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Abstract: Pancreatic cancer has the worst prognosis and lowest survival rate among all types of
cancers and thus, there exists a strong need for novel therapeutic strategies. Chimeric antigen receptor
(CAR)-modified T cells present a new potential option after successful FDA-approval in hematologic
malignancies, however, current CAR T cell clinical trials in pancreatic cancer failed to improve
survival and were unable to demonstrate any significant response. The physical and environmental
barriers created by the distinct tumor microenvironment (TME) as a result of the desmoplastic reaction
in pancreatic cancer present major hurdles for CAR T cells as a viable therapeutic option in this
tumor entity. Cancer cells and cancer-associated fibroblasts express extracellular matrix molecules,
enzymes, and growth factors, which can attenuate CAR T cell infiltration and efficacy. Recent efforts
demonstrate a niche shift where targeting the TME along CAR T cell therapy is believed or hoped
to provide a substantial clinical added value to improve overall survival. This review summarizes
therapeutic approaches targeting the TME and their effect on CAR T cells as well as their outcome in
preclinical and clinical trials in pancreatic cancer.

Keywords: tumor microenvironment; pancreatic cancer; immunotherapy; CAR T cell therapy;
extracellular matrix; cancer-associated fibroblasts

1. Introduction

Pancreatic cancer, i.e., pancreatic ductal adenocarcinoma (PDAC), is a fatal disease with five-year
overall survival rates of 1% to 5% and median survival duration of fewer than six months [1]. The poor
prognosis has not substantially changed during the past decades, establishing pancreatic cancer as
the fourth leading cause of cancer-related deaths in Western countries [2–4]. Therapeutic progress
in other types of cancer will lead to its ascension in second place among all cancers within the next
decade [5]. Surgery remains the only potentially curative treatment, but only a minority of patients
show a resectable disease stage at diagnosis, due to invasion to the surrounding vasculature and due to
lack of symptoms at an early stage [6]. Nonetheless, the median overall survival is still only 24 months
for patients with resectable disease [7].

Therapeutic failures of chemotherapy, targeted therapy, and immunotherapy of PDAC can
be largely attributed to the special features of this cancer, which exhibits highly nutrient-poor,
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immunosuppressive, hypoxic and desmoplastic characteristics leading to rapid cancer progression [8].
The tumor is composed of only a minor number of malignant cells within a microenvironment of
dense extracellular matrix (ECM), a barrier that prevents adequate drug delivery and might serve as a
prognostic factor (Figures 1 and 2) [8]. Responsible for the stromal reaction are mainly cancer-associated
fibroblasts (CAFs) that develop from bone marrow-derived mesenchymal stem cells (MSCs), pancreatic
stellate cells (PSCs), and quiescent resident fibroblasts through multiple pathways of activation [9].
The complex tumor vasculature in PDAC is characterized by a lack of blood vessels, leading to high
levels of hypoxia in the tumor interior [10]. Furthermore, the capillaries and lymphatic vessels that are
present tend to be collapsed due to high interstitial pressure, either from excess fluid or from solid
stress [11]. Other non-neoplastic cancer-associated cells consist of immune-suppressor cells such as
regulatory T cells (Treg), myeloid-derived suppressor cells (MDSC), and tumor-associated macrophages
(TAM) that can inhibit CD8+ T cells, which play a key role in the antitumor immune response, and
thereby establish an immunosuppressive tumor microenvironment [12]. Neural remodeling and
perineural invasion (PNI), the neoplastic invasion of tumor cells into nerves, are further unfavourable
histological features, and are considered as one of the main routes for cancer recurrence and metastasis
after surgery [13]. Conventional therapies such as chemotherapy and radiation have focused on effective
therapy of the malignant cell population. Thus, a concordant combination of various treatments
targeting additional key cellular features of PDAC such as stroma, reversing suppressive immune
reactions and enhancing antitumor reactivity may lead to more successful treatment strategies [14].
Thus, there is a clinically unmet need for new therapeutic options.

Figure 1. Complex tumor microenvironment (TME) of pancreatic cancer. The pancreatic ductal
adenocarcinoma (PDAC) microenvironment is characterized by a dense desmoplastic stroma, with
cancer-associated fibroblasts (CAFs) presenting the majority of the cell population (in grey). Tumor
cells (round and brown) in aggressive PDACs can occur in tumor buds, small groups of cells, especially
in the invasive front. A high abundance of extracellular matrix (ECM) molecules, enzymes, and growth
factors is another important feature. Immune cells are often excluded from the TME or exhibit an
immunosuppressive phenotype. The distribution of pro- and anti-inflammatory immune cells as well
as the exact composition of the tumor stroma is dependent on the subtype of pancreatic cancer as
discussed by Bailey et al. or by Karamitopoulou [12,15].
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Figure 2. Haematoxylin/eosin-stained human PDAC sample. Tumor cells (arrow) are surrounded by
the desmoplastic reaction of stromal cells and few immune cells.

