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Abstract: In addition to the structural and scaffolding role, the extracellular matrix (ECM) is emerging
as a hub for biomechanical signal transduction that is frequently relayed to intracellular sensors
to regulate diverse cellular processes. At a macroscopic scale, matrix rigidity confers long-ranging
effects contributing towards tissue fibrosis and cancer. The transcriptional co-activators YAP/TAZ,
better known as the converging effectors of the Hippo pathway, are widely recognized for their new
role as nuclear mechanosensors during organ homeostasis and cancer. Still, how YAP/TAZ senses
these “stiffness cues” from the ECM remains enigmatic. Here, we highlight the recent perspectives on
the role of agrin in mechanosignaling from the ECM via antagonizing the Hippo pathway to activate
YAP/TAZ in the contexts of cancer, neuromuscular junctions, and cardiac regeneration.

Keywords: Hippo pathway; agrin; YAP/TAZ; mechanotransduction; liver cancer; extracellular
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1. Introduction

The extracellular matrix (ECM), defined as the non-cellular component of the tissue
microenvironment, is an important contributor to the overall microenvironment. Owing to its diverse
biochemical and mechanical properties, the ECM and its soluble component(s) dictate cell behavior that
is important in cancer and organ development [1,2]. The mechanoreception of cell-cell and cell-ECM
interface controls cellular shape, organization and proliferation [3–5]. Within normal epithelial organs,
tissue architecture has been proposed to act as an inherent tumor-suppressor, thereby confining and
tightly regulating mechanical constraints [6]. In contrast, a growing tumor deviates from normal
tissue architecture rendering it to be more inflamed, compressed, and rigid [7]. Despite an altered
mechanoresponse widely demonstrated by most cancer cells and within tumor tissues, the identities
of soluble ECM proteins that mediate mechanosignalling during cancer progression remain elusive.

The transcription factors YAP and TAZ (encoded by YAP1 and WWTR1 genes, respectively)
that are normally restricted by the conserved Hippo tumor-suppressor pathway, are activated in
diverse cancers and are increasingly associated with nuclear sensors for biomechanical signals [8–11].
In general, the role of YAP/TAZ is well understood as converging effectors of the Hippo pathway.
The mammalian Hippo pathway core machinery consists of Serine/Threonine kinases Mst1/2
(also referred as STK4) and Large tumor suppressor 1 and 2 (LATS1 and LATS2), together with
their respective adaptor proteins Salvador (SAV1/WW45) and MOB (MOB1A/1B) serving as
tumor suppressor proteins [12–14]. In response to multiple upstream signals, activated LATS1/2
phosphorylates YAP/TAZ at the “HXRXXS” motifs, thereby sequestering them in the cytoplasm
and/or priming for ubiquitination-mediated proteosomal degradation [13,15–18]. YAP/TAZ binds to
transcriptional enhancer factor (TEF with TEA domain), commonly referred as TEAD transcription
factors to activate a transcription program comprising of hundreds of genes that are generally involved
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in promoting cell proliferation and inhibiting apoptosis [19–25]. Owing to their pro-survival functions,
YAP/TAZ is widely implicated in most solid cancer types where they regulate tumor initiation,
progression and metastasis, and stemness [26]. Over a decade of active research has elucidated the
key upstream effectors and spatial distribution of the Hippo pathway that strike an intracellular
balance, thereby governing YAP activity in different contexts [12,27]. Hence, a myriad of oncogenic
signaling pathways including Wnt, G-protein coupled receptors (GPCRs), and epidermal growth
factor (EGF) hijack the Hippo tumor-suppressor pathway to positively regulate YAP/TAZ to promote
tumorigenesis and progression [28–31]. Intriguingly, YAP/TAZ are at the cross-roads of multiple
inputs and hence sense cues that include ECM stiffness and remodeling, cell geometrical constraints,
and cytoskeletal induced mechanical changes that may be dependent or independent of the Hippo
pathway [9,10,30,32–35]. The capabilities of YAP and TAZ in reading a wide array of mechanical
inputs and converting them into defined biological responses are enormous. However, the real
challenge lies in the identification of key ECM factors(s) serving as upstream inputs and the precise
mechanosignalling pathway to nuclear YAP/TAZ.

