

Review

The Full Blood Count Blood Test for Colorectal Cancer Detection: A Systematic Review, Meta-Analysis, and Critical Appraisal

Pradeep S. Virdee, Ioana Marian, Anita Mansouri, Leena Elhussein, Shona Kirtley, Tim Holt and Jacqueline Birks

1. Description of the full blood count

		onent of the full blood count blood test
Full blood count component	Conventional units	Description/purpose
Red blood cell count ¹	10 ¹² per litre (10 ¹² /L)	The number of red blood cells in the blood. Lower levels can be associated with blood less. Each red blood cell contains levels of
		haemoglobin.
White blood cell count ¹	10º per litre (10º/L)	The number of white blood cells in the blood. They are of the immune system and involved in protecting the body against disease.
Haemoglobin ¹	Grams per decilitre (g/dL)	Carries oxygen around the body and is found in red blood cells
Haematocrit/packed cell	Percentage, i.e. as	Proportion of blood that is occupied by the red
volume ²	litres per litre (%)	cells. A possible alternative for detecting anaemia.
Mean corpuscular volume ²	Femtolitre (f/L)	Average size of red blood cells. Calculated as haematocrit (%) divided by the number of red blood cells (1012/L)
Mean corpuscular haemoglobin ²	Pictograms (pg)	Average of amount of haemoglobin that is in each red blood cell. Calculated as haemoglobin (g/dL) divided by the red blood cell count (10 ¹² /L)
Mean corpuscular haemoglobin concentration ²	Grams per decilitre (g/dL)	Average of amount of haemoglobin in individual cells based on the volume of red blood cells. Calculated as haemoglobin (g/dL) divided by the haematocrit (%)
Red cell distribution	A coefficient, as	A measure of the amount of variation in the size
width ²	opposed to count	of red cells; the higher, the more variation.
Platelet count ¹	10º per litre (10º/L)	Not a cell, but instead fragments of cytoplasm. They bind to sites of damaged blood vessels, e.g. cuts, and clump to form a blood clot to help prevent bleeding
Mean platelet volume ²	Femtolitre (f/L)	Average size of platelets
Basophil count ¹	10º per litre (10º/L)	A type of white blood cell. Controls hypersensitivity reactions, allergic and inflammatory responses and fights parasitic infections

Table S1. Description of each component of the full blood count blood test

Basophil % ²	Percentage	Basophil count divided by the number of white blood cells					
		A type of white blood cell. Fights infection,					
Eosinophil count 1	10º per litre (10º/L)	including parasitic; has a role in allergic					
		responses					
Eosinophil % ²	Percentage	Eosinophil count divided by the number of white					
Eosinopini /// -	Tercentage	blood cells					
I umphaguta count 1	109 por litro (109/I)	A type of white blood cell. Mediates immune					
Lymphocyte count ¹	10 ⁹ per litre (10 ⁹ /L)	responses					
\mathbf{I} sumplies and $0/2$	Dorroomto ao	Lymphocyte count divided by the number of					
Lymphocyte % ²	Percentage	white blood cells					
		A type of white blood cell. Kills micro-organisms					
Monogato count 1	109 mar litra (109/I)	including					
Monocyte count ¹	10 ⁹ per litre (10 ⁹ /L)	mycobacteria and fungi; presents antigen to cells					
		of the immune system					
Manageta 9/ 2	Dorroomto ao	Monocyte count divided by the number of white					
Monocyte % ²	Percentage	blood cells					
Neutrophil count 1	10º per litre (10º/L)	A type of white blood cell. Fights infection					
Northornhill 0/ 2	Democrate exc	Neutrophil count divided by the number of white					
Neutrophil % ²	Percentage	blood cells					
Neutrophii % ²	Percentage	blood cells					

¹This component is measured directly from the blood sample. ²This component is derived using mathematical formulae programmed into the analyser and describes at least one measured component

2. Final search strategy

Scheme S1. Final search strategy per database

MEDLINE

Database and platform: Medline (Ovid MEDLINE® Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Ovid MEDLINE® Daily and Ovid MEDLINE®) 1946 to present. Search date: 3 September 2019.

1. Colonic Neoplasms/bl [Blood]

- 2. Colonic Neoplasms/di [Diagnosis]
- 3. Colonic Neoplasms/ep [Epidemiology]
- 4. Colorectal Neoplasms/di [Diagnosis]
- 5. Colorectal Neoplasms/ep [Epidemiology]
- 6. Colorectal Neoplasms/bl [Blood]
- 7. Rectal Neoplasms/bl [Blood]
- 8. Rectal Neoplasms/di [Diagnosis]
- 9. Rectal Neoplasms/ep [Epidemiology]
- 10. Adenomatous Polyposis Coli/
- 11. Sigmoid Neoplasms/
- 12. Colorectal Neoplasms, Hereditary Nonpolyposis/
- 13. ((colorectal or bowel or colon or colonic or rectal or rectum) adj3 (cancer\$ or carcinoma\$ or adenoma\$ or neoplas\$ or metasta\$ or carcinogen\$ or tumour\$ or tumor\$ or malignan\$ or adenocarcinoma\$)).ti,ab,kw.

14. or/1-13

- 15. exp Blood Cell Count/
- 16. exp Hemoglobins/
- 17. Blood Platelets/

- 18. Neutrophils/
- 19. Basophils/
- 20. Eosinophils/
- 21. Lymphocytes/
- 22. Monocytes/
- 23. Occult Blood/
- 24. Thrombocytosis/
- 25. Leukocytosis/
- 26. Lymphocytosis/
- 27. Eosinophilia/
- 28. Anemia/
- 29. Leukopenia/
- 30. Neutropenia/
- 31. Lymphopenia/
- 32. Thrombocytopenia/
- 33. Polycythemia/
- 34. Erythrocytes/
- 35. Leukocytes/
- 36. Pancytopenia/
- 37. ((blood or platelet) adj2 count\$).ti,ab,kw.
- 38. (CBC or FBC).ti,ab,kw.
- 39. (blood adj2 exam\$).ti,ab,kw.
- 40. (haematolog\$ or hematolog\$ or haemoglobin or hemoglobin or haematocrit or
- hematocrit).ti,ab,kw.
- 41. ((red or white) adj1 blood adj1 cell\$).ti,ab,kw.
- 42. (mean adj1 (platelet or corpuscular) adj1 volume\$).ti,ab,kw.
- 43. (mean adj1 corpuscular adj1 (haemoglobin or hemoglobin)).ti,ab,kw.
- 44. (platelet\$ or basophil or basophils or eosinophil or eosinophils or lymphocyte\$ or monocyte\$ or neutrophil or neutrophils or erythrocyte\$ or leukocyte\$).ti,ab,kw.
- 45. (blood adj1 (test\$ or draw\$)).ti,ab,kw.
- 46. (neutrophili\$ or monocytosis or basophili\$ or anemi\$ or anaemi\$ or monocytopenia or eosinopenia or basopenia or basocytopenia or thrombocytopeni\$ or leucocytosis or lymphocytosis or eosinophili\$ or leucopenia or leukopenia or neutropenia or lymphopenia or lymphocytopenia or pancytopenia or polycythemia or bicytopenia).ti,ab,kw.
- 47. or/15-46
- 48. (abnormalit\$ or diagnos\$ or "pre-diagnos\$" or prediagnos\$ or change\$ or detect\$ or elevat\$ or distribut\$ or deficien\$ or identif\$ or presence or indicati\$ or determin\$ or undiagnosed or definition\$ or altered or alteration\$).ti,ab,kw.
- 49. 47 and 48
- 50. (predict\$ or prognos\$ or suspected).ti,ab,kw.
- 51. (risk adj1 (predict\$ or marker\$ or scor\$)).ti,ab,kw.
- 52. Predictive Value of Tests/
- 53. Probability/
- 54. Prognosis/
- 55. Risk Factors/
- 56. Risk Assessment/
- 57. Incidence/
- 58. or/50-57
- 59. 14 and 49 and 58

EMBASE

Database and platform: Embase 1974 to present. Search date: 3 September 2019.

1. exp Colon Cancer/

- 2. exp Colon Tumor/
- 3. exp Rectum Tumor/
- 4. Colon Polyposis/
- 5. Hereditary Nonpolyposis Colorectal Cancer/

6. ((colorectal or bowel or colon or colonic or rectal or rectum) adj3 (cancer\$ or carcinoma\$ or adenoma\$ or neoplas\$ or metasta\$ or carcinogen\$ or tumour\$ or tumor\$ or malignan\$ or adenocarcinoma\$)).ti,ab,kw.

7. or/1-6

- 8. exp Blood Cell Count/
- 9. Hemoglobin/
- 10. Hemoglobin Blood Level/
- 11. Thrombocyte/
- 12. Neutrophil/
- 13. Basophil/
- 14. Eosinophil/
- 15. Lymphocyte/
- 16. exp Monocyte/
- 17. Occult Blood/
- 18. Thrombocytosis/
- 19. Leukocytosis/
- 20. Basophilia/
- 21. exp Lymphocytosis/
- 22. Eosinophilia/
- 23. Monocytosis/
- 24. Neutrophilia/
- 25. Anemia/
- 26. Leukopenia/
- 27. Monocytopenia/
- 28. exp Neutropenia/
- 29. Eosinopenia/
- 30. Lymphocytopenia/
- 31. Thrombocytopenia/
- 32. Polycythemia/
- 33. Erythrocyte/
- 34. Leukocyte/
- 35. Pancytopenia/
- 36. Mean Corpuscular Volume/
- 37. ((blood or platelet) adj2 count\$).ti,ab,kw.
- 38. (CBC or FBC).ti,ab,kw.
- 39. (blood adj2 exam\$).ti,ab,kw.
- 40. Hematocrit/
- 41. (haematolog\$ or hematolog\$ or haemoglobin or hemoglobin or haematocrit or
- hematocrit).ti,ab,kw.
- 42. ((red or white) adj1 blood adj1 cell\$).ti,ab,kw.
- 43. (mean adj1 (platelet or corpuscular) adj1 volume\$).ti,ab,kw.
- 44. (mean adj1 corpuscular adj1 (haemoglobin or hemoglobin)).ti,ab,kw.

45. (platelet\$ or basophil or basophils or eosinophil or eosinophils or lymphocyte\$ or monocyte\$ or neutrophil or neutrophils or erythrocyte\$ or leukocyte\$).ti,ab,kw.

46. (blood adj1 (test\$ or draw\$)).ti,ab,kw.

47. (neutrophili\$ or monocytosis or basophili\$ or anemi\$ or anaemi\$ or monocytopenia or

eosinopenia or basopenia or basocytopenia or thrombocytopeni\$ or leucocytosis or lymphocytosis or eosinophili\$ or leucopenia or leukopenia or neutropenia or lymphopenia or lymphocytopenia or pancytopenia or polycythemia or bicytopenia).ti,ab,kw.

48. or/8-47

49. (abnormalit\$ or diagnos\$ or "pre-diagnos\$" or prediagnos\$ or change\$ or detect\$ or elevat\$ or distribut\$ or deficien\$ or identif\$ or presence or indicati\$ or determin\$ or undiagnosed or definition\$ or altered or alteration\$).ti,ab,kw.

50. 48 and 49

- 51. (predict\$ or prognos\$ or suspected).ti,ab,kw.
- 52. (risk adj1 (predict\$ or marker\$ or scor\$)).ti,ab,kw.
- 53. Predictive Value/
- 54. exp Prediction/

55. Probability/

- 56. exp Prognosis/
- 57. "Sensitivity and Specificity"/
- 58. Risk Factor/
- 59. Risk Assessment/
- 60. or/51-59
- 61. 7 and 50 and 60

CINAHL

Database and platform: CINAHL (via EBSCOhost). Search date: 3 September 2019.

1. (MH "Colonic Neoplasms") 2. (MH "Colorectal Neoplasms") 3. (MH "Rectal Neoplasms") 4. (MH "Adenomatous Polyposis Coli") 5. (MH "Sigmoid Neoplasms") 6. (MH "Colorectal Neoplasms, Hereditary Nonpolyposis") 7. TI ((colorectal or bowel or colon or colonic or rectal or rectum) N3 (cancer* or carcinoma* or adenoma* or neoplas* or metasta* or carcinogen* or tumour* or tumor* or malignan* or adenocarcinoma*)) OR AB ((colorectal or bowel or colon or colonic or rectal or rectum) N3 (cancer* or carcinoma* or adenoma* or neoplas* or metasta* or carcinogen* or tumour* or tumor* or malignan* or adenocarcinoma*)) 8. S1 OR S2 OR S3 OR S4 OR S5 OR S6 OR S7 9. (MH "Blood Cells+") 10. (MH "Hemoglobins+") 11. (MH "Occult Blood") 12. (MH "Thrombocytosis") 13. (MH "Eosinophilia") 14. (MH "Anemia") 15. (MH "Leukopenia") 16. (MH "Neutropenia") 17. (MH "Lymphopenia") 18. (MH "Thrombocytopenia") 19. (MH "Polycythemia")

20. (MH "Pancytopenia")

21. TI ((blood or platelet) N2 count*) OR AB ((blood or platelet) N2 count*)

22. TI (CBC or FBC) OR AB (CBC or FBC)

23. TI (blood N2 exam*) OR AB (blood N2 exam*)

24. TI (haematolog* or hematolog* or haemoglobin or hemoglobin or haematocrit or hematocrit)

OR AB (haematolog* or hematolog* or haemoglobin or hemoglobin or haematocrit or hematocrit) 25. TI ((red or white) N1 blood N1 cell*) OR AB ((red or white) N1 blood N1 cell*)

26. TI (mean N1 (platelet or corpuscular) N1 volume*) OR AB (mean N1 (platelet or corpuscular) N1 volume*)

27. TI (mean N1 corpuscular N1 (haemoglobin or hemoglobin)) OR AB (mean N1 corpuscular N1 (haemoglobin or hemoglobin))

28. TI (platelet* or basophil or basophils or eosinophil or eosinophils or lymphocyt* or monocyt* or neutrophil or neutrophils or erythrocyt* or leukocyt*) OR AB (platelet* or basophil or basophils or eosinophil or eosinophils or lymphocyt* or monocyt* or neutrophil or neutrophils or erythrocyt* or leukocyt*)

29. TI (blood N1 (test* or draw*)) OR AB (blood N1 (test* or draw*))

30. TI (neutrophili* or monocytosis or basophili* or anemi* or anaemi* or monocytopenia or eosinopenia or basopenia or basocytopenia or thrombocytopeni* or leucocytosis or lymphocytosis or eosinophili* or leucopenia or leukopenia or neutropenia or lymphopenia or lymphocytopenia or pancytopenia or polycythemia or bicytopenia) OR AB (neutrophili* or monocytosis or basophili* or anemi* or anaemi* or monocytopenia or eosinopenia or basopenia or basocytopenia or thrombocytopeni* or leucocytosis or lymphocytosis or eosinophili* or leucopenia or leukopenia or neutropenia or lymphopenia or lymphocytopenia or pancytopenia or polycythemia or bicytopenia) 31. S9 OR S10 OR S11 OR S12 OR S13 OR S14 OR S15 OR S16 OR S17 OR S18 OR S19 OR S20 OR S21 OR S22 OR S23 OR S24 OR S25 OR S26 OR S27 OR S28 OR S29 OR S30

32. TI (abnormalit* or diagnos* or "pre-diagnos*" or prediagnos* or change* or detect* or elevat* or distribut* or deficien* or identif* or presence or indicati* or determin* or undiagnosed or definition* or altered or alteration*) OR AB (abnormalit* or diagnos* or "pre-diagnos*" or prediagnos* or change* or detect* or elevat* or distribut* or deficien* or identif* or presence or indicati* or determin* or undiagnosed or definition* or altered or alteration*)

33. S31 AND S32

34. TI (predict* or prognos* or suspected) OR AB (predict* or prognos* or suspected)

35. TI (risk N1 (predict* or marker* or scor*)) OR AB (risk N1 (predict* or marker* or scor*))

- 36. (MH "Predictive Value of Tests")
- 37. (MH "Probability")
- 38. (MH "Prognosis")
- 39. (MH "Risk Factors")

40. (MH "Risk Assessment")

- 41. (MH "Incidence")
- 42. S34 OR S35 OR S36 OR S37 OR S38 OR S39 OR S40 OR S41
- 43. S8 and S33 and S42

Web of Science

Database and platform: Web of Science (Web of Science Core Collection: Science Citation Index Expanded (SCI-EXPANDED) --1945-present; Social Sciences Citation Index (SSCI) --1956-present; Conference Proceedings Citation Index- Science (CPCI-S) --1990-present) (via Clarivate). Search date: 3 September 2019.

1. TS = ((colorectal or bowel or colon or colonic or rectal or rectum or sigmoid) NEAR/3 (cancer* or carcinoma* or adenoma* or neoplas* or metasta* or carcinogen* or tumour* or tumor* or malignan* or adenocarcinoma*)) 2. SU = Hematology 3. TS = "blood cell count" 4. TS = "occult blood" 5. TS = ((blood or platelet) NEAR/2 count*) 6. TS = (CBC or FBC)7. TS = (blood NEAR/2 exam*) 8. TS = (haematolog* or hematolog* or haemoglobin or hemoglobin or haematocrit or hematocrit) 9. TS = ((red or white) NEAR/1 blood NEAR/1 cell*) 10. TS = (mean NEAR/1 (platelet or corpuscular) NEAR/1 volume*) 11. TS = (mean NEAR/1 corpuscular NEAR/1 (haemoglobin or hemoglobin)) 12. TS = (platelet* or basophil or basophils or eosinophil or eosinophils or lymphocyte* or monocyte* or neutrophil or neutrophils or erythrocyte* or leukocyte*) 13. TS = (blood NEAR/1 (test* or draw*)) 14. TS = (neutrophili* or monocytosis or basophili* or anemi* or anaemi* or monocytopenia or eosinopenia or eosinophilia or basopenia or basocytopenia or thrombocytopeni* or thrombocytosis or leucocytosis or lymphocytosis or eosinophili* or leucopenia or leukopenia or neutropenia or lymphopenia or lymphocytopenia or pancytopenia or polycythemia or bicytopenia) 15. #2 or #3 or #4 or #5 or #6 or #7 or #8 or #9 or #10 or #11 or #12 or #13 or #14 16. TS = (abnormalit* or diagnos* or "pre-diagnos*" or prediagnos* or change* or detect* or elevat* or distribut* or deficien* or identif* or presence or indicati* or determin* or undiagnosed or definition* or altered or alteration*) 17. #15 and #16 18. TS = (predict* or prognos* or probabilit* or suspected) 19. TS = (risk NEAR/1 (predict* or marker* or scor*)) 20. #18 or #19 21. #1 and #17 and #20

3. Association between full blood count and colorectal cancer

Table S2. Full blood count components analysed per study.

