Review

The Full Blood Count Blood Test for Colorectal Cancer Detection: A Systematic Review, Meta-Analysis, and Critical Appraisal

Pradeep S. Virdee, Ioana Marian, Anita Mansouri, Leena Elhussein, Shona Kirtley, Tim Holt and Jacqueline Birks

1. Description of the full blood count

Table S1. Description of each component of the full blood count blood test

Full blood count component	Conventional units	Description/purpose
Red blood cell count ${ }^{1}$	10^{12} per litre (1012/L)	The number of red blood cells in the blood. Lower levels can be associated with blood less. Each red blood cell contains levels of haemoglobin.
White blood cell count ${ }^{1}$	10^{9} per litre ($109 / \mathrm{L}$)	The number of white blood cells in the blood. They are of the immune system and involved in protecting the body against disease.
Haemoglobin ${ }^{1}$	Grams per decilitre (g/dL)	Carries oxygen around the body and is found in red blood cells
Haematocrit/packed cell volume ${ }^{2}$	Percentage, i.e. as litres per litre (\%)	Proportion of blood that is occupied by the red cells. A possible alternative for detecting anaemia.
Mean corpuscular volume ${ }^{2}$	Femtolitre (f/L)	Average size of red blood cells. Calculated as haematocrit (\%) divided by the number of red blood cells ($10^{12} / \mathrm{L}$)
Mean corpuscular haemoglobin ${ }^{2}$	Pictograms (pg)	Average of amount of haemoglobin that is in each red blood cell. Calculated as haemoglobin (g/dL) divided by the red blood cell count ($10^{12} / \mathrm{L}$)
Mean corpuscular haemoglobin concentration ${ }^{2}$	Grams per decilitre (g/dL)	Average of amount of haemoglobin in individual cells based on the volume of red blood cells. Calculated as haemoglobin (g/dL) divided by the haematocrit (\%)
Red cell distribution width ${ }^{2}$	A coefficient, as opposed to count	A measure of the amount of variation in the size of red cells; the higher, the more variation.
Platelet count ${ }^{1}$	10^{9} per litre ($109 / \mathrm{L}$)	Not a cell, but instead fragments of cytoplasm. They bind to sites of damaged blood vessels, e.g. cuts, and clump to form a blood clot to help prevent bleeding
Mean platelet volume ${ }^{2}$	Femtolitre (f/L)	Average size of platelets
Basophil count ${ }^{1}$	10^{9} per litre ($109 / \mathrm{L}$)	A type of white blood cell. Controls hypersensitivity reactions, allergic and inflammatory responses and fights parasitic infections

Basophil $\%^{2}$	Percentage	Basophil count divided by the number of white
blood cells		

${ }^{1}$ This component is measured directly from the blood sample. ${ }^{2}$ This component is derived using mathematical formulae programmed into the analyser and describes at least one measured component

2. Final search strategy

Scheme S1. Final search strategy per database

MEDLINE

Database and platform: Medline (Ovid MEDLINE® Epub Ahead of Print, In-Process \& Other NonIndexed Citations, Ovid MEDLINE® Daily and Ovid MEDLINE®) 1946 to present. Search date: 3 September 2019.

1. Colonic Neoplasms/bl [Blood]
2. Colonic Neoplasms/di [Diagnosis]
3. Colonic Neoplasms/ep [Epidemiology]
4. Colorectal Neoplasms/di [Diagnosis]
5. Colorectal Neoplasms/ep [Epidemiology]
6. Colorectal Neoplasms/bl [Blood]
7. Rectal Neoplasms/bl [Blood]
8. Rectal Neoplasms/di [Diagnosis]
9. Rectal Neoplasms/ep [Epidemiology]
10. Adenomatous Polyposis Coli/
11. Sigmoid Neoplasms/
12. Colorectal Neoplasms, Hereditary Nonpolyposis/
13. ((colorectal or bowel or colon or colonic or rectal or rectum) adj3 (cancer\$ or carcinoma\$ or adenoma\$ or neoplas\$ or metasta\$ or carcinogen\$ or tumour\$ or tumor\$ or malignan\$ or adenocarcinoma\$)).ti,ab,kw.
14. or/1-13
15. exp Blood Cell Count/
16. exp Hemoglobins/
17. Blood Platelets/
[^0]
EMBASE

Database and platform: Embase 1974 to present. Search date: 3 September 2019.