The heparan sulfate proteoglycan, agrin, is best known for its ability to cluster acetylcholine
(AChR) receptors in the neuromuscular junctions (NMJ). Agrin binds to Lipoprotein-related receptor-4
(Lrp4) to activate Muscle-specific tyrosine kinase (MuSK), thereby forming a multiple-protein complex
within the NMJs [36–38]. As such, agrin is essential for NMJ formation early during developmental
stages in vivo [39]. It binds to the N-terminus of Lrp4 to stimulate the auto-phosphorylation of its
co-receptor MuSK, critical for the maintenance of NMJs [40]. Agrin exists as a secreted protein which
encodes a signal peptide followed by the N-terminus, or as a shorter Type II Transmembrane (Tm)
form with an internal signal peptide (38) (Figure 1). Alternative splicing in at-least two positions within
the C-terminus of Agrin known as “y” and “z” sites, respectively, enables dystroglycan, Lrp4-MuSK
and possibly integrin receptor(s) engagement (Figure 1) [38,41,42]. However, the most critical and
well-defined isoforms are the ones bearing insertions of 8, 11 and 19 (8+11) amino acids at the “z”
site that potently activate MuSK through Lrp4 recruitment [38]. These isoforms are broadly referred
to as “neuronal” Agrin. Binding of neuronal Agrin to Lrp4 involves a synergistic formation of a
tetrameric complex mediated by “z8 loop” [43]. Muscle variants that lack “z” inserts are far less robust
in binding Lrp4 and activating MuSK [42]. On the other-hand, the Lys-Ser-Arg-Lys-residues at the “y”
site are critical for heparin and α-dystroglycan engagement (38). Irrespective of isoform distinctions,
both muscle and neuronal Agrin are known to bind laminin and promote cytoskeletal rearrangements
with mechanisms that remained largely unknown [44,45].
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Despite its widely recognized function in the establishment and maintenance of NMJs, the role
of agrin outside the neuromuscular interface is less clear. In addition to the accumulation of agrin in
the liver of rats undergoing chemically induced cirrhosis and hepatocellular carcinoma (HCC) [46],
recent advancements in the field discovered a non-canonical function of agrin as an extracellular
matrix sensor that stabilized focal adhesions and promoted HCC [47]. Surprisingly, agrin also hijacks
its neuronal receptor machinery (Lrp4/MuSK) and combines with the integrin-Focal adhesion kinase
(FAK) mechanosensing complex to form an oncogenic axis in liver cancer; therefore, explaining its
frequent overexpression and secretion observed amongst liver cancer patients. Importantly, agrin
depletion reduced in vivo liver tumor growth, suggesting its role in HCC progression [47]. In this
perspective, YAP is amplified in several cancers including HCC [48]. Chronic expression of YAP
and its phosphorylation defective mutant enlarges liver size that culminates in HCC development
by perturbing the Hippo pathway [8,49,50]. As a key mechanosensing complex, the integrin-FAK
signaling is also implicated in the activation of YAP [51–53]. Therefore, the combination of these
seminal findings raised a possibility of a mechanotransduction network between agrin and YAP that
underscores the oncogenic properties of liver cancer.

The role of proteoglycans in activating YAP/TAZ or mediating cell/matrix stiffness has not been
investigated thus far. However, recent shreds of evidence serve the basis for a greater understanding
on the role of agrin as a secreted proteoglycan on YAP functions in liver cancer and other tissues.
Agrin as an ECM signal is recognized by the integrin/Lrp4/MuSK receptors, which is necessary
and sufficient to sustain the activity of YAP in response to mechanical changes [54,55]. During this
process, agrin inhibited the Hippo tumor suppressor pathway leading to enhanced activity of YAP.
Mechanistically, these findings demonstrate that agrin requires YAP-mediated transcriptional activity
for its oncogenic property, making it clinically relevant for liver cancer progression. Here, we discuss
the implications of the newly discovered role of agrin and YAP activity in the context of liver cancer,
NMJs, and cardiac regeneration.

2. Newly Discovered Role of Agrin and YAP

2.1. Agrin Activates and Stabilizes YAP

How ECM signals regulate the activity of nuclear YAP/TAZ are interesting to understand the
relay of mechanosignalling from ‘outside the cell’ to intracellular YAP/TAZ. The role of agrin in the
regulation of any transcriptional co-activator has not been previously reported. In fact, not many
proteoglycans have been reported so far that directly affect YAP/TAZ activity. Hence, the emerging
studies on agrin reveal interesting mechanistic insight onto this aspect. For instance, agrin depletion
was suggested to promote an inhibitory phosphorylation of YAP at Serine127 residue that shifted
nuclear YAP into the cytoplasm, a key step in the regulation of YAP activity by the Hippo pathway [18].
Additionally, function-blocking antibodies that prevent agrin’s interaction with its receptor repertoire
similarly inhibited YAP activity in vitro and in vivo and reduced tumor cell growth [54]. Interestingly,
the YAP inactivation was highly correlated with decreased target gene expression in agrin knockdown
cells, and the phenotype was significantly rescued by supplementing soluble neural or non-neural
agrin (that are distinguished by the presence or absence of an eight amino acid insert within the Z
exons). It is interesting that both neural and non-neural isoforms of agrin activate YAP, suggesting the
broader impact of agrin on YAP in other tissues as well.