Article	RB C	WB C	Hb	H c	MC V	MC H	MCH C	RD W	Pla t	MP V	Bas C	Bas P	Eos C	Eos P	Lym C	Lym P	Mon C	Mon P	Neu C	Neu P	Tot al
Acher 2003 [1]			Х		Х		Х														3
Ankus 2018 [2]									Х												1
Ay 2015 [3]			Х		Х			Х	Х												4
Ayling 2019 [4]			Exterr	nal va	alidatio	n study	7 – does 1	not ana	alyse f	ull blo	od cou	nt, but	instea	d perfo	ormance	e of exis	sting pro	ediction	model	s.	
Bafandeh 2008 [5]			Х																		1
Bailey 2017 [6]									Х												1
Birks 2017 [7]			Exterr	nal va	alidatio	n study	7 – does 1	not ana	alyse f	ull blo	od cou	nt, but	instea	d perfo	ormance	e of exis	sting pre	ediction	model	s.	
Boursi 2016 [8]	Х	Х	Х	х	Х	Х			Х		Х		Х		Х		Х		Х		12
Cakmak 2017 [9]			х					Х	Х												3
Collins 2012 [10]			Exterr	nal va	alidatio	n study	7 – does 1	not ana	alyse f	ull blo	od cou	nt, but	instea	d perfo	ormance	e of exis	sting pre	ediction	model	s.	
Cross 2019 [11]			х																		1
Cubiella 2016 [12]			х		Х																2
Fijten 1995 [13]		Х	Х																		2
Firat 2016 [14]		Х	Х						Х												3

	ice	rs										N	IDPI								
Goldshtein 2010 [15]			Х																		1
Goshen 2017 [16]	Х	Х	Х		Х			х	Х	Х	Х		х		Х		Х		Х		12
Hamilton 2005 [17]			х																		1
Hamilton 2008 [18]			Х		Х																2
Hamilton 2009 [19]			Х		Х																2
Hilsden 2018 [20]			Exter	nal va	alidatio	n study	– does	not an	alyse f	ull blo	od cou	nt, but	instea	d perfo	ormance	e of exis	sting pro	edictior	n model	s.	
Hippisley- Cox 2012 [21]			Х																		1
Hippisley- Cox 2013 [22]			Х																		1
Hippisley- Cox 2013 [23]			Х																		1
Hornbrook 2017 [24]			Exter	nal va	alidatio	n study	– does	not an	alyse f	ull blo	od cou	nt, but	instea	d perfo	ormance	e of exis	sting pro	edictior	n model	s.	
Huang 2019 [25]		Х	Х												Х						3
Hung 2015 [26]			Х																		1
Joosten 2008 [27]			Х																		1
Kilincalp 2015 [28]			Х						Х	Х											3
Kinar 2016 [29]	Х	Х	Х	x	Х	Х	Х	х	Х	Х	х	х	х	х	Х	Х	х	Х	Х	Х	20
Kinar 2017 [30]			Exter	nal va	alidatio	n study	– does	not an	alyse f	ull blo	od cou	nt, but	instea	d perfo	ormance	e of exis	sting pr	edictior	n model	s.	

	cancers
--	---------

Can	icer	'S				MDPI	
Lawrenson 2006 [31]			х				1
Lee 2006 [32]		Х					1
Margolis 2007 [33]		Х					1
Marshall 2011 [34]			х	Х			2
Mashlab 2018 [35]			х	Х			2
Naef 1999 [36]			Х				1
Nakama 2000 [37]			Х				1
Panagiotopo ulou 2014 [38]			х	Х			2
Panzuto 2003 [39]			х	х			2
Pilling 2018 [40]			Х	Х	Х		3
Prizment 2011 [41]		х					1
Raje 2007 [42]			х	Х			2
Schneider 2018 [43]	Х		х	Х			3
Shi 2019 [44]					Х		1
Song 2018 [45]					Х		1
Spell 2004 [46]			Х	Х	Х		3

🏽 Car	ice	ers										N	IDPI								
Stapley 2006 [47]			Х																		1
Thompson 2017 [48]			Х																		1
van Boxtel- Wilms 2016 [49]			x																		1
Wu 2019 [50]	Х	Х	Х						Х	Х					Х		Х		Х		8
Yang 2018 [51]			Х					Х	Х						Х				Х		5
Zhou 2017 [52]		Х														Х				Х	3
Zhu 2018 [53]									Х	Х											2
Total	5	11	38	2	16	2	2	9	12	5	3	1	3	1	6	2	4	1	5	2	
Proportion of non- validation studies (n = 47)	11 %	23%	81 %	4 %	34%	4%	4%	19%	26 %	11%	6%	2%	6%	2%	13%	4%	9%	2%	11%	4%	

Abbreviations: RBC = red blood cells, WBC = white blood cells, Hb = haemoglobin, Hc = haemoglobin, MCV = mean corpuscular volume, MCH = mean corpuscular haemoglobin, MCHC = mean corpuscular haemoglobin concentration, RDW = red blood cell distribution width, Plat = platelet count, MPV = mean platelet volume, BasC = basophil count, BasP = basophil %, EosC = eosinophil count, EosP = eosinophil %, LymC = lymphocyte count, LymP = lymphocyte %, MonC = monocyte count, MonP = monocyte %, NeuC = neutrophil count, NeuP = neutrophil %

MDPI

Table S3: Red blood cell count for colorectal cancer, with analyses sorted by outcome time window, country, and strata

Country	Strata	Article (Study outcome window)	Analysis type	CRC outcome groups and no. per group	Blood level categories and no. per group	Analysis estimates	<i>p-</i> value
			() < outcome time window ≤ 6 1	months:		
China	Everyone	Wu 2019 [50]	T-test	Yes, n = 186		Mean = $4.42 \ 10^{12}/L$ (SD = 0.63)	<0.05
		(At diagnosis)		No, n = 108		Mean = $4.73 \ 10^{12}/L$ (SD = 0.42)	
		Wu 2019 [50]	T-test	Yes, n = 186		Mean = $4.42 \ 10^{12}/L$ (SD = 0.63)	< 0.05
		(At diagnosis)		Polyp, n = 132		Mean = $4.78 \ 10^{12}/L$ (SD = 0.72)	
		Wu 2019 [50] (At diagnosis)	ANOVA	Yes, n = 186 Polyp, n = 132 Healthy, n = 108		Mean = 4.42 10 ¹² /L Mean = 4.78 10 ¹² /L Mean = 4.73 10 ¹² /L	<0.001
Israel	Males	Goshen 2017 [16] (1–6 months)	T-test	Yes, n = 936 No, n = 28491		Mean = $4.76 \ 10^{12}/L$ Mean = $4.87 \ 10^{12}/L$	< 0.0001
		Goshen 2017 [16]	Risk ratio	Yes	Highest-risk quintile	RR = 1.75 (95% CI = 1.45, 2.24)	
		(1–6 months)		No	Lowest-risk quintile	Reference	
	Females	Goshen 2017 [16]	T-test	Yes, n = 819		Mean = 4.48 1012/L	< 0.0001
		(1–6 months)		No, n = 26239		Mean = 4.39 1012/L	
		Goshen 2017 [16]	Risk ratio	Yes	Highest-risk quintile	RR = 1.97 (95% CI = 1.51, 2.61)	
		(1–6 months)		No	Lowest-risk quintile	Reference	
UK	Males	Schneider 2018 [43]	Odds ratio	Yes, n = 2266	<3.5 10 ¹² /L, n = 191, events = 162	OR = 2.86 (95% CI = 1.90, 4.31)	
		(6 months)		No, n = 1006	3.5–4.2 10 ¹² /L, n = 951, events = 721	OR = 1.61 (95% CI = 1.34, 1.93)	
					4.3–4.9 10 ¹² /L, n = 1608, events = 1,603	Reference	

	cancers
--	---------

C	ance	rs			MDPI		
					5–5.8 10 ¹² /L, n = 516, events =	OR = 0.80 (95% CI =	
					314	0.65, 0.98)	
		Schneider 2018 [43] 1 (6 months) Schneider 2018 [43] (6 months) Schneider 2018 [43] (6 months) Schneider 2018 [43] (6 months)			$\geq 5.9 \ 10^{12}/L$, n = 6, events = 6	Х	
		Schneider 2018 [43]	Oddanatia	$V_{22} = -2266$	<3.5 10 ¹² /L, n = 191, events =	OR = 3.72 (95% CI =	
		1	Odds ratio	Yes, n = 2266	162	2.36, 5.88)	
		((month a)		$N_{e} = -1000$	3.5–4.2 10 ¹² /L, n = 951, events	OR = 1.93 (95% CI =	
		(6 months)		No, n = 1006	= 721	1.57, 2.37)	
					4.3–4.9 10 ¹² /L, n = 1608, events = 1,603	Reference	
					5–5.8 10 ¹² /L, n = 516, events =	OR = 0.83 (95% CI =	
					314	0.66, 1.04)	
					$\geq 5.9 \ 10^{12}/L$, n = 6, events = 6	Х	
	E anna la a	Calum ai dam 2019 [42]	Odda natio	$V_{22} = -2029$	<3.5 10 ¹² /L, n = 352, events =	OR = 4.10 (95% CI =	
	Females	Schneider 2018 [43]	Odds ratio	Yes, n = 2038	331	2.72, 6.17)	
		((montho))		$N_{0} = -957$	3.5–4.2 10 ¹² /L, n = 1302,	OR = 1.81 (95% CI =	
		(6 months)		No, n = 857	events = 960	1.53, 2.15)	
					4.3–4.9 10 ¹² /L, n = 1119, events = 680	Reference	
					5–5.8 10 ¹² /L, n = 122, events =	OR = 0.79 (95% CI =	
					67	0.21, 1.15)	
					$\geq 5.9 \ 10^{12}/L$, n = 6, events = 6	Х	
		Schneider 2018 [43}		X	<3.5 10 ¹² /L, n = 352, events =	OR = 5.68 (95% CI =	
		1	Odds ratio	Yes, n = 2038	331	3.55, 9.09)	
		((month a)		$N_{e} = -957$	3.5–4.2 10 ¹² /L, n = 1302,	OR = 1.94 (95% CI =	
		(6 months)		No, n = 857	events = 960	1.60, 2.36)	
					4.3–4.9 10 ¹² /L, n = 1119, events = 680	Reference	
					5–5.8 10 ¹² /L, n = 122, events =	OR = 0.75 (95% CI =	
					67	0.49, 1.14)	
					$\geq 5.9 \ 10^{12}/L$, n = 6, events = 6	X	
			6 < 0	outcome time window ≤			
K	Everyone	Boursi 2016 [8]	Odds ratio	Yes, n = 4929	Modelled as continuous	OR = 0.62 (95% CI = 0.57, 0.67)	< 0.001

(1 year)

Abbreviations: CRC = colorectal cancer, OR = odds ratio, RR = risk ratio. ¹Multivariable effect estimate, adjusted for: BMI, smoking status, history of hypertension, diabetes, aspirin or NSAIDS use, vitamin K antagonists, platelet inhibitors

No, n = 11311

Table S4: White blood cell count for colorectal cancer, with analyses sorted by outcome time window, country, and strata

Country	Strata	Article	Analysis type	CRC outcome groups and no. per group	Blood level categories and no. per group	Analysis estimates	<i>p-</i> value
				<pre>< outcome time window ≤ 6 n</pre>			Vuiue
China	Everyone	Huang 2019 [25]	T-test	Yes, n = 162		Mean = 6.76 10 ⁹ /L (SD = 1.68)	≥0.05
		(At admission)		No, n = 78		Mean = 6.42 10 ⁹ /L (SD = 1.60)	
		Huang 2019 [25]	T-test	Yes, n = 162		Mean = 6.76 10 ⁹ /L (SD = 1.68)	< 0.05
		(At admission)		Polyp, n = 92		Mean = 6.25 10 ⁹ /L (SD = 1.5)	
		Wu 2019 [50]	T-test	Yes, n = 186		Mean = 6.77 10 ⁹ /L (SD = 1.64)	< 0.05
		(At diagnosis)		No, n = 108		Mean = 6.23 10 ⁹ /L (SD = 1.02)	
		Wu 2019 [50]	T-test	Yes, n = 186		Mean = 6.77 10 ⁹ /L (SD = 1.64)	< 0.05
		(At diagnosis)		Polyp, n = 132		Mean = 6.32 10 ⁹ /L (SD = 1.61)	
		Wu 2019 [50]	ANOVA	Yes = 186		Mean = 6.77 10 ⁹ /L	0.003
		(At diagnosis)		Polyp = 132		Mean = 6.32 10 ⁹ /L	
				Healthy = 108		Mean = 6.23 10 ⁹ /L	
		Zhou 2017 [52]	Mann-	Yes, n = 242		Median = 6.62 10 ⁹ /L	< 0.001
		(At diagnosis)	Whitney U	No, n = 248		Median = 6.15 10 ⁹ /L	
		Zhou 2017 [52]	Mann-	Yes, n = 242		Median = 6.62 10 ⁹ /L	< 0.001
		(At diagnosis)	Whitney U	Polyp, n = 248		Median = 6.22 10 ⁹ /L	
		Zhou 2017 [52]	Kruskal-	Yes = 242		Median = 6.62 10 ⁹ /L	< 0.001
		(At diagnosis)	Wallis	Polyp = 248		Median = 6.22 10 ⁹ /L	
			vvaiii5	Healthy = 262		Median = 6.15 10 ⁹ /L	
Israel	Males	Goshen 2017 [16]	T-test	Yes, n = 936		Mean = 7.79 10%/L	< 0.0001

Cancers					MDPI		
		(1–6 months)		No, n = 28491		Mean = 7.20 10 ⁹ /L	
		Goshen 2017 [16]	Risk ratio	Yes	Highest-risk quintile	RR = 2.31 (95% CI = 1.87, 3.05)	
		(1–6 months)		No	Lowest-risk quintile	Reference	
	Females	Goshen 2017 [16]	T-test	Yes, n = 819		Mean = 7.46 10%/L	< 0.0001
		(1–6 months)		No, n = 26239		Mean = 6.65 10 ⁹ /L	
		Goshen 2017 [16]	Risk ratio	Yes	Highest-risk quintile	RR = 2.17 (95% CI = 1.66, 3.02)	
		(1–6 months)		No	Lowest-risk quintile	Reference	
Turkey	Everyone	Firat 2016 [14]	Chi-squared	Yes			0.463
		(At diagnosis)		No			
			6 < 0	utcome time window ≤ 1	2 months:		
UK	Everyone	Boursi 2016 [8]	Odds ratio	Yes, n = 4929	Modelled as continuous	OR = 1.11 (95% CI = 1.09, 1.13)	< 0.001
		(1 year)		No, n = 11311			
		Boursi 2016 [8] ¹	Odds ratio	Yes, n = 3375	Modelled as fractional polynomials (powers: 1, 1)	OR = 5.25*WBC ¹	
		(1 year)		No, n = 8560		$OR = 0.30^*WBC^1 \times ln(WBC)$	
			Ou	tcome time window ≥ 36	months:		
Korea	Males	Lee 2006 [32]	Odds ratio	Yes, n = 1122	≤5000 µL, n = 18611, events = 183	Reference	
		(10 years)		No, n = 107785	5501–6500 μL, n = 24567, events = 228	OR = 0.94 (95% CI = 0.78, 1.15)	
					6501–7600 μL, n = 28018,	OR = 1.00 (95% CI =	
					events = 276	0.83, 1.21)	
					>7600 µL, n = 37711, events =	OR = 1.18 (95% CI =	
					435	0.99, 1.4)	
	Males	Lee 2006 [32] ²	Hazard ratio	Yes, n = 1122	≤5000 µL, n = 18611, events = 183	Reference	
		(10 years)		No, n = 107785	5501–6500 μL, n = 24567, events = 228	HR = 0.95 (95% CI = 0.78, 1.15)	

Ca	incers				MDPI 6501–7600 μL, n = 28018, events = 276 >7600 μL, n = 37711, events = 435	HR = 1.02 (95% CI = 0.84, 1.23) HR = 1.23 (95% CI = 1.03, 1.47)
	Females	Lee 2006 [32]	Odds ratio	Yes, n = 1529	≤5000, n = 90790, events = 405	Reference
		(10 years)		No, n = 313983	5501-6500 μL, n = 84260, events = 400 6501-7600 μL, n = 73364, events = 353 >7600 μL, n = 67098, events =	OR = 1.06 (95% CI = 0.93, 1.22) OR = 1.08 (95% CI = 0.94, 1.24) OR = 1.24 (95% CI =
					371	1.08, 1.43)
	Females	Lee 2006 [32] ²	Hazard ratio	Yes, n = 1529	≤5000, n = 90790, events = 405	Reference
		(10 years)		No, n = 313983	5501-6500 μL, n = 84260, events = 400 6501-7600 μL, n = 73364, events = 353 >7600 μL, n = 67098, events =	HR = 1.03 (95% CI = 0.90, 1.19) HR = 1.03 (95% CI = 0.89, 1.19) HR = 1.15 (95% CI =
					371	0.99, 1.33)
UK	Everyone	Margolis 2007 [33] ³	Hazard ratio	Yes, n = 1341	Modelled as continuous	HR = 1.08 (95% CI = 1.04, 1.12)
		(11 years)		No, n = 142407		
USA	Everyone	Prizment 2011 [41]	Odds ratio	Yes, n = 308	≤4.8 10º/L, n = 3554, events = 79	Reference
		(19 years)		No, n = 13106	4.9–5.8 10 ⁹ /L, n = 3413, events = 65 5.9–7.0 10 ⁹ /L, n = 3155, events	OR = 0.80 (95% CI = 0.58, 1.12) OR = 1.18 (95% CI =
					= 86	0.86, 1.60)
					≥7.1 10º/L, n = 3292, events = 78	OR = 1.01 (95% CI = 0.73, 1.38)
	-	Prizment 2011 [41] ⁴	Hazard ratio	Yes, n = 308	≤4.8 10º/L, n = 3554, events = 79	Reference
		(19 years)		No, n = 13106	4.9–5.8 10º/L, n = 3413, events = 65	HR = 0.86 (95% CI = 0.61, 1.21)

Cunce	0			MDPI		
				5.9–7.0 10º/L, n = 3155, events	HR = 1.26 (95% CI =	
				= 86	0.91, 1.74)	
				≥7.1 10 ⁹ /L, n = 3292, events =	HR = 1.13 (95% CI =	
				78	0.79, 1.60)	
	OUTCOM	ME WINDOW NO)T CATEGORISABLE: >	> 12-month risk of CRC diagnosis:		
Netherlands Everyc	one Fijten 1995 [13]	Chi-squared	Yes, n = 4	Low, n = 194, events = 1		< 0.01
	(>12 months)		No, n = 215	High, n = 25, events = 3		
	Fijten 1995 [13]	Odds ratio	Yes, n = 4	Low, n = 194, events = 1	Reference	
	(>12 months)		No, n = 215	High, n = 25, events = 3	OR = 26.3 (95% CI = 2.6, 264.0)	

Abbreviations: CRC = colorectal cancer, OR = odds ratio, RR = risk ratio, HR = hazard ratio, WBC = white blood cell count. ¹Multivariable effect estimate, adjusted for: haemoglobin, mean corpuscular volume, neutrophil-lymphocyte ratio, platelet count, sex, previous metformin prescriptions, previous prescriptions for oral hypoglycemic drugs other than metformin. ²Multivariable effect estimate, adjusted for: age, BMI, total cholesterol, smoking status, regular exercise, alcohol consumption per day, frequency of meat intake per week, hypertension, diabetes. ³Multivariable effect estimate, adjusted for: age, ethnicity, smoking, alcohol use, physical activity, aspirin/nonsteroidal anti-inflammatory drug use, hormone therapy use, BMI, history of diabetes, family history of colorectal cancer. ⁴Multivariable effect estimate, adjusted for: age, race, center, education, BMI, aspirin use, smoking status, pack-years of smoking, gender–HRT, diabetes.