1. \exp Colon Cancer/
2. \exp Colon Tumor/
3. \exp Rectum Tumor/
4. Colon Polyposis/
5. Hereditary Nonpolyposis Colorectal Cancer/
6. ((colorectal or bowel or colon or colonic or rectal or rectum) adj3 (cancer\$ or carcinoma\$ or adenoma\$ or neoplas\$ or metasta\$ or carcinogen\$ or tumour\$ or tumor\$ or malignan\$ or adenocarcinoma\$)).ti,ab,kw.
7. or/1-6
8. \exp Blood Cell Count/
9. Hemoglobin/
10. Hemoglobin Blood Level/
11. Thrombocyte/
12. Neutrophil/
13. Basophil/
14. Eosinophil/
15. Lymphocyte/
16. exp Monocyte/
17. Occult Blood/
18. Thrombocytosis/
19. Leukocytosis/
20. Basophilia/
21. exp Lymphocytosis/
22. Eosinophilia/
23. Monocytosis/
24. Neutrophilia/
25. Anemia/
26. Leukopenia/
27. Monocytopenia/
28. \exp Neutropenia/
29. Eosinopenia/
30. Lymphocytopenia/
31. Thrombocytopenia/
32. Polycythemia/
33. Erythrocyte/
34. Leukocyte/
35. Pancytopenia/
36. Mean Corpuscular Volume/
37. ((blood or platelet) adj2 count\$).ti,ab,kw.
38. (CBC or FBC).ti,ab,kw.
39. (blood adj2 exam\$).ti,ab,kw.
40. Hematocrit/
41. (haematolog\$ or hematolog\$ or haemoglobin or hemoglobin or haematocrit or hematocrit).ti,ab,kw.
42. ((red or white) adj1 blood adj1 cell\$).ti,ab,kw.
43. (mean adj1 (platelet or corpuscular) adj1 volume\$).ti,ab,kw.
44. (mean adj1 corpuscular adj1 (haemoglobin or hemoglobin)).ti,ab,kw.
45. (platelet\$ or basophil or basophils or eosinophil or eosinophils or lymphocyte\$ or monocyte\$ or neutrophil or neutrophils or erythrocyte\$ or leukocyte\$).ti,ab,kw.
46. (blood adj1 (test\$ or draw\$)).ti,ab,kw.
47. (neutrophili\$ or monocytosis or basophili\$ or anemi\$ or anaemi\$ or monocytopenia or eosinopenia or basopenia or basocytopenia or thrombocytopeni\$ or leucocytosis or lymphocytosis or eosinophili\$ or leucopenia or leukopenia or neutropenia or lymphopenia or lymphocytopenia or pancytopenia or polycythemia or bicytopenia).ti, ab,kw.
48. or/8-47
49. (abnormalit\$ or diagnos\$ or "pre-diagnos\$" or prediagnos\$ or change\$ or detect\$ or elevat\$ or distribut\$ or deficien\$ or identif\$ or presence or indicati\$ or determin\$ or undiagnosed or definition\$ or altered or alteration\$).ti,ab,kw.
50. 48 and 49
51. (predict\$ or prognos\$ or suspected).ti,ab,kw.
52. (risk adj1 (predict\$ or marker\$ or scor\$)).ti,ab,kw.
53. Predictive Value/
54. exp Prediction/
55. Probability/
56. exp Prognosis/
57. "Sensitivity and Specificity"/
58. Risk Factor/
59. Risk Assessment/
60. or/51-59
61.7 and 50 and 60

CINAHL

Database and platform: CINAHL (via EBSCOhost). Search date: 3 September 2019.