Cell adhesions represent regions of high compression and tensile strength. Several junctional
proteins including the Angiomotin (AMOT) family members regulate YAP in conjunction with
actin-cytoskeletal changes. AMOT proteins can directly bind to YAP and negate its activity [56,57].
Binding of AMOT with F-actin competes with YAP:AMOT complex, thereby releasing YAP from
the inhibitory association of AMOT and progressing into the nucleus [58–60]. Interestingly,
LATS1/2-mediated phosphorylation of AMOT and disruption of actin-fibers antagonizes the AMOT:
F-Actin binding [58,59]. In addition, AMOTs also activate LATS2 to sequester YAP to tight
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junctions [61]. Consistent with these findings, agrin depletion enhanced the YAP:AMOT association
in the cytoplasm, and subsequently led to YAP inactivation [54]. These findings suggest that
agrin antagonizes the YAP: AMOT interaction to maintain functionality of YAP. In addition to
Hippo pathway mediated phosphorylation of YAP/TAZ facilitating binding of 14-3-3 proteins and
cytoplasmic sequestration [62,63], phosphorylation of YAP at Serine 381 primes it for phosphodegron
mediated phosphorylation, ubiquitination and proteosomal degradation [18]. Subsequently, LATS
phosphorylation also primes YAP/TAZ for CK1σ/ε and β-TrCP mediated degradation [18,64].
Accordingly, silencing agrin in the liver cancer cells enhanced YAP Ser381 phosphorylation and
de-stabilization of YAP; suggesting that cytoplasmic YAP sequestered by angiomotin and 14-3-3
complexes is likely subjected to proteasomal degradation in response to agrin depletion. The YAP
cytoplasmic sequestration and degradation antagonized by agrin account likely for increased YAP
stability in cancer cells having agrin overexpression. Whether agrin negatively regulates other
junctional proteins involved in the Hippo pathway to release YAP from their inhibitory associations
will be an important aspect of future analysis.

2.2. Mechanisms of Agrin Regulation on YAP Functions

Mechanoactivation of YAP in Response to Agrin from the ECM

A growing body of evidence indicates that ECM stiffness, cell spreading and cytoskeletal tension
activate YAP by sustaining its nuclear localization and transcription of its target gene(s) [9,10,65].
Moreover, as compliant normal liver tissue matrices do not possess a well-defined basement membrane,
excessive accumulation of agrin in addition to fibrillary collagen, laminin and perlecan will lead to
the formation of a stiffer ECM during liver cancer development [66]. To understand how agrin
and related proteoglycans stiffen up the liver ECM during cancer development, an existence of a
functional mechanotransduction network between extracellular agrin and intracellular YAP was
hypothesized. Importantly, the effects of subcellular YAP/TAZ localization are reflected in HCC
spheroids cultured in three dimensions (3D). In such models, ECM stiffness (manipulated by enhancing
collagen matrix concentration) increased the expression of agrin and its co-receptors in HCC cell lines
that correlated with higher YAP activity [54]. Agrin depletion in cells cultured in stiff ECM reduced
YAP’s nuclear localization and transcriptional activity and were consistently observed in stiffened
2D and 3D matrix. Conversely, supplementing agrin to cells cultured on either highly compliant
matrices or geometrically confined areas was sufficient to activate YAP. Classically, cells that are
stretched across a large surface area (10,000 µ2) harbor nuclear YAP and are characterized by enhanced
YAP/TAZ signature gene(s) expression [9,67]. Depletion of agrin in liver cancer cells plated on large
fibronectin islands shifted YAP into the cytoplasm and reduced the YAP-target gene expression [54].
Conversely, supplementation with soluble agrin potentiated nuclear YAP localization in cells that
were confined to small fibronectin islands (<300 µ2). More importantly, agrin also stiffened the local
ECM and provided considerable contractile strength to the cancer cells (Figures 2 and 3). How cell
geometry alters YAP/TAZ localization still remains unclear. Physical constraints, differential force
transmission affecting nuclear pores and shapes [68], and F-actin distributional changes may represent
the underlined mechanisms. Hence, further studies to delineate how agrin functions to cope up YAP
activity within the geometrically constraint cells and how agrin mediated pathways generate force that
is sensed by YAP/TAZ or their regulators will shed more light. More importantly, though persistent
YAP activation enlarges liver size, the response to YAP activation is not uniform in the liver [69].
Since agrin levels are very low in normal livers [46,47,54,70], it will be of interest to determine at which
stage the liver cell types start to accumulate agrin to promote complex pathophysiological changes of
the ECM that is involved in the development of HCC.
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Figure 3. Coordinated mechanotransduction network involving agrin and YAP in liver cancer. Elevated
agrin levels enhance ECM stiffness and remodeling in the liver by activating YAP. Soluble agrin binds
to Lrp4/MuSK and integrins in liver cancer cells and stabilizes focal adhesions by activating Focal
adhesion kinase-Integrin linked kinase- p21-Activated kinase (FAK-ILK-PAK1) axis. This activated
mechanosignalling pathway inhibits the core Hippo components Merlin and LATS1/2 kinases. Further,
agrin mediated mechanosignalling enhances cellular contractility and confer matrix stiffness by
“mechano-activating” YAP mediated transcription. Together, agrin and YAP mediate changes in the
cellular microenvironment that cumulatively enhance proliferation, migration and liver tumorigenesis.

