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Abstract: Dissecting the cellular signaling that governs the motility of eukaryotic cells is one of the
fundamental tasks of modern cell biology, not only because of the large number of physiological
processes in which cell migration is crucial, but even more so because of the pathological ones, in
particular tumor invasion and metastasis. Cell migration requires the coordination of at least four
major processes: polarization of intracellular signaling, regulation of the actin cytoskeleton and
membrane extension, focal adhesion and integrin signaling and contractile forces generation and
rear retraction. Among the molecular components involved in the regulation of locomotion, the
phosphatidylinositol-3-kinase (PI3K) pathway has been shown to exert fundamental role. A pivotal
node of such pathway is represented by the serine/threonine kinase 3-phosphoinositide-dependent
protein kinase-1 (PDPK1 or PDK1). PDK1, and the majority of its substrates, belong to the AGC family
of kinases (related to cAMP-dependent protein kinase 1, cyclic Guanosine monophosphate-dependent
protein kinase and protein kinase C), and control a plethora of cellular processes, downstream either
to PI3K or to other pathways, such as RAS GTPase-MAPK (mitogen-activated protein kinase).
Interestingly, PDK1 has been demonstrated to be crucial for the regulation of each step of cell
migration, by activating several proteins such as protein kinase B/Akt (PKB/Akt), myotonic
dystrophy-related CDC42-binding kinases alpha (MRCKα), Rho associated coiled-coil containing
protein kinase 1 (ROCK1), phospholipase C gamma 1 (PLCγ1) and β3 integrin. Moreover, PDK1
regulates cancer cell invasion as well, thus representing a possible target to prevent cancer metastasis
in human patients. The aim of this review is to summarize the various mechanisms by which PDK1
controls the cell migration process, from cell polarization to actin cytoskeleton and focal adhesion
regulation, and finally, to discuss the evidence supporting a role for PDK1 in cancer cell invasion
and dissemination.

Keywords: 3-phosphoinositide dependent protein kinase-1 (PDK1); phosphatidylinositol-3-kinase
(PI3K); cell migration; cancer

1. Introduction

1.1. Cell Migration

Cell migration is a fundamental process both in physiological situations (such as embryonic
development, inflammatory response and wound healing) and in pathological ones (tumor progression
and angiogenesis, osteoporosis and chronic inflammatory disease) [1]. Cell locomotion is regulated by
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a complex network of signaling events that involves lipid second messengers, kinases, small GTPases
and cytoskeletal proteins.

Cell migration can be described prototypically as a cyclic process [2]. The first step is the
polarization of the cell in response to migration-promoting factors. As a consequence, the cell extends
different protrusions, either in the form of large lamellipodia or finger-like filopodia, driven by actin
polymerization. Subsequently, cells establish new integrin-mediated adhesions with the underlying
substrate in correspondence of protrusions; these nascent adhesions, linked to the actin cytoskeleton,
will mature and provide a traction site to the cell to retract its rear by means of myosin II contraction.

These different steps can be observed, albeit with peculiarities, in a range of different
cell types, both epithelial and mesenchymal, and in different environments in response to
various chemoattractants.

The mesenchymal migration mode is predominantly used by cells originating from
connective-tissue tumors, such as fibrosarcomas, gliomas, and from epithelial cancer tissues.
Carcinoma cells crawling on extracellular matrix (ECM) fibers extend pseudopods functionally
equivalent to lamellipodia [3]. Integrins, MT-MMPs (membrane-type matrix metalloproteinases)
and other proteases colocalize at the edge of pseudopods to contribute to pericellular proteolysis [4].
Instead, many other tumor cells use a less adhesive, amoeboid mode of migration [5]. Amoeboid
motility has been mainly studied in Dictyostelium discoideum, while in higher eukaryotes this migration
mode is characteristic of lymphocytes and neutrophils [6]. Cells migrating in this fashion move fast by
gliding on the substrate, only supported by cortical filamentous actin and contraction and without the
need of both focal adhesions and proteolysis.

Cells can move as cell strands/sheets/clusters as well (collective migration). In physiological
situations, this mode of migration can occur during embryonic development, morphogenesis of
mammary glands and ducts and sprouting angiogenesis [4], but this mode of migration can be found in
tumor cells as well. Notably, cancer cells can change their molecular migration program and undergo
a variety of transitions between the different migration modes (such as epithelial–mesenchymal
transition or mesenchymal–amoeboid transition) [7].