1. (MH "Colonic Neoplasms")
2. (MH "Colorectal Neoplasms")
3. (MH "Rectal Neoplasms")
4. (MH "Adenomatous Polyposis Coli")
5. (MH "Sigmoid Neoplasms")
6. (MH "Colorectal Neoplasms, Hereditary Nonpolyposis")
7. TI ((colorectal or bowel or colon or colonic or rectal or rectum) N3 (cancer* or carcinoma* or adenoma* or neoplas* or metasta* or carcinogen* or tumour* or tumor* or malignan* or adenocarcinoma*)) OR AB ((colorectal or bowel or colon or colonic or rectal or rectum) N3 (cancer* or carcinoma* or adenoma* or neoplas* or metasta* or carcinogen* or tumour* or tumor* or malignan* or adenocarcinoma*))
8. S1 OR S2 OR S3 OR S4 OR S5 OR S6 OR S7
9. (MH "Blood Cells+")
10. (MH "Hemoglobins+")
11. (MH "Occult Blood")
12. (MH "Thrombocytosis")
13. (MH "Eosinophilia")
14. (MH "Anemia")
15. (MH "Leukopenia")
16. (MH "Neutropenia")
17. (MH "Lymphopenia")
18. (MH "Thrombocytopenia")
19. (MH "Polycythemia")
20. (MH "Pancytopenia")
21. TI ((blood or platelet) N2 count*) OR AB ((blood or platelet) N2 count*)
22. TI (CBC or FBC) OR AB (CBC or FBC)
23. TI (blood N2 exam*) OR AB (blood N2 exam*)
24. TI (haematolog* or hematolog* or haemoglobin or hemoglobin or haematocrit or hematocrit)

OR AB (haematolog* or hematolog* or haemoglobin or hemoglobin or haematocrit or hematocrit)
25. TI ((red or white) N1 blood N1 cell*) OR AB ((red or white) N1 blood N1 cell*)
26. TI (mean N1 (platelet or corpuscular) N1 volume*) OR AB (mean N1 (platelet or corpuscular)

N1 volume*)
27. TI (mean N1 corpuscular N1 (haemoglobin or hemoglobin)) OR AB (mean N1 corpuscular N1 (haemoglobin or hemoglobin))
28. TI (platelet* or basophil or basophils or eosinophil or eosinophils or lymphocyt* or monocyt* or neutrophil or neutrophils or erythrocyt* or leukocyt*) OR AB (platelet* or basophil or basophils or eosinophil or eosinophils or lymphocyt* or monocyt* or neutrophil or neutrophils or erythrocyt* or leukocyt*)
29. TI (blood N1 (test* or draw*)) OR AB (blood N1 (test* or draw*))
30. TI (neutrophili* or monocytosis or basophili* or anemi* or anaemi* or monocytopenia or eosinopenia or basopenia or basocytopenia or thrombocytopeni* or leucocytosis or lymphocytosis or eosinophili* or leucopenia or leukopenia or neutropenia or lymphopenia or lymphocytopenia or pancytopenia or polycythemia or bicytopenia) OR AB (neutrophili* or monocytosis or basophili* or anemi* or anaemi* or monocytopenia or eosinopenia or basopenia or basocytopenia or thrombocytopeni* or leucocytosis or lymphocytosis or eosinophili* or leucopenia or leukopenia or neutropenia or lymphopenia or lymphocytopenia or pancytopenia or polycythemia or bicytopenia) 31. S9 OR S10 OR S11 OR S12 OR S13 OR S14 OR S15 OR S16 OR S17 OR S18 OR S19 OR S20 OR S21 OR S22 OR S23 OR S24 OR S25 OR S26 OR S27 OR S28 OR S29 OR S30
32. TI (abnormalit* or diagnos* or "pre-diagnos*" or prediagnos* or change* or detect* or elevat* or distribut* or deficien* or identif* or presence or indicati* or determin* or undiagnosed or definition* or altered or alteration*) OR AB (abnormalit* or diagnos* or "pre-diagnos*" or prediagnos* or change* or detect* or elevat* or distribut* or deficien* or identif* or presence or indicati* or determin* or undiagnosed or definition* or altered or alteration*)
33. S31 AND S32
34. TI (predict* or prognos* or suspected) OR AB (predict* or prognos* or suspected)
35. TI (risk N1 (predict* or marker* or scor*)) OR AB (risk N1 (predict* or marker* or scor*))
36. (MH "Predictive Value of Tests")
37. (MH "Probability")
38. (MH "Prognosis")
39. (MH "Risk Factors")
40. (MH "Risk Assessment")
41. (MH "Incidence")
42. S34 OR S35 OR S36 OR S37 OR S38 OR S39 OR S40 OR S41
43. S8 and S33 and S42