As a secreted basement membrane component [38], agrin may collaborate with laminin, collagen
XVIII, and perlecan to tether soluble growth factors such as vascular endothelial growth factors
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(VEGF), transforming growth factor-β and fibroblast growth factors, thereby serving as an important
mechanosignalling depot [71]. Such a docking platform may be regarded as a sensing platform
for intracellular YAP activity and oncogenic response as well. In this context, Platelet derived
growth factor (PDGF) stimulated hepatic stellate cells have been shown to promote agrin- induced
hepatocarcinogenesis [72]. Whether agrin-induced YAP activity is influenced by these stellate cells
will be of potential interest. The specificity of agrin in regulating YAP mechanotransduction from this
‘stiffening platform’ is illustrated by the fact that both perlecan and fibronectin stimulation of integrins
failed to rescue YAP inactivation when agrin was depleted in soft-substrates [54]. Whether agrin plays
a role in disorganization of the basement membrane through YAP activation that is important for
tumor progression and metastasis is yet to be investigated. Moreover, agrin is heavily glycosylated at
multiple repetitive serine-glycine (Ser-Gly) residues, serving as glycosaminoglycan (GAG) attachment
sites for heparan/chondroitin sulfate [73]. Whether glycosylation pattern of agrin serves a modulating
role in YAP mechanotransduction, activity and oncogenesis would be interesting avenues to pursue in
the future.

Again, exploring the “dynamic” interactions between cancer cells and their ECM, remodeling
of local ECM by altering collagen production is very frequently observed in cancer cells. Such ECM
remodeling can be characteristically observed by gel-contraction assays in-vitro. Agrin conferred
contractility to cancer cells that remodeled collagen lattices [54]. Agrin may thus contribute towards
development of motile, invasive actin-rich protrusions known as invadopodia that guide invasiveness
of liver cancer cell lines [47]. While invadopodia are known to be enhanced in rigid ECM [74,75],
the underlined regulation of YAP transcription in this process remains unknown. Hence, how
agrin-YAP activity contributes towards tumor invasiveness is an issue of outstanding interest that
needs to be explored.

2.3. Agrin and its Regulation on Integrin-Focal Adhesions

The focal adhesions (FA) containing integrin receptors are membrane domains facilitating cell:
ECM interactions and transmission of mechanosignalling. Several studies have elucidated that focal
adhesion kinase (FAK) activity may promote nuclear translocation of YAP/TAZ involving Rho-GEF
and LATS1/2 kinase dependent pathways [52,76]. In line with this, agrin emerged as an interesting
player integrating and sustaining mechanical signals through defined pathways to YAP/TAZ. Agrin
sustained the mechanoresponsiveness of YAP by utilizing FAK phosphorylation in a stiffness sensed
manner that correlated with three-dimensional (3D) cancer cell growth [54]. Moreover, agrin also
provided contractile strength to cancer cells in a YAP dependent manner and conferred significant
matrix stiffness to otherwise compliant collagen gels [54]. Therefore, it is not surprising to ascertain
that agrin tightly maintains the integrity of FA in liver cancer cells which is critical for their underlying
oncogenic property [47]. Essentially, cancer cells displayed fragmented focal adhesions and lack of
FAK phosphorylation in response to agrin depletion, an effect that was restored by supplementation of
soluble agrin in the matrix [47]. Indeed, activated FAK was also essential for YAP dependent cellular
contractility mediated by agrin [54]. In vivo, agrin depletion also reduced the fibrillary collagen
content, an indication that it activates YAP for stiffening and crosslinking the ECM during cancer
development. However, the agrin induced stiffening may also be due to over-accumulation of collagen
fibrils as downstream transcriptional targets of YAP/TAZ in fibrosis [77].

Further, integrin activation has been directly linked to YAP activity [78–80]. Hence, the role of
integrins downstream of agrin in HCC progression would be an interesting mechanism. Indeed,
a majority of agrin induced mechanoresponsive effects on YAP was abolished by silencing
integrin β1 in HCC cell lines [54]. More importantly, pre-treatment of liver cancer cells with
arginine-glycine-aspartate (RGD) peptides that block integrin activation also suppressed agrin induced
nuclear localization of YAP [54]. More importantly, blocking integrin activation also inhibited
agrin-YAP induced cancer cell contractility and collagen remodeling abilities. However, agrin
partly utilized Lrp4-MuSK receptors when integrin signaling was compromised in such situations.
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Quite interestingly, depletion of Lrp4 and MuSK in HCC cell lines also resulted in enhanced YAP-Ser127
phosphorylation [54]. Similar to agrin, integrin α2β1 heterodimer is also overexpressed in HCC that
inhibits the Hippo kinase Mst1 phosphorylation [81]. Together, these data support an existence of
a coordinated mechanosignalling network between agrin, integrins and FAs that antagonizes the
Hippo pathway to sustain the YAP activity. In addition to negating the Hippo pathway, this axis,
in combination with the Lrp4-MuSK receptors, formed the major mechanotransduction pathway
contributing towards YAP activation (Figure 3). Depletion of Lrp4 and MuSK in the HCC cell lines
partially enhanced YAP phosphorylation, suggesting these may be novel regulators of YAP activity and
the Hippo pathway. Intriguingly, the combined perturbation of integrin and Lrp4-MuSK completely
inhibited YAP activity, and therefore, rendering these cells incompetent to cope with biomechanical
changes. In addition, as soluble C-terminus fragment of agrin rescued YAP activity in agrin-depleted
cancer cells further suggesting that agrin engages its receptors for mediating downstream effects on
YAP. Hence, agrin collectively utilized integrin and Lrp4/MuSK pathways to relay mechanosignalling
to YAP and serves as a converging point upstream of Lrp4-MuSK and integrin-FAK receptors.