1.2. PI3K

Among the pathways involved in the regulation of cell migration, the phosphatidylinositol-
3-kinase (PI3K) pathway has been shown to be fundamental. PI3Ks are important for maintenance of
polarity and definition of the leading edge of the cell, as well as for effective migration [8]. PI3K lipid
kinases are grouped into three distinct classes on the basis of their substrate specificity and sequence
homology: class I (A and B), class II and class III [9]. PI3Ks generate lipid second messengers by
phosphorylating the head group of membrane-anchored phosphoinositides at the 3′ position, which
bind and regulate downstream protein effectors containing the pleckstrin homology (PH) domain.
Classes IA and IB, together with their lipid product phosphatidylinositol (3,4,5) triphosphate (PIP3),
are widely implicated in controlling cell migration and polarity. The PI3K signaling cascade is mainly
mediated by the activation of the serine/threonine kinases of the AGC (related to cAMP-dependent
protein kinase 1, cyclic Guanosine monophosphate-dependent protein kinase and protein kinase C)
family, such as 3-phosphoinositide-dependent protein kinase-1 (PDPK1 or PDK1), protein kinase
B/Akt (PKB/Akt), p70S6K, serum- and glucocorticoid-dependent protein kinase (SGK), and p90
ribosomal protein S6 kinase (p90RSK) [10,11] (Figure 1A). Besides Akt and PDK1, other key effectors of
PI3K in the regulation of migration process are for example GDP–GTP exchange factors (GEF) for Rac
and for ADP-ribosylation factors 6 (ARF6) and GTPase activating proteins (GAP) of Rho GTPases [12].
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(PDK1) pathway. (A) Schematic representation of the pathway activated by PI3K through PDK1. 
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important sites: the PDK1 interacting fragment (PIF)-pocket and the activation loop; the latter 

comprises serine 241, which is essential for PDK1 kinase activity and is constitutively phosphorylated. 

1.3. PDK1 

A crucial node of the PI3K pathway is represented by the serine/threonine kinase PDK1). PDK1 

was discovered in 1997 as the kinase responsible for the phosphorylation of Akt on the activation 
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Figure 1. The phosphatidylinositol-3-kinase (PI3K)–3-phosphoinositide-dependent protein kinase-1
(PDK1) pathway. (A) Schematic representation of the pathway activated by PI3K through PDK1.
Receptor-stimulated class I PI3Ks generate phosphatidylinositol (3,4,5) trisphosphate (PIP3), which
bind directly to the pleckstrin homology domain of PDK1, which in turn activates a plethora of
downstream targets, a selection of which is shown, with different mechanisms (kinase-dependent or
-independent; pleckstrin homology (PH) domain-dependent, etc.); (B) PDK1 structure. PDK1 contains
an N-terminal kinase domain and a C-terminal PH domain. Inside the kinase domain, there are
two important sites: the PDK1 interacting fragment (PIF)-pocket and the activation loop; the latter
comprises serine 241, which is essential for PDK1 kinase activity and is constitutively phosphorylated.

1.3. PDK1

A crucial node of the PI3K pathway is represented by the serine/threonine kinase PDK1). PDK1
was discovered in 1997 as the kinase responsible for the phosphorylation of Akt on the activation
loop, at threonine 308, which is essential for Akt activation [13]. PDK1 is a protein of 556 amino acids
with an N-terminal catalytic domain and a C-terminal pleckstrin homology (PH) domain (Figure 1B).
Similar to other AGC kinases, PDK1 contains a phosphorylation site within the activation loop (serine
241), which is constitutively phosphorylated by an autophosphorylation reaction in trans [14]. PDK1
kinase is therefore considered constitutively active.

The regulation of PDK1-activated signaling is based on different mechanisms [15]. The
first mechanism is depicted by phosphorylation of Akt activation loop. PDK1 localizes at the
plasma membrane due to the interaction of its PH domain with PIP3 (and to a lesser extent with
phosphatidylinositol (3,4) bisphosphate) produced by PI3K and thus physically interacts with and
phosphorylates Akt [16]. The second mechanism of activation for substrates lacking a PH domain
(p70S6K, SGK, p90RSK and PKC isoforms) is PIP3-independent. On the kinase domain, PDK1
possesses a hydrophobic pocket, termed the PDK1 interacting fragment (PIF) pocket, which allows its
interaction with the phosphorylated hydrophobic motif of the targeted kinases and the consequent
phosphorylation of their activation loop [17–19]. Moreover, PDK1 activity is also regulated by reversible
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tyrosine phosphorylation [20]. Three tyrosine phosphorylation sites have been identified, tyrosine 9,
373 and 376, but only phosphorylation on tyrosines 373/376 is important for PDK1 activity. Src tyrosine
kinase can phosphorylate all the three sites [20,21], while Pyk2 can phosphorylate only tyrosine 9 [22].