Immunotherapy is a rapidly developing field within oncological research, especially since the
development of chimeric antigen receptor (CAR) T cells, which are genetically engineered to express
receptors targeting cancer cells for immunotherapy. CAR technology has made leaps of development
since its conception in 1993, combining antigen recognizing regions from antibodies with intracellular
T cell signaling domains (Figure 3) [16]. In this way, potential demasking of tumor cells by major
histocompatibility complex (MHC) class I downregulation, can be overcome [17]. At first, double
chimeric receptors were developed by engineering the VH and VL chains of immunoglobulins to
the constant regions of the T cell receptor (TCR) [18]. Over time, CARs were modified into a single
chain approach coupling a single chain variable fragment (scFv) derived from an antibody via a
spacer and transmembrane domain to the CD3ζ signaling domain of the TCR [16]. The addition of
costimulatory domains from CD28 or 4-1BB generated a stronger activating signal, circumventing the
intracellular activation by TCR-domains, defining the second CAR generation [19]. Second-generation
CARs targeting CD19 are the first CAR success-story wherein phase II study 81% of the B cell
acute lymphoblastic leukemia patients demonstrated complete remission 28 days after infusion [20].
Their tremendous success in the treatment of leukemia and lymphoma patients led to the FDA
approval of the first CAR T cell therapy as a second-line treatment in 2017 [21]. The incorporation of
further costimulatory domains derived from CD27 or CD40 as well as the introduction of additional
cytokine expression or induction of other signaling pathways established the third, fourth, and
fifth generations of CAR T cells, increasing cytokine production, cell survival, and persistence [22].
In recent years, advanced CAR concepts, such as Tandem or Universal CAR approaches have been
developed and enabled the targeting of challenging antigen expression profiles on cancer cells [23].
Other advanced CAR technologies explore mechanisms to switch on and off CAR expression on T cells
to control possible toxic side effects [24]. Another upcoming class of engineered receptors is synthetic
Notch (synNotch) receptors, which can induce transcriptional activation after target recognition [25].
Ultimately, all developmental generations of CARs offer various opportunities and challenges for
prospective cell-based approaches as reviewed before [22,24,26].

Unfortunately, fewer exciting outcomes were achieved in initial clinical trials with CAR T cells
targeting solid tumors, including PDAC. Successful CAR therapy for carcinomas needs to overcome
the physical and environmental barriers in the tumor microenvironment (TME) [27]. The TME consists,
next to tumor cells, of endothelial, immune, and inflammatory cells, stromal cells, the extracellular
matrix and a broad spectrum of enzymes, cytokines, and growth factors [28]. This creates a strong
physical barrier for CD8+ T cells, while their immune response is further diminished by the high
amount of immunosuppressive immune cells present in the TME of PDAC [12,29]. These aspects
must be considered and addressed in the field of cell-based immunotherapy against solid cancers.
Here we review different strategies to overcome these hurdles for successful CAR T cell therapy in
pancreatic cancer.
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Figure 3. Developmental stages of chimeric antigen receptors. The first double chain chimeric receptors
were engineered to customize the variable T cell receptor (TCR) domain by using VH and VL chains of
antibodies (orange and bright blue boxes) fused to the constant regions of the TCR α- and β-chains
(green and blue boxes). They mimicked the TCR in appearance and functionality. Activation relies
on association with intracellular CD3ζ (yellow boxes), CD3γ, CD3δ, and CD3ε chains (purple boxes).
The first generation of CARs combined the antigen recognizing scFv directly with the CD3ζ-signalling
domain in one construct overcoming expression difficulties by the tremendous construct length of
double chain chimeric receptors. Cytotoxicity, proliferation, cytokine secretion, and persistence of CARs
were increased in second and third generation CARs by the addition of further costimulatory domains
(CS1 and CS2) such as CD27, CD28, CD134, or 4-1BB. Introduction of T cell redirected for universal
cytokine-mediated killing (TRUCKs) or fourth generation CARs increased the flexibility in CAR design
for specific challenges even further, enabling local expression of cytokines such as IL-12, which are
toxic in high concentrations. Fifth generation CARs, as fourth generation CARs, are based on second
generation CARs. The individual antigen response is complemented by activation of intracellular
domains of cytokines (dark blue box) e.g., IL-2Rβ, which induced signal transduction in the STAT3/5
pathway. Another group of artificial antigen receptors, gaining increased interest in recent years, are
synNotch receptors. These receptors use the cleavage process after Delta-Notch binding and enable an
unlimited variety of responses (green box) after target recognition such as cell fate determination with
transcription factors and expression of selected cytokines or therapeutic antibodies. In this way, they
bring the potential of immune cells as “living drugs” a big step forward.

2. CAR T Cells and the Tumor Microenvironment of Pancreatic Cancer

2.1. CAR Targets for Pancreatic Cancer

The first obstacle for effective CAR T-cell therapy for carcinomas is the lack of suitable targets on
carcinoma cells. CAR T therapy induces an ablation of all cells with a certain degree of antigen expression
leading to potentially fatal side effects such as “on target/off tumor” toxicities [30]. Unfortunately,
this is also the case for most of the PDAC targets tested in preclinical and clinical trials such as
carcinoembryonic antigen (CEA), CD133, CD70, Claudin 18.2, epithelial cell adhesion molecule
(EpCAM), receptor tyrosine-protein kinase erbB-2 (HER2), mesothelin, and prostate stem cell antigen
(PSCA) (Table 1) [31].
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Table 1. Therapeutic options for combinatorial stromal and immunotherapy.

Therapeutic Proposed Effect Clinical Trials References

2.1. CAR T Cell Therapy for Pancreatic Cancer

CEA CAR Target

Pancreatic cancer:
NCT03818165, NCT04037241, NCT02850536, NCT02349724,

NCT03682744, NCT03267173,
NCT02416466, NCT02959151

[31]

CD133 CAR Target Pancreatic cancer:
NCT02541370 [31,32]

CD70 CAR Target Pancreatic cancer:
NCT02830724 [31]

Claudin 18.2 CAR Target Pancreatic cancer:
NCT03890198, NCT03302403 [31]

EpCAM CAR Target Pancreatic cancer:
NCT03013712 [31]

HER-2 CAR Target Pancreatic cancer:
NCT02713984, NCT03267173 [31]

Mesothelin CAR Target

Pancreatic cancer:
NCT02706782, NCT03267173,

NCT03497819, NCT03638193, NCT01897415, NCT01583686,
NCT02465983, NCT03323944,
NCT02959151, NCT02580747

[31,33]

PSCA CAR Target Pancreatic cancer:
NCT03267173, NCT02744287 [31]