MDPI

Table S5: Haemoglobin levels for colorectal cancer, with analyses sorted by outcome time window, country, and strata

Country	Strata	Article	Analysis type	CRC outcome groups and no. per group	Blood level categories and no. per group	Analysis estimates	<i>p-</i> value
			0 < outcom	e time window ≤ 6 mon	ths:		
China	Everyone	Huang 2019 [25]	T-test	Yes, n = 162		Mean = 119.62 g/dL (SD = 23.8)	<0.05
		(At admission)		No, n = 78		Mean = 146.25 g/dL (SD = 15.1)	
		Huang 2019 [25]	T-test	Yes, n = 162		Mean = 119.62 g/dL (SD = 23.8)	< 0.05
		(At admission)		Polyp, n = 92		Mean = 134.1 g/dL (SD = 16.1)	<pre>< 0.05 } </pre> (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05)
		Wu 2019 [50]	T-test	Yes, n = 186		Mean = 121.27 g/L (SD = 23.07)	< 0.05
		(At diagnosis)		No, n = 108		Mean = 142.47 g/L (SD = 11.80)	
	_	Wu 2019 [50]	T-test	Yes, n = 186		Mean = 121.27 g/L (SD = 23.07)	< 0.05
		(At diagnosis)		Polyp, n = 132		Mean = 132.12 g/L (SD = 20.03)	
		Wu 2019 [50]	ANOVA	Yes = 186		Mean = 121.27 g/L	<0.001
		(At diagnosis)		Polyp = 132		Mean = 132.12 g/L	
				Healthy = 108		Mean = 142.47 g/L	
		Yang 2018 [51]	Marra	Yes, n = 85		Median = 122 g/L	0.004
		(At admission)	Mann- Whitney U	Polyp, n = 54		Median = 131.5 g/L	
Belgium	Everyone	Joosten 2008 [27]	Chi-squared	Yes, n = 55	Men<13 g/dL, Women<12 g/dL, n = 251, events = 42		0.26

Ca	ncers			N	IDPI			
	_	(8 weeks)		No, n = 304	Men≥13 g/dL, Women≥12 g/dL, n = 108, events = 13			
		Joosten 2008 [27]	T-test	Yes, n = 55		Mean = 10.2 g/dL (SD = 2.9)	0.14	
		(8 weeks)		No, n = 304		Mean = 10.8 g/dL (SD = 2.7)		
	_	Joosten 2008 [27]	Odds ratio	Yes, n = 55	Men<13 g/dL, Women<12 g/dL, n = 251, events = 42	OR = 1.47 (95% CI = 0.75, 2.86)		
		(8 weeks)		No, n = 304	Men≥13 g/dL, Women≥12 g/dL, n = 108, events = 13	Reference		
	_	Joosten 2008 [27] ¹ (8 weeks)	Odds ratio	Yes, n = 55 No, n = 304			≥0.05	
Israel	Males	Goshen 2017 [16]	T-test	Yes, n = 936		Mean = 13.30 g/dL	< 0.0001	
		(1–6 months)		No, n = 28491		Mean = 14.43 g/dL		
	_	Goshen 2017 [16]	Risk ratio	Yes	Highest-risk quintile	RR = 3.06 (95% CI = 2.76, 3.52)		
		(1–6 months)		No	Lowest-risk quintile	Reference		
		Goshen 2017 [16] ²	Risk ratio	Yes, n = 936	Highest-risk quintile	RR = 3.83 (95% CI = 3.38, 4.46)		
		(1–6 months)		No, n = 28491	Lowest-risk quintile	Reference		
	Females	Goshen 2017 [16]	T-test	Yes, n = 819		Mean = 11.80 g/dL	< 0.0001	
	_	(1–6 months)		No, n = 26239		Mean = 13.02 g/dL		
		Goshen 2017 [16]	Risk ratio	Yes	Highest-risk quintile	RR = 5.69 (95% CI = 4.31, 7.97)		
		(1–6 months)		No	Lowest-risk quintile	Reference		
		Goshen 2017 [16] ³	Risk ratio	Yes, n = 819	Highest-risk quintile	RR = 5.69 (95% CI = 4.31, 7.97)		
		(1–6 months)		No, n = 26239	Lowest-risk quintile	Reference		

Car	ncers						
Netherlands	Everyone	van Boxtel-Wilms 2016 [49]	Descriptive	Yes	Anaemia, n = 5, events = 5		
		(3 months)		No	No anaemia, n = 545, events = 0		
Spain	Everyone	Cubiella 2016 [12] ⁴	Odds ratio	Yes, n = 214	<10 g/dL	OR = 4.8 (95% CI = 2.2, 10.3)	
		(1 week)		No, n = 1358	10–12 g/dL	OR = 1.8 (95% CI = 1.1, 3.0)	
					>12 g/dL	Reference	
Turkey	Everyone	Ay 2015 [3]	T-test	Yes, n = 30		Mean = 13.5 g/dL (SD = 1.1)	≥0.05
		(1 week)		Polyp, n = 110		Mean = 13.9 g/dL (SD = 1.1)	
		Cakmak 2017 [9]	T-test	Yes, n = 59		Mean = 11.9 g/dL (SD = 2.2)	<0.001
		(6 months)		No, n = 59		Mean = 14.4 g/dL (SD = 1.1)	
		Firat 2016 [14] (At diagnosis)	Chi-squared	Yes No			0.002
		Kilincalp 2015 [28]	T-test	Yes, n = 144		Mean = 11.6 g/dL (SD = 2.20)	<0.001
		(At diagnosis)		No, n = 143		Mean = 14.2 g/dL (SD = 1.17)	
UK	Everyone	Acher 2003 [1] ⁵	Descriptive	Yes	<10.1 g/dl, n>5000, events = 112		
		(6 months)		No	≥10.1 g/dL, events = 274		
	-	Mashlab 2018 [35]	Chi-squared	Yes, n = 60	Men<130 g/L, Women<120 g/L, n = 388, events = 39		0.001
	_	(2 weeks)		No, n = 955	Men≥130 g/L, Women≥120 g/L, n = 627, events = 21		
		Mashlab 2018 [35]	Odds ratio	Yes, n = 60	Men<130 g/L, Women<120 g/L, n = 388, events = 39	OR = 3.22 (95% CI = 1.87, 5.57)	

Cancers				MDPI		
	(2 weeks)		No, n = 955	Men≥130 g/L, Women≥120 g/L, n = 627, events = 21	Reference	
	Mashlab 2018 [35] ⁶	Odds ratio	Yes, n = 60	Men<130 g/L, Women<120 g/L, n = 388, events = 39	OR = 2.77 (95% CI = 1.55, 4.95)	
	(2 weeks)		No, n = 955	Men≥130 g/L, Women≥120 g/L, n = 627, events = 21	Reference	
	Raje 2007 [42] ⁷	Descriptive	Yes	Men<11 g/dL, Women <10 g/dL, n = 142, events = 9		
	(1–2 months)		No	-		
Centre A	Panagiotopoulou 2014 [38]	Chi-squared	Yes, n = 30	Anaemia, n = 105, events = 16		0.434
	(3 months)		No, n = 199	No anaemia, n = 124, events = 14		
	Panagiotopoulou 2014 [38]	Odds ratio	Yes, n = 30	Anaemia, n = 105, events = 16	OR = 1.4 (95% CI = 0.7, 3.1)	
	(3 months)		No, n = 199	No anaemia, n = 124, events = 14	Reference	
Centre B	Panagiotopoulou 2014 [38]	Chi-squared	Yes, n = 76	Anaemia, n = 257, events = 35		0.103
	(3 months)		No, n = 613	No anaemia, n = 432, events = 41		
	Panagiotopoulou 2014 [38]	Odds ratio	Yes, n = 76	Anaemia, n = 257, events = 35	OR = 1.5 (95% CI = 0.9, 2.4)	
	(3 months)		No, n = 613	No anaemia, n = 432, events = 41	Reference	
	Panagiotopoulou 2014	Odds ratio	Yes, n = 76	Anaemia, n = 257, events = 35	OR = 1.5 (95% CI = 0.9, 2.5)	
	[38] ⁸ (3 months)		No, n = 613	No anaemia, n = 432, events = 41	Reference	
Males	Schneider 2018 [43}	Odds ratio	Yes, n = 2551	≤9 g/dL, n = 243, events = 243	Х	
	(6 months)		No, n = 1113	9–9.9 g/dL, n = 207, events = 193	OR = 10.3 (95% CI = 5.9, 17.8)	

ncers			[]	MDPI	
				10–10.9 g/dL, n = 284, events =	OR = 6.5 (95% CI
				255	= 4.4, 9.7)
				11–11.9 g/dL, n = 379, events =	OR = 2.7 (95% CI
				296	= 2.0, 3.4)
				12–12.9 g/dL, n = 497, events =	OR = 2.5 (95% CI
				384	= 2.0, 3.2)
				13–15.9 g/dL, n = 1834, events = 1052	Reference
				≥16 g/dL, n = 180, events = 88	OR = 0.71 (95% CI
_					= 0.52, 0.97)
	Schneider 2018 [43} 9	Odds ratio	Yes, n = 2551	≤9 g/dL, n = 243, events = 243	OR = 95.9 (95% CI
				C C	= 23.5, 391.8)
	(6 months)		No, n = 1113	9–9.9 g/dL, n = 207, events =	OR = 12.2 (95% CI
				193	= 6.8, 21.8)
				10-10.9 g/dL, n = 284, events =	OR = 8.6 (95% CI
				255	= 5.3, 13.8)
				11–11.9 g/dL, n = 379, events =	OR = 3.1 (95% CI
				296	= 2.3, 4.2)
				12–12.9 g/dL, n = 497, events =	OR = 2.9 (95% CI
				384	= 2.2, 3.8)
				13–15.9 g/dL, n = 1834, events = 1052	Reference
				1(-1) 100 100	OR = 0.7 (95% CI
				$\geq 16 \text{ g/dL}, \text{ n} = 180, \text{ events} = 88$	= 0.5, 1.04)
E	Calara (1. a. 2010 [42]	Otherstic	V	<u>(0,)</u> 11 041	OR = 70.6 (95% CI
Females	Schneider 2018 [43}	Odds ratio	Yes, n = 2089	≤9 g/dL, n = 341, events = 336	= 29, 172.2)
			NI 1007	9–9.99 g/dL, n = 368, events =	OR = 16.5 (95% CI
	(6 months)		No, n = 1086	252	= 9.8, 27.8)
				10–10.9 g/dL, n = 379, events =	OR = 7.6 (95% CI
				333	= 5.5, 10.6)
				11–11.9 g/dL, n = 442, events =	OR = 3.0 (95% CI
				326	= 2.3, 3.8)
					. ,

🏽 cancers	
-----------	--

$ \begin{array}{ c c c c c } & & & & & & & & & &$	Ca	ncers				MDPI		
$ \begin{array}{c c c c c c } & & & & & & & & & & & & & & & & & & &$					1 -	12–12.9 g/dL, n = 667, events =	OR = 1.5 (95% CI	
477 Reference 216 g/dL, n = 0 X Schneider 2018 [43] * Odds ratio Yes, n = 2089 \$29 g/dL, n = 341, events = 336 GR = 84.6 (95% CI = 30.4, 235.2) (6 months) No, n = 1086 9-9.99 g/dL, n = 368, events OR = 20.8 (95% CI = 30.4, 235.2) = 10-10.9 g/dL, n = 379, events OR = 10.6 (95% CI = 30.4, 235.2) = = = 333 = 6.9, 16.1) = = 333 = 6.9, 16.1) 11-11.9 g/dL, n = 442, events OR = 10.6 (95% CI = 30.4, 25.2) = = = 333 = 6.9, 16.1) =						0	= 1.2, 1.8)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						0	Reference	
Schneider 2018 [43]* Odds ratio Yes, n = 2089 \$9 g/d1, n = 341, events = 336 = 30.4, 235.2) (6 months) No, n = 1086 9-9.99 g/d1, n = 368, events = OR = 23.3 (95% C1 = 12.4, 43.5) 10-10.9 g/d1, n = 379, events = OR = 3.7 (95% C1 = 36.4, 235.2) = 12.4, 43.5) = 6.9, 16.1) 11-11.9 g/d1, n = 42, events = OR = 3.7 (95% C1 = 32.3 (95% C1 = 27.5 1) = 27.5 1) 12-12.9 g/d1, n = 66, events = OR = 1.5 (95% C1 = 36.4, 235.2) = 6.9, 16.1) = 1.2, 1.9) 13-15.9 g/d1, n = 758, events = OR = 3.7 (95% C1 = 27.5 1) = 1.2, 1.9) = 1.2, 1.9) 13-15.9 g/d1, n = 66, events = OR = 1.5 (95% C1 = 36.4, 23.2 (95% C1 = 1.2, 1.9) USA Everyone Spell 2004 [46] Chi-squared Yes, n = 225 Men<13 g/d1, n = 100, events = 130 Men<13 g/d1, n = 552, events = 95 <0.001 (6 months) No, n = 487 g/d1, n = 160, events = 95 Image: 1.3, 23.2, 32.8) <0.001 <0.011 (6 months) Odds ratio Yes, n = 225 Men<13 g/d1, wonen<11 g/d1, n = 532, events = 95 Image: 1.3, 23.2, 32.8) <0.001 (6 months) No, n = 487 g/d1, n =						$\geq 16 \text{ g/dL}, n = 0$	Х	
(6 months) No, n = 1086 252 = 12.4, 43.5) 10-10.9 g/dL, n = 379, events OR = 10.6 (95% CI 333 = 6.9, 16.1) 333 = 6.9, 16.1) 11-11.9 g/dL, n = 422, events OR = 37, (95% CI 326 326 = 2.7, 5.1) 12-12.9 g/dL, n = 667, events OR = 1.5 (95% CI 326 = 1.2, 1.9) 13-15.9 g/dL, n = 0 X Reference 477 Reference 477 USA Everyone Spell 2004 [46] Chi-squared Yes, n = 225 Men<13 g/dL, Women<11 g/dL, n = 160, events = 130 40.001 (6 months) No, n = 487 g/dL, n = 552, events = 95 <0.001 (6 months) Yes, n = 225 Men<13 g/dL, Women<11 g/dL, n = 160, events = 130 = 1.32, 32.8) (6 months) Yes, n = 487 g/dL, n = 160, events = 130 = 1.32, 32.8) <0.001 (6 months) No, n = 487 Men<13 g/dL, Women<11 g/dL, n = 132, 32.8) Reference = 1.32, 32.8) <0.001 (6 months) No, n = 487 Men<13 g/dL, Women<11 g/dL, n = 552, events = 95 Reference = 1.32, 32.8) <0.001 (16 months) No, n = 487 <th></th> <th></th> <th>Schneider 2018 [43} ⁹</th> <th>Odds ratio</th> <th>Yes, n = 2089</th> <th>≤9 g/dL, n = 341, events = 336</th> <th>``</th> <th></th>			Schneider 2018 [43} ⁹	Odds ratio	Yes, n = 2089	≤9 g/dL, n = 341, events = 336	``	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			(6 months)		No, n = 1086	-	``	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						0	· ·	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						11–11.9 g/dL, n = 442, events =	. ,	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						0	,	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						12–12.9 g/dL, n = 667, events =	OR = 1.5 (95% CI	
$ \begin{array}{c c c c c c } & & & & & & & & & & & & & & & & & & &$						365	= 1.2, 1.9)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						0	Reference	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						≥16 g/dL, n = 0	Х	
$ \begin{array}{c c c c c c c } & & & & & & & & & & & & & & & & & & &$	USA	Everyone	Spell 2004 [46]	Chi-squared	Yes, n = 225	8		<0.001
$\begin{tabular}{ c c c c c c c } \hline Spell 2004 [46] & Odds ratio & Yes, n = 225 & Men<13 g/dL, Women<11 & OR = 20.8 (95\% CI \\ g/dL, n = 160, events = 130 & = 13.2, 32.8) \\ \hline Men\geq 13 g/dL, Women\geq 11 \\ g/dL, n = 552, events = 95 & Reference \\ \hline $			(6 months)		No, n = 487	Men≥13 g/dL, Women≥11		
(6 months)No, n = 487Men \ge 13 g/dL, Women \ge 11 g/dL, n = 552, events = 95ReferenceEVENUEUK EveryoneAcher 2003 [1] 5DescriptiveYes<10.1 g/dl, n >5000, events = 28 $(6-12 months)$ No $\ge 10.1 g/dL, events = 274$ Boursi 2016 [8]Odds ratioYes, n = 4929Modelled as continuousOR = 0.67 (95% CI $= 0.66, 0.69)$ <0.001		_	Spell 2004 [46]	Odds ratio	Yes, n = 225	Men<13 g/dL, Women<11	,	
UKEveryoneAcher 2003 [1] 5 DescriptiveYes<10.1 g/dl, n>5000, events = 28(6-12 months)No $\geq 10.1 g/dL$, events = 274OR = 0.67 (95% CI = 0.66, 0.69)<0.001			(6 months)		No, n = 487	Men≥13 g/dL, Women≥11		
(6-12 months)No $\geq 10.1 \text{ g/dL}$, events = 274Boursi 2016 [8]Odds ratioYes, n = 4929Modelled as continuous $OR = 0.67 (95\% \text{ CI} = 0.66, 0.69)$ <0.001				6 < outcome t	ime window ≤ 12 mo	onths:		
Boursi 2016 [8] Odds ratio Yes, $n = 4929$ Modelled as continuous $= 0.66, 0.69$	UK	Everyone		Descriptive		0		
		_	Boursi 2016 [8]	Odds ratio	Yes, n = 4929	Modelled as continuous	· ·	<0.001
		_	(1 year)		No, n = 11491			

Boursi 2016 [8] 10	Odds ratio	Yes, n = 3375	Modelled as fractional polynomials (powers: 2, 2)	$OR = 0.02*Hb^2$
(1 year)		No, n = 8560		OR = 32.17*Hb ² × ln(Hb)
Hamilton 2009 [19]	Odds ratio	Yes, n = 5477	<12 g/dL, n = 3227, events = 1424	OR = 7.11 (95% CI = 6.59, 7.68)
(2 years)		No, n = 38314	≥12 g/dL,n = 40564, events = 4053	Reference
Hamilton 2009 [19] 11	Odds ratio	Yes	<9 g/dL	OR = 18 (95% CI = 14, 25)
(2 years)		No	9–9.9 g/dl	OR = 9.3 (95% CI = 7.1, 12)
			10–10.9 g/dl	OR = 5.9 (95% CI = 4.8, 7.2)
			11–11.9 g/dl	OR = 2.8 (95% CI = 2.4, 3.2)
			12–12.9 g/dl	OR = 1.7 (95% CI = 1.5, 1.9)
			≥12 g/dL	Reference
Lawrenson 2006 [31]	Rate ratios	Yes	Anaemia	
(1 year)		No	No anaemia	
Marshall 2011 [34]	Odds ratio	Yes, n = 5477	<9 g/dL, n = 487, events = 385	OR = 50.9 (95% CI = 40.2, 64.5)
(2 years)		No, n = 38314	9–9.999 g/dL, n = 421, events = 268	OR = 23.5 (95% CI = 18.9, 29.1)
			10–10.999 g/dL, n = 771,	OR = 12.3 (95% CI
			events = 354	= 10.5, 14.4)
			11–11.999 g/dL, n = 1548,	OR = 5.4 (95% CI
			events = 417	= 4.7, 6.1
			12–12.999 g/dL, n = 3001,	OR = 3.0 (95% CI
			events = 517	= 2.7, 3.3)
			13–13.999 g/dL, n = 4284,	OR = 2.0 (95% CI
				-

ncers				MDPI		
_				≥14 g/dL, n = 33279, events = 2963	Reference	
	Marshall 2011 [34]	Odds ratio	Yes, n = 5477	Men<12 g/dL, Women<11, n = 2211, events = 1181	OR = 11.4 (95% CI = 10.3, 12.6)	
	(2 years)		No, n = 38314	Men≥12 g/dL, Women≥11, n = 41580, events = 4296	Reference	
-	Marshall 2011 [34] ¹²	Odds ratio	Yes, n = 5477	<9 g/dL, n = 487, events = 385	OR = 15.9 (95% CI = 11.8, 21.6)	
	(2 years)		No, n = 38314	9–9.999 g/dL, n = 421, events = 268	OR = 8.08 (95% CI = 6.13, 10.65)	
				10–10.999 g/dL, n = 771, events = 354	OR = 5.18 (95% CI = 4.19, 6.39)	
				11–11.999 g/dL, n = 1548, events = 417	OR = 2.54 (95% CI = 2.16, 2.99)	
				12–12.999 g/dL, n = 3001, events = 517	OR = 1.63 (95% CI = 1.42, 1.87)	
				13–13.999 g/dL, n = 4284,	OR = 1.33 (95% CI	
				events = 573 ≥14 g/dL, n = 33279, events =	= 1.18, 1.50)	
_				2963	Reference	
	Stapley 2006 [47] (1 year)	Odds ratio	Yes No	<9 g/dL, n = 73, events = 39 ≥9 g/dL, n = 276	Reference	0.73
Males	Hamilton 2008 [18]	Odds ratio	Yes, n = 1604	<9 g/dL, n = 225, events = 178	OR = 19.4 (95% CI = 14.0, 27.0)	
	(1 year)		No, n = 5226	9–9.9 g/dL, n = 167, events = 118	OR = 12.4 (95% CI = 8.8, 17.4)	
				10–10.9 g/dL, n = 260, events = 129	OR = 5.1 (95% CI = 3.9, 6.5)	
				11–11.9 g/dL, n = 464, events = 171	OR = 3.0 (95% CI = 2.4, 3.7)	
				12–12.9 g/dL, n = 775, events = 203	OR = 1.8 (95% CI = 1.5, 2.2)	