The physiological role of PDK1 has been extensively investigated in vivo in murine models
(see Table 1 for a summary of different conditional knockout models). Knockout of PDK1 is lethal,
indicating its requirement for normal embryo development [23]. PDK1 knockout mice die at the E9.5
embryonic stage, showing lack of branchial arches, defects in neural crest-derived tissues and forebrain
development, as well as defective assembly of a functional vascular system. To understand the role of
PDK1 during development, hypomorphic mice for PDK1 have been generated, in which the expression
of PDK1 is reduced by 80%–90% in all tissues. These mice are viable and show a decreased body size,
but no significant differences in the activation of Akt, p70S6K, and p90RSK.

Notably, some of the defects found during development of knockout embryos might be due to
deficient migration. Actually, PDK1 has been demonstrated to regulate cell migration in multiple
ways [24]. Here we aim at summarizing how PDK1 controls cell migration at different levels, from cell
polarization to actin cytoskeleton and focal adhesion regulation.

Table 1. Different PDK1 conditional knockout models are listed in the table: the first column contains
the tissues affected by the knockout and the promoter used for the Cre-recombinase expression; the
second column contains a brief summary of the phenotype of the knockout; and the third column
indicates the viability or lethality of knockout phenotype and the time when the lethality occurs.

Tissue (Promoter) Phenotype Viable/Lethal References

Whole body Lack of somites, forebrain and neural
crest-derived tissue; vasculature not functional Lethal E9.5 [23]

Cardiac muscles
(MCK-Cre)

Heart failure; no activation of Akt and S6K. No
activation of glycogen synthase after insulin

stimulation; glucose uptake defects

Death between 5 and
11 weeks of age [25,26]

Myocardium
(αMHC-Cre)

Slow heart rate, decreased sodium
current density Death at 11 weeks of age [27]

Myocardium
(tamoxifen-inducible

αMHC-Cre)

Cardiac dysfunction 1 week after Tamox;
impaired responsiveness of βAR;

increased apoptosis

Death at 5–15 weeks
after tamoxifen [28]

B cells (CD19-Cre) Defective B cell development;
increased apoptosis Viable [29]

Hematopoietic cells
(Vav-Cre)

B cell development arrest; increased myeloid
cell recruitment in lung and liver. Lack of

Langerhans cells
Viable [30,31]

T cells (CD4-Cre) T cells activation and proliferation defects Viable [32,33]

Thymocytes (Lck-Cre) No maturation of T cells Viable [34,35]

CD4 T
cells/keratinocytes

(OX40-Cre)
Inflammatory skin diseases Viable [36]

Keratinocytes (K14-Cre)
Thin and shiny epidermis; hypoplasia of

vibrissae; deficient barrier function;
asymmetric cell division defects

Death within several
hours after birth [37]

Neural precursors cells
(Nestin-Cre)

Reduction in number of oligodendrocytes
precursors cells during

telencephalic development
Viable [38]

Pancreas β cells (Rat
insulin 2-Cre)

Alterate glucose homeostasis (diabetes);
increased level of blood glucose and decreased

level of insulin

Males die at 12.24 weeks
of age [39]

Pancreas progenitors
(PDX1-Cre)

Pancreas hypoplasia; hyperglycemia; reduced
number of endocrine and exocrine cells

during development
Viable [40]

Vascular endothelial cells
(Tie2-Cre)

Growth retardation; hemorrhages; heart with
abnormal morphology; defective vessels in

yolk sac and in placenta; defective
epithelial-mesenchymal transition

Lethal E11.5 [41]
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2. Polarization of Signaling