2.2.1. Cancer-Associated Fibroblasts

FAP-CAR T cells CAF depletion
Solid tumors:

NCT03932565, NCT01722149,
NCT03050268

[34–38]

Vismodegib CAF depletion

Pancreatic cancer:
NCT01195415, NCT01064622,
NCT01537107, NCT01088815,
NCT00878163, NCT01713218,

NCT02465060

[39]

CAF vaccine CAF depletion N/A [40]

ATRA CAF remodeling Pancreatic cancer:
NCT03307148, NCT03878524 [41,42]

JQ1 CAF remodeling N/A [43,44]
Calpeptin CAF remodeling N/A [45]

2.2.2. Components of Extracellular Matrix in Pancreatic Cancer

Heparanase-expressing
CAR T cells

Heparan sulphate
proteoglycans degradation N/A [46]

CBD-IL-2/CBD-CPI Collagen redirected delivery N/A [47]
BC-1 Fibronectin redirected delivery N/A [48]

DARLEUKIN Fibronectin redirected delivery

Pancreatic cancer:
NCT01198522
Solid tumors:

NCT01058538, NCT02086721, NCT02735850, NCT03705403

[49–51]

TELEUKIN Tenascin-C redirected delivery Solid tumors:
NCT01131364, NCT01134250 [52,53]

PEGPH20 Hyaluronic acid degradation

Pancreatic cancer:
NCT03481920, NCT01453153,
NCT01839487, NCT04058964,
NCT03634332, NCT02241187,
NCT02921022, NCT02910882,
NCT01959139, NCT04134468,
NCT03193190, NCT02715804

[54–57]

ABT-510 Thrombospondin 1 inhibition

Pancreatic cancer:
NCT00586092
Solid tumors:

NCT00113334, NCT00073125, NCT00061646

[58–61]

CVX-045 Thrombospondin 1 inhibition Solid tumors:
NCT00879554 [62,63]

Trabectedin Thrombospondin 1 inhibition

Pancreatic cancer:
NCT01339754
Solid tumors:

NCT00002904, NCT00786838, NCT03127215, NCT01273480,
NCT01267084

[62–64]

MZ-1 Periostin inhibition N/A [65]
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Table 1. Cont.

Therapeutic Proposed Effect Clinical Trials References

2.2.3. Growth Factors in Pancreatic Cancer

Bevacizumab VEGF) inhibition
Pancreatic cancer:

NCT00614653, NCT00365144, NCT00088894., NCT00112528,
NCT00366457, etc.

[66–68]

BGB324 Axl RTK inhibition Pancreatic cancer: NCT03649321 [69]
TP-0903 Axl RTK inhibition N/A [70]

Abbreviations: CEA, carcinoembryonic antigen; EpCAM, epithelial cell adhesion molecule; HER-2, receptor
tyrosine-protein kinase erbB-2; PSCA, prostate stem cell antigen; FAP, fibroblasts activation protein; CAR, chimeric
antigen receptor; CAF, cancer-associated fibroblasts; ATRA, all-trans retinoic acid; N/A, not applicable; CBD, collagen
binding domain; CPI, immune checkpoint inhibitors; PEGPH20, PEGylated recombinant human hyaluronidase;
VEGF, vascular endothelial growth factor; RTK, receptor tyrosine kinase.

The most advanced targets for clinical consideration are CEA and mesothelin, with up to five clinical
trials completed, active, or recruiting (CEA: NCT03818165, NCT02850536, NCT02416466, NCT04037241,
NCT03682744; mesothelin: NCT03323944, NCT03497819, NCT03638193, NCT01897415). In contrast,
the only published results from clinical trials of CAR T cells in PDAC originate from mesothelin and
CD133. The mesothelin-specific CAR trial resulted in two patients with a progression-free survival of
four to five months and another patient showed a reduction of liver lesions, but not of the primary
tumor (NCT01355965) [33]. The CD133 CAR trial also demonstrated a partial remission in two PDAC
patients with Grade II toxicity, potentially due to the expression pattern of CD133 in hemopoietic stem
cells (NCT02541370) [32]. Both studies verified the feasibility, safety, and principal efficacy of CAR
T cell therapy for pancreatic cancer. Nevertheless, several problems prevented the induction of full
remission and improvement of survival by immunotherapy despite its efficacy against metastases,
often the discriminating factor for successful cancer therapy [71]. Two of the problems that must
be solved for effective CAR T cell treatment are (i) emerging exhaustion and (ii) missing persistence
of CAR T cells [32,33]. Co-treatment with PD-1/PD-L1 interfering checkpoint inhibitors or multiple
infusions of CAR T cells might overcome these problems [72]. This aims to precondition chemotherapy
and CAR constructs modifications, e.g., different costimulatory domains for CD4+ and CD8+ CAR
T cells as well as transgenic cytokine expression, might overcome these problems [72]. However
expression levels of cytokines need to be steered carefully, e.g., with conditional induction, to limit the
risk for toxic cytokine release syndrome (CRS) [73].

The heterogeneity underlying PDAC makes therapeutic options based on one-size-fits-all
approaches ineffective. Among others, Bailey et al. [15] defined for example four subtypes of
PDAC, based on genomic analysis correlating with histopathological characteristics. These various
PDAC types and their distinct stroma subtypes imply a specific stratification of the patients due to
different behavior under the same treatment [74]. The complexity is further increased by another hurdle,
which remains unchallenged: advanced targets in pancreatic cancer are usually heterogeneously
expressed and are sometimes just present on 20% of the tumor cells, leading to progression of the
diseases by the target-negative cells in the clinical trials [31–33]. Therefore, classifying patients in
subtypes that could benefit from cell therapy would help improve outcomes and quality of life as
well as avoid ineffective or even risky therapy approaches. These complex circumstances require the
identification of new CAR targets as well as sophisticated Tandem, Universal CAR, and adapter-CAR
approaches. In this way, unintentional “on target/off tumor” toxicities can be prevented for a safe and
balanced application of CAR T cells in pancreatic cancer [75].

