grade II) versus the normal dura
(N and NN) as well as grade I versus grade II. After verification of the top 18 miRNAs by RT-qPCR
with fold change values over ˘5.17 in any of these comparisons, only six miRNAs (miR-21, miR-34a,
miR-143, miR-193b, miR-218, and miR-451) were clearly differentially expressed (tumors vs. normal).
The down-regulation of miR-21 and miR-34a seen in SOLiD sequencing data between grades I and
II was not verified by RT-qPCR (Table S3b). However, a significant fold change of ´3.7 of miR-21
and 3.133 of miR-34a in tumors relative to the normal control using tumors from 15 patients and five
normal dura controls (Table S3a) necessitated their inclusion in the discussion. It should be noted that
the differential expression between grades I and II observed in deep sequencing in a few miRNAs
(miR-21, miR-34a, miR-376, miR-451 and miR-99a) were not verified in RT-qPCR (Tables 2 and 3). This
could be due to the small number of sequenced samples.

There are several recent reports on the expression of miRNA in meningioma grades I, II, and
III. None of these studies are based on deep sequencing, but they depend on pre-selected miRNA
microarray or RT-qPCR array approaches. Interestingly, the list of the 40 most differentially expressed
meningioma miRNAs by Saydam et al. [43], is different from that of our dataset. In another study [44],
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a similar feature was seen. These limited overlaps between meningioma miRNA profiles in three
different studies might suggest that meningiomas are diverse in their gene regulation mechanisms.
However, it is also possible that these discrepancies are due to variations in the technical performance
between different profiling platforms [45,46].

We observed a down-regulation ´4 fold, (RT-qPCR) of the oncogenic miR-21 in meningioma
relative to normal dura tissue. This finding differentiates non-malignant meningioma from cancers
and anaplastic meningiomas. It was reported that miR-21 is upregulated in most cancers [47], as
well as in meningioma grade III [48] and in Glioblastoma multiforme [49]. Two tumor suppressor
miRNAs were found to be significantly downregulated in the studied tumor samples. miR-143
(´5/´4 fold, SOLiD/RT-qPCR) has been reported to be associated with tumor size and metastasis in
cervical squamous cell carcinoma [50], as well as poor prognosis in endometrioid carcinoma due to
increased expression of DNA methyltransferase 3B [51]. miR-193b (´6/´4 fold, SOLiD/RT-qPCR)
down-regulation has been observed in cancer [52,53] suggesting that its pro-proliferation mRNA
targets are not inhibited in cancers as well as in meningiomas. Interestingly, a high abundance
of miR-218 (+8/+4 fold, SOLiD/RT-qPCR) was observed in the studied meningiomas. miR-218
is considered a tumor suppressor [54,55], suggesting that miR-218 also play a role in preventing or
slowing meningioma grades I and II from malignant progression. We observed strong down-regulation
(´10/´18 fold, SOLiD/RT-qPCR) of miR-451 in meningiomas. miR-451 is considered a tumor
suppressor that inhibits proliferation and invasion by regulating epithelial-to-mesenchymal transition
(EMT) in bladder cancer [56] and hepatocellular carcinoma [57]. The down-regulation of miR-451
suggests that its pro-proliferation mRNA targets may not be inhibited in meningioma grades I and II.
Finally, in the validation experiments with RT-qPCR, the potent tumor suppressor miR-34a was found
to be overexpressed (3.1 fold) in all studied meningiomas. miR-34a contributes to p53 downstream
effects on proliferation arrest and induction of apoptosis, by targeting c-MYC, c-MET and a long list of
genes involved in different oncogenic processes, including inhibiting EMT [58]. The differential
expression of miR-218, miR-34a and miR-451 in meningiomas were previously reported, using
microarray analysis [48]. Also, miR-451 differential expression was reported in meningioma by
microarray analysis in another study [43].

3.2. Differentially Expressed mRNA Selected Putative Targets

Among the ten selected putative mRNA targets for the six differentially expressed miRNAs, the
expression of p63 was found to be upregulated (+6 fold, RT-qPCR) in meningioma. p63 expression, as
evaluated by IHC, was found to be nuclear and throughout the tumors. The cap cells of the normal
arachnoid were negative for p63 as observed in four autopsies. In one sample, p63 expression was
detected in the cap cells. This arachnoid sample also had some Cyclin D1 positive cap cells, but it is not
clear if this deceased patient was developing meningioma. Mittal and coworkers [59] demonstrated by
IHC positive nuclear p63 staining in meningioma that it increased with higher grades (II and III). More
arachnoid autopsies should be analyzed in order to elaborate on the significance of p63 expression in
the cap cells, as well as its potential significance in meningioma.