Web of Science

Database and platform: Web of Science (Web of Science Core Collection: Science Citation Index Expanded (SCI-EXPANDED) --1945-present; Social Sciences Citation Index (SSCI) --1956-present; Conference Proceedings Citation Index- Science (CPCI-S) --1990-present) (via Clarivate). Search date: 3 September 2019.

1. TS = ((colorectal or bowel or colon or colonic or rectal or rectum or sigmoid) NEAR/3 (cancer* or carcinoma* or adenoma* or neoplas* or metasta* or carcinogen* or tumour* or tumor* or malignan* or adenocarcinoma*))
2. $\mathrm{SU}=$ Hematology
3. $\mathrm{TS}=$ "blood cell count"
4. TS = "occult blood"
5. TS $=\left((\right.$ blood or platelet $)$ NEAR/2 count $\left.{ }^{*}\right)$
6. TS $=$ (CBC or FBC)
7. TS = (blood NEAR/2 exam*)
8. $\mathrm{TS}=$ (haematolog* or hematolog* or haemoglobin or hemoglobin or haematocrit or hematocrit)
9. TS = ((red or white) NEAR/1 blood NEAR/1 cell*)
10. TS $=$ (mean NEAR/1 (platelet or corpuscular) NEAR/1 volume*)
11. TS = (mean NEAR/1 corpuscular NEAR/1 (haemoglobin or hemoglobin))
12. TS = (platelet* or basophil or basophils or eosinophil or eosinophils or lymphocyte* or monocyte* or neutrophil or neutrophils or erythrocyte* or leukocyte*)
13. TS $=\left(\right.$ blood NEAR/1 $\left(\right.$ test * or draw* $\left.\left.{ }^{*}\right)\right)$
14. TS = (neutrophili* or monocytosis or basophili* or anemi* or anaemi* or monocytopenia or eosinopenia or eosinophilia or basopenia or basocytopenia or thrombocytopeni* or thrombocytosis or leucocytosis or lymphocytosis or eosinophili* or leucopenia or leukopenia or neutropenia or lymphopenia or lymphocytopenia or pancytopenia or polycythemia or bicytopenia)
15. \#2 or \#3 or \#4 or \#5 or \#6 or \#7 or \#8 or \#9 or \#10 or \#11 or \#12 or \#13 or \#14
16. TS $=$ (abnormalit* or diagnos* or "pre-diagnos*" or prediagnos* or change* or detect* or elevat* or distribut* or deficien* or identif* or presence or indicati* or determin* or undiagnosed or definition* or altered or alteration*)
17. \#15 and \#16
18. TS $=$ (predict * or prognos* or probabilit* or suspected $)$
19. TS = (risk NEAR/1 (predict* or marker* or scor*))
20. \#18 or \#19
21. \#1 and \#17 and \#20

cancers

MDPI

3. Association between full blood count and colorectal cancer

Table S2. Full blood count components analysed per study.