2.2. Targeting the Tumour Microenvironment in Pancreatic Cancer

A second major hindrance for cell therapy is the complex TME of solid tumors, representing an
exceptional challenge in comparison to other tumor types. However, the histological key feature of
PDAC is the occurrence of a unique desmoplastic reaction, comprising over two-thirds of the total
tumor volume and destructing the architecture of normal pancreatic tissue [76]. Desmoplasia is marked
by a dramatic increase in the proliferation of alpha-smooth muscle actin-positive fibroblasts and is
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also accompanied by the increased deposition of extracellular matrix molecules [77]. This has a strong
impact on treatment outcomes since cytotoxic therapy can not only increase the amount of active
CAFs but also increase their treatment resistance and tumor aggressiveness [78]. Another aspect of the
dense tumor stroma is the limited availability of nutrients and oxygen [12]. The consequences of this
deprivation for immune cells, including CAR T cells, in the stroma of solid tumors as well as major
changes in the metabolic processes of the TME, have been extensively reviewed elsewhere [79–81] and
will not be addressed in this review.

2.2.1. Cancer-Associated Fibroblasts

Under normal conditions, stromal fibroblast cells communicate and interact with the surrounding
ECM. They secrete and synthesize new ECM molecules as well as growth factors and enzymes,
e.g., upon stimulation by tissue injury [82]. Under pathological conditions in the context of cancer
however, the complexity of fibroblasts’ roles increases. In an early tumour stage, fibroblasts have been
demonstrated to prevent tumour growth by remodeling the ECM and inducing an anti-tumour immune
response [83]. Whereas at later stages with an established tumour, fibroblasts transform into activated
CAFs, where they become tumorigenic and enhance metastasis-potential and chemoresistance [84].
ECM molecule expression and release of tumour-promoting cytokines can also be increased in activated
CAFs, but stimuli and time point of phenotype switch are still under investigation [85]. CAFs can
originate from various cell types, such as resident fibroblasts, chondrocytes, adipocytes, mesenchymal
stem cells, pericytes, and mesenchymal transitioned endothelial and epithelial cells, including cancer
cells and cancer stem cells [86]. In PDAC, CAFs can additionally be derived from PSCs, quiescent under
normal conditions but transitioned into a myofibroblast-like phenotype under pathophysiological
conditions in the pancreas [87]. Regardless of CAF origin, this cell type can constitute up to 90% of the
tumour mass in PDAC, representing an inevitable hurdle for expedient treatment strategies [88].

Accordingly, numerous efforts have tried to dispose of CAFs or reprogram them within the
TME [89]. In the context of CARs, several groups have generated fibroblast activation protein
(FAP)-redirected CAR T cells to erase FAP-expressing CAFs, resulting in a reduction of ECM molecules
and tumour growth, also in a syngeneic murine pancreatic cancer model [34–36]. FAP is a serine protease
capable of local ECM modification by changing fibronectin orientation [90]. All studies emphasized the
value of co-targeting CAFs and tumour cells simultaneously for solid tumours. Nevertheless, a debate
is on-going regarding the safety of FAP as a CAR target, after the demonstration of hematopoietic side
effects due to FAP+ bone marrow stromal cells (BMSCs) in mice [37,38]. Other possible extracellular
markers expressed on CAFs, e.g., platelet-derived growth factor receptor (PDGFR) α and β, exhibit
inappropriate expression patterns [86,91]. Therefore, more convenient and safe targets or target
combinations need to be evaluated for successful CAF-redirected CAR establishment.

Next to cell-based CAF depletion, drug-based therapeutic options have also been proposed.
Nab-paclitaxel has been shown to decrease CAFs numbers in PDAC in a clinical trial in combination
with gemcitabine (NCT00398086) [92]. Small molecules inhibiting the sonic hedgehog (SHH) pathway
have demonstrated promising preclinical results but failed to recapitulate these outcomes in clinical
trials [93,94]. A phase II clinical trial (NCT01130142, NCT01064622) with a combination of vismodegib
(GDC-0449) and gemcitabine revealed no survival benefit [39]. One possible explanation supported
by the results of Özdemir et al. [95] is that the depletion of myofibroblasts in pancreatic cancer
may also accelerate cancer growth and reduce survival. While the myofibroblast-depleted tumours
did not respond to gemcitabine, anti-CTLA4 immunotherapy inverted the outcome and resulted in
prolonged animal survival. Although FAP+ cell-depletion upon adenoviral vaccination demonstrated
an improvement of CD8+ T cell function [40], remodeling of CAF expression pattern instead of
CAF depletion might be a better-suited strategy for combinatorial approaches with immunotherapy
in PDAC. The clinically most advanced substance to alter CAF expression phenotype is all-trans
retinoic acid (ATRA), currently used as the standard treatment of acute promyelocytic leukaemia
but also tested in PDAC [96]. It reduces ECM and cytokine secretion by inhibiting FAP, ACTA2
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and transforming growth factor β receptor (TGF-βR) expression on CAFs [41]. Suitability of ATRA
for stromal remodeling in pancreatic cancer is currently under clinical investigation (NCT03307148,
NCT03878524) [42]. Another preclinical substance reducing CAF activation and expression in PDAC
is JQ1; an inhibitor of the BET family of bromodomain chromatin-modulating proteins [43]. JQ1 has
been demonstrated to control MYC silencing [97]. Since MYC-activated cells secrete factors, which
can induce an MYC-dependent metabolic program in CAFs, JQ1 might be able to interfere with the
tumour cell-CAF crosstalk [44]. Furthermore, the PDAC-specific CAF precursor cells, PSCs, can be
remodeled to decrease the desmoplastic reaction. Calpeptin, a calpain inhibitor, was also able to
decrease fibrosis in a subcutaneous xenografts mouse model using co-implantations of PSCs and
pancreatic cancer cells [45]. A combination of metformin and gemcitabine resulted in significantly lower
tumour size and reduced collagen amounts in an orthotopic mouse model [98]. Unfortunately, most of
the approaches are not protein or nucleic acid-based and cannot be produced by CAR effector cells.
Therefore, FAP-depleting or remodeling molecules could be applied as a pharmacological pre-treatment
to reshape the therapy-inhibiting expression pattern of CAFs. Alternatively, FAP-redirected CAR T
cells could be used to deliver CAF remodeling factors or antibodies to inhibit the crucial expression
profil of CAFs and their autocrine feedback loops (Figure 4) [99]. Tandem chimeric antigen or synNotch
receptor approaches could be appllied simultaneously or in a time-shifted manner.