To execute persistent migration, cells establish leading and trailing edges in which different
signaling pathways stimulate membrane protrusion and retraction, respectively. In most cases, cell
orientation is determined by external gradients of soluble and/or adhesive factors. Even in the absence
of such cues, persistence and internal spatial organization of intracellular signaling can still be observed
and is correlated with bias in the direction of migration. The maintenance and/or dynamic changes of
cell polarity are governed by asymmetric spatial distribution and activation of intracellular signaling
proteins. In the presence of external concentration gradients of chemoattractants, receptors are locally
activated in a measure proportional to the local amount of available ligand. This, often small, difference
in activated receptors is then amplified by a signaling network and translates into a bias in the direction
of cell migration. Such general view, often referred to as “gradient sensing”, attempts to explain the
ability of cells to generate amplified, persistent intracellular signaling to static, external gradients of
chemoattractants, as well as transient responses to uniform stimuli. Many of the models that have
been proposed to explain gradient sensing are based on a local excitation, global inhibition (LEGI)
principle [42–44]. After receptor stimulation, a fast, local excitatory signal as well as a slower, global,
inhibitory (typically thought as generated by a diffusible molecule) signal are activated, causing the
polarization of signaling necessary for cell migration. The LEGI model explains the gradient sensing
response of most of the molecules that have been shown to move to or be activated at the front (e.g.,
PI3K, PH domain and actin binding proteins, RAS GTPase) or rear (e.g., phosphatase and tensin
homolog [PTEN], myosin). Generally, such models cannot explain the details of cell polarization.
Models taking into account such aspects typically include positive feedback loops [45], to reinforce
and amplify the gradient sensing response. The positive feedback also helps to explain how polarized
cells acquire and maintain a distinct morphology at their front and back.

The preferential activation of PI3K at the leading edge during directional movement has been
studied in Dictyostelium discoideum and in leukocytes [42,46,47]. While the chemoattractant receptors
(for these cells, G-protein-coupled receptors, GPCRs) are uniformly distributed along the plasma
membrane and the G proteins show a very shallow anterior-posterior gradient [48–50], proteins
carrying PH domains rapidly and transiently translocate to the plasma membrane in response to
uniform chemoattractant stimulation [51,52]. More importantly, in chemotaxing cells, these proteins
localize to the leading edge. These data provided the first evidence that a marked PIP3 polarization
is produced along the membrane of chemotaxing cells in response to a shallow chemoattractant
gradient. The persistence of the PIP3 distribution is guaranteed by the tumor suppressor PTEN.
PTEN is a phosphoinositide 3′-specific phosphatase that dephosphorylates phosphatidylinositol (3,4,5)
triphosphate and phosphatidylinositol (3,4) bisphosphate [53]. In chemotaxing Dictyostelium, PTEN
is excluded from the leading edge but localizes at the sides and the back of the cell to allow the
accumulation of PIP3 only at the front of the cell. Thus, PI3K and PTEN show opposite patterns of
spatial localization [54,55].

PDK1 has been shown to contribute to the establishment of cell polarity downstream to PI3K
(Figure 2). Indeed, by binding PIP3 with its PH domain, PDK1 is able to locally activate a series
of PI3K pathways effectors at the leading edge of migrating cells. Primarily, PDK1 activates Akt at
the front of moving cells [56–58]. In particular, it has been demonstrated that PDK1 overexpression
increases vascular endothelial growth factor-A (VEGF-A)-induced cell migration, while PDK1 knockout
completely blocks migration capacity of embryoid bodies-derived endothelial cells. Moreover, VEGF-A
stimulation induces accumulation of PIP3 at the front of migrating endothelial cells and consequently
translocation of both PDK1 and Akt at the leading edge, where PDK1 phosphorylates and activates
Akt [56]. In addition, the PDK1–Akt axis regulates chemotaxis of MDA-MB-231 cancer cells toward
epidermal growth factor (EGF) [57] and of T-cells [58]; the same axis regulates neocortical neurons
locomotion in developing mammalian neocortex [59].
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excluded from the sides and the back of moving cells, the phosphatase PTEN specifically localizes to 
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detail of signaling activated by PDK1 at the leading edge, downstream to PI3K. First, PDK1 