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ncers	MDPI										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					8	Reference						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			Hazard ratio	Yes	<11 g/dL							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	_	(2 years)		No	≥11 g/dL	Reference						
Stapley 2006 [47] Odds ratio A $10-12.9 g/dL, n = 80, Stage A = 3, C = 11, D = 10$ $OR = 2.2 (95\% CI = 1.2, 4.3)$ 0.021 (1 year) B $\geq 12.9 g/dL, n = 269$ Reference C D $OR = 40.0 (95\% CI = 27.8, 57.7)$ $OR = 40.0 (95\% CI = 27.8, 57.7)$ $OR = 40.0 (95\% CI = 3.3, 59.3)$ $OR = 40.0 (95\% CI = 3.3, 59.3)$ $OR = 40.0 (95\% CI = 27.8, 57.7)$ (1 year) No, n = 5226 $9-9.9 g/dL, n = 231, events = 0$ $OR = 40.0 (95\% CI = 2.3, 57.7)$ $OR = 40.0 (95\% CI = 2.3, 57.7)$ (1 year) No, n = 5226 $9-9.9 g/dL, n = 231, events = 0$ $OR = 40.0 (95\% CI = 3.3, 59.3)$ $OR = 6.6 (95\% CI = 2.3, 59.3)$ $10-10.9 g/dL, n = 451, events = 0$ $OR = 2.5 (95\% CI = 2.3, 8.1)$ $11-11.9 g/dL, n = 854, events = 0$ $OR = 2.5 (95\% CI = 2.8)$ 226 $= 3.3, 59.3$ $10-10.9 g/dL, n = 1626, events = 0$ $OR = 2.5 (95\% CI = 2.89)$ $= 1.2, 1.7)$ $12-12.9 g/dL, n = 3451, events = 459$ $OR = 1.4 (95\% CI = 2.84, 3.74)$ $= 2.89$ $= 1.2, 1.7)$ $14 (2 years)$ Hazard ratio Yes $<11 g/dL$ $HR = 3.26 (95\% CI = 2.84, 3.74)$ $(2 years)$ No $\geq 11 g/dL$ Reference $Hippisley-Cox 2013 [23] = 0$ No $\geq 11 g/dL$ $OR = 4.37 (95$			Odds ratio	Yes, n = 3250	<11 g/dL	,						
Stapley 2006 [47] Odds ratio A $= 3, B = 3, C = 11, D = 10$ $= 1.2, 4.3$ 0.021 (1 year) B $\geq 12.9 \text{ g/dL}, n = 269$ Reference C D OR = 40.0 (95% CI Joint Control (1 year) No, n = 1579 $\leq 9 \text{ g/dL}, n = 257, \text{ events} = 221$ OR = 40.0 (95%) CI Image: Control (1 year) No, n = 5226 $9 - 9.9 \text{ g/dL}, n = 231, \text{ events} = 0$ OR = 14.0 (95%) CI Image: Control (1 year) No, n = 5226 $9 - 9.9 \text{ g/dL}, n = 231, \text{ events} = 0$ OR = 6.6 (95%) CI Image: Control (1 year) No, n = 5226 $9 - 9.9 \text{ g/dL}, n = 451, \text{ events} = 0$ OR = 6.6 (95%) CI Image: Control (1 year) No, n = 5226 $9 - 9.9 \text{ g/dL}, n = 451, \text{ events} = 0$ OR = 2.5 (95%) CI Image: Control (1 year) No $12 - 12.9 \text{ g/dL}, n = 1626, \text{ events} = 0$ $212, 9 \text{ g/dL}, n = 3451, \text{ events} = 0$ $212, 9 \text{ g/dL}, n = 3451, \text{ events} = 0$ $212, 9 \text{ g/dL}, n = 326, 95\%$ $CI = 2.84, 3.74$ Image: Control (2 years) No $\geq 11 \text{ g/dL}$ HR = 3.26 (95%) CI = 2.84, 3.74 Image: Control (2 years) No $\geq 11 \text{ g/dL}$ OR = 4.37 (95%) CI =	_	(2 years)		No, n = 1240550	≥11 g/dL	Reference						
$ \begin{array}{ c c c c c c } \hline C \\ D \\ \hline Females & Hamilton 2008 [18] & Odds ratio & Yes, n = 1579 & <9 g/dL, n = 257, events = 221 & OR = 40.0 (95\% \\ CI = 27.8, 57.7) \\ (1 year) & No, n = 5226 & 9-9.9 g/dL, n = 231, events = & OR = 14.0 (95\% CI \\ 146 & = 3.3, 59.3) \\ 10-10.9 g/dL, n = 451, events = & OR = 6.6 (95\% CI \\ 226 & = 5.3, 8.1) \\ 11-11.9 g/dL, n = 454, events = & OR = 2.5 (95\% CI \\ 238 & = 2.1, 3.0) \\ 12-12.9 g/dL, n = 1626, events = & OR = 1.4 (95\% CI \\ = 289 & = 1.2, 1.7) \\ >12.9 g/dL, n = 3451, events = & \\ 459 & Reference \\ \hline \hline Hippisley-Cox 2012 [21] \\ 16 & Hazard ratio & Yes & <11 g/dL & \\ \hline HR = 3.26 (95\% CI \\ CI = 2.84, 3.74) \\ \hline (2 years) & No & \geq 11 g/dL & OR = 4.37 (95\% CI \\ = 3.94, 4.86) \\ \hline \end{array} $		Stapley 2006 [47]	Odds ratio	А	0		0.021					
Females Hamilton 2008 [18] Odds ratio Yes, n = 1579 $<9 \text{ g/dL}$, n = 257, events = 221 OR = 40.0 (95% CI = 27.8, 57.7) (1 year) No, n = 5226 $9-9.9 \text{ g/dL}$, n = 231, events = OR = 14.0 (95% CI = 3.3, 59.3) 10-10.9 g/dL, n = 451, events = OR = 6.6 (95% CI = 226 = 5.3, 8.1) 11-11.9 g/dL, n = 854, events = OR = 2.5 (95% CI = 238 = 2.1, 3.0) 12-12.9 g/dL, n = 1626, events OR = 1.4 (95% CI = 238 = 2.1, 3.0) 12-12.9 g/dL, n = 1626, events = 00R = 1.4 (95% CI = 289 = 1.2, 1.7) >12.9 g/dL, n = 3451, events = OR = 1.2 (95% CI = 2.89 = 1.2, 1.7) >12.9 g/dL, n = 3451, events = 459 OR = 4.37 (95% CI = 2.84, 3.74) Hippisley-Cox 2012 [21] Hazard ratio Yes $<11 \text{ g/dL}$ HR = 3.26 (95% CI = 2.84, 3.74) (2 years) No $\geq 11 \text{ g/dL}$ Reference OR = 4.37 (95% CI = 3.94, 4.86) Hippisley-Cox 2013 [23] Odds ratio Yes, n = 2607 $<11 \text{ g/dL}$ OR = 4.37 (95% CI = 3.94, 4.86)		(1 year)		С	≥12.9 g/dL, n = 269	Reference						
Females Hamilton 2008 [18] Odds ratio Yes, n = 15/9 <9 g/dL, n = 25/, events = 221				D								
(I year) No, n = 5226 146 = 3.3, 59.3) 10-10.9 g/dL, n = 451, events = OR = 6.6 (95% CI 226 = 5.3, 8.1) 11-11.9 g/dL, n = 854, events = OR = 2.5 (95% CI 238 = 2.1, 3.0) 12-12.9 g/dL, n = 1626, events = 2.1, 3.0) 12-12.9 g/dL, n = 3451, events = OR = 1.4 (95% CI = 289 = 1.2, 1.7) >12.9 g/dL, n = 3451, events = 459 459 Reference 459 Reference 459 Odds ratio Yes, n = 2607 <11 g/dL	Females	Hamilton 2008 [18]	Odds ratio	Yes, n = 1579	<9 g/dL, n = 257, events = 221	·						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(1 year)		No, n = 5226	6	•						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					10–10.9 g/dL, n = 451, events =	OR = 6.6 (95% CI						
$\begin{array}{cccc} 12-12.9 \ g/dL, n = 1626, events & OR = 1.4 \ (95\% \ CI \\ &= 289 & = 1.2, 1.7) \\ >12.9 \ g/dL, n = 3451, events = \\ & 459 & \end{array}$ $\begin{array}{cccc} Hippisley-Cox \ 2012 \ [21] \\ & 16 & Hazard ratio & Yes & <11 \ g/dL & HR = 3.26 \ (95\% \\ & CI = 2.84, 3.74) \\ \hline & CI = 2.84, 3.74) \\ \hline & (2 \ years) & No & \geq 11 \ g/dL & Reference \\ \hline & Hippisley-Cox \ 2013 \ [23] \\ & _{14, 15} & Odds \ ratio & Yes, n = 2607 & <11 \ g/dL & OR = 4.37 \ (95\% \ CI \\ & = 3.94, 4.86) \end{array}$					11–11.9 g/dL, n = 854, events =	OR = 2.5 (95% CI						
$\begin{array}{c} >12.9 \ g/dL, n = 3451, events = \\ 459 \end{array} \qquad $					12–12.9 g/dL, n = 1626, events	OR = 1.4 (95% CI						
Image: Hagard ratio Yes <11 g/dL CI = 2.84, 3.74) (2 years) No $\geq 11 g/dL$ Reference Hippisley-Cox 2013 [23] Odds ratio Yes, n = 2607 <11 g/dL OR = 4.37 (95% CI 14, 15 Odds ratio Yes, n = 2607 <11 g/dL					>12.9 g/dL, n = 3451, events =							
(2 years) No $\geq 11 \text{ g/dL}$ Reference Hippisley-Cox 2013 [23] Odds ratio Yes, n = 2607 $< 11 \text{ g/dL}$ OR = 4.37 (95% CI 14, 15 Odds ratio Yes, n = 2607 $< 11 \text{ g/dL}$ $= 3.94, 4.86$)	-		Hazard ratio	Yes	<11 g/dL							
Hippisley-Cox 2013 [23] $_{14,15}$ Odds ratioYes, n = 2607<11 g/dLOR = 4.37 (95% CI = 3.94, 4.86)		(2 years)		No	≥11 g/dL							
	-		Odds ratio	Yes, n = 2607	× · · · ·							
		(2 years)		No, n = 1217648	≥11 g/dL	. ,						

 $12 < outcome time window \le 36 months:$

	incers			N	NDPI	
ΙK	Euomiona	Cross 2019 [11]	Odds ratio	Yes, n = 337	Men<13 g/dL, Women<12	OR = 2.39 (95% CI
ĸ	Everyone	Cross 2019 [11]	Odds ratio	105, 11 = 557	g/dL, n = 1660, events = 184	= 1.91, 2.98)
		(3 years)		No, n = 4405	Men≥13 g/dL, Women≥12 g/dL , n = 3082, events = 153	Reference
		Cross 2019 [11]	Yield	Yes	Anaemia with distal cancer	Yield = 6.4%
		(3 years)		No	Anaemia with proximal cancer	Yield = 4.7%
					No anaemia with distal cancer	Yield = 4.3%
	_				No anaemia with proximal cancer	Yield = 0.6%
		Hamilton 2005 [17]	Odds ratio	Yes, n = 349	<10 g/dl, n = 61, events = 40	OR = 12.4 (95% CI = 7.2, 21.38)
					10–11.9 g/dl, n = 87, events =	OR = 5.05 (95% CI
		(2 years)		No, n = 1744	38	= 3.24, 7.87)
					12–12.9 g/dl, n = 37, events =	OR = 5.5 (95% CI
					17	= 2.7, 10.7)
					≥13 g/dL, n = 1908, events = 254	Reference
	_	Hamilton 2005 [17] 17	Odds ratio	Yes, n = 349	<10 g/dl, n = 61, events = 40	OR = 13.0 (95% CI = 6.2, 28.0)
		(2 years)		No, n = 1744	10–11.9 g/dl, n = 87, events = 38	OR = 4.3 (95% CI) = 2.1, 9.0)
					12–12.9 g/dl, n = 37, events =	OR = 2.5 (95% CI
					12–12.9 g/ul, II – 37, evenus – 17	= 0.95, 6.8)
					≥13 g/dL, n = 1908, events = 254	Reference
	-	Thompson 2017 [48]	Odds ratio	Yes	IDA	OR = 6.09 (95% CI = 5.04, 7.35)
		(3 years)		No	No IDA	Reference
	-	Thompson 2017 [48] ¹⁸	Odds ratio	Yes, n = 990	IDA	OR = 8.38 (95% CI = 5.10, 16.05)
		(3 years)		No, n = 16413	No IDA	Reference

Cal	ncers			N			
			Outcome tin	me window > 36 mor	nths:		
Taiwan	Everyone	Hung 2015 [26]	Incidence	Yes	IDA, n = 32390, events = 171	SIR = 1.48 (95% CI = 1.27, 1.72)	
		(1–10 years)	ratio	No	No IDA		
	_	Hung 2015 [26]	Incidence	Yes	IDA, n = 32390, CRC = 54	SIR = 1.14 (95% CI = 0.85, 1.48)	
		(1–10 years)	ratio	No	No IDA		
UK	Everyone	Pilling 2018 [40] 19	Hazard ratio	Yes, n = 914	Modelled as continuous	sHR = 0.97 (95% CI = 0.87, 1.08)	
		(4.5 years)		No, n = 237,302			
		Pilling 2018 [40] 19	Hazard ratio	Yes, n = 413	Modelled as continuous	sHR = 1.01 (95% CI = 0.87, 1.18)	
		(4.5–9 years)		No, n = 237,451			
		OUTCOME WIN	IDOW NOT CATE	GORISABLE: > 3-m	onth risk of CRC diagnosis:		
Iran	Everyone	Bafandeh 2008 [5]	Odds ratio	Yes	Unexplained anaemia, n = 35		0.004
		(>3 months)		Polyp	No unexplained anaemia, n = 445	Reference	
	_	Bafandeh 2008 [5] ²⁰	Odds ratio	Yes	Unexplained anaemia, n = 35, events = 5		0.006
		(>3 months)		Polyp	No unexplained anaemia, n = 445	Reference	
		OUTCOME WIN	DOW NOT CATE	GORISABLE: > 12-m	onth risk of CRC diagnosis:		
Netherlands	Everyone	Fijten 1995 [13]	Chi-squared	Yes, n = 6	Men<8.5 mmol/L, Women<7.5 mmol/L, n = 14, events = 2		<0.01
		(>1 year)		No, n = 219	Men≥8.5 mmol/L, Women≥7.5 mmol/L, n = 211, events = 4		
		Fijten 1995 [13]	Odds ratio	Yes, n = 6	Low, n = 14, events = 2	OR = 8.6 (95% CI = 1.4, 51.9)	-
		(>1 year)		No, n = 219	High, n = 211, events = 4	Reference	
UK	Everyone	Acher 2003 [1] ⁵ (> 1 year)	Descriptive	Yes No	<10.1 g/dl, n>5000, events = 26 \geq 10.1 g/dL, events = 274		

Unspecified outcome time window:

Ca	ncers				MDPI		
Italıı	Enomono	Departs 2002 [20] 21	Odds ratio	$V_{ac} = -41$	Men<14 g/dL, Women<12	OR = 10.4 (95% CI	
Italy	Everyone	Panzuto 2003 [39] ²¹	Odds ratio	Yes, n = 41	g/dL, n = 69, events = 28	= 4.9, 21.7)	
				No, n = 239	Men≥14 g/dL, Women≥12	Reference	
	_			NO, II – 239	g/dL, n = 211, events = 13	Reference	
		Panzuto 2003 [39] 22, 23	Odds ratio	Yes, n = 41	Men<14 g/dL, Women<12	OR = 8.8 (95% CI	
		1 alizuto 2003 [39] ^{22, 20}	Ouus Iatio	165, 11 – 41	g/dL, n = 69, events = 28	= 3.9–19.8)	
				No, n = 239	Men≥14 g/dL, Women≥12	Reference	
				NO, II = 239	g/dL, n = 211, events = 13		
Ianan	Everyone	Nakama 2000 [37] ²⁴	Chi-squared	Yes, n = 96	Men<12.5 g/dL, Women<11.5		< 0.05
Japan	Everyone	Tvakama 2000 [07]	Chi-squareu	165, 11 – 90	g/dL, n = 1132, events = 31		<0.05
				No, n = 17568	Men≥12.5 g/dL, Women≥11.5		
	_			NO, II = 17500	g/dL, n = 16532, events = 65		
		Nakama 2000 [37] ²⁴	Odds ratio	Yes, n = 96	Men<12.5 g/dL, Women<11.5	OR = 7.1 (95% CI	
		Tvakama 2000 [07]	Odds fatto	165, 11 – 90	g/dL, n = 1132, events = 31	= 4.6, 11.0)	
				No, n = 17568	Men≥12.5 g/dL, Women≥11.5	Reference	
				NO, II = 17508	g/dL, n = 16532, events = 65		
Switzerland	Everyone	Naef 1999 [36]	Descriptive	Yes	Anaemic, n = 23, events = 16		
				Polyp	Non-anaemic, n = 31		

Abbreviations: CRC = colorectal cancer, OR = odds ratio, RR = risk ratio, SIR = standardised incidence ratios. ¹Multivariable effect estimate, adjusted for: age, sex, serum iron, transferrin, saturation index, and ferritin. ²Multivariable effect estimate, adjusted for: mean corpuscular volume, neutrophil count, platelets, red blood cell distribution width, alanine aminotransferase, protein, iron, ferritin. ³Multivariable effect estimate, adjusted for: mean corpuscular volume, noncyte count, platelets, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, iron, ferritin. ⁴Multivariable effect estimate, adjusted for: change in bowl habit, rectal bleeding, benign anorrectal lesion, rectal mass, serum CEA, Faecal haemoglobin, previous colonoscopy, aspirin use, sex, age. ⁵In the presence of serum ferritin<¹² ng/ml and mean corpuscular volume<78 fL. ⁶Multivariable effect estimate, adjusted for: age, sex. ⁷In the presence of serum ferritin<¹² ng/ml and mean corpuscular volume<78 fL. ⁶Multivariable effect estimate, adjusted for: age, sex. ⁷In the presence of serum ferritin<¹² ng/ml and mean corpuscular volume<78 fL. ⁶Multivariable effect estimate, adjusted for: sex, age, change in bowel habit, weight loss, bleeding per rectum, mucus per rectum, abdominal mass, abdominal fullness, lesion on digital rectal examination, anal lesion, abdominal distension, abdominal pain, family history, previous polyps, FOBt. ⁹Multivariable effect estimate, adjusted for: rean corpuscular volume<78 fL and/or mean corpuscular haemoglobin concentration<32 g/dL. ¹¹Multivariable effect estimate, adjusted for: rean corpuscular volume, white blood cell count, neutrophil-lymphocyte ratio, platelets, sex, previous metformin prescriptions, previous prescriptions for oral hypoglycemic drugs other than metformin. ¹²Multivariable effect estimate, adjusted for: constipation, diapted, change in bowel habit, flatulence, Irritable bowel syndrome, abdominal pain/antispasmodic, rectal bleeding, mean corpu