Figure 4. Strategies for CAR T cells to overcome or use the TME for successful immunotherapy.
CAR T cells face major hinderances created by the distinctive TME of pancreatic cancer. Some of the
hinderances might be surmounted or turned into a specific targeting strategy. CAFs may represent up
to two thirds of the pancreatic tumor mass. However, CAF-depletion or remodeling approaches using
CAR T cells or pharmacological substances such as ATRA or nab-paclitaxel might be able to break
their crucial influence in the TME. Another strategy, potentially breaking the crucial influence of CAF
expression profile in the TME, could be the application of FAP-redirected synNotch CAR T cells to
deliver specific antibodies for inhibition of excess growth factors. Collagen is a key molecule in the
creation of the dense ECM of PDAC, while its presence could be used for specific delivery of cytokines,
required to boost CAR T cell efficacy and persistence. Moreover, it has already been demonstrated
that CARs, re-equipped with ECM-degrading enzymes, such as heparanase, had higher infiltration
compared to the control CARs. Multiple TME components have a high potential of influencing vessels
development and growth. These components need to be targeted and modified, e.g., by inhibitory
antibodies to improve vessel functionality and ensure directed CAR T cell transport to the pancreatic
tumor. Use of broad RTK inhibition needs to be balanced after careful consideration of their influence
on different TME players. In this way, polarization of pro-inflammatory cells into anti-inflammatory
cells can be prevented.
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2.2.2. Components of Extracellular Matrix in Pancreatic Cancer

One of the key features of activated fibroblasts is their distinct ECM production, especially
crucial in PDAC with its pronounced desmoplasia [86]. Whatcott et al. [100] observed a strong
negative correlation between patient survival and high levels of ECM deposition, also a solid tumour
specific hurdle for immunotherapy [101]. Thus, the composition of the ECM in combination with the
capability of CAR T cells to degrade extracellular matrix proteins can have a major influence on T cell
tumour-trafficking and infiltration. A major challenge, however, is the fact that ECM proteins are not
necessarily tumour-specific, but exert important physiological functions in organ development, tissue
integrity, and wound healing [102].

Caruana et al. [46] demonstrated that ex vivo manipulated CAR T cells may downregulate
ECM-degrading enzymes and overexpression heparanase improved CAR T cell infiltration and
anti-tumour activity in vivo. However, heparan sulphate proteoglycans are not the only obstacle in the
ECM of PDAC [103]. It is composed of collagens, non-collagen glycoproteins, glycosaminoglycans,
growth factors, and proteoglycans as well as modulators of the cell-matrix interaction. Overexpressed
ECM molecules, including thrombospondin, periostin, hyaluronic acid (HA), tenascin-C, vitronectin,
collagens, and fibronectin increase pancreatic cancer cell migration and invasion [104]. Some of these
molecules have already been exploited for possible effects on immunotherapy approaches.

Structural Protein

Collagen is the most frequent molecule in the ECM of PDAC and a major component of the
desmoplastic reaction [105]. Furthermore, a collagen-derived proline can compensate as an alternative
nutrient source in the resource-deprived TME [106]. However, collagen also regulates the activity,
phenotype ratio and the amount of tumour-infiltrating T cells due to its dense network [107]. In this
way, mammary tumours with a high collagen-density, correlated with a worse prognosis, contained a
higher ratio of CD4+ to CD8+ T cells and an overall reduced amount of infiltrating CD8+ T cells. In
PDAC, it was demonstrated that excessive collagen amounts abrogated tumour cell-directed movement
of T cells by chemokines, but favoured T cell movement to the stroma cells in a contact guidance
dependent manner [108]. These findings imply the relevance of the ECM composition for cell-based
immunotherapy in solid tumours. Despite the severe impairment created by the collagen network,
Ishihara et al. [47] managed to turn the presence of collagen into an advantage by increasing the
delivery of cytokines with a short half-life, such as IL-2, and checkpoint inhibitors specifically and
dosable to the TME through coupling to a collagen-binding domain. This enables a safe approach to
shift the balance of pro- and anti-tumorigenic cytokines and stimulate the immune cells in the TME.
Consequently, collagen-redirected IL-2 reduced common side effects such as vascular leak syndrome
and increased tumour infiltrating CD8+ T cells in an orthotopic breast cancer mouse model [47].