These findings also raise several key questions that need further investigations in the broader
context of Hippo-YAP signaling and agrin biology. Similar to collagens being transcriptional targets of
YAP/TAZ, focal adhesion marker gene expressions and FA formation are also regulated by YAP [77,82].
Moreover, as YAP activity itself is known to promote ECM stiffness [65], the fact that supplementation
of recombinant agrin exerts considerable stiffness to the local matrix surrounding liver cancer spheroids
may be hypothesized as a result of active YAP/TAZ transcription [54]. Whether YAP activation sustains
agrin expression to provide a positive feedback between YAP and agrin-triggered ECM stiffness is
an exciting possibility. Agrin is highly secreted in the circulation of HCC patients [47], and whether
YAP/TAZ through TEAD transcriptional factors enhances agrin expression and secretion in liver
cancer will be interesting to examine. It may be speculated that YAP-TEAD binds to enhancer region,
thereby increasing agrin expression and stiffening liver cancer tissues. However, further studies
are needed to prove the existence of transcriptional regulation of YAP on agrin expression. Of note,
the possibilities of other transcriptional factors working in conjunction with TEAD to control agrin
expression cannot be excluded. Moreover, how critical is the agrin-YAP signaling towards altering
mechanoresponse of cancer cells? Would this mechanotransduction network be targeted for liver cancer
therapy? Is this agrin-YAP mechanotransduction network active in chemotherapy-resistant cancer
cells, and targeting this loop may re-awaken cancer cell sensitivity to chemotherapy? Furthermore,
whether agrin overexpression enlarges liver size by engaging YAP mediated transcriptional target(s)
would also be an exciting future study. Hence, we are looking forward to an exciting avenue of research
aimed at understanding the agrin-YAP pathway in the context of aggressiveness of cancers.

2.4. Mechanosignalling Scaffold Initiated by Agrin

Downstream to integrin receptors, the activation of Integrin-linked-kinase (ILK) has been shown
to perturb the Hippo pathway. ILK stimulates phosphorylation of MYPT-PP1, and subsequently
inactivates Merlin, an upstream component of the Hippo pathway that is conserved in both flies
and mammals [83,84]. Merlin (also known as Neurofibromin 2 or NF2) is expressed across the
nervous system and mutations of NF2 gene were originally associated with Neurofibromatosis type 2,
that comprises a group of benign neural tumors [85]. Merlin is an Ezrin-Radixin-Moesin (ERM)
family protein [86,87], that organize Hippo signaling at the plasma membrane [88]. Membrane
recruitment of LATS1/2 by Merlin facilitates YAP phosphorylation that occurs irrespective of MST1/2
activation, and tumor suppressive activities are ensued [88]. The underlying mechanism of inactivation
of NF2 in the liver is intriguing because agrin activates an integrin-FAK-ILK signaling axis to
stimulate p21-Activated kinase (PAK1) that subsequently inactivates Merlin [54]. Agrin actively
facilitated the interactions of PAK1 and ILK with Merlin, to inactivate the latter’s tumor suppressive
abilities [54]. Independent observations revealed that AMOT facilitates the binding of LATS1/2 with
Merlin, and the Ser518 phosphorylation prevents it from binding to AMOT, thereby suppressing
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Merlin’s activity [89]. Interestingly, Merlin is also reported to guide migration and lamellipodium
in multicellular organized cells (resembling a growing tumor mass!), suggesting that it responds
to collective mechanotransduction [90]. In-vitro data reflects an antagonistic relationship between
agrin and Merlin [54]. Possibly, agrin-ILK-PAK1 mechanosignalling pathway serves to counteract the
intrinsic mechanotransducing abilities of AMOT:Merlin complex in the context of liver tumor initiation
and progression, though more extensive studies are needed to prove the existence of counteractive
mechanosignalling. Importantly, ECM crosslinking, integrin clustering, and FAK activation are events
that underline tissue stiffness, tumor progression and poor prognosis [91]. Since agrin is localized to
activated integrin clusters in liver cancer cells [47], this mechanosignalling axis holds a possible key
for nullifying the Hippo pathway to promote YAP-dependent tumorigenesis.