phosphorylates and activates Akt at front of migrating cells. Moreover, through a kinase-independent 
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GTPases RhoA (Ras homolog gene family, member A) and CDC42 (cell division control protein 42 
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Figure 2. PDK1 contributes to polarization of signaling downstream to PI3K during cell migration.
In the presence of a gradient of chemoattractant, a migrating cell is able to polarize following the
direction of the gradient. This polarization is achieved by the localized activation of signaling proteins
either at the front or at the rear of the cell. The PI3K pathway is activated at the leading edge of
migrating cells, with the consequent accumulation of PIP3 (dark grey line). Conversely, while PI3K is
excluded from the sides and the back of moving cells, the phosphatase PTEN specifically localizes to
such portions of the cell, causing the accumulation of PIP2 (light grey line). The green box shows a detail
of signaling activated by PDK1 at the leading edge, downstream to PI3K. First, PDK1 phosphorylates
and activates Akt at front of migrating cells. Moreover, through a kinase-independent mechanism,
PDK1 is able to stimulate function of phospholipase C gamma 1 (PLCγ1) and ROCK1.

PIP3 is essential for the localization to plasma membrane of other two effectors of PDK1, ROCK1
and MRCKα [60,61]. ROCK1 and MRCKα belong to the AGC kinase family and are effectors of
small GTPases RhoA (Ras homolog gene family, member A) and CDC42 (cell division control protein
42 homolog), respectively [10]. Both proteins regulate myosin contraction by the phosphorylating
myosin regulatory light chain 2 (MLC2) and the myosin phosphatase target subunit 1 (MyPT1) [62,63].
PDK1’s PIF pocket directly interacts with hydrophobic motif of both ROCK1 and MRCKα and guides
both proteins to the plasma membrane by means of its PH domain. Furthermore, PDK1 interaction
with ROCK1 and MRCKα increases their kinase activity. For ROCK1, the mechanism involves its
negative regulator RhoE, since PDK1 competes with RhoE for the binding with ROCK1. ROCK1
activated by PDK1 regulates amoeboid-type cancer cell invasion [60]. Conversely, the activation of
MRCKα by PDK1 controls epithelial cell migration and collective invasion [61].

Recently, it has been reported that PDK1 regulates cell migration also through phospholipase C
gamma 1 (PLCγ1) [64]. PLCγ1 hydrolyzes phosphatidylinositol (4,5) bisphosphate into diacylglycerol
and inositol (1,4,5) trisphosphate (Ins3P) [65]. After growth factor stimulation, PLCγ1 and PDK1
dynamically associate at the plasma membrane through their binding to PIP3 [66]. Moreover, PDK1
downregulation causes decreased PLCγ1 phosphorylation on tyrosine 783.
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3. Actin Cytoskeleton Regulation

The principal consequence of polarization is the extension of active membrane protrusions,
including lamellipodia and filopodia at the cell front. Lamellipodia are large, flat, sheet-like structures,
whereas filopodia are thin, cylindrical, finger-like formations [2]. Extension of both lamellipodia and
filopodia in response to chemoattractants is coupled with local actin polymerization. Depending
on the type of protrusion, actin filaments are differently organized: in lamellipodia, actin filaments
form a branching network, whereas in filopodia they are organized into long parallel bundles [67].
Small GTPases of the Rho family and their effectors are pivotal regulators of actin organization
and thus of lamellipodia and filopodia formation. Many effectors are activated by Rho GTPases
to organize the actin cytoskeleton during cell migration [68]. For example, Cdc42 activates WASp
and N-WASp, while Rac activates the Scar/WAVE family. Members of the WASp/SCAR/WAVE
family of proteins are key regulators of actin polymerization, because they are able to stimulate the
Arp2/3 complex [69]. The Arp2/3 complex induces the formation of a new daughter filament from a
preexisting one, thus controlling extension of lamellipodia [70]. An important downstream target of
Rho for regulating actin assembly is mDia, which belongs to the formin family of proteins. Furthermore,
several actin-binding proteins regulate actin polymerization in protrusions by affecting the pool of
available G-actin monomers and free ends [71]. In addition, disassembly of older filaments is controlled
by proteins of the ADF/cofilin family, which sever filaments and promote actin dissociation from the
pointed end. Filopodia extension occurs through a treadmilling mechanism, in which actin filaments
within a bundle elongate at their barbed ends and lose actin monomers from their pointed ends [67].
Proteins enriched in filopodia include Ena/VASP, which bind barbed ends, and fascin, which bundles
actin filaments.