The observed higher expression of the E-cadherin (+13 fold, RT-qPCR) throughout the studied
meningioma tumors might also contribute to the non-anaplastic nature. E-cadherin is encoded by the
tumor suppressor gene CDH1 [60], and represents the core protein of the epithelial adherens junction.
Through its cytoplasmic domain it interacts with several signaling proteins [61]. Reduced E-cadherin
expression is associated with short overall survival in cancer [62,63]. Reduced E-cadherin expression
was also observed in anaplastic meningiomas (grade III) [3,64,65]. In normal arachnoid tissues, the
expression of E-cadherin was observed only in the outer cap-cell layer. This could be one of the
distinguishing features of the arachnoid, contributing to the function of these tightly packed arachnoid
cap cells. The observed over-expression of E-cadherin (CDH1) in the current study represents an
additional factor in favor of preventing malignant progression in meningiomas grades I and II.
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Another significant finding was that the PTEN is overexpressed (+6 fold, RT-qPCR) compared to
that of normal meninges controls (N and NN tissues). PTEN expression supports the non-malignant
nature of meningioma grades I and II. In a previous study of PTEN, the histoscore was reported to be
inversely correlated with recurrence probability in meningioma [66]. The observed overexpression
of PTEN in meningioma is probably linked to the downregulation of miR-21, since PTEN is a target
for miR-21 [67]. The expression of PTEN and E-cadherin might act synergistically to contribute to
the non-malignant nature of meningioma grades I and II. E-cadherin has been reported to affect the
expression of PTEN [68]. Why PTEN is overexpressed in meningioma relative to meninges (dura, N
and NN), and if it is related to a higher level of E-cadherin, are not currently known. However, the
PTEN promoter has been found to be hypomethylated in meningioma grades I and II [69], suggesting
the contribution of epigenetic regulation.

The tumor suppressor RUNX1T1 expression was lower in meningiomas grades I and II compared
to that of the controls (´4 fold, RT-qPCR). A significant fold change of 3.3 is shown between
grade I versus grade II when three reference genes were used (Table S7b), which also supports its
anti-proliferation function. miR-193b presumably targets RUNX1T1 mRNA, however in this study
miR-193b was also downregulated (Table 3). It is likely that other miRNAs that can target RUNX1T1
are expressed in meningioma and could be involved. Other epigenetic factors could also be involved.
RUNX1T1 is a member of RUNX proteins that belong to a family of metazoan transcription factors [70].
The RUNX protein family serves as master regulators of development, and is frequently deregulated
in human cancers [70].

Cyclin D1 expression assessed by IHC revealed a strong or moderate expression throughout all
studied meningiomas regardless of being grades I or II. In normal arachnoid tissue Cyclin D1 was
confined to a few cells in the sub-arachnoidal space, and was generally not observed in the external cap
cells. Cyclin D1 belongs to the core cell cycle machinery and its overexpression is frequently associated
with cancer [71]. In a recent study, all grades of meningiomas exhibited Cyclin D1 expression, and
Cyclin D1 level which increased at higher grades was linked to poorer prognosis [72].

4. Materials and Methods

4.1. Ethical Considerations

All meningiomas and dura controls were obtained from patients after approval from the Regional
Ethical Committee (REC) (REK Nord ref No. 2010/1619) at the University Hospital of North Norway,
Tromsø. Informed written consent was obtained from all the participants. The arachnoid samples were
collected from autopsy specimens submitted for neuropathological examination.

4.2. Patient Samples

All samples (tumors and controls) used in this study are listed in Table 1. The histological
classification of meningiomas followed the WHO grading system (Table S1a) according to [3].
Subsequently, meningiomas grade I were further classified into different morphological subgroups
(A to H), based on their histology (Table S1b). This morphological sub-classification for grade I is
referred to in all subsequent tables, for example, for subclass A as IA, for sub class B as IB etc. During
surgery, fresh meningioma tissues (grades I and II) were removed from the tumors of 15 patients and
small samples were directly frozen in liquid nitrogen. In patients 1 and 2, in addition to four other
patients, tissues from normal dura (N) well outside the tumors were also collected and directly frozen
in liquid nitrogen. Three dura controls were harvested from patients without tumors (NN) during
subdural hematoma surgery.