2.5. Agrin Partners with Focal Adhesions to Antagonize the Hippo Pathway

Although integrins-focal adhesions (FA) form the central mechanosensing complex in most cell
types, alterations in their molecular composition by mechanotransduction signals and their role
in negating the core Hippo components are poorly understood. Agrin, however, may shed new
mechanistic insights on how ECM proteins may alter the composition of cell-matrix adhesions and
interactions with the Hippo pathway. A working model is that agrin antagonizes the tumor-suppressive
functions of Merlin and LATS1/2 kinase by regulating the cell-matrix adhesions [54]. This is
attributed by restricting the association of Hippo components within the focal adhesions and activating
integrin-FAK-integrin linked kinase (ILK) and p21-activated kinases (PAK1) signaling. Since liver
cancer cells actively stabilize FAs shortly after adherence to fibronectin [47], agrin ensures that
components of the Hippo pathway are primarily excluded from the activated FAs by engaging
ILK-PAK1 [54] (Figure 4). The agrin-induced integrin-ILK-PAK1 axis, in part, inactivated Merlin by
promoting an inhibitory phosphorylation at Ser518 [54,92] (Figure 4). In line with this observation,
integrin β1 activated Rac-PAK1 pathway has been also shown to inactivate Merlin by inducing
a similar phosphorylation in mesenchymal cells [93]. Likewise, diminished Rac1 activity is also
observed in agrin-depleted HCC cell lines (data not shown). More excitingly, agrin is also
expressed by mesenchymal stem cell (MSC) population [94]. This may indicate that agrin-integrin
mechanotransduction loop may inactivate Merlin in many cell/tissue types (Figure 4). Even in the
haematopoetic niche, agrin supports the proliferation of MSCs and its deficiency induced apoptosis and
impaired haematopoesis [94]. Moreover, agrin clusters the ephrin family of receptor tyrosine kinases
(mainly EphB1) to activate integrins that promote adhesion of erythroid cells to macrophages [95],
and many of the ephrin receptors have been known to activate YAP [96,97]. Therefore, the associations
with integrins and ephrins with agrin will evoke further interests in the field of mechanotransduction,
in general.

Mechanoreception and transmission of signalling actively occur at cell junctions involving the
acto-myosin complex that also regulates YAP activity, both in flies and mammals [9,35,98–100].
However, the role of the Hippo pathway (primarily LATS1/2 kinases) in the regulation of YAP
mechanotransduction has been enigmatic. Several reports suggest that YAP’s mechanoresponse is
independent of LATS1/2 activity [9,10,51]. This notion primarily arises from the fact that LATS1/2
depletion failed to promote YAP’s nuclear localization in cells cultured on compliant matrices,
and YAP mutants resistant to the inhibitory LATS1/2 kinase mediated phosphorylation also show
sensitivity to compliant substrates [9,10]. Mechanistically, F-actin mediated cytoskeletal tension
was proposed as a parallel “non-canonical” pathway regulating YAP’s localization in response to
mechanical changes, independent of the Hippo pathway [9,10]. In contrast, a number of reports
suggest that LATS1/2 mediated regulation of actin cytoskeleton is responsible for YAP activity, even
under altered mechanical stress [35,100]. F-actin modulation is thought to be dependent on the
Hippo pathway in some contexts, such that disruption of F-actin enhanced LATS activity and YAP
phosphorylation [35,99,101,102]. In fact, the core Hippo kinases Mst1/2 and LATS1/2 have been
shown to bind F-Actin as well [103,104]. In this context, at-least in liver cancer cells, depletion of
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LATS1/2 diminished the enhanced phosphorylation of YAP at Ser127, suggesting the regulation
of YAP phosphorylation by agrin may be partially dependent on the Hippo kinases [54]. It is well
known that mechanical tensions across cell junctions regulate the Hippo pathway, YAP localization
and activity, in both Drosophila and mammals [98,105]; however, the interactions of agrin within
these cellular junctions that experience high mechanical strain leading to YAP activity will require
further investigations.
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In addition, Rho-GTPases act upstream of YAP/TAZ and inhibiting them by Clostridium
botulinium toxin (C3) abolished YAP/TAZ activity [9]. Rho-GTPases have also been shown to
modulate YAP activity downstream to the integrins as well [80,106]. As such, in cells that harbor
defective Hippo signaling (such as Merlin null MDA-MB-231), agrin relayed responses to YAP
through actin cytoskeletal rearrangements that were dependent on RhoA activity [54] (Figure 4).
Presumably, the mechanotransduction pathway of integrins involves actin dynamics in such scenarios.
It has become increasingly clear that the integrity of actin-cytoskeleton and RhoA is required
for functional YAP/TAZ mechanotransduction [10,11,16,34,35,102,107]. Consistently, recombinant
agrin has been reported to induce actin polymerization and fiber formation in the liver cancer cell
lines [47,54]. Hence, inhibition of actin-rearrangements and RhoA abolished the agrin- induced
YAP mechanoresponsiveness in such situations [54]. As a result, agrin’s mechanotransducing
effects on YAP also occurs independent of the Hippo pathway machinery under such contexts.
Cumulatively, these studies support a model whereby mechanical signals may be transmitted via
a combination of both Hippo pathway dependent/independent fashion and imply that LATS1/2
dependent/independent regulations co-exist dynamically.