Glycoproteins

Fibronectin, another common molecule in the ECM of pancreatic cancer, but not in healthy tissues,
is considered to be a significant hallmark of epithelial-to-mesenchymal transition (EMT) occurring in
advanced tumours [109]. Fibronectin interacts with many ECM and surface molecules, creating an
active interaction platform. This stimulates the EMT and multiple aggressiveness- and resistance-related
signalling pathways, which in turn upregulate fibronectin expression, resulting in a strong feedback
loop in the TME [110]. As in the case of collagen, intratumoural regions with low fibronectin amounts
displayed high leukocyte infiltration [111].The important role of fibronectin led to the creation of several
approaches inhibiting its functions or using its presence in the TME for imaging, drug delivery, and
therapy [112,113]. BC-1 coupled to IL-12 was used for TME-targeted cytokine delivery in clinical studies
and resulted in stable disease in 46% of melanoma or renal cell carcinoma patients [48]. However,
the single-chain variable fragment (scFv) L19-based cytokine delivery is more clinically advanced
than the BC-1 based IL-2 delivery [49]. L19-IL2 (DARLEUKIN®) is already in clinical trials against
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various solid tumour types (NCT01058538, NCT02086721, NCT02735850, NCT03705403). Despite the
promising preclinical results, a clinical trial of L19-IL2 with gemcitabine in patients with advanced
pancreatic cancer had to be terminated due to lack of recruitment (NCT01198522). Nevertheless, phase
II trials in melanoma patients resulted in reduced metastasis and increased survival demonstrating the
potential of fibronectin-redirected IL-2 [50,51]. Besides IL-2, L19 was also coupled to IL-12 and tumour
necrosis factor (TNF) α, revealing equally promising results in solid metastatic cancers [58,114], in
particular for L19-TNF in combination with L19-IL2 [115]. In this way, targeting fibronectin enabled
TME-specific cytokine delivery to outbalance immunosuppressive cytokines. This can be exploited as
a combinatorial therapeutic strategy together with CAR T cells or as a pre-treatment.

Similar to fibronectin, tenascin-C is mostly present in the pathophysiological conditions of adults,
building up a provisional matrix in the scar formation process [59]. It is upregulated in the ECM
of solid tumours, including PDAC [60]. While the exact role of tenascin-C remains undefined, it is
widely known for its modulation capacity on cell adhesion to fibronectin and its promotion of EMT,
enhancing cancer cell growth and motility [116,117]. It has also been shown to interact with multiple
ECM molecules and to facilitate the angiogenic switch by representing an important factor of the
AngioMatrix (ECM and related protein involved in the angiogenic switch) inducing resistance to chemo-
and anti-angiogenic therapy in PDAC [118]. Nevertheless, no correlation between high tenascin-C
expression and survival has been determined. However, overexpression of tenascin-C together with
other ECM-related factors has been shown to correlate with poor prognosis for patients of pancreatic
cancer [119]. Tenascin-C pronounced importance in the context of solid tumours led to multiple
approaches to modify tenascin-C in the ECM or to make use of its presence. Inhibition of tenascin-C
expression is possible by blocking its natural activation pathways such as transforming growth factor β
(TGF-β), but also by RNA interference resulting in only short survival prolongation [120]. Tenascin-C
expression and signalling have been demonstrated to be prevented by angiotensin II type 1 receptor
(AT-1) and angiotensin-converting enzyme (ACE) inhibitors, which has not yet been assessed in the
clinic [120]. Another possibility would be to erase tenascin-C, as previously described for heparan
sulphate proteoglycans, from the ECM of solid carcinomas, a process occurring after wound healing.
Unfortunately, this mechanism has not yet been identified (reviewed by Spenle et al. [120]). Therefore,
as in the case of fibronectin, multiple antibodies have been generated redirecting radionuclides and
cytokines to the tenascin-C-rich ECM. F16-IL2 (TELEUKIN®), an IL-2 coupled antibody-cytokine
fusion protein is the most advanced candidate with two clinical trials in solid tumours, such as breast
and lung cancer (NCT01131364, NCT01134250). This recombinant protein demonstrated its ability to
increase survival as well as the number of macrophages and NK cells in the tumour stroma in a BALB/c
nude mice breast cancer model [52]. F16-IL2 clinical potency has also been analysed in a clinical setting
in solid tumours including pancreatic tumours, demonstrating an anti-cancer activity in combination
with doxorubicin [53].

Thrombospondin 1 (TSP-1) is a strong inhibitor of angiogenesis, promotes inflammatory (‘M1-type’)
macrophage recruitment and prevents stemness of cancer cells. Via its crosslinking-interaction with
the “don’t eat me”-signal CD47 it can directly induce tumour cell death [121,122]. However, it also
releases the active form of TGF-β from its latent form, promotes Treg formation and inhibits T cell
proliferation [123,124]. Several inhibitors for TSP-1 are available with the most advanced being ABT-510,
CVX-045, and Trabectedin [62,63]. While ABT-510 showed a limited increase of cytotoxic T cell frequency,
it did not demonstrate efficacy in various solid tumours as a monotherapy leading to its suspension
from clinical development (NCT00586092) [62,125,126]. Trabectedin, approved for the treatment
of sarcoma and ovarian cancer, indicated a tremendous effect on favourable cytokines/chemokine
expression level, although there was no efficacy as a single agent in stage II clinical trial for salvage
therapy in metastatic pancreatic cancer (NCT01339754) [64]. Nevertheless, based on the findings of
Weng et al. [127] TSP-1-targeted therapy in combination with cell therapy may deserve a second chance
as a more nuanced treatment. Here it was shown that downregulation of TSP-1 solely in dendritic cells
increased the amount of tumour-infiltrating CD4+ and CD8+ T cells [127].
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Glycosaminoglycan