PDK1 has been shown to regulate lamellipodial dynamics through MRCKα [61] (Figure 3).
In response to chemoattractant stimulation, MCF10A cells exhibit a phase of increasing spreading
by lamellipodia extension; then a phase of lamellipodial retraction follows. Both PDK1 and MRCKα

dynamically localize at the plasma membrane of extending lamellipodia, but only the retraction phase
is totally regulated by the PDK1-mediated regulation of MRCKα. Indeed, when PDK1 is overexpressed
both protrusion and retraction phases induced by EGF are modified, while MRCKα silencing blocks
only the promoting effect of PDK1 overexpression on retraction phase.

Moreover, PDK1 controls protrusions dynamics by activating p21-activated kinase 1 (PAK1).
PAK1 is a serine/threonine kinase that regulates cytoskeletal dynamics mainly downstream to Cdc42
and Rac1 [72]. However, PAK1 activity can also be regulated by different mechanisms including PDK1
phosphorylation at threonine 423 [73]. Upon activation, PAK1 localizes to the leading edges of motile
cells and stimulates both motility and invasion [74]. PDK1 and PAK1 regulate vascular smooth muscle
cell (VSMC) migration toward platelet-derived growth factor (PDGF) [21]. VSMC, stimulated with
PDGF, accumulates reactive oxygen species (ROS), which determine the activation of Src. Then Src
phosphorylates PDK1, which in turn phosphorylates and activates PAK1.

Furthermore, PDK1 may regulate actin cytoskeleton through the Rho-activated serine/threonine
protein kinase N (PKN) [75]. It has been shown that PKN interacts with PDK1 in vitro and is
phosphorylated and activated by PDK1 in cells. Overexpression of PKN or PDK1 induces actin
cytoskeleton reorganization (actin stress fiber depolymerization and membrane ruffling) while
expression of mutant forms of either PKN or PDK1 inhibits insulin-induced actin cytoskeleton
remodelling. These data indicate that phosphorylation of PKN by PDK1 is important to mediate
regulation of the actin cytoskeleton by insulin.
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Figure 3. PDK1 regulates membrane protrusions and actin polymerization. After being polarized,
migrating cells have to extend active membrane protrusions, including lamellipodia and filopodia
at the cell front. Extension of both lamellipodia and filopodia in response to chemoattractant is
almost universally found coupled with local actin polymerization. PDK1 controls this process through
the phosphorylation of p21-activated kinase 1 (PAK1) and protein kinase N (PKN), downstream
to both PI3K and Rho GTPases. On the contrary, PDK1 regulates activity of MRCKα through a
kinase-independent mechanism.

4. Focal Adhesion and Integrin Signaling

For mesenchymal and epithelial migration to occur, the actin-rich protrusions, which contain
several receptors for extracellular matrix proteins, must bind to the substratum. Integrins are the
major family of receptors for adhesive molecules of the extracellular matrix (ECM) and play key
roles in development, immune responses, leukocyte traffic, angiogenesis and cancer [76]. Integrins
basically connect ECM with the actin cytoskeleton inside the cell and activate many migration-related
signaling molecules (“outside-in signaling”). They are also transducers of “inside-out signaling”,
that is, activation to a high affinity state by cytoplasmic signals [77]. Integrins are heterodimeric
receptors consisting of α and β subunits, with large ligand-binding extracellular domains and short
cytoplasmic domains [78]. The binding to molecules of the ECM leads to conformational changes in the
extracellular domain and to integrin clustering. This combination of binding and clustering initiates
intracellular signals that regulate the formation of adhesion sites. Activated integrins preferentially
localize to the leading edge of migrating cells, where new adhesions form [79]. Adhesions assemble as
small clusters of integrins, known as focal complexes, which stabilize the lamellipodium, and then
eventually mature in more stable focal adhesions (FA) or turn over [80,81]. At the rear of a migrating
cell, FAs may be disassembled or left on the substratum [82,83]. Microtubules control FA disassembly
either through the regulation of Rho GTPase [84] or through a FAK/dynamin pathway [85]. Clathrin
and some of its adaptors (e.g., AP-2 and Dab2) are also involved in this process, by mediating integrin
endocytosis from disassembling adhesion sites [86,87].