For the IHC supporting studies, arachnoid tissues were used as controls (NN-a). These arachnoid
tissues were obtained from cadavers without meningioma. The biopsies of dura were used as the
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normal control for sequencing studies. All samples were frozen and kept in liquid nitrogen until RNA
isolation. Isolated RNA samples were kept at ´80 ˝C until further use.

Tumors from two patients were subjected to small RNA deep sequencing. Patient 1; grade IA
tumor (Table 1) was a 71 year-old man admitted due to limb ataxia. Examinations disclosed lack of
smelling function (anosmia) and the MRI showed a tumor (meningioma) attached to the skull floor
between the two frontal cerebral lobes (Figure 1A). The tumor was removed without any further
neurological deficits. Patient 2; grade II tumor (Table 1) was a 74 year-old man that suffered from
progressive hemiparesis and dementia over the last few years. The tumor (Figure 1B) located in the
motor region was removed completely without any further neurological deficits.

4.3. Immunohistochemistry (IHC)

Staining for Ki-67, p63, E-cadherin and Cyclin D1 were all performed using the Ventana
BenchMark XT/ULTRA automated slide preparation system (Ventana Medical Systems, Inc., Tucson,
AZ, USA) according to the instructions from the manufacturer. The primary antibodies were all from
Roche, monoclonal anti-rabbit for Ki-67, E-Cadherin (EP700U) and Cyclin D1 (SP4-R), monoclonal
anti-mouse for p63 (p63-4A4; against all the six forms of p63).

4.4. Total RNA Extraction

Total RNAs were isolated from all tumors and controls (Table 1). Tumor biopsies were
homogenized in Trizol (Life Technologies Corporation, Carlsbad, CA, USA) by bead milling with
ceramic beads (Roche Applied Science, Basel, Switzerland). The dura control biopsies were
homogenized in liquid nitrogen prior to RNA isolation in Trizol. All RNA isolations included
prolonged precipitation and centrifugation steps in order to preserve the small RNA fractions. Phase
separation was made by incubation on ice for 30 min followed by centrifugation at 12,000 g for 20 min
at 4 ˝C. Total RNA samples were precipitated overnight on ice and centrifuged at full speed (21,000 g)
for 30 min at 4 ˝C. Concentration and quality of RNA was measured with Quant-IT RNA assay kit
(Life Technologies Corporation) with Qubit Fluorimeter (Life Technologies Corporation) and Agilent
RNA 6000 Nano kit with Agilent 2100 Bioanalyzer (Agilent Technologies Inc., Santa Clara, CA, USA),
respectively. RIN values for all isolated RNA samples are listed in Table S6.

4.5. SOLiD Sequencing

Total RNA of meningioma tumor and dura samples (N) from patient 1 (grade I) and patient 2
(grade II), in addition to dura controls form one patient without meningioma (NN) (Table 1; Table S1a,b)
were subjected to SOLiD sequencing as described in the SOLiD Small RNA Expression Kit Protocol
(Life Technologies Corporation). FlashPAGE™ Fractionator (Life Technologies Corporation) enriched
total RNA samples for small RNA species. Approximately 50 ng of enriched samples were subjected
to adaptor ligation and subsequently to reverse transcription and RNase H digestion. The cDNAs
were amplified using barcoded primers and the desired PCR products were purified by size selection
(105 nt to 150 nt) on 6% PAGE. Equal molar amounts of each barcoded sample were pooled together
in one library and used as a template in emulsion PCR (Life Technologies Corporation) followed
by SOLiD-4 sequencing (Life Technologies Corporation). SOLiD sequencing was performed at the
genomic facility, Nord University, Bodø, Norway.