Next to heparan sulphate proteoglycans, hyaluronic acid (HA) is another glycosaminoglycan,
overexpressed in the ECM of PDAC [104]. HA is widely expressed in all tissues and plays an important
role in multiple biological processes, e.g., cell proliferation, inflammation, and angiogenesis [128].
Nevertheless, it exerts its most important biological functions by regulating cell motility via CD44,
the tissue hydration influencing the intestinal fluid pressure (IFP), tissue permeability, and drug
delivery potential [100,129]. Consequently, high amounts of high molecular weight HA contribute
to a stiff tumour matrix increasing the IFP and reducing the ability of chemo-, nanomedicine, and
cell-based therapies to penetrate stroma-rich tumours [130]. Accordingly, HA accumulation in the
ECM of pancreatic cancer patients correlates with poor survival [131]. Unlike tenascin-C, there
is a specific way to remove excess high molecular weight HA from the ECM. HA disruption
with the PEGylated human recombinant PH20 hyaluronidase (PEGPH20) indicated improved
drug delivery and response in a mouse model of pancreatic cancer and increased CD8+ T cell
infiltration and better checkpoint inhibitor efficacy in a syngeneic breast cancer mouse model [54,55].
PEGPH20 treatment also resulted in a remodeling of the TME by decreasing other ECM molecules,
such as collagen and tenascin-C. The promising preclinical success was also transferred to the
clinic (NCT03481920, NCT01453153, NCT01839487, NCT04058964, NCT03634332, NCT02241187,
NCT02921022, NCT02910882, NCT01959139, NCT04134468, NCT03193190, NCT02715804) and was
in stage III of clinical development for pancreatic cancer [56]. Unfortunately, the phase III study was
not able to meet the endpoint criteria, halting further development [57]. Nevertheless, especially
for cell-based therapy approaches, which are limited by larger diameters (hydrodynamic size)
than chemotherapeutics, depletion of HA may have a potential of exerting a significant impact
on therapy delivery.

Altogether, these findings imply the importance of the ECM for the outcome of cancer therapy
including immunotherapy. The impact of the ECM on the therapeutic outcome is further strengthened
by the wide range of cytokines, which are bound and released by various ECM molecules after
expression by CAFs and tumour cells, as recently reviewed by Tzanakakis et al. [132] for the group of
the proteoglycans. Furthermore, options that failed before as monotherapies or in combination with
chemotherapeutics deserve a second consideration for suitability in combination with immunotherapy.
In the long-term, the latest CAR technologies could be utilized to secrete engineered proteins to increase
tumoricidal immune response and CAR T cell infiltration, overcoming the complex barriers created by
the ECM.

Growth Factors in Pancreatic Cancer

The majority of the growth factors, expressed by cancer cells or CAFs in the TME, increase cell
survival, proliferation, migration, and metastasis in an autocrine feedback loop or in a paracrine
manner, via their associated receptors [99]. They can also be bound by ECM molecules and be released
by enzymes, such as matrix metalloproteinases (MMPs) [86,133]. Aside from the close cancer cell and
fibroblast communication network, some of these factors are also released by other immune cells in the
TME, such as tumour-favouring M2 macrophages or neutrophils [134,135].

A thoroughly-investigated factor is the vascular endothelial growth factor A (VEGF-A), and
its receptor (VEGFR2), which regulates the process of angiogenesis [28]. Unlike most hematologic
malignancies, solid tumours heavily depend on the formation of new vessels for sufficient blood
supply. Hypoxia in all tissues, including cells present in the intertumoral regions of PDAC, induces
the expression of VEGF after hypoxia-inducible factor 1 alpha (HIF-1) translocation to the nucleus in a
gradient manner, which in turn initiates the growth of new blood vessels into hypoxic regions [136,137].
Nevertheless, the relationship between angiogenesis and PDAC is far more complex. On the one
hand, PSCs and CAFs secrete VEGF, which leads to increased, disorganized vascular growth and
formation with enhanced IFP [11]. While on the other hand, the dense desmoplastic reaction around
pancreatic tumours leads to vascular disruption, which further increases hypoxia and reduces drug
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administration [10]. This leads to insufficient therapeutic-dose delivery that might, to some extent,
explain the low survival rates in patients with pancreatic cancer [61,138]. Cell therapy also relies
on functioning vessels [79]. Fortunately, vessel function can be restored by using anti-angiogenic
treatments, such as bevacizumab, to normalize vessel organization and IFP [139]. Co-treatment of
angiogenesis inhibitor bevacizumab together with GD2-redirected CAR T cells increased tumour
infiltration and antitumor activity in a preclinical neuroblastoma model [66]. Bevacizumab was already
tested in pancreatic cancer patients in combination with gemcitabine. Despite the promising objective
response rate of 21%, there was no difference in the overall survival time between the bevacizumab
and the placebo group (NCT00088894) [67]. This undesirable outcome may be attributed to the ability
of tumours to acquire resistance to VEGF inhibition, e.g., by the release of more proangiogenic factors,
such as angiopoietin 1 (ANGPT1), resulting in increased amounts of vascular progenitor cells [140].
Recently, another mechanism dependent on the ECM molecule periostin, present in ECM of PDAC, has
been revealed and induced revascularisation and macrophage recruitment [65]. The second effect was
reversible by the addition of an anti-colony stimulating factor 1 receptor (CSFR1) antibody, blocking
macrophage infiltration [65]. This highlights the importance of understanding the individual TME
composition of each patient in order to match the most suitable anti-angiogenic treatment, because
many of the early mentioned ECM molecules have been shown to modify angiogenesis in different
ways, e.g., by VEGF interaction [129]. Modification of other TME molecules, such as thrombospondin-1,
together with anti-angiogenic treatment has already been evaluated in the clinic by the co-treatment of
advanced solid tumours with bevacizumab and ABT-510, resulting in partial response for one patient
and stable disease for more than a year in five patients [68]. Hence, combining multiple anti-angiogenic
approaches with cell therapy might be necessary for a successful cell-based immunotherapy of
PDAC. These findings stress the importance of moving away from the current one-size-fits-all therapy
approaches to more personalized combinatorial therapies, simulating personalized nanomedicine
approaches [141].