MDPI

loss, change in bowel habit in previous year. ¹⁵Effect estimates are from multinomial logistic regression model, where the outcomes are different types of cancer. The estimates for the colorectal cancer vs no cancer are reported here. ¹⁶Multivariable effect estimate, adjusted for: family history gastrointestinal cancer, alcohol status, abdominal distension, abdominal pain, appetite loss, rectal bleeding, weight loss, change in bowel habit, constipation. ¹⁷Multivariable effect estimate, adjusted for: family history of gastrointestinal cancer, current rectal bleeding, current abdominal pain, current appetite loss, current weight loss. ¹⁸Multivariable effect estimate, adjusted for: rectal bleeding, weight loss, number of episodes of abdominal pain, constipation, number of episodes of diarrhoea, rectal disease on rectal examination, tenderness on palpation of abdomen, positive faecal occult blood, blood sugar. ¹⁹Multivariable effect estimate, adjusted for: age, sex, symptom combinations, physical signs, characteristics of rectal bleeding, characteristics of change in bowel habit, other characteristics of bowel cancer. ²⁰Multivariable effect estimate, adjusted for: age, sex, symptom combinations, physical signs, characteristics of rectal bleeding, mean corpuscular volume, red blood cell distribution width. ²¹Multivariable effect estimate, adjusted for: age, gender, duration of symptoms. ²²In the presence of ferritin<30 and mean corpuscular volume<80 fL. ²³Multivariable effect estimate, adjusted for: age, weight loss. ²⁴In the presence of serum ferritin<45.5 µg/L and serum iron<40 µg/L

Table S6: Haematocrit (or packed cell volume) for colorectal cancer, with analyses sorted by outcome time window, country, and strata

Country	Strata	Article	Analysis	CRC outcome groups and	Blood level categories and no.	Analysis estimates	p-
			type	no. per group	per group		value
				6 < outcome time window	$v \leq 12$ months:		
UK	Everyone	Boursi 2016 [8]	Odds ratio	Yes, n = 4929	Modelled as continuous	OR = 0.97 (95% CI = 0.95, 0.98)	< 0.001
		(1 year)		No, n = 11311			
		Boursi 2016 [8] ¹	Odds ratio	Yes, n = 4929	Modelled as fractional polynomials (powers: -1, -1)	OR = 0.681*Hc ⁻¹	<0.001
		(1 year)		No, n = 11311		OR = 0.894*Hc ⁻¹ × ln(Hc)	

Abbreviations: CRC = colorectal cancer, OR = odds ratio, Hc = haematocrit. ¹Multivariable effect estimate, adjusted for: mean corpuscular volume, lymphocyte count, neutrophil-lymphocyte ratio.

Table S7: Mean corpuscular volume for colorectal cancer, with analyses sorted by outcome time window, country, and strata

Country	Strata	Article	Analysis type	CRC outcome groups and no. per group	Blood level categories and no. per group	Analysis estimates	P- value
			0 < outcom	ne time window ≤ 6 mon	ths:		
Israel	Males	Goshen 2017 [16]	T-test	Yes, n = 936		Mean = 85.7 fL	< 0.0001
		(1–6 months)		No, n = 28491		Mean = 88.9 fL	
		Goshen 2017 [16]	Risk ratio	Yes	Highest-risk quintile	RR = 3.44 (95% CI = 2.7, 4.87)	
		(1–6 months)		No	Lowest-risk quintile	Reference	
	_	Goshen 2017 [16] ¹	Risk ratio	Yes, n = 936	Highest-risk quintile	RR = 2.98 (95% CI = 2.58, 3.42)	< 0.001
		(1–6 months)		No, n = 28491	Lowest-risk quintile	Reference	
	Females	Goshen 2017 [16]	T-test	Yes, n = 819		Mean = 84.5 fL	< 0.0001
		(1–6 months)		No, n = 26239		Mean = 88.6 fL	
		Goshen 2017 [16]	Risk ratio	Yes	Highest-risk quintile	RR = 3.52 (95% CI = 2.84, 4.39)	
		(1–6 months)		No	Lowest-risk quintile	Reference	
		Goshen 2017 [16] ²	Risk ratio	Yes, n = 819	Highest-risk quintile	RR = 3.04 (95% CI = 2.7, 3.54)	< 0.001
		(1–6 months)		No, n = 26239	Lowest-risk quintile	Reference	
Spain	Everyone	Cubiella 2016 [12]	Mann-	Yes, n = 214	•	Median = 89.1 fL	< 0.001
-	-	(1 week)	Whitney U	No, n = 1358		Median = 90.8 fL	
Turkey	Everyone	Ay 2015 [3]	T-test	Yes, n = 30		Mean = 85.2 fL (SD = 4.8)	≥0.05
		(1 week)		Polyp, n = 110		Mean = 86.7 fL (SD = 4.9)	
UK	Everyone	Raje 2007 [42] ³	Descriptive	Yes	<78 fL, n = 142, events = 9		
		(1–2 months)		No	≥78 fL		
		Acher 2003 [1] 4	Descriptive	Yes	<78 fL, n>5000, events-112		
		(6 months)		No	≥78 fL, events-274		
	Males	Schneider 2018 [43}	Odds ratio	Yes, n = 544	≤80 fL, n = 561, events = 544	OR = 18.7 (95% CI = 11.5, 30.6)	

🍇 cancer	~S				
	(6 months)		No, n = 3000	81–85 fL, n = 440, events =	OR = 2.80 (95% CI =
			,	364	2.15, 3.65)
				86–95 fL, n = 1944, events = 1226	Reference
				96–100 fL, n = 475, events	OR = 0.7 (95% CI =
				= 260	0.6, 0.9)
				>100 fL, n = 124, events =	OR = 0.6 (95% CI =
				63	0.4, 0.9)
_	Schneider 2018 [43] ⁵	Odds ratio	Yes, n = 2457	≤80 fL, n = 561, events =	OR = 25.5 (95% CI =
	Schneider 2018 [43]	Odds ratio	1es, n = 2437	544	13.9, 46.8)
	(6 months)		No, n = 1087	81–85 fL, n = 440, events =	OR = 2.8 (95% CI =
	(6 monuns)		$100, \Pi = 1007$	364	2.1, 3.8)
				86–95 fL, n = 1944, events = 1226	Reference
				96–100 fL, n = 475, events	OR = 0.7 (95% CI =
				= 260	0.5, 0.8)
				>100 fL, n = 124, events =	OR = 0.6 (95% CI =
				63	0.4, 0.9)
Females	Schneider 2018 [43]	Odds ratio	Yes, n = 2089	≤80 fL, n = 616, events =	OR = 12.8 (95% CI =
remaies	Schneider 2018 [43}	Odds ratio	10S, II = 2009	585	8.8, 18.7)
	(6 m on th c)		No, n = 1086	81–85 fL, n = 512, events =	OR = 2.7 (95% CI =
	(6 months)		NO, II – 1000	409	2.1, 3.4)
				86–95 fL, n = 1499, events = 893	Reference
				96–100 fL, n = 280, events	OR = 0.6 (95% CI =
				= 127	0.4, 0.7)
				100 fl = -92 completed = 42	OR = 0.7 (95% CI =
				>100 fL, n = 82, events = 42	0.5, 1.1)
_	Schneider 2019 [42] 6	Odds ratio	V_{00} $n = 20E6$	≤80 fL, n = 616, events =	OR = 11.4 (95% CI =
	Schneider 2018 [43] 6	Odds ratio	Yes, n = 2056	585	7.6, 17.1)
	(6 months)		No, n = 933	81–85 fL, n = 512, events =	OR = 2.8 (95% CI =
	(o montins)		10, 11 = 955	409	2.1, 3.6)

	cance	rs			MDPI 86–95 fL, n = 1499, events = 893	Reference	
					96–100 fL, n = 280, events = 127	OR = 0.5 (95% CI = 0.4, 0.6)	
					>100 fL, n = 82, events = 42	OR = 0.7 (95% CI = 0.4, 1.1)	
	Centre B	Panagiotopoulou 2014 [38]	Odds ratio	Yes, n = 17	<80 fL, n = 106, events = 17	OR = 1.73 (95% CI = 0.96, 3.1)	
		(3 months)		No, n = 672	≥80 fL	Reference	
		Panagiotopoulou 2014 [38] ² (3 months)	Odds ratio	Yes, n = 76	<80 fL, n = 106, events = 17	OR = 2.2 (95% CI = 1.2, 4.1)	
		· · · ·		No, n = 613	≥80 fL	Reference	
USA	Everyone	Spell 2004 [46]	Chi-squared	Yes, n = 225	<80 fL, n = 108, events = 92 ≥80 fL, n = 604, events =		< 0.001
		(6 months)		No, n = 487	133		
		Spell 2004 [46]	Odds ratio	Yes, n = 92	<80 fL, n = 108, events = 92	OR = 20.4 (95% CI = 11.6, 35.8)	
		(6 months)		No, n = 620	≥80 fL, n = 604, events = 133	Reference	
			6 < outcome	time window ≤ 12	months:		
UK	Everyone	Acher 2003 [1] ⁴	Descriptive	Yes	<78 fL, n>5000, events = 28		
		(6–12 months)		No	≥78 fL, events-274		
		Boursi 2016 [8]	Odds ratio	Yes, n = 4929	Modelled as continuous	OR = 0.90 (95% CI = 0.89, 0.91)	<0.001
		(1 year)		No, n = 11311			
		Boursi 2016 [8] 7	Odds ratio	Yes, n = 4929	Modelled as fractional polynomials (powers: 3, 3)	OR = 0.933*MCV ³	
		(1 year)		No, n = 11311		$OR = 1.026^*MCV^3 \times ln(MCV)$	
		Boursi 2016 [8] ⁸	Odds ratio	Yes, n = 3375	Modelled as fractional polynomials (powers: 3, 3)	OR = 0.971*MCV ³	
		(1 year)		No, n = 8560		$OR = 1.010^*MCV^3 \times ln(MCV)$	

	cancer	S				
	_	Hamilton 2008 [18]	Odds ratio	Yes, n = 2951	<80, n = 974	OR = 15.7 (95% CI = 13.4, 18.4)
		(1 year)		No, n = 9648	> = 80, n = 11625	Reference
			12 < outcome	e time window ≤ 36 m	onths:	
K	Everyone	Marshall 2011 [34]	Odds ratio	Yes, n = 5477	<80, n = 1045, events = 761	OR = 26.1 (95% CI = 22.4, 30.4)
		(2 years)		No, n = 38314	80–84.999 fL, n = 1306, events = 444	OR = 4.95 (95% CI = 4.37, 5.61)
					≥85 fL, n = 41440, events = 4272	Reference
		Marshall 2011 [34]	Odds ratio	Yes, n = 5477	<80 fL, n = 1045, events = 761	OR = 23.3 (95% CI = 20.0, 27.1)
		(2 years)		No, n = 38314	≥80 fL, n = 42746, events = 4716	Reference
	_	Marshall 2011 [34] ⁹	Odds ratio	Yes, n = 5477	<80, n = 1045, events = 761	OR = 7.67 (95% CI = 6.23, 9.44)
		(2 years)		No, n = 38314	80–84.999 fL, n = 1306, events = 444	OR = 2.71 (95% CI = 2.30, 3.19)
					≥85 fL, n = 41440, events = 4272	Reference
	_	Hamilton 2009 [19]	Odds ratio	Yes, n = 363	<80, n = 1286, events = 363	OR = 2.86 (95% CI = 2.52, 3.24)
		(2 years)		No, n = 43428	≥80 fL, n = 42505, events = 5114	Reference
	_	Hamilton 2009 [19] 10	Odds ratio	Yes	<80 fL	OR = 6.5 (95% CI = 5.3, 7.9)
		(2 years)		No	≥80 fL	Reference
			Outcome t	ime window > 36 mor	nths:	
JK	Everyone	Pilling 2018 [40] 11	Hazard ratio	Yes, n = 914	Modelled as continuous	sHR = 0.98 (95% CI = 0.96, 1.00)
		(4.5 years)		No, n = 237,302		
	_	Pilling 2018 [40] 11	Hazard ratio	Yes, n = 413	Modelled as continuous	sHR = 1.00 (95% CI = 0.97, 1.04)
						·

	cancers	5		N			
		(4.5–9 years)		No, n = 237,451			
		OUTCOME WI	NDOW NOT CATI	EGORISABLE: > 12-m	onth risk of CRC diagnosis:		
UK	Everyone	Acher 2003 [1] 4	Descriptive	Yes	<78 fL, n>5000, events = 26		
		(>1 year)		No	≥78 fL, events = 274		
			Unspecifie	ed outcome time wind	ow:		
Italy	Everyone	Panzuto 2003 [39] 12,13	Odds ratio	Yes, n = 41	<80 fL, n = 69, events = 28	OR = 8.8 (95% CI =	< 0.001
italy	Lveryone	1 anzulo 2000 [09]	112010 2003 [39] Ouus failo		<00 1L, 11 – 09, events – 20	3.9–19.8)	NU.UU1
				No, n = 170	≥80 fL, n = 211, events = 13	Reference	

Abbreviations: CRC = colorectal cancer, OR = odds ratio, RR = risk ratio, SIR = standardised incidence ratios, sHR = sub-distribution hazard ratio. ¹Multivariable effect estimate, adjusted for: haemoglobin, neutrophil count, platelets, red blood cell distribution width, alanine aminotransferase, protein, iron, ferritin. ²Multivariable effect estimate, adjusted for: haemoglobin, monocyte count, platelets, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, iron, ferritin. ³In the presence of serum ferritin<12 ng/ml and haemoglobion<11 g/dL for males and <10 g/dL for females. ⁴In the presence of haemoglobin<10.1 g/dL and/or mean corpuscular haemoglobin concentration<32 g/dL. ⁵Multivariable effect estimate, adjusted for: sex, age, change in bowel habit, weight loss, bleeding per rectum, mucus per rectum, abdominal mass, abdominal fullness, lesion on digital rectal examination, anal lesion, abdominal distension, abdominal pain, family history, previous polyps, FOBt. ⁷Multivariable effect estimate, adjusted for: neutrophil-lymphocyte ratio. ⁸Multivariable effect estimate, adjusted for: constipation, diarrhoea, change in bowel habit, flatulence, irritable bowel syndrome, abdominal pain/antispasmodic, rectal bleeding, haemoglobin, weight loss, deep venous thrombosis/pulmonary embolism, diabetes, obesity. ¹⁰Multivariable effect estimate, adjusted for: age, sex, smoking status, highest education level attained, haemoglobin, red blood cell distribution width. ¹²In the presence of ferritin<30 and haemoglobion<14 g/dL for males and <12 g/dL for females. ¹³Multivariable effect estimate, adjusted for: age, weight loss.

Table S8: Red blood cell distribution width for colorectal cancer, with analyses sorted by outcome time window, country, and strata

Country	Strata	Article	Analysis type	CRC outcome groups and no. per group	Blood level categories and no. per group	Analysis estimates	<i>p-</i> value
				$0 < $ outcome time window ≤ 6			
China	Everyone	Yang 2018 [51]	Mann-	Yes, n = 85		Median = 13.2%	0.004
		(At admission)	Whitney U	Polyp, n = 54		Median = 12.6%	
		Var a 2019 [E1]	POC	$\mathcal{N}_{aa} = 20$	13.25% (derived using	AUC = 0.72 (95% CI =	
		Yang 2018 [51]	ROC	Yes, n = 30	Youden's index)	0.61, 0.83)	
		(At admission)		Polyp, n = 110		Sensitivity = 65.9%	
						Specificity = 75.6%	
						PPV = 81.2%	
						NPV = 58.6%	
		Shi 2019 [44]		Yes, n = 211		Median = 14.3% (SD =	< 0.001
		5111 2019 [44]	T-test	1es, 11 – 211		2.7)	<0.001
		$(2, \mathbf{u}, \mathbf{a}, \mathbf{k}, \mathbf{a})$	1-test	Polymer = 102		Median = 12.7% (SD =	
		(2 weeks)		Polyp, n = 103		1.1)	
		Shi 2019 [44]	ROC	Yes, n = 30	13.2% (derived using Youden's index)	AUC = 0.72	
		(2 weeks)		Polyp, n = 110		Sensitivity = 53.1%	
						Specificity = 77.7%	
						PPV = 58.3%	
						NPV = 18.9%	
		Song 2018 [45]	Mann-	Yes, n = 783		Median = 13.3%	< 0.001
		(At diagnosis)	Whitney U	No, n = 331		Median = 12.9%	
		Song 2018 [45]	Mann-	Yes, n = 783		Median = 13.3%	< 0.05
		(At diagnosis)	Whitney U	Polyp, n = 463		Median = 13.0%	
		Song 2018 [45]	ROC	Yes, n = 783	13.95% (derived using	AUC = 0.64 (95% CI =	
		3011g 2018 [43]	KOC	1es, 11 – 785	Youden's index)	0.61, 0.67)	
		(At diagnosis)		No, n = 331		Sensitivity = 41%	
						Specificity = 94%	
						PPV = 94%	
						NPV = 40%	

	cance	rs			MDPI			
		Song 2018 [45] (At diagnosis)	ROC	Yes, n = 30 Polyp, n = 110	14.05% (derived using Youden's index)	AUC = 0.50 (95% CI = 0.47, 0.53) Sensitivity = 29% Specificity = 82% PPV = 73% NPV = 41%		
Israel	Males	Goshen 2017 [16]	T-test	Yes, n = 936		Mean = 14.26%	< 0.0001	
		(1-6 months) Goshen 2017 [16]	Risk ratio	No, n = 28491 Yes	Highest-risk quintile	Mean = 13.61% RR = 2.87 (95% CI = 2.23, 3.78)		
	Females	(1-6 months) Goshen 2017 [16] (1-6 months)	T-test	No Yes, n = 819 No, n = 26239	Lowest-risk quintile	Reference Mean = 14.81% Mean = 13.71%	<0.0001	
		Goshen 2017 [16]	Risk ratio	Yes	Highest-risk quintile	RR = 4.54 (95% CI = 3.58, 6.26)		
		(1–6 months) Goshen 2017 [16] ¹	Risk ratio	No Yes, n = 819	Lowest-risk quintile Highest-risk quintile	Reference RR = 3.14 (95% CI = 2.81, 3.66)	<0.0001	
Turkey	Everyone	(1–6 months) Ay 2015 [3]	T-test	No, n = 26239 Yes, n = 30	Lowest-risk quintile	Reference Mean = 17.7% (SD = 2.7) Mean = 15.5% (SD =	0.02	
		(1 week)		Polyp, n = 110	17.5% (derived using	1.9)		
		Ay 2015 [3] (1 week)	ROC	Yes, n = 30 Polyp, n = 110	unknown methods)	AUC = 0.747 Sensitivity = 53.3% Specificity = 91.4%		
		Cakmak 2017 [9]	T-test	Yes, n = 59		Mean = 16.1% (SD = 3.4) Mean = 13.6% (SD =	< 0.001	
		(6 months)		No, n = 59		0.6)		

	cance	rs			MDPI		
		Cakmak 2017 [9]	ROC	Yes, n = 59	14% (defived using unknown methods)	AUC = 0.774	
		(6 months)		No, n = 59		Sensitivity = 68% Specificity = 73%	
USA	Everyone	Spell 2004 [46] (6 months)	Chi-squared	Yes, n = 255 No, n = 487	≥14.2%, n = 213, events = 156 <14.2%, n = 499, events = 69		< 0.001
		Spell 2004 [46]	Odds ratio	Yes, n = 156	≥14.2%, n = 213, events = 156	OR = 17.1 (95% CI = 11.5, 25.3)	
		(6 months)		No, n = 556	<14.2%, n = 499, events = 69	Reference	
				Outcome time window >	36 months:		
UK	Everyone	Pilling 2018 [40] ²	Hazard ratio	Yes	<12%	Reference	
		(4.5 years)		No	≥12.5–12.9%	sHR = 1.25 (95% CI = 0.90, 1.72)	
					≥13–13.4%	sHR = 1.28 (95% CI = 0.94, 1.75)	
					≥13.5–13.9%	sHR = 1.55 (95% CI = 1.33, 2.12)	
					≥14–14.4%	sHR = 1.39 (95% CI = 0.99, 1.97)	
					≥14–14.9%	sHR = 1.88 (95% CI = 1.26, 2.80)	
					≥15%	sHR = 2.24 (95% CI = 1.47, 3.40)	
		Pilling 2018 [40] ²	Hazard ratio	Yes	<12%	Reference	_
		(4.5–9 years)		No	≥12.5–12.9%	sHR = 1.04 (95% CI = 0.68, 1.59)	
					≥13–13.4%	sHR = 1.23 (95% CI = 0.82, 1.84)	
					≥13.5–13.9%	sHR = 0.91 (95% CI = 0.59, 1.40)	

MDPI	
≥14–14.4%	sHR = 1.13 (95% CI =
214-14.4%	0.70, 1.81)
≥14–14.9%	sHR = 1.25 (95% CI =
214-14.9 /0	0.69, 2.24)
≥15%	sHR = 1.46 (95% CI =
21370	0.76, 2.79)

Abbreviations: CRC = colorectal cancer, OR = odds ratio, RR = risk ratio, sHR = sub-distribution hazard ratio (from Fine-Gray model), ROC = receiver operating characteristic, AUC = area under the curve, PPV = positive predictive value, NPV = negative predictive value. ¹Multivariable effect estimate, adjusted for: haemoglobin, monocyte count, platelets, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, iron, ferritin. ²Multivariable effect estimate, adjusted for: age, sex, smoking status, highest education level attained, haemoglobin, red blood cell distribution width.