Evidence of a PDK1 role in the regulation of adhesions is present in the literature [22,88] (Figure 4).
In the first study, it has been shown that both Pyk2 and tyrosine-phosphorylated PDK1 localize in
FAs in VSMC after angiotensin II stimulation. Moreover, the tyrosine phosphorylation of PDK1
by Pyk2 is essential for the formation of FA, possibly through downstream regulation of paxillin
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phosphorylation. Indeed, expression of a PDK1 mutant in one tyrosine phosphorylated by Pyk2 (Y9F
PDK1) impaired FA formation by angiotensin II. Moreover, angiotensin II-induced phosphorylation of
paxillin is significantly inhibited by Y9F PDK1 [22].
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Figure 4. PDK1 regulates focal adhesion and integrin signaling. For migration to occur, the protrusions
must stabilize by attaching to the substratum through integrin-mediated adhesions. Adhesions
assemble as small clusters of integrins, known as focal complexes, which stabilize the lamellipodium,
and then eventually mature in more stable focal adhesions or turn over. PDK1 has been shown to
localize to focal adhesions together with Pyk2 and to regulate them, possibly by phosphorylating
effectors such as paxillin, through an unknown mechanism. Moreover, downstream to PI3K, PDK1
regulates focal adhesion disassembly, by phosphorylating integrin β3 and thus by inducing its
endocytosis. ? refers to unknown mechanism of phosphorylation

In the second study, it has been shown that PDK1 regulates β3 integrin endocytosis and thus
FA disassembly in endothelial cells [88]. Integrin αvβ3 is particularly important in the vascular
system as receptor of RGD (Arg-Gly-Asp)-containing ECM proteins (vitronectin and fibronectin) [89].
Interestingly, when PDK1 is downregulated, FA disassembly slows down and FA increase in number
and size. This phenotype is the result of the altered endocytosis of integrin αvβ3. Kirk et al. have shown
that PDK1 and Akt phosphorylate in vitro the β3 integrin cytoplasmic tail on threonine 753 [90]. The
phosphorylation of this residue blocks recruitment of Shc, suggesting that threonine phosphorylation
of β3 may be an important modulator of integrin function. PDK1 is responsible for the phosphorylation
of threonine 753 of β3 also in vivo in endothelial cells and the mutation to alanine of this residue
reduces the internalization of β3 integrin. Beside the PDK1 kinase activity, β3 integrin endocytosis
and FA dynamics require also the PDK1 binding to PIP3, downstream to PI3K activation.

5. Tumor Invasiveness and Dissemination

The first study showing that PDK1 expression confers not only a growth advantage, but also
an invasive phenotype, has been carried out in mammary epithelial cells. Glazer et al. describe
an increase of MMP-2 activity and MT1-MMP expression in PDK1-expressing cells, resulting in
enhanced invasion on Matrigel [91]. The role of PDK1 in controlling metalloprotease activity was
later confirmed by its involvement in invadopodia formation [92]. Invadopodia are adhesive and
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degradative structures that were initially observed in vitro as shallow protrusions on the baso-lateral
side of cultured cancer cells [93]. The ability to form invadopodia is closely related to invasive
and metastatic properties in vivo [94,95]. Invadopodia-like protrusions in breast cancer cells have
been observed during intravasation by intravital imaging [96], and recently, direct evidence of a
functional role for invadopodia during cancer cell extravasation and distant metastasis has been
provided [97]. Notably, the expression of an active p110α catalytic subunit (PIK3CA) of PI3K promoted
invadopodia-mediated invasive activity, which was blocked by knockdown or inhibition of PDK1 [92].

In a genetic mouse model of melanoma driven by melanocyte-specific expression of BrafV600E
and inactivation of PTEN, the genetic inactivation of PDK1 delays the onset of the disease and almost
completely abolishes metastases [98]. In the same model, treatment with PDK1 inhibitors effectively
reduces melanomagenesis and metastatic load, phenocopying the genetic inactivation.

Expression of KRASG12D or KRASG12V in the murine pancreas gives rise to lesions
called pancreatic intraepithelial neoplasia (PanIN) that progress to metastatic pancreatic ductal
adenocarcinoma (PDAC). In this murine model of pancreatic cancer PDK1 has been found to play an
important role in both pancreatic cancer initiation and progression [99]. Indeed, PDK1 knockout in
epithelial compartment of the pancreas completely blocks PanIN and PDAC formation. In contrast,
deletion of PDK1 in a KRASG12D-driven non-small-cell lung carcinoma (NSCLC) model has no effect
on lung tumor formation.