4.6. Sequence Data Analysis

Approximately 74, 84 and 75 million raw sequence reads of small RNAs were obtained from one
normal patient without meningioma (NN), from normal dura and meningioma from patient 1, and
from normal dura and meningioma from patient 2, respectively. The obtained raw color-space data was
analyzed using CLC Genomics Workbench (CLCbio, Aarhus, Denmark). Adaptors were trimmed and
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sequences were grouped and counted. All tags with less than 50 reads were removed from the dataset.
The remaining tags were annotated against known human miRNAs of MirBase v17 [15]. Successful
annotation of a miRNA was stringent and did not include substitutions or length heteroplasmy.
Annotated miRNA reads counted 9,565,805 (Normal), 12,185,832 (IA-grade), and 1,304,790 (II-grade).
For comparison purposes, the reads were normalized using linear total count scaling. In fold
change studies, an additional cut-off step of 500 reads/million was introduced on normalized reads.
Table S2a,b include a summary of these data.

4.7. Validation of miRNA Expression in Meningioma and Normal Dura by Real-Time Quantitative
PCR (RT-qPCR)

The relative expression of miRNAs was analyzed by RT-qPCR. Total RNA of all tumors and
dura biopsy controls were analyzed by miRCURY LNA™ Universal RT microRNA PCR Pick-&-Mix
panels (Exiqon A/S, 2950 Vedbaek, Denmark). Target mRNA and primer catalog numbers are listed
in Table S7. Included in the panels were three Inter-Plate Calibrators (IPC) and three candidate
miRNA reference genes (hsa-miR-191, hsa-miR-16 and hsa-let-7a) [42]. Following the manufacturer’s
instructions, the amplification was run on the Applied Biosystems 7900HT instrument. Raw Cq values
were calculated by the SDS software v2.4 (Life Technologies Corporation) with automatic baseline
setting and manual ∆Rn threshold of 2.5 for all assays. Cq values were adjusted by IPC and normalized
using hsa-miR-191, hsa-miR-16 and hsa-let-7a as indigenous reference miRNA genes, in accordance
with the ∆∆Cq method. Fold change analysis was performed using Microsoft© Excel, 2010 version 14
Microsoft Corp, Redmond, WA, USA). Student’s t-test was used for calculating p-values.

4.8. Validation of Selected Possible mRNA Targets Expression in Benign Meningiomas and Normal Dura
Biopsies (N and NN) by RT-qPCR

Total RNA samples were DNase-treated with a Heat and Run gDNA removal kit (ArcticZymes,
Tromsø, Norway) prior to cDNA synthesis with an iScript kit (Bio-Rad, Hercules, California, CA, USA),
both according to the manufacturer’s protocol. The samples were profiled for the relative expression of
10 selected mRNA targets and subsequently E-cadherin was added to the list, using the TaqMan system
(Life Technologies Corporation), specific primers and assay ID (listed in Table S8). The three reference
genes used are GAPDH, ACTB (β-Actin) and HPRT. All calculations were performed as described
above for the validation of miRNA expression, except that manual ∆Rn threshold was set to 0.2.

5. Conclusions

Three out of the eleven differentially expressed biomarkers are reported for the first time in
meningioma (Table 6). Our results indicate that meningioma tumor formation and proliferation in
part could be attributed to the lower expression of miR-143, miR-193b and miR-451, a feature similar
to that of several malignant tumors. Low expression of the tumor suppressor RUNX1T1, in concert
with the expression of p63 and Cyclin D1 could be contributing factors to the tumor growth in the
non-anaplastic meningiomas. Overexpression of p63, which is considered as a pro-proliferation gene,
may also contribute to tumor growth. Furthermore, our data indicate that the expression of E-cadherin
(CDH1) appeared as a good prognostic marker in these intracranial non-anaplastic tumors. This
notion is supported by the fact that its expression level is reduced in anaplastic meningioma. The
down-regulation miR-21, combined with the overexpression of miR-34a, miR218, PTEN and E-cadherin
(CDH1) could explain the benign nature of meningiomas (grades I and II) and represent barriers for
grades I and II tumors from malignant progression.
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Table 6. Summary of putative pro- and anti-proliferation differentially expressed miRNAs and
mRNAs/proteins in meningioma.