Table S9: Platelet levels for colorectal cancer, with analyses sorted by outcome time window, country, and strata

Country	Strata	Article	Analysis type	CRC outcome groups and no. per group	Blood level categories and no. per group	Analysis estimates	<i>p-</i> value
				0 < outcome time window ≤	1 2 1		
China	Everyone	Wu 2019 [50]	T-test	Yes, n = 186		Mean = 279.8 10 ⁹ /L (SD = 80.56)	< 0.05
		(At diagnosis)		No, n = 108		Mean = 207.83 10 ⁹ /L (SD = 37.4)	
		Wu 2019 [50]	T-test	Yes, n = 186		Mean = 279.8 10 ⁹ /L (SD = 80.56)	<0.05
		(At diagnosis)		Polyp, n = 132		Mean = 223.9 10 ⁹ /L (SD = 42.59)	
		Wu 2019 [50]	ANOVA	Yes = 186		Mean = 279.8 10 ⁹ /L (SD = 80.56)	<0.001
		(At diagnosis)		Polyp = 132		Mean = 223.9 10 ⁹ /L (SD = 42.59)	
				Healthy = 108		Mean = 207.83 10 ⁹ /L (SD = 37.4)	
		Yang 2018 [51] (At admission)	Mann- Whitney U	Yes, n = 85 Polyp, n = 54		Median = 219 10 ⁹ /L Median = 201 10 ⁹ /L	0.021
		Zhu 2018 [53] 1	T-test	Yes, n = 783		Mean = 272.4 10 ⁹ /L (SD = 86.86)	<0.01
		(At diagnosis)		No, n = 689		Mean = 220 10 ⁹ /L	
		Zhu 2018 [53] ¹	T-test	Yes, n = 783		Mean = 272.4 10 ⁹ /L (SD = 86.86)	<0.01
		(At diagnosis)		Polyp, n = 463		Mean = 216.67 10 ⁹ /L	
		Zhu 2018 [53]	ROC	Yes, n = 783	242.5 10%/L (derived using Youden's index)	AUC = 0.71 (95% CI = 0.68, 0.74)	
		(At diagnosis)		Polyp, n = 689		Sensitivity = 62% Specificity = 72% PPV = 78.9%	
						NPV = 52.8%	

C	cancer	rs			MDPI		
Israel	Males	Goshen 2017 [16]	T-test	Yes, n = 936		Mean = 261 10%/L	<0.000
		(1–6 months)		No, n = 28491		Mean = 222 10 ⁹ /L	
		Goshen 2017 [16]	Risk ratio	Yes	Highest-risk quintile	RR = 3.78 (95% CI = 2.95, 4.88)	
	-	(1–6 months)		No	Lowest-risk quintile	Reference	
		Goshen 2017 [16] ²	Risk ratio	Yes, n = 936	Highest-risk quintile	RR = 2.84 (95% CI = 2.5, 3.27)	
		(1–6 months)		No, n = 28491	Lowest-risk quintile	Reference	
	Females	Goshen 2017 [16]	T-test	Yes, n = 819		Mean = 305 10%/L	<0.000
	_	(1–6 months)		No, n = 26239		Mean = 254 10 ⁹ /L	
		Goshen 2017 [16]	Risk ratio	Yes	Highest-risk quintile	RR = 3.87 (95% CI = 3.09, 5.21)	
	_	(1–6 months)		No	Lowest-risk quintile	Reference	
		Goshen 2017 [16] ³	Risk ratio	Yes, n = 819	Highest-risk quintile	RR = 2.95 (95% CI = 2.56, 3.35)	
		(1–6 months)		No, n = 26239	Lowest-risk quintile	Reference	
Turkey	Everyone	Ay 2015 [3]	T-test	Yes, n = 30		Mean = 287.7 /µL (SD = 78.4)	≥0.05
		(1 week)		Polyp, n = 110		Mean = 278.9 /µL (SD = 59.6)	
		Cakmak 2017 [9]	T-test	Yes, n = 59		Mean = 308.9 10 ⁹ /L (SD = 99.1)	<0.001
		(6 months)		No, n = 59		Mean = 243 10 ⁹ /L (SD = 46.2)	
		Firat 2016 [14] (At diagnosis)	Chi-squared	Yes No			0.001
	-	Kilincalp 2015 [28]	T-test	Yes, n = 144		Mean = 280.8 10 ⁹ /L (SD = 106)	<0.00
		(At diagnosis)		No, n = 143		Mean = 239.7 10 ⁹ /L (SD = 50.7)	

6 <outcome time window ≤ 12 months:

	cance	rs			MDPI				
UK	Everyone	Boursi 2016 [8]	Odds ratio	Yes, n = 4929	Modelled as continuous	OR = 1.01 (95% CI = 1.005, 1.01)	< 0.001		
		(1 year)		No, n = 11491					
		Boursi 2016 [8] 4	Odds ratio	Yes, n = 3375	Modelled as fractional polynomials (powers: 2, 3)	OR = 605076.39*Plat ²			
		(1 year)		No, n = 8560		$OR = 0.00001^*Plat^3$			
		Ankus 2018 [2]	Odds ratio	Yes, n = 22	325–349 10º/L, n = 1439, events = 7	Reference			
		(1 year)		No, n = 2697	350–374 10º/L, n = 779, events = 8	OR = 2.39 (95% CI = 0.89, 6.45)			
					375–399, n = 486, events = 7	OR = 2.99 (95% CI = 1.04, 8.57)			
				12 < outcome time window	v ≤ 36 months:				
UK	Everyone	Bailey 2017 [6]	Descriptive	Yes	≤400 10º/L, n = 7969, events = 627				
		(2 years)		No	>400 10 ⁹ /L, n = 31261				

Abbreviations: CRC = colorectal cancer, OR = odds ratio, RR = risk ratio, ROC = receiver operating characteristic, AUC = area under the curve, PPV = positive predictive value, NPV = negative predictive value. ¹Mean measured from graphs. ²Multivariable effect estimate, adjusted for: haemoglobin, mean corpuscular volume, neutrophil count, red blood cell distribution width, alanine aminotransferase, protein, iron, ferritin. ³Multivariable effect estimate, adjusted for: haemoglobin, mean corpuscular volume, neutrophil volume, monocyte count, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, iron, ferritin. ⁴Multivariable effect estimate, adjusted for: haemoglobin, mean corpuscular volume, white blood cell count, neutrophil-lymphocyte ratio, sex, previous metformin prescriptions, previous prescriptions for oral hypoglycemic drugs other than metformin.

MDPI

Table S10: Mean platelet volume for colorectal cancer, with analyses sorted by outcome time window, country, and strata

Country	Strata	Article	Analysis type	CRC outcome groups and no. per group	Blood level categories and no. per group	Analysis estimates	<i>p-</i> value
				0 < outcome time windo	w≤6 months:		
China	Everyone	Wu 2019 [50]	T-test	Yes, n = 186		Mean = 8.48 fL (SD = 1.10)	< 0.001
		(At diagnosis)		No, n = 108		Mean = 8.98 fL (SD = 0.77)	
		Wu 2019 [50]	T-test	Yes, n = 186		Mean = 8.48 fL (SD = 1.10)	< 0.05
		(At diagnosis)		Polyp, n = 132		Mean = 8.83 fL (SD = 0.90)	
		Wu 2019 [50]	ROC	Yes, n = 186		AUC = 0.66 (95% CI = 0.60, 0.71)	
		(At diagnosis)		Healthy, $n = 108$		Sensitivity = 92.6% Specificity = 44.6%	
						PPV = 49.3% NPV = 91.2%	
		Zhu 2018 [53] 1	T-test	Yes, n = 783		Mean = 10 fL (SD = 5.82)	<0.01
		(At diagnosis)		No, n = 689		Mean = 9.13 fL	
		Zhu 2018 [53] ¹	T-test	Yes, n = 783		Mean = 10 fL (SD = 5.82)	<0.01
		(At diagnosis)		Polyp, n = 463		Mean = 9.2 fL	
		Zhu 2018 [53]	ROC	Yes, n = 783	<9.25 fL optimal (calculated using Youden's index)	AUC = 0.66 (95% CI = 0.66, 0.69)	
		(At diagnosis)		Polyp, n = 463	, , , , , , , , , , , , , , , , , , , ,	Sensitivity = 69% Specificity = 59% PPV = 74% NPV = 52.9%	
Israel	Males	Goshen 2017 [16]	T-test	Yes, n = 936		Mean = 10.08 fL	< 0.0001

	cance	rs			MDPI		
		(1–6 months)		No, n = 28491		Mean = 11.07 fL	
		Goshen 2017 [16]	Risk ratio	Yes	Highest-risk quintile	RR = 2.33 (95% CI = 1.8, 2.93)	
		(1–6 months)		No	Lowest-risk quintile	Reference	
	Females	Goshen 2017 [16]	T-test	Yes, n = 819		Mean = 10.78 fL	<0.0001
		(1–6 months)		No, n = 26239		Mean = 11.06 fL	
		Goshen 2017 [16]	Risk ratio	Yes	Highest-risk quintile	RR = 2.33 (95% CI = 1.72, 3.26)	
		(1–6 months)		No	Lowest-risk quintile	Reference	
Turkey	Everyone	Kilincalp 2015 [28]	T-test	Yes, n = 144		Mean = 8.41 fL (SD = 0.98)	<0.001
		(At diagnosis)		No, n = 143		Mean = 7.87 fL (SD = 0.49)	
		Kilincalp 2015 [28]	ROC	Yes, n = 144	<8.25 fL optimal (calculated using unknown method)	AUC = 0.717	
		(At diagnosis)		No, n = 143		Sensitivity = 54% Specificity = 76%	

Abbreviations: CRC = colorectal cancer, RR = risk ratio, ROC = receiver operating characteristic, AUC = area under the curve, PPV = positive predictive value, NPV = negative predictive value. ¹Mean measured from graphs.

cancers				MDPI		
	Diagnosis,	No diagnosis,	T-test		Mean difference	%
Study	Mean (SD), n	Mean (SD), n	p-value		(95% CI)	Weig
Goshen 2017 males	10.78, n=936	11.07, n=28491	p<0.0001	→	-0.29 (-0.44, -0.14)	21.58
Goshen 2017 females	10.78, n=819	11.06, n=26239	p<0.0001	<u>.</u>	-0.28 (-0.42, -0.14)	21.62
Kilincalp 2015	8.41 (0.98), n=144	7.82 (0.49), n=143			0.59 (0.41, 0.77)	21.30
Wu 2019	8.48 (1.10), n=186	8.98 (0.77), n=108		- • -	-0.50 (-0.71, -0.29)	20.95
Zhu 2018	10.25 (5.82), n=783	9.13, n=689	p<0.01		1.12 (0.47, 1.77)	14.56
Overall (I-squared = 95.99	%, p = 0.000)			\triangleleft	0.06 (-0.36, 0.49)	100.0

Figure S1: Forest plot of mean difference in mean platelet volume between those with and without a diagnosis of colorectal cancer 0-6 months later. Abbreviations: SD = standard deviation, CI = confidence interval. Mean platelet volume measurements are in fL.

Table S11: Basophil count for colorectal cancer, with analyses sorted by outcome time window, country, and strata

Country	Strata	Article	Analysis type	CRC outcome groups and no. per group	Blood level categories and no. per group	Analysis estimates	<i>p-</i> value
				0 < outcome time window ≤	6 months:		
Israel	Males	Goshen 2017 [16]	T-test	Yes, n = 936		Mean = 0.03 10%/L	0.0017
		(1–6 months)		No, n = 28491		Mean = 0.03 10 ⁹ /L	
		Goshen 2017 [16]	Risk ratio	Yes	Highest-risk quintile	RR = 1.4 (95% CI = 1.14, 1.75)	
		(1–6 months)		No	Lowest-risk quintile	Reference	
	Females	Goshen 2017 [16]	T-test	Yes, n = 819		Mean = 0.03 10%/L	0.0003
		(1–6 months)		No, n = 26239		Mean = 0.03 10 ⁹ /L	
		Goshen 2017 [16]	Risk ratio	Yes	Highest-risk quintile	RR = 1.19 (95% CI = 1.02, 1.48)	
		(1–6 months)		No	Lowest-risk quintile	Reference	
				6 < outcome time window ≤	12 months:		
UK	Everyone	Boursi 2016 [8]	Odds ratio	Yes, n = 4929	Modelled as continuous	OR = 1.34 (95% CI = 0.93, 1.95)	0.12
		(1 year)		No, n = 11311			

Abbreviations: CRC = colorectal cancer, OR = odds ratio, RR = risk ratio

Table S12: Eosinophil count for colorectal cancer, with analyses sorted by outcome time window, country, and strata

Country	Strata	Article	Analysis type	CRC outcome groups and no. per group	Blood level categories and no. per group	Analysis estimates	<i>p-</i> value
	$0 < $ outcome time window ≤ 6 months:						
Israel	Males	Goshen 2017 [16]	T-test	Yes, n = 936		Mean = 0.25 10%/L	<0.0001
		(1–6 months)		No, n = 28491		Mean = 0.22 10 ⁹ /L	
		Goshen 2017 [16]	Risk ratio	Yes	Highest-risk quintile	RR = 1.62 (95% CI = 1.29, 2.04)	
		(1–6 months)		No	Lowest-risk quintile	Reference	
	Females	Goshen 2017 [16]	T-test	Yes, n = 819		Mean = 0.21 10 ⁹ /L	<0.0001
		(1–6 months)		No, n = 26239		Mean = 0.18 10 ⁹ /L	
		Goshen 2017 [16]	Risk ratio	Yes	Highest-risk quintile	RR = 2.03 (95% CI = 1.58, 2.79)	
		(1–6 months)		No	Lowest-risk quintile	Reference	
				6 < outcome time window ≤	12 months:		
UK	Everyone	Boursi 2016 [8]	Odds ratio	Yes, n = 4929	Modelled as continuous	OR = 1.09 (95% CI = 0.98, 1.2)	0.1
		(1 year)		No, n = 11311			

Abbreviations: CRC = colorectal cancer, OR = odds ratio, RR = risk ratio

MDPI

Table S23: Lymphocyte count for colorectal cancer, with analyses sorted by outcome time window, country, and strata

Country	Strata	Article	Analysis type	CRC outcome groups and no. per group	Blood level categories and no. per group	Analysis estimates	<i>p-</i> value
				0 < outcome time window ≤	6 months:		
China	Everyone	Huang 2019 [25]	T-test	Yes, n = 162		Mean = 1.97 10 ⁹ /L (SD = 0.57)	≥0.05
		(At admission)		No, n = 78		Mean = 2.03 10 ⁹ /L (SD = 0.57)	
		Huang 2019 [25]	T-test	Yes, n = 162		Mean = 1.97 10 ⁹ /L (SD = 0.57)	≥0.05
		(At admission)		Polyp, n = 92		Mean = $1.98 \ 10^{9}/L \ (SD = 0.61)$	
		Wu 2019 [50]	T-test	Yes, n = 186		Mean = 1.99 10 ⁹ /L (SD = 0.58)	< 0.05
		(At diagnosis)		No, n = 108		Mean = 2.18 10 ⁹ /L (SD = 0.51)	
		Wu 2019 [50]	T-test	Yes, n = 186		Mean = 1.99 10 ⁹ /L (SD = 0.58)	≥0.05
		(At diagnosis)		Polyp, n = 132		Mean = 1.99 10 ⁹ /L (SD = 0.60)	
		Wu 2019 [50]	ANOVA	Yes = 186		Mean = 1.99 10 ⁹ /L (SD = 0.58)	0.01
		(At diagnosis)		Polyp = 132		Mean = 1.99 10 ⁹ /L (SD = 0.60)	
				Healthy = 108		Mean = 2.18 10 ⁹ /L (SD = 0.51)	
		Yang 2018 [51] (At	Mann-	Yes, n = 85		Median = 1.6 10 ⁹ /L	0.526
		admission)	Whitney U	Polyp, n = 54		Median = 1.7 10 ⁹ /L	
Israel	Males	Goshen 2017 [16]	T-test	Yes, n = 936		Mean = 2.13 10 ⁹ /L	0.026
		(1–6 months)		No, n = 28491		Mean = 2.21 10 ⁹ /L	

	cance	rs			MDPI		
		Goshen 2017 [16]	Risk ratio	Yes	Highest-risk quintile	RR = 1.17 (95% CI = 1.01, 1.53)	
		(1–6 months)		No	Lowest-risk quintile	Reference	
	Females	Goshen 2017 [16]	T-test	Yes, n = 819		Mean = 2.25 10 ⁹ /L	0.43
		(1–6 months)		No, n = 26239		Mean = 2.21 10 ⁹ /L	
		Goshen 2017 [16]	Risk ratio	Yes	Highest-risk quintile	RR = 1.37 (95% CI = 1.06, 1.78)	
		(1–6 months)		No	Lowest-risk quintile	Reference	
				6 < outcome time window s	≤ 12 months:		
UK	Everyone	Boursi 2016 [8] 1	Odds ratio	Yes, n = 4929	Modelled as fractional polynomial (powers: 0, 0.5)	OR = 1.16*Lym ⁰	
		(1 year)		No, n = 11311		$OR = 12.23 * Lym^{0.5}$	

Abbreviations: CRC = colorectal cancer, OR = odds ratio, RR = risk ratio. ¹Multivariable effect estimate, adjusted for: haematocrit, mean corpuscular volume, neutrophil-lymphocyte ratio.