A microRNA-mediated regulation of PDK1 has been described in gastric cancer cells, where
miR-128b targets PDK1 thus decreasing cell viability and inhibiting invasion; this effect is achieved
through the inactivation of the Akt/NF-κB axis [100]. In all these instances, the role of PDK1 is mainly
mediated by Akt. However, accumulating data show Akt-independent effects in cellular models of
PDK1 overexpression in term of both growth and invasiveness. In PIK3CA mutant cancer cell lines and
in human breast tumors, PDK1 may activate an alternative signal that engages downstream substrates
such as SGK3. Thereby, both PDK1 and SGK3 are considered as key oncogenic effectors downstream
of activating PIK3CA mutations [101]. However, PDK1 has been reported to regulate breast cancer
growth in Akt-independent manner also in absence of PIK3CA mutations [102].

Notably, in colon cancer cells, PDK1 deletion impairs the ability of these cells to form liver
metastasis after injection into spleen of immunodeficient mice [103]. Although this effect can be also
obtained by the combined deficiency of AKT1 and AKT2, different signaling pathways are activated in
PDK1 or AKT1/2 KO cells. The phosphorylation of both mTOR and GSK3β is significantly reduced
only in PDK1 KO cells, suggesting the existence of parallel pathways activated by PDK1.

Furthermore, as described in detail above, PDK1 has been described to regulate migration and
invasion through a kinase-independent mechanism by activating ROCK1 and MRCKα [60,61]. The
PDK1-mediated activation of ROCK1 has been shown to be relevant for amoeboid-type of cell invasion.
During amoeboid invasion, PDK1 regulates cortical acto-myosin and is responsible for the movement
in collagen/Matrigel matrix [60].

In contrast, the activation of MRCKα by PDK1 is more important for the migration and invasion
of epithelial cells. MRCKα regulates directional migration of epithelial cells and collective migration
in a three-dimensional environment by controlling lamellipodia dynamics [61].

A different Akt-independent mechanism involves PLCγ1. It has been reported that PDK1
regulates EGF-induced PLCγ1 activation, specifically at the level of cell protrusions, and modulation of
PLCγ1 tyrosine phosphorylation. The interaction PDK1–PLCγ1 is important for cancer cell invasion, in
particular of breast cancer and melanoma cells [64]. Interestingly, the same group demonstrated that the
inositol-1,3,4,5,6-pentakisphosphate derivative, 2-O-benzyl-myo-inositol 1,3,4,5,6-pentakisphosphate
(2-O-Bn-InsP5), prevented the formation of this PDK1–PLCγ1 complex by binding to the PDK1 PH
domain [104]. This occurrence results in the inhibition of cell migration, 3D Matrigel invasion of breast
cancer and melanoma cells and tumor dissemination in zebrafish xenotransplants.
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6. Conclusions

While the function of PDK1 has been classically investigated within the context of the PI3K/Akt
pathway, PDK1 plays role in several other pathways by phosphorylating and activating different
kinases of the AGC family. PDK1 is an attractive target for cancer therapy due to its peculiar role in the
regulation of cell motility, a fundamental process both in physiological and in pathological situations.
PDK1 regulates cell locomotion through different mechanisms, such as activation of Akt [56–58],
MRCKα [61], ROCK1 [60], β3 integrin [88] and PLCγ1 [64]. Moreover, a pivotal role for PDK1 in
cancer progression has emerged in recent years [105]. Indeed, PDK1 has been shown to control growth
and progression of several tumors: breast [106–108], prostate [109], pancreatic [99], gastric [100],
colorectal [110,111]; ovarian [112], esophageal [113], gallbladder [114], acute myeloid leukemia [115]
and melanoma [98,116].

Furthermore, results showing a reduced tumor occurrence in PTEN+/−, PDK1 hypomorphic
mice, compared to PTEN+/−mice, strongly support PDK1 as important therapeutic target in cancer
driven by alterations of the PI3K pathway [117]. Despite intensive investigation and promising
preclinical data, clinical trials with inhibitors of this pathway have only partially met the initial
expectations [118]; [119]. However, the use of PDK1 inhibitors could represent a valid alternative
solution either as a single-agent approach or in combination with other inhibitors of the same pathway
to overcome drug resistance.

In summary, PDK1 is a master kinase, able to control several physiological and pathological
processes. Careful investigation has identified multiple ways by which PDK1 regulates cell migration
and tumor growth and invasion. According to the experimental evidence accumulated so far, and
reviewed here, PDK1 targeting could be effective to block cancer progression towards a more invasive
and metastatic phenotype.
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