2.6. YAP as a Potent Downstream Mediator of Agrin’s Functions in Liver Cancer

Several studies have reported the nuclear expression of YAP/TAZ in HCC [108–110]. Therefore,
as expected from a potent oncogene, YAP functions as a mediator of oncogenic property induced by
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agrin. Indeed, suppression of YAP activity abolished the majority of oncogenic properties associated
with agrin overexpression in liver cancer cell lines. These results suggest that agrin relies on the
transcriptional activity of YAP to promote HCC. Clearly, the agrin-induced cellular migratory and
invasive capabilities were dependent on YAP activity, as these were significantly reduced in YAP
depleted liver cancer cells [47,54]. From a clinical perspective, ECM rigidity is well correlated with
malignancy and cancer progression resulting in poor patient outcome [1,91]. Consistently, nuclear YAP
and higher agrin expression were observed in the majority of HCC patient tissues that also correlated
with a poor prognosis [54,111,112] (Table 1). Compared to other proteoglycans, higher expression
of agrin correlated to a poor survival in HCC (Figure 5). More importantly, combined expression
of agrin together with YAP target gene(s) accounted for even poorer survival amongst liver cancer
patients [54]. Consistently, YAP activated in the stellate cells in response to liver injury promoted
hepatic fibrosis, a condition that often precedes liver cancer development [77]. It will be interesting to
find out at what stage of cirrhosis and cancer development does agrin expression become prominent?
Moreover, the genetic deficiency of Hippo signaling (such as loss of MST1/2) activates YAP to generate
a pro-tumorigenic environment that alters macrophage recruitment and immune responses facilitating
the development of HCC [113–116]. Interestingly, agrin depletion enhanced Mst1 phosphorylation in
the HCC cell lines [54]. In light of this evidence, the role of agrin in the absence of key Hippo
components during the liver cancer development will require extensive future work. Together,
enhanced agrin levels and YAP activity may represent key factors that underline stiffened ECM
as observed during fibrosis and HCC development. Importantly, agrin is also overexpressed in
oral squamous cell carcinoma (OSCC), where YAP/TAZ drives the oncogenic program and confers
migratory and invasive potential to OSCC cells [117,118]. Likewise, expression profile analysis using
the newly developed tumor map strategy [119] (https://tumormap.ucsc.edu/) indicates that agrin
may be expressed in a wide variety of cancers, closely matching the profile of YAP/TAZ (Figure 6A).
In fact, robust positive correlation exist between the expression profiles of agrin, YAP/TAZ and several
of their targets across different cancer cell lines (Figure 6B,C). Whether agrin and YAP/TAZ team up
as oncogenic drivers in other cancer(s) will be one interesting area in cancer research.

Table 1. Distinction between normal and HCC liver tissue matrices.

Normal Liver Tissue Hepatocellular Carcinoma (HCC)

No distinct basement membrane, low Agrin levels,
less collagen crosslinking, cytoplasmic YAP/TAZ,

low contractile forces, compliant ECM

High Agrin levels and fibrillary collagen content,
nuclear YAP/TAZ, mechanosignalling activated,

higher contractile forces, stiffened ECM
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Figure 6. Interactive mapping of Agrin and YAP/TAZ expression profiles across different cancer types.
(A) Tumor map patterns of AGRN and YAP1 mRNA expression (generated by UCSC tumor map using
the TCGA_TARGET_GTEX dataset). The expression patterns of AGRN and YAP1 mRNA are closely
matched in several cancer types (Color coded). The panels on the extreme right indicate the relative
expression levels of AGRN, YAP1 and WWTR1 (TAZ) in liver cancer (LIHC). The intensity map of
expression is indicated below. (B) Correlation between AGRN and YAP1/WWTR1 mRNA across
cancer cell lines (Cancer Cell Encyclopedia-Novartis/Broad Institute dataset). (C) Correlation between
agrin and YAP target gene expressions across cancer cell lines.

Of potential therapeutic value, targeting agrin through antibody therapy may also inhibit the
functions of YAP/TAZ and serve as a potential clinical benefit for HCC treatment in the future.
Clearly, proof-of-principle studies have shown that antibodies directed against agrin may have
in vivo tumor-inhibitory capabilities [47], although the underlying mechanism of action needs to
be defined. The fact that agrin expression is hardly detected in normal human and mouse livers makes
it an attractive target for HCC therapy [46,70]. Recently, targeting Glypican-3 (encoded by GPC3),
a relative of agrin in the ECM proteoglycan family, that is also frequently overexpressed in HCC has
been shown to inactivate YAP, though the exact mechanisms remain unclear [120–123]. Moreover,
given that we are beginning to understand the clinical relevance of elevated agrin expression and
mechanisms behind agrin-YAP regulation, targeting agrin through function blocking antibodies holds
great promise as additional HCC therapy (Figure 5). However, to understand how generic is agrin
secreted and/or expressed in the liver during its tumor initiation stages would be key for effective
HCC therapy.
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2.7. Influence of Agrin on YAP in other Organs