Table S34: Lymphocyte proportion for colorectal cancer

Country	Strata	Article	Analysis type CRC outcome groups and no. per group		Median per outcome group	<i>p-</i> value
			0 < outcome t	ime window ≤ 6 months:	<u>9-0 - P</u>	
China	Everyone	Zhou 2017 [52]	Mann-	Yes, n = 242	Median = 23.95%	<0.001
		(At diagnosis)	Whitney U	No, n = 262	Median = 35.15%	
	-	Zhou 2017 [52]	Mann-	Yes, n = 242	Median = 23.95%	< 0.001
		(At diagnosis)	Whitney U	Polyp, n = 248	Median = 31.50%	
		Zhou 2017 [52]		Yes, n = 242	Median = 23.95%	< 0.001
		(At diagnosis)	Kruskal-Wallis	Polyp, n = 248	Median = 31.50%	
		_		No, n = 262	Median = 35.15%	

Abbreviations: CRC = colorectal cancer

Table S45: Monocyte count for colorectal cancer, with analyses sorted by outcome time window, country, and strata

Country	Strata	Article	Analysis type	CRC outcome groups and no. per group	Blood level categories and no. per group	Analysis estimates	<i>p-</i> value
			-5F -	0 < outcome time window ≤			
China	Everyone	Wu 2019 [50]	T-test	Yes, n = 186		Mean = 0.53 10 ⁹ /L (SD = 0.19)	< 0.05
		(At diagnosis)		No, n = 108		Mean = 0.45 10 ⁹ /L (SD = 0.15)	
		Wu 2019 [50]	T-test	Yes, n = 186		Mean = 0.53 10 ⁹ /L (SD = 0.19)	≥0.05
		(At diagnosis)		Polyp, n = 132		Mean = 0.50 10 ⁹ /L (SD = 0.17)	
		Wu 2019 [50] (At diagnosis)	ANOVA	Yes = 186 Polyp = 132 Healthy = 108		Mean = 0.53 10º/L Mean = 0.50 10º/L Mean = 0.45 10º/L	0.001
Israel	Males	Goshen 2017 [16]	T-test	Yes, n = 936		Mean = 0.68 10 ⁹ /L	< 0.0001
		(1–6 months)		No, n = 28491		Mean = 0.61 10 ⁹ /L	
		Goshen 2017 [16]	Risk ratio	Yes	Highest-risk quintile	RR = 2.11 (95% CI = 1.74, 2.8)	
		(1–6 months)		No	Lowest-risk quintile	Reference	
	-	Goshen 2017 [16] ¹	Risk ratio	Yes, n = 936	Highest-risk quintile	RR = 1.85 (95% CI = 1.6, 2.12)	
		(1–6 months)		No, n = 28491	Lowest-risk quintile	Reference	
	Females	Goshen 2017 [16]	T-test	Yes, n = 819		Mean = 0.56 10 ⁹ /L	< 0.0001
		(1–6 months)		No, n = 26239		Mean = 0.51 10 ⁹ /L	
	-	Goshen 2017 [16]	Risk ratio	Yes	Highest-risk quintile	RR = 1.99 (95% CI = 1.63, 2.65)	
		(1–6 months)		No	Lowest-risk quintile	Reference	

6 <outcome time window ≤ 12 months:

Cancers				MDPI		
UK	Everyone Boursi 2016 [8]	Odds ratio	Yes, n = 4929	Modelled as continuous	OR = 1.08 (95% CI = 1.03, 1.14)	
_	(1 year)		No, n = 11311			

Abbreviations: CRC = colorectal cancer, OR = odds ratio, RR = risk ratio. ¹Multivariable effect estimate, adjusted for: haemoglobin, mean corpuscular volume, platelets, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, iron, ferritin

Table S56: Neutrophil count for colorectal cancer, with analyses sorted by outcome time window, country, and strata

Country	Strata	Article	Analysis type	CRC outcome groups and no. per group	Blood level categories and no. per group	Analysis estimates	<i>p-</i> value
				0 < outcome time window ≤ 6	months:		
China	Everyone	Wu 2019 [50]	T-test	Yes, n = 186		Mean = 3.92 10 ⁹ /L (SD = 1.26)	< 0.05
		(At diagnosis)		No, n = 108		Mean = 3.40 10 ⁹ /L (SD = 0.79)	
		Wu 2019 [50]	T-test	Yes, n = 186		Mean = 3.92 10 ⁹ /L (SD = 1.26)	< 0.05
		(At diagnosis)		Polyp, n = 132		Mean = 3.57 10 ⁹ /L (SD = 1.26)	
		Wu 2019 [50]	ANOVA	Yes = 186		Mean = 3.92 10 ⁹ /L	< 0.001
		(At diagnosis)		Polyp = 132		Mean = 3.57 10 ⁹ /L	
				Healthy = 108		Mean = 3.40 10 ⁹ /L	
		Yang 2018 [51]	Mann-	Yes, n = 85		Median = 3.6 10 ⁹ /L	0.136
		(At admission)	Whitney U	Polyp, n = 54		Median = 3.2 10 ⁹ /L	
Israel	Males	Goshen 2017 [16]	T-test	Yes, n = 936		Mean = 4.69 10 ⁹ /L	< 0.0001
		(1–6 months)		No, n = 28491		Mean = 4.13 10 ⁹ /L	
		Goshen 2017 [16]	Risk ratio	Yes	Highest-risk quintile	RR = 2.29 (95% CI = 1.73, 2.96)	
		(1–6 months)		No	Lowest-risk quintile	Reference	
		Goshen 2017 [16] ¹	Risk ratio	Yes, n = 936	Highest-risk quintile	RR = 2.03 (95% CI = 1.82, 2.35)	< 0.0001
		(1–6 months)		No, n = 28491	Lowest-risk quintile	Reference	
	Females	Goshen 2017 [16]	T-test	Yes, n = 819		Mean = 4.33 10 ⁹ /L	< 0.0001
		(1–6 months)		No, n = 26239		Mean = 3.7 10 ⁹ /L	
		Goshen 2017 [16]	Risk ratio	Yes	Highest-risk quintile	RR = 1.99 (95% CI = 1.63, 2.65)	
		(1–6 months)		No	Lowest-risk quintile	Reference	

	cancers			MDPI					
6 < outcome time window ≤ 12 months:									
UK	Everyone Boursi 2016 [8]	Odds ratio	Yes, n = 4929	Modelled as continuous	OR = 1.24 (95% CI = 1.21, 1.27)				
	(1 year)		No, n = 11311						

Abbreviations: CRC = colorectal cancer, OR = odds ratio, RR = risk ratio. ¹Multivariable effect estimate, adjusted for: haemoglobin, mean corpuscular volume, platelets, red blood cell distribution width, alanine aminotransferase, protein, iron, ferritin

Table S67: Neutrophil proportion for colorectal cancer

Country	Strata	Article	Analysis type	CRC outcome groups and no. per group	Median per outcome group	<i>p-</i> value
			0 < outcome t	ime window ≤ 6 months:		
China	Everyone	Zhou 2017 [52]	Mann-	Yes, n = 242	Median = 66.50%	<0.001
		(At diagnosis)	Whitney U	No, n = 262	Median = 56.75%	
	-	Zhou 2017 [52]	Mann-	Yes, n = 242	Median = 66.50%	< 0.001
		(At diagnosis)	Whitney U	Polyp, n = 248	Median = 58.15%	
		Zhou 2017 [52]		Yes, n = 242	Median = 66.50%	< 0.001
		(At diagnosis)	Kruskal-Wallis	Polyp, n = 248	Median = 58.15%	
				No, n = 262	Median = 56.75%	

Abbreviations: CRC = colorectal cancer

MDPI

Table S78: Combined components for colorectal cancer, with analyses sorted by ourcome time window, country, and strata

Country	Strata	Article	Analysis type	CRC outcome groups and no. per group	Combined component	Blood level categories and no. per group	Analysis estimates	<i>p-</i> value
				0 < outcon	ne time window ≤ 6 months:			
China	Everyone	Huang 2019 [25]	T-test	Yes	Red blood cell distribution width-		Mean = 8.21	< 0.05
		(At admission)		No	lymphocyte ratio		Mean = 7.2	
		Huang 2019 [25]	T-test	Yes	Red blood cell distribution width-		Mean = 8.21	≥0.05
		(At admission)		Polyp	lymphocyte ratio		Mean = 7.59	
	Huang 2019 [25]	ROC	Yes	Red blood cell distribution width-	8.91 cut-off	AUC = 0.57 (95% CI = 0.73, 0.83)		
		(At admission)		No	lymphocyte ratio		Sensitivity = 41% Specificity = 72%	
		Wu 2019 [50]	T-test	Yes	Mean platelet volume-platelet		Mean = 0.0330	< 0.05
		(At diagnosis)		No	ratio		Mean = 0.0447	
		Wu 2019 [50]	T-test	Yes	Mean platelet volume-platelet		Mean = 0.0330	< 0.05
		(At diagnosis)		Polyp	ratio		Mean = 0.0411	
		Wu 2019 [50]	ANOVA	Yes	Mean platelet volume-platelet		Mean = 0.0330	< 0.001
		(At diagnosis)		Polyp Healthy	ratio		Mean = 0.0411 Mean = 0.0447	
		Wu 2019 [50]	ROC	Yes	Mean platelet volume-platelet		AUC = 0.81 (95% CI = 0.76, 0.86)	
		(At diagnosis)		No	ratio			
		Wu 2019 [50] (At diagnosis)	T-test	Yes No	Neutrophil-lymphocyte ratio		Mean = 1.98 Mean = 1.57	< 0.05
		Wu 2019 [50] (At diagnosis)	T-test	Yes Polyp	Neutrophil-lymphocyte ratio		Mean = 1.98 Mean = 1.67	<0.05
		Wu 2019 [50]	ANOVA	Yes			Mean = 1.98	< 0.001
		(At diagnosis)		Polyp Healthy	Neutrophil-lymphocyte ratio		Mean = 1.67 Mean = 1.57	
		Wu 2019 [50]	ROC	Yes	Neutrophil-lymphocyte ratio		AUC = 0.67 (95% CI = 0.62, 0.73)	
		(At diagnosis)		No				
		Wu 2019 [50] (At diagnosis)	T-test	Yes No	Platelet-lymphocyte ratio		Mean = 140.26 Mean = 94.55	< 0.05

Wu 2019 [50]

(At diagnosis)

Wu 2019 [50]

T-test

ANOVA

Yes

Polyp

Yes

MDPI	
Platelet-lymphocyte ratio	
Platelet-lymphocyte ratio	
Platelet-lymphocyte ratio	

Wu 2019 [50] (At diagnosis)	ROC	Healthy		Mean = 94.55	
	ROC	V			
(At diagnosis)		Yes	Platelet-lymphocyte ratio	AUC = 0.78 (95% CI = 0.73, 0.82)	
		No	5 1 5		
Yang 2018 [51]	Mann-	Yes	Ni-strankil konsuka mta natia	Median = 2.08	0.091
(At admission)	Whitney U	Polyp	Neutrophil-lymphocyte ratio	Median = 1.87	
Yang 2018 [51]	Mann-	Yes	Distalat lymphogyto ratio	Median = 124.48	0.059
(At admission)	Whitney U	Polyp	Platelet-lymphocyte ratio	Median = 113.19	
Zhou 2017 [52]	Mann-	Yes	Neutrophil-white blood cell count	Median = 66.50	< 0.001
(At diagnosis)	Whitney U	No	ratio	Median = 58.15	
Zhou 2017 [52]	Mann-	Yes	Neutrophil-white blood cell count	Median = 66.50	< 0.001
(At diagnosis)	Whitney U	Polyp	ratio	Median = 58.15	
Zhou 2017 [52]	Kruskal-	Yes	Nasta abil a bita bla d adl assat	Median = 66.50	< 0.001
(At diagnosis)	Wallis	Polyp	Neutrophil-white blood cell count ratio	Median = 58.15	
	Wallis	Healthy	Tatio	Median = 58.15	
Zhou 2017 [52]	Mann-	Yes	Neutrophil-white blood cell count	Median = 23.95	< 0.001
(At diagnosis)	Whitney U	Polyp	ratio	Median = 31.50	
Zhou 2017 [52]	Mann-	Yes	Neutrophil-white blood cell count	Median = 23.95	< 0.001
(At diagnosis)	Whitney U	Healthy	ratio	Median = 35.15	
Zhou 2017 [52]	Kruskal-	Yes	Noutrophil white blood call count	Median = 23.95	< 0.001
(At diagnosis)	Wallis	Polyp	Neutrophil-white blood cell count ratio	Median = 31.50	
		Healthy		Median = 35.15	
Zhou 2017 [52]	Mann-	Yes	Neutrophil-lymphocyte ratio	Median = 2.76	< 0.001
(At diagnosis)	Whitney U	No		Median = 1.60	
Zhou 2017 [52]	Mann-	Yes	Neutrophil-lymphocyte ratio	Median = 2.76	< 0.001
(At diagnosis)	Whitney U	Polyp	i veutropini-tyniphocyte tatto	Median = 1.875	
Zhou 2017 [52]	Kruskal-	Yes		Median = 2.76	< 0.001
(At diagnosis)	Wallis	Polyp	Neutrophil-lymphocyte ratio	Median = 1.875	
	Healthy			Median = 1.60	
Zhou 2017 [52]	ROC	Yes	Neutrophil-lymphocyte ratio	2.33 cut-off Sensitivity = 66.9%	
(At diagnosis)		No		Specificity = 77.6%	

Mean = 140.26

Mean = 113.03

Mean = 140.26

< 0.05

< 0.001

	canc	ers			MDPI			
Turkey	Everyone	Cakmak 2017 [9]	T-test	Yes	Neutrophil-lymphocyte ratio		Mean = 2.9	<0.001
		(6 months) Cakmak 2017		No			Mean = 2.0	
		[9]	ROC	Yes		2.05 cut-off	AUC = 0.740	
		(6 months)		No	Neutrophil-lymphocyte ratio		Sensitivity = 78% Specificity = 66%	
		Cakmak 2017 [9]	T-test	Yes	Platelet-lymphocyte ratio		Mean = 163.6	< 0.001
		(6 months)		No			Mean = 118.5	
		Cakmak 2017 [9]	ROC	Yes	Platelet-lymphocyte ratio	130 cut-off	AUC = 0.702	
		(6 months)		No	i melet lymphocyte inno		Sensitivity = 65% Specificity = 72%	
		Kilincalp 2015 [28]	T-test	Yes	Neutrophil-lymphocyte ratio		Mean = 6.1	< 0.001
		(At diagnosis)	•	No			Mean = 1.5	
		Kilincalp 2015 [28]	ROC	Yes	Maataan kil kan aka aata aati a	2.02 cut-off	AUC = 0.921	
		(At diagnosis)		No	Neutrophil-lymphocyte ratio		Sensitivity = 86% Specificity = 84%	
		Kilincalp 2015 [28]	T-test	Yes	Platelet-lymphocyte ratio		Mean = 230.5	< 0.001
		(At diagnosis)		No			Mean = 106.3	
		Kilincalp 2015 [28]	ROC	Yes	Platelet-lymphocyte ratio	135 cut-off	AUC = 0.854	
		(At diagnosis)		No	r latelet-tymphocyte ratio		Sensitivity = 70% Specificity = 90%	
UK	Everyone	Boursi 2016 [8]	Odds ratio	Yes	Neutrophil-lymphocyte ratio	Modelled as continuous	OR = 1.21 (95% CI = 1.18, 1.24)	< 0.001
		(1 year)		No				
		Boursi 2016 [8] ¹	Odds ratio			Modelled as fractional polynomials	OR = 0.11*NLR-0.5	
		(1 year)		No	Neutrophil-lymphocyte ratio	(powers: -0.5, -0.5)	OR = 0.70*NLR ^{-0.5} × ln(NLR)	
		Boursi 2016 [8] ²	Odds ratio	Yes		Modelled as fractional polynomials (powers: -0.5, -0.5)	OR = 0.31*NLR-0.5	
		(1 year)		No	Neutrophil-lymphocyte ratio		$OR = 0.77*NLR^{-0.5} \times ln(NLR)$	

6 <outcome time window ≤ 12 months:

	canc	Cers							
UK	Centre A	Panagiotopoulou 2014 [38]	Chi-	Yes	Mean platelet volume &	MCV <80 fL & anaemia		0.285	
		(3 months)	squared	No	haemoglobin	MCV ≥80 fL & no anaemia			
		Panagiotopoulou 2014 [38]	Chi-	Yes	Mean platelet volume &	MCV <80 fL & anaemia MCV ≥80 fL & anaemia		0.781	
		(3 months)	squared	No	haemoglobin	MCV 280 IL & anaemia			
		Panagiotopoulou 2014 [38]	Odds ratio	Yes	Mean platelet volume &	MCV <80 fL & anaemia	OR = 1.3 (95% CI = 0.5, 3.9)		
		(3 months)		No	haemoglobin	MCV ≥80 fL & anaemia			
	Centre B	Panagiotopoulou 2014 [38]	Chi-	Yes	Mean platelet volume &	MCV <80 fL & anaemia		0.285	
		(3 months)	squared	No	haemoglobin	MCV ≥80 fL & no anaemia		0.019	
		Panagiotopoulou 2014 [38]	Chi-	Yes	Mean platelet volume &	MCV <80 fL & anaemia		0.196	
		(3 months)	squared	No	haemoglobin	MCV ≥80 fL & anaemia			
		Panagiotopoulou 2014 [38]	Odds ratio	Yes	Mean platelet volume &	MCV <80 fL & anaemia	OR = 1.6 (95% CI = 0.8, 3.3)		
		(3 months)		No	haemoglobin	MCV ≥80 fL & anaemia			

Abbreviations: CRC = colorectal cancer, OR = odds ratio, RR = risk ratio, NLR = Neutrophil-lymphocyte ratio, ROC = receiver operating characteristic, AUC = area under the curve, MPV = mean platelet volume. ¹Multivariable effect estimate, adjusted for: haematocrit, mean corpuscular volume, lymphocyte count. ²Multivariable effect estimate, adjusted for: haematocrit, mean corpuscular volume, previous prescriptions for oral hypoglycemic drugs other than metformin.

4. Performance statistics from model validation studies

Table S89: Performance statistics from internal	(n = 9) and external $(n = 11)$ validation models.
Tuble 569. I enomance statisties nom internal	(if)) and external (if if) variation models.