cancers

MDPI

MDPI

cancers

MDPI

Stapley 2006 [47]	X																				1
Thompson 2017 [48]			X																		1
van Boxtel- Wilms 2016 [49]			X																		1
Wu 2019 [50]	X	X	X						X	X					X		X		X		8
$\begin{gathered} \text { Yang } 2018 \\ \text { [51] } \\ \hline \end{gathered}$			X					X	X						X				X		5
$\begin{gathered} \text { Zhou } 2017 \\ {[52]} \\ \hline \end{gathered}$		X														X				X	3
Zhu 2018 [53]									X	X											2
Total	5	11	38	2	16	2	2	9	12	5	3	1	3	1	6	2	4	1	5	2	
Proportion of nonvalidation studies ($\mathrm{n}=$ 47)	$\begin{aligned} & 11 \\ & \% \end{aligned}$	23\%	$\begin{aligned} & 81 \\ & \% \end{aligned}$	$\begin{aligned} & 4 \\ & \% \end{aligned}$	34\%	4\%	4\%	19\%	$\begin{aligned} & 26 \\ & \% \end{aligned}$	11\%	6\%	2\%	6\%	2\%	13\%	4\%	9\%	2\%	11\%	4\%	

Abbreviations: $\mathrm{RBC}=$ red blood cells, $\mathrm{WBC}=$ white blood cells, $\mathrm{Hb}=$ haemoglobin, $\mathrm{Hc}=$ haematocrit, $\mathrm{MCV}=$ mean corpuscular volume, $\mathrm{MCH}=$ mean corpuscular haemoglobin, $\mathrm{MCHC}=$ mean corpuscular haemoglobin concentration, RDW = red blood cell distribution width, Plat = platelet count, MPV = mean platelet volume, BasC = basophil count, BasP = basophil \%, EosC = eosinophil count, EosP = eosinophil \%, LymC = lymphocyte count, LymP = lymphocyte \%, MonC = monocyte count, MonP = monocyte \%, NeuC = neutrophil count, NeuP = neutrophil \%

cancers

Table S3: Red blood cell count for colorectal cancer, with analyses sorted by outcome time window, country, and strata

Country	Strata	Article (Study outcome window)	Analysis type	CRC outcome groups and no. per group	Blood level categories and no. per group	Analysis estimates	$\begin{gathered} p- \\ \text { value } \end{gathered}$
0 < outcome time window ≤ 6 months:							
China	Everyone	Wu 2019 [50]	T-test	Yes, $\mathrm{n}=186$		$\begin{gathered} \text { Mean }=4.4210^{12} / \mathrm{L} \\ (\mathrm{SD}=0.63) \end{gathered}$	<0.05
		(At diagnosis)		No, $\mathrm{n}=108$		$\begin{gathered} \text { Mean }=4.7310^{12} / \mathrm{L} \\ (\mathrm{SD}=0.42) \end{gathered}$	
		Wu 2019 [50]	T-test	Yes, $\mathrm{n}=186$		$\begin{gathered} \text { Mean }=4.4210^{12} / \mathrm{L} \\ (\mathrm{SD}=0.63) \end{gathered}$	<0.05
		(At diagnosis)		Polyp, $\mathrm{n}=132$		$\begin{gathered} \text { Mean }=4.7810^{12} / \mathrm{L} \\ (\mathrm{SD}=0.72) \\ \hline \end{gathered}$	
		Wu 2019 [50] (At diagnosis)	ANOVA	Yes, $\mathrm{n}=186$ Polyp, $\mathrm{n}=132$ Healthy, n=108		$\begin{aligned} & \text { Mean }=4.4210^{12} / \mathrm{L} \\ & \text { Mean }=4.7810^{12} / \mathrm{L} \\ & \text { Mean }=4.7310^{12} / \mathrm{L} \\ & \hline \end{aligned}$	<0.001
Israel	Males	Goshen 2017 [16] (1-6 months)	T-test	$\begin{gathered} \text { Yes, } \mathrm{n}=936 \\ \text { No, } \mathrm{n}=28491 \end{gathered}$		$\begin{aligned} & \text { Mean }=4.7610^{12} / \mathrm{L} \\ & \text { Mean }=4.8710^{12} / \mathrm{L} \end{aligned}$	<0.0001
			Risk ratio	Yes	Highest-risk quintile	$\begin{gathered} \mathrm{RR}=1.75(95 \% \mathrm{CI}= \\ 1.45,2.24) \end{gathered}$	
		(1-6 months)		No	Lowest-risk quintile	Reference	
	Females	Goshen 2017 [16] (1-6 months)	T-test	$\begin{gathered} \text { Yes, } \mathrm{n}=819 \\ \text { No, } \mathrm{n}=26239 \end{gathered}$		$\begin{aligned} & \text { Mean }=4.4810^{12} / \mathrm{L} \\ & \text { Mean }=4.3910^{12} / \mathrm{L} \end{aligned}$	<0.0001
		Goshen 2017 [16] (1-6 months)	Risk ratio	Yes No	Highest-risk quintile Lowest-risk quintile	$\begin{gathered} \hline \mathrm{RR}= \\ 1.97(95 \% \mathrm{CI}= \\ 1.51,2.61) \\ \text { Reference } \\ \hline \end{gathered}$	
UK	Males	Schneider 2018 [43\}	Odds ratio	Yes, $\mathrm{n}=2266$	$<3.510^{12} / \mathrm{L}, \mathrm{n}=191, \text { events }=$ 162	$\begin{gathered} \mathrm{OR}=2.86(95 \% \mathrm{CI}= \\ 1.90,4.31) \end{gathered}$	
		(6 months)		No, $\mathrm{n}=1006$	$\begin{gathered} 3.5-4.210^{12} / \mathrm{L}, \mathrm{n}=951, \text { events } \\ = \\ \\ \hline 21 \end{gathered}$	$\begin{gathered} \mathrm{OR}=1.61(95 \% \mathrm{CI}= \\ 1.34,1.93) \end{gathered}$	
					$\begin{gathered} 4.3-4.910^{12} / \mathrm{L}, \mathrm{n}=1608 \\ \text { events }=1,603 \end{gathered}$	Reference	