Tumour cells in hypoxic areas often express other growth factors next to VEGF. Their interactions
with their defined receptors lead to receptor tyrosine kinase (RTK) induction, which can be antagonized
by the blockage of downstream signalling pathways with RTK inhibitors [142]. RTKs are a group of cell
surface receptors involved in multiple key pathways of cell proliferation, differentiation, survival, and
migration. The inhibition of the RTK, Axl, attracted attention for its influence on immune cells and not
on tumour cells. Axl has been associated with the traditional RTK pathways in cancer cells and with the
regulation of innate immune response and a more aggressive and resistant phenotype [143,144]. These
findings motivated the preclinical evaluation of the Axl receptor as a target for monoclonal antibody
immunotherapy in pancreatic cancer [145]. Small molecule inhibition by BGB324 of Axl decreased
immune suppression and increased chemotherapy potency in pancreatic cancer and synergized with
CAR T cell therapy in B cell malignancies [69,70]. This in vivo demonstrated synergy was dependent on
T helper cell type 1 phenotype polarization, expressing an anti-tumorigenic cytokine profile, induced
by Axl inhibition. Given the great influence on vessel functionality and further, on immune cells,
growth factor modification might have a significant influence on the improvement of immunotherapy
in solid tumours. These findings encourage the application of already clinically approved drugs as
supporting combinatorial approaches with immunotherapy. Upon favourable outcomes from clinical
trials, biological inhibitors such as bevacizumab, could even be secreted by the CAR T cells, creating a
living drug.

3. Conclusions

Pancreatic cancer represents an exceptional challenge for successful cancer therapy. CAR T cells
are no exception, instead, they face great obstacles but also have the capacity to offer valuable chances.
Cell-based immunotherapy has shown pronounced clinical success in hematologic malignancies and
its feasibility has been demonstrated in pancreatic cancer, but it needs to overcome certain barriers,
such as infiltration, persistence, and exhaustion. However, the first major hurdle is the heterogeneity
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of pancreatic cancers in terms of proposed subtypes and varying target expression. This requires
advanced CAR technology to ensure the successful targeting of all cancer cells. The complex and
heterogenous TME is the second major hurdle specifically for CAR T cells against pancreatic cancer.
All parts of the TME require individual strategies. Reprogramming of CAFs might be more favorable
than CAFs depletion without directly powering up the therapy intensity. The presence of tumor specific
ECM molecules, as described in this review, would enable a specific delivery of cytokines, using agents
such as F19-IL-2 [53]. In this way, both approaches could be combined strategically to first loosen the
dense stroma, before boosting up CAR T cells. This represents an option to increase the temperature of
immunological “cold” tumors, similar to PDACs [146]. However, tremendous tumor growth in areas
that are no longer suppressed needs to be vigorously prevented. The same holds true for situations,
where CAR T cells are equipped with ECM-degrading enzymes, such as overexpressed heparanase, or
tumors are pre-treated with IFP decreasing molecules such as PEGPH20 [55,56]. Restored baseline
IFP and vessel function is of major importance for successful CAR T cell delivery to the tumor,
even if they are provided with infiltration-increasing mechanisms, such as heparanase [46]. IFP
and enhanced permeability and retention (EPR) effect in cancer nanomedicine are closely related.
Hence, high-resolution 3D imaging techniques, used in nanotherapy, could be applied for translational
approaches in terms of vessel functionality in vivo and later patient stratification for combinatorial
cell-based therapies [147].

A high need for vessel functionality assessment is also present for the analysis of the interplay
of all the ECM molecules and growth factors in the TME, which can influence vessel growth and
development [11,68]. Tumors undergoing anti-angiogenic treatment strategies, such as bevacizumab,
may develop resistance mechanisms. Those mechanisms can be dependent on the ECM composition,
but might also be overcome by modifications of the present molecules. The availability of
vessel-independent growth factors, secreted by the various players in the TME indicates a medical need
for in-depth patient-stratifications based on the presence of key different TME molecules, especially
when it comes to the application broad range RTK inhibitors. This research requires technically
advanced organoid or tissue printing methods, combined with established immunological assays.

Taken together, there is an overall need for the development of new in vivo and in vitro assays
in combination with imaging strategies to facilitate combinatorial research and improve preclinical
translation potential. Agents, which might have failed as monotherapies, might deserve a second look
in the context of combinatorial approaches with immunotherapy, due to their characteristics as a “living
drug”. Research on different TME subtypes needs to be intensified and these parameters, in addition
to molecular markers, need to be taken into account to define clear subgroups of PDAC. The acquired
knowledge should assist in identifying only the PDAC patient, who will benefit from a particular
personalized medicine concepts (Figure 5). Therefore, sub classifying patients would help to improve
outcomes and quality of life, as well as avoid ineffective therapy and reduce financial and organizational
burdens on the health systems, healthcare providers, and the patients. These efforts will hopefully
utilize existing and developing pharmacological therapies, regardless of their stand-alone therapeutic
success, in combination with CAR T cells to create highly improved multifactorial therapeutic strategies,
that can overcome the current hurdles faced by the challenging TME in pancreatic cancer.
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Figure 5. Strategy flow chart for PDAC therapy. Pancreatic cancer patients are classified into one of
three categories upon diagnosis. Therapy (Tx) is chosen on the basis of this classification. In case of later
stage PDAC or recurrent tumor, personalized medicine approaches could be of use. Imaging of patients
would be followed by tissue retrieval to perform in-depth phenotyping of the tumor and its stroma.
This could be performed by the application of up and coming technologies such as patient-derived
organoids analysis, RNA-Seq or multiplex immunofluorescence staining. All in all, such refined
selection criteria enables the balanced and careful stratification of patients into further effective and
safe therapy paths, including personalized therapy approaches, such as CAR T cell therapy, with or
without conditioning of the tumor microenvironment.
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