For
Proliferation

n Code
Expression
Relative to
Controls

Prognosis Anti-Proliferation/
Anti-Malignancy

n Code
Expression
Relative to
Controls

nn Prognosis
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69. Majchrzak-Celińska, A.; Paluszczak, J.; Szalata, M.; Barciszewska, A.M.; Nowak, S.; Baer-Dubowska, W.
DNA methylation analysis of benign and atypical meningiomas: Correlation between RUNX3 Methylation
and WHO Grade. J. Cancer Res. Clin. Oncol. 2015, 141, 1593–1601. [CrossRef] [PubMed]

70. Ito, Y.; Bae, S.C.; Chuang, L.S. The RUNX family: Developmental regulators in cancer. Nat. Rev. Cancer 2015,
15, 81–95. [CrossRef] [PubMed]

71. Jirawatnotai, S.; Sharma, S.; Michowski, W.; Suktitipat, B.; Geng, Y.; Quackenbush, J.; Elias, J.E.; Gygi, S.P.;
Wang, Y.E.; Sicinski, P. The cyclin D1-CDK4 oncogenic interactome enables identification of potential novel
oncogenes and clinical prognosis. Cell Cycle 2014, 13, 2889–2900. [CrossRef] [PubMed]

72. Cheng, G.; Zhang, L.; Lv, W.; Dong, C.; Wang, Y.; Zhang, J. Overexpression of cyclin D1 in meningioma is
associated with malignancy grade and causes abnormalities in apoptosis, invasion and cell cycle progression.
Med. Oncol. 2015, 32, 439. [CrossRef] [PubMed]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons by Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/mtna.2014.47
http://www.ncbi.nlm.nih.gov/pubmed/25247240
http://dx.doi.org/10.1177/1066896911434549
http://www.ncbi.nlm.nih.gov/pubmed/22287651
http://dx.doi.org/10.1186/1471-2407-14-552
http://www.ncbi.nlm.nih.gov/pubmed/25079037
http://dx.doi.org/10.1016/j.jbiotec.2014.10.034
http://www.ncbi.nlm.nih.gov/pubmed/25449012
http://www.ncbi.nlm.nih.gov/pubmed/25550954
http://dx.doi.org/10.1007/s12032-014-0250-y
http://www.ncbi.nlm.nih.gov/pubmed/25260805
http://dx.doi.org/10.1371/journal.pone.0011231
http://www.ncbi.nlm.nih.gov/pubmed/20574529
http://dx.doi.org/10.1007/s004280050151
http://www.ncbi.nlm.nih.gov/pubmed/9504862
http://dx.doi.org/10.1007/s00428-014-1641-3
http://www.ncbi.nlm.nih.gov/pubmed/25146167
http://dx.doi.org/10.1371/journal.pone.0103698
http://www.ncbi.nlm.nih.gov/pubmed/25084400
http://dx.doi.org/10.1038/onc.2011.6
http://www.ncbi.nlm.nih.gov/pubmed/21297666
http://dx.doi.org/10.1007/s00432-015-1930-5
http://www.ncbi.nlm.nih.gov/pubmed/25648363
http://dx.doi.org/10.1038/nrc3877
http://www.ncbi.nlm.nih.gov/pubmed/25592647
http://dx.doi.org/10.4161/15384101.2014.946850
http://www.ncbi.nlm.nih.gov/pubmed/25486477
http://dx.doi.org/10.1007/s12032-014-0439-0
http://www.ncbi.nlm.nih.gov/pubmed/25502086
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	Results 
	Pathological and Histological Classifications 
	MiRNA Expression Profile from SOLiD Deep Sequencing 
	RT-qPCR Re-Evaluation of Differentially Expressed miRNAs in Meningioma Versus Normal 
	RT-qPCR Evaluation of Expression of Selected mRNA Targets in Meningiomas 
	Immunohistochemical Examination 

	Discussion 
	Differentially Expressed Micro RNAs 
	Differentially Expressed mRNA Selected Putative Targets 

	Materials and Methods 
	Ethical Considerations 
	Patient Samples 
	Immunohistochemistry (IHC) 
	Total RNA Extraction 
	SOLiD Sequencing 
	Sequence Data Analysis 
	Validation of miRNA Expression in Meningioma and Normal Dura by Real-Time Quantitative PCR (RT-qPCR) 
	Validation of Selected Possible mRNA Targets Expression in Benign Meningiomas and Normal Dura Biopsies (N and NN) by RT-qPCR 

	Conclusions 