In addition to cancer models, the role of agrin as a critical regulator of YAP function has been
concomitantly discovered in multiple organs. Firstly, a genetic deletion of YAP in muscle cells caused
severe defects in the development of NMJs [124]. The pre-synaptic deficits and loss of AChR clustering
in YAP mutant mice closely resembled that of agrin-deficient mice [39], thereby supporting a functional
link between agrin and YAP as its downstream mediator of functions in NMJ development. Moreover,
muscle YAP was shown to orchestrate post-synaptic differentiation and regeneration of NMJs followed
by a nerve injury. Lack of YAP also reduced β-catenin activity in the NMJs. On a broader perspective,
YAP and β-catenin not only orchestrate the NMJ development but also serve as potent drivers of liver
cancer (Figure 7). As such, activating mutations in β-catenin are detected in 21% of HCC cases [125].
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regeneration. (A) Agrin secretion from motor nerve terminal activates Lrp4-MuSK signaling.
This potentiates YAP and possibly β-catenin activity in the nucleus of muscle cells, thereby, aggregating
Acetylcholine receptors (AchR) and propagating nerve impulse to the muscle cells. (B) Though
adult hearts have minimal agrin expression compared to that during neonatal stages, stimulation
with recombinant agrin has protective values against myocardial infarction (MI) in adult mice hearts.
Mechanistically, agrin binds to and inhibits dystroglycan complex, thereby, shifting YAP into the
nucleus to engage cardiomyocyte proliferation and regeneration.

Therefore, it is tempting to speculate that agrin may control NMJ and cancer progression through
the concerted activities of YAP and β-catenin. Whether agrin regulates β-catenin activity needs further
experimentation. Whether agrin-YAP loop senses the stiffness of NMJs required for efficient impulse
transmission is speculative at this stage. Furthermore, whether agrin stimulates YAP activity for
regeneration of NMJs following nerve injury will be of potential future interests.

Secondly, Bassat et al., identified an exciting role of agrin in promoting regeneration
post-myocardial infarction (MI) in cardiomyocytes [126]. In a related study, dystrophin-glycoprotein
complex (consisting of α- and β-dystroglycans receptors for agrin [70,127]), has been shown as
a part of the Hippo pathway to inhibit YAP activity, and thereby restricting the proliferation of
cardiomyocytes [128]. Mechanistically, high levels of agrin during neonatal stages of heart development
not only inhibits the dystrophin glycoprotein complex to release YAP from the inhibitory effects of the
dystroglycan complex, therefore, potentiating YAP’s nuclear localization in cardiac cells to promote
regenerative capacity. This agrin-induced YAP activity stimulated proliferation and dedifferentiation
of the cardiomyocytes [126]. Consistent with its role in liver cancer, soluble agrin also potentiated
nuclear YAP localization in cardiac cells, and significantly rescued damage incurred from experimental
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MI [126] (Figure 7). However, it needs to be explored whether dystrophin complex forms a part of
Hippo tumor suppressor pathway in liver or other organs. More importantly, these studies potentially
create avenues for an exciting research platform that may include: (i) whether agrin nullifies the
dystrophin-glycoprotein complex in a similar fashion to promote tumorigenesis and invasiveness;
(ii) whether agrin enhances the stiffness of cardiac cells and basal lamina surrounding muscle cells;
and an existence of a temporal stiffness pattern dependent on the age of the cardiac cells also remains
unclear; (iii) do focal adhesions promote agrin-induced cardiac regeneration? The loss of agrin in adult
cardiomyocytes may represent part of the basis for the limited regenerative capabilities of mature
heart muscles. Therefore, strategies aimed at the localized enrichment of agrin within cardiac tissues
to re-activate YAP to restore heart failure will be of immense clinical value. Presently, these findings
support that agrin is a link between extracellular matrix and YAP activation during developmental
stages in multiple organs.

Agrin also represents a key proteoglycan in the glomerular basement membrane (GBM) in kidneys
where it combines with integrins, laminins and nidogen [70,129]. In addition, conditional knock-out of
YAP in mouse kidneys has pronounced nephrogenic abnormalities that phenocopies that of knockout
of Cdc42, a small GTPase downstream to RhoA [130]. Interestingly, agrin may cooperate with Arp2/3
and Cdc42 in the liver cancer cell lines to drive their migratory potential [47]. Moreover, deficiency
of Merlin and LATS1/2 also promote an unusual branching morphology in kidneys that are rescued
upon YAP overexpression [131]. Given that agrin profoundly regulates Cdc42 and Merlin to activate
YAP as a mechanotransduction pathway [47,54,130], it would be very interesting to study the role of
agrin-YAP mechanotransduction pathway in kidney development and tumorigenesis.

3. Conclusions

The precise role of secreted ECM proteins in engaging mechanical signals in cancer, NMJs and
cardiomyocytes is poorly characterized. Irrespectively, these recent findings evoke new insights on the
role of secreted agrin in sustaining the nuclear levels of YAP under mechanically stressed conditions
such as in cancer, nerve impulse propagation, and organ development and regeneration. These findings
advance our understanding on the role(s) of soluble ECM factors (particularly agrin) that facilitate
ECM stiffness, activate key developmental signaling or oncogenes, and thereby promote concerted
signaling and proliferation. Understanding the agrin-YAP mechanotransduction loop may help to
develop therapeutic strategies against diseases including liver cancer. More importantly, extensive
future research is required to understand the influence of cell mechanics involving agrin and YAP
activities in other organs and cancer types.
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