Article Model name/description		Primary outcome window	No. cases	No. controls	Discrimination: AUC (95% CI)	Calibration
		Internal vali	dation:			
Boursi 2016 [8]	Laboratory model	1 year			0.77 (0.75, 0.78)	
Boursi 2016 [8]	Combined model	1 year	1702	3324	0.73 (0.71, 0.74)	Calibration plot
Firat 2016 [14]		At diagnosis			0.81	
Hippisley-Cox 2012 [21]	QCancer Colorectal males	2 years			0.91 (0.90, 0.91)	Calibration plot
Hippisley-Cox 2012 [21]	QCancer Colorectal females	2 years			0.89 (0.88, 0.90)	Calibration plot
Hippisley-Cox 2013 [22]	QCancer males	2 years	125	667261	0.90 (0.90, 0.91)	Calibration plot
Hippisley-Cox 2013 [23]	QCancer females	2 years	1356	655311	0.89 (0.88, 0.90)	Calibration plot
Kinar 2016 [29]	ColonFlag	0–1 month			0.84 (0.81, 0.86)	
		3–6 months	698		0.82 (0.79, 0.84)	Hosmer-Lemeshow: p = 0.47
		22-24 months			0.72 (0.69, 0.75)	
Thompson 2017 [48]		3 years	636	10966	0.86 (0.84, 0.87)	Calibration plot
		External vali	idation:			
Ayling 2019 [4]	ColonFlag		21	571		
Birks 2017 [7]	ColonFlag	3–6 months	5935	2478764	0.84 (0.84, 0.85)	
		6–12 months	6821	2429503	0.81 (0.81, 0.82)	
		12–24 months	5744	2328636	0.79 (0.79, 0.80)	
		18–24 months	5141	2220108	0.78 (0.78, 0.78)	
		24–36 months	7360	2102947	0.75 (0.75, 0.76)	
Collins 2012 [10]	QCancer Colorectal males	2 years	2036	1057729	0.92 (0.91, 0.92)	Calibration plot
Collins 2012 [10]	QCancer Colorectal females	2 years	1676	1074099	0.91 (0.90, 0.92)	Calibration plot

🛞 cancers			N	IDPI		
Cubiella 2016 [12]	COLONPREDICT	1 week	136	1345	0.92 (0.90, 0.94)	
Hilsden 2018 [20]	ColonFlag	1 year	60	8704		
Hornbrook 2017 [24]	ColonFlag	6 months	900	16195	0.80 (0.79, 0.82)	
Kinar 2016 [29]	ColonFlag	0–1 month			0.84 (0.82, 0.86)	
		3–6 months	5061	20552	0.81 (0.80, 0.83)	Hosmer-Lemeshow: p < 0.001
Kinar 2017 [30]	ColonFlag	18 months	133	112451		
Marshall 2011 [34]	Bristol-Birmingham	2 years	349	1744	0.92 (0.91, 0.94)	
Marshall 2011 [34]	CAPER 1	2 years	5477	38314	0.79 (0.77, 0.80)	

¹The CAPER model was developed study by Hamilton and includes haemoglobin level as a predictor, but was not included in this review because it was never published, instead only a conference abstract was available [54].

References

- 1. Acher, P.L.; Al-Mishlab, T.; Rahman, M.; Bates, T. Iron-deficiency anaemia and delay in the diagnosis of colorectal cancer. *Colorectal Dis.* 2003, *5*, 145–148, doi:10.1046/j.1463-1318.2003.00415.x.
- 2. Ankus, E.; Price, S.J.; Ukoumunne, O.C.; Hamilton, W.; Bailey, S.E.R. Cancer incidence in patients with a high normal platelet count: A cohort study using primary care data. *Fam. Pract.* 2018, *35*, 671–675, doi:10.1093/fampra/cmy018.
- 3. Ay, S.; Eryilmaz, M.A.; Aksoy, N.; Okus, A.; Unlu, Y.; Sevinc, B. Is early detection of colon cancer possible with red blood cell distribution width? *Asian Pac. J. Cancer Prev.***2015**, *16*, 753–756.
- 4. Ayling, R.M.; Lewis, S.J.; Cotter, F. Potential roles of artificial intelligence learning and faecal immunochemical testing for prioritisation of colonoscopy in anaemia. *Br. J. Haematol.* **2019**, *185*, 311–316, doi:10.1111/bjh.15776.
- 5. Bafandeh, Y.; Khoshbaten, M.; Sadat, A.T.E.; Farhang, S. Clinical predictors of colorectal polyps and carcinoma in a low prevalence region: Results of a colonoscopy based study. *World J. Gastroenterol.* **2008**, *14*, 1534–1538, doi:10.3748/wjg.14.1534.
- 6. Bailey, S.E.R.; Ukoumunne, O.C.; Shephard, E.A.; Hamilton, W. Clinical relevance of thrombocytosis in primary care: A prospective cohort study of cancer incidence using English electronic medical records and cancer registry data. *Br. J. Gen. Pract.* 2017, *67*, e405–e413, doi:10.3399/bjgp17X691109.
- 7. Birks, J.; Bankhead, C.; Holt, T.A.; Fuller, A.; Patnick, J. Evaluation of a prediction model for colorectal cancer: retrospective analysis of 2.5 million patient records. *Cancer Med.* **2017**, *6*, 2453–2460, doi:10.1002/cam4.1183.
- 8. Boursi, B.; Mamtani, R.; Hwang, W.T.; Haynes, K.; Yang, Y.X. A Risk Prediction Model for Sporadic CRC Based on Routine Lab Results. *Dig. Dis. Sci.* 2016, *61*, 2076–2086, doi:10.1007/s10620-016-4081-x.
- 9. Cakmak, E.; Soylu, S.; Yonem, O.; Yilmaz, A. Neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and red blood cell distribution width as new biomarkers in patients with colorectal cancer. *Erciyes Med. J.* 2017, *39*, 131–136, doi:10.5152/etd.2017.0051.
- 10. Collins, G.S.; Altman, D.G. Identifying patients with undetected colorectal cancer: An independent validation of QCancer (Colorectal). *Br. J. Cancer* 2012, 107, 260–265, doi:10.1038/bjc.2012.266.

- 11. Cross, A.J.; Wooldrage, K.; Robbins, E.C.; Pack, K.; Brown, J.P.; Hamilton, W.; Thompson, M.R.; Flashman, K.G.; Halligan, S.; Thomas-Gibson, S., et al. Whole-colon investigation vs. flexible sigmoidoscopy for suspected colorectal cancer based on presenting symptoms and signs: a multicentre cohort study. *Br. J. Cancer* **2019**, *120*, 154–164, doi:10.1038/s41416-018-0335-z.
- 12. Cubiella, J.; Vega, P.; Salve, M.; Diaz-Ondina, M.; Alves, M.T.; Quintero, E.; Alvarez-Sanchez, V.; Fernandez-Banares, F.; Boadas, J.; Campo, R., et al. Development and external validation of a faecal immunochemical test-based prediction model for colorectal cancer detection in symptomatic patients. *BMC Med.* **2016**, *14*, s12916–s016.
- 13. Fijten, G.H.; Starmans, R.; Muris, J.W.; Schouten, H.J.; Blijham, G.H.; Knottnerus, J.A. Predictive value of signs and symptoms for colorectal cancer in patients with rectal bleeding in general practice. *Fam. Pract.* **1995**, *12*, 279–286.
- 14. Firat, F.; Arslan, A.K.; Colak, C.; Harputluoglu, H. Estimation of risk factors associated with colorectal cancer: an application of knowledge discovery in databases. *Kuwait J. Sci.* **2016**, *43*, 151–161.
- 15. Goldshtein, I.; Neeman, U.; Chodick, G.; Shalev, V. Variations in hemoglobin before colorectal cancer diagnosis. *Eur. J. Cancer Prev.* 2010, *19*, 342–344, doi:10.1097/CEJ.0b013e32833c1be0.
- 16. Goshen, R.; Mizrahi, B.; Akiva, P.; Kinar, Y.; Choman, E.; Shalev, V.; Sopik, V.; Kariv, R.; Narod, S.A. Predicting the presence of colon cancer in members of a health maintenance organisation by evaluating analytes from standard laboratory records. *Br. J. Cancer* **2017**, *116*, 944–950, doi:10.1038/bjc.2017.53.
- 17. Hamilton, W.; Round, A.; Sharp, D.; Peters, T.J. Clinical features of colorectal cancer before diagnosis: A population-based case-control study. *Br. J. Cancer* 2005, *93*, 399–405, doi:10.1038/sj.bjc.6602714.
- 18. Hamilton, W.; Lancashire, R.; Sharp, D.; Peters, T.J.; Cheng, K.K.; Marshall, T. The importance of anaemia in diagnosing colorectal cancer: a case–control study using electronic primary care records. *Br. J. Cancer* **2008**, *98*, 323–327, doi:10.1038/sj.bjc.6604165.
- 19. Hamilton, W.; Lancashire, R.; Sharp, D.; Peters, T.J.; Cheng, K.K.; Marshall, T. The risk of colorectal cancer with symptoms at different ages and between the sexes: A casecontrol study. *BMC Med.* 2009, *7*, doi:10.1186/1741-7015-7-17.
- 20. Hilsden, R.J.; Heitman, S.J.; Mizrahi, B.; Narod, S.A.; Goshen, R. Prediction of findings at screening colonoscopy using a machine learning algorithm based on complete blood counts (ColonFlag). *PLoS ONE* **2018**, *13*, doi:10.1371/journal.pone.0207848.
- 21. Hippisley-Cox, J.; Coupland, C. Identifying patients with suspected colorectal cancer in primary care: Derivation and validation of an algorithm. *Br. J. Gen. Pract.* 2012, *62*, e29–e37, doi:10.3399/bjgp12X616346.
- 22. Hippisley-Cox, J.; Coupland, C. Symptoms and risk factors to identify men with suspected cancer in primary care: Derivation and validation of an algorithm. *Br. J. Gen. Pract.* **2013**, *63*, e1–e10, doi:10.3399/bjgp13X660724.
- 23. Hippisley-Cox, J.; Coupland, C. Symptoms and risk factors to identify women with suspected cancer in primary care: Derivation and validation of an algorithm. *Br. J. Gen. Pract.* **2013**, *63*, e11–e21, doi:10.3399/bjgp13X660733.
- 24. Hornbrook, M.C.; Goshen, R.; Choman, E.; O'Keeffe-Rosetti, M.; Kinar, Y.; Liles, E.G.; Rust, K.C. Early Colorectal Cancer Detected by Machine Learning Model Using Gender, Age, and Complete Blood Count Data. *Dig. Dis. Sci.* 2017, *62*, 2719–2727, doi:10.1007/s10620-017-4722-8.
- 25. Huang, J.; Zhao, Y.; Liao, L.; Liu, S.; Lu, S.; Wu, C.; Wei, C.; Xu, S.; Zhong, H.; Liu, J., et al. Evaluation of Red Cell Distribution Width to Lymphocyte Ratio as Potential Biomarker for Detection of Colorectal Cancer. *Biomed. Res. Int.* **2019**, doi:10.1155/2019/9852782.
- 26. Hung, N.; Shen, C.C.; Hu, Y.W.; Hu, L.Y.; Yeh, C.M.; Teng, C.J.; Kuan, A.S.; Chen, S.C.; Chen, T.J.; Liu, C.J. Risk of cancer in patients with iron deficiency anemia: A nationwide population-based study. *PLoS ONE* **2015**, *10*, doi:10.1371/journal.pone.0119647.

MDPI

- 28. Kilincalp, S.; Coban, S.; Akinci, H.; Hamamc, M.; Karaahmet, F.; Coskun, Y.; Ustun, Y.; Simsek, Z.; Erarslan, E.; Yuksel, I. Neutrophil/lymphocyte ratio, platelet/lymphocyte ratio, and mean platelet volume as potential biomarkers for early detection and monitoring of colorectal adenocarcinoma. *Eur. J. Cancer Prev.* **2015**, *24*, 328–333, doi:10.1097/CEJ.000000000000022.
- 29. Kinar, Y.; Kalkstein, N.; Akiva, P.; Levin, B.; Half, E.E.; Goldshtein, I.; Chodick, G.; Shalev, V. Development and validation of a predictive model for detection of colorectal cancer in primary care by analysis of complete blood counts: A binational retrospective study. *J. Am. Med. Inform. Assoc.* **2016**, *23*, 879–890, doi:10.1093/jamia/ocv195.
- 30. Kinar, Y.; Akiva, P.; Choman, E.; Kariv, R.; Shalev, V.; Levin, B.; Narod, S.A.; Goshen, R. Performance analysis of a machine learning flagging system used to identify a group of individuals at a high risk for colorectal cancer. *PLoS ONE* **2017**, *12*, doi:10.1371/journal.pone.0171759.
- 31. Lawrenson, R.; Logie, J.; Marks, C. Risk of colorectal cancer in general practice patients presenting with rectal bleeding, change in bowel habit or anaemia. *Eur. J. Cancer Care* 2006, *15*, 267–271, doi:10.1111/j.1365-2354.2005.00637.x.
- 32. Lee, Y.J.; Lee, H.R.; Nam, C.M.; Hwang, U.K.; Jee, S.H. White blood cell count and the risk of colon cancer. *Yonsei Med. J.* **2006**, *47*, 646–656.
- 33. Margolis, K.L.; Rodabough, R.J.; Thomson, C.A.; Lopez, A.M.; McTiernan, A. Prospective study of leukocyte count as a predictor of incident breast, colorectal, endometrial, and lung cancer and mortality in postmenopausal women. *Arch. Intern. Med.* **2007**, *167*, 1837–1844, doi:10.1001/archinte.167.17.1837.
- 34. Marshall, T.; Lancashire, R.; Sharp, D.; Peters, T.J.; Cheng, K.K.; Hamilton, W. The diagnostic performance of scoring systems to identify symptomatic colorectal cancer compared to current referral guidance. *Gut.* **2011**, *60*, 1242–1248, doi:10.1136/gut.2010.225987.
- 35. Mashlab, S.; Large, P.; Laing, W.; Ng, O.; D'Auria, M.; Thurston, D.; Thomson, S.; Acheson, A.G.; Humes, D.J.; Banerjea, A., et al. Anaemia as a risk stratification tool for symptomatic patients referred via the two-week wait pathway for colorectal cancer. *Ann. R. Coll. Surg. Engl.* **2018**, *100*, 350–356, doi:10.1308/rcsann.2018.0030.
- 36. Naef, M.; Buhlmann, M.; Baer, H.U. Small bowel tumors: Diagnosis, therapy and prognostic factors. Langenbeck's Arch. Surg. 1999, 384, 176–180, doi:10.1007/s004230050188.
- 37. Nakama, H.; Zhang, B.; Fattah, A.S.; Zhang, X. Colorectal cancer in iron deficiency anemia with a positive result on immunochemical fecal occult blood. *Int. J. Colorectal Dis.* **2000**, *15*, 271–274.
- 38. Panagiotopoulou, I.G.; Fitzrol, D.; Parker, R.A.; Kuzhively, J.; Luscombe, N.; Wells, A.D.; Menon, M.; Bajwa, F.M.; Watson, M.A. The yield of colorectal cancer among fast track patients with normocytic and microcytic anaemia. *Ann. R. Coll. Surg. Engl.* **2014**, *96*, 289–293, doi:10.1308/003588414x13814021680076.
- 39. Panzuto, F.; Chiriatti, A.; Bevilacqua, S.; Giovannetti, P.; Russo, G.; Impinna, S.; Pistilli, F.; Capurso, G.; Annibale, B.; Delle Fave, G., et al. Symptom-based approach to colorectal cancer: Survey of primary care physicians in Italy. *Dig. Liver Dis.* 2003, *35*, 869–875, doi:10.1016/j.dld.2003.07.005.
- 40. Pilling, L.C.; Atkins, J.L.; Kuchel, G.A.; Ferrucci, L.; Melzer, D. Red cell distribution width and common disease onsets in 240,477 healthy volunteers followed for up to 9 years. *PLoS ONE* **2018**, *13*, 1–12, doi:10.1371/journal.pone.0203504.
- 41. Prizment, A.E.; Anderson, K.E.; Visvanathan, K.; Folsom, A.R. Association of inflammatory markers with colorectal cancer incidence in the atherosclerosis risk in communities study. *Cancer Epidemiol. Biomark. Prev.* 2011, 20, 297–307, doi:10.1158/1055-9965.EPI-10-1146.
- 42. Raje, D.; Mukhtar, H.; Oshowo, A.; Ingham Clark, C. What proportion of patients referred to secondary care with iron deficiency anemia have colon cancer? *Dis. Colon Rectum* 2007, *50*, 1211–1214, doi:10.1007/s10350-007-0249-y.
- 43. Schneider, C.; Bodmer, M.; Jick, S.S.; Meier, C.R. Colorectal cancer and markers of anemia. Eur. J. Cancer Prev. 2018, 27, 530–538, doi:10.1097/cej.00000000000397.
- 44. Shi, C.; Xie, M.; Li, L.; Li, K.; Hu, B.L. The association and diagnostic value of red blood cell distribution width in colorectal cancer. *Med. (Baltim.)* 2019, *98*, e15560, doi:10.1097/MD.000000000015560.

- 45. Song, Y.; Huang, Z.; Kang, Y.; Lin, Z.; Lu, P.; Lin, Q.; Cai, Z.; Cao, Y.; Zhu, X. Clinical Usefulness and Prognostic Value of Red Cell Distribution Width in Colorectal Cancer. *Biomed. Res. Int.* 2018, http://dx.doi.org/10.1155/2018/9858943, 1-7, doi:10.1155/2018/9858943.
- 46. Spell, D.W.; Jones, D.V., Jr.; Harper, W.F.; David Bessman, J. The value of a complete blood count in predicting cancer of the colon. Cancer Detect. Prev. 2004, 28, 37–42.
- 47. Stapley, S.; Peters, T.J.; Sharp, D.; Hamilton, W. The mortality of colorectal cancer in relation to the initial symptom at presentation to primary care and to the duration of symptoms: A cohort study using medical records. *Br. J. Cancer* **2006**, *95*, 1321–1325, doi:10.1038/sj.bjc.6603439.
- 48. Thompson, M.R.; O'Leary, D.P.; Flashman, K.; Asiimwe, A.; Ellis, B.G.; Senapati, A. Clinical assessment to determine the risk of bowel cancer using Symptoms, Age, Mass and Iron deficiency anaemia (SAMI). *Br. J. Surg.* 2017, *104*, 1393–1404, doi:10.1002/bjs.10573.
- 49. Van Boxtel-Wilms, S.J.M.; van Boven, K.; Bor, J.H.H.; Bakx, J.C.; Lucassen, P.; Oskam, S.; van Weel, C. The value of reasons for encounter in early detection of colorectal cancer. *Eur. J. Gen. Pract.* 2016, 22, 91–95, doi:10.3109/13814788.2016.1148135.
- 50. Wu, Y.Y.; Zhang, X.; Qin, Y.Y.; Qin, J.Q.; Lin, F.Q. Mean platelet volume/platelet count ratio in colorectal cancer: a retrospective clinical study. *BMC Cancer* 2019, *19*, 7, doi:10.1186/s12885-019-5504-9.
- 51. Yang, D.; Quan, W.; Wu, J.; Ji, X.; Dai, Y.; Xiao, W.; Chew, H.; Sun, Z.; Li, D. The value of red blood cell distribution width in diagnosis of patients with colorectal cancer. *Clin. Chim. Acta* **2018**, 479, 98–102, doi:10.1016/j.cca.2018.01.022.
- 52. Zhou, W.W.; Chu, Y.P.; An, G.Y. Significant difference of neutrophil-lymphocyte ratio between colorectal cancer, adenomatous polyp and healthy people. *Eur. Rev. Med. Pharmacol. Sci.* 2017, *21*, 5386–5391.
- 53. Zhu, X.J.; Cao, Y.P.; Lu, P.X.; Kang, Y.L.; Lin, Z.; Hao, T.S.; Song, Y.F. Evaluation of platelet indices as diagnostic biomarkers for colorectal cancer. *Sci. Rep.* 2018, *8*, 7, doi:10.1038/s41598-018-29293-x.
- 54. Hamilton, W. Derivation of a score for identifying colorectal cancer in primary care. *Gut.* **2007**, *56*(*Suppl. II*), A49–A50