cancers

			$\begin{gathered} 5-5.810^{12} / \mathrm{L}, \mathrm{n}=516, \text { events }= \\ 314 \\ \geq 5.910^{12} / \mathrm{L}, \mathrm{n}=6, \text { events }=6 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{OR}=0.80(95 \% \mathrm{CI}= \\ 0.65,0.98) \\ \mathrm{X} \\ \hline \end{gathered}$
Schneider 2018 [43\} 1	Odds ratio	Yes, $\mathrm{n}=2266$	$\begin{gathered} <3.510^{12} / \mathrm{L}, \mathrm{n}=191, \text { events }= \\ 162 \end{gathered}$	$\begin{gathered} \mathrm{OR}=3.72(95 \% \mathrm{CI}= \\ 2.36,5.88) \end{gathered}$
(6 months)		No, $\mathrm{n}=1006$	$\begin{gathered} 3.5-4.210^{12} / \mathrm{L}, \mathrm{n}=951, \text { events } \\ =721 \end{gathered}$	$\begin{gathered} \mathrm{OR}=1.93(95 \% \mathrm{CI}= \\ 1.57,2.37) \end{gathered}$
			$\begin{gathered} 4.3-4.910^{12} / \mathrm{L}, \mathrm{n}=1608 \\ \text { events }=1,603 \\ 5-5.810^{12} / \mathrm{L}, \mathrm{n}=516, \text { events }= \\ 314 \end{gathered}$	Reference $\begin{gathered} \mathrm{OR}=0.83(95 \% \mathrm{CI}= \\ 0.66,1.04) \end{gathered}$
			$\geq 5.910^{12} / \mathrm{L}, \mathrm{n}=6$, events $=6$	X
Schneider 2018 [43\}	Odds ratio	Yes, $\mathrm{n}=2038$	$\begin{gathered} <3.510^{12} / \mathrm{L}, \mathrm{n}=352, \text { events }= \\ 331 \end{gathered}$	$\begin{gathered} \mathrm{OR}=4.10(95 \% \mathrm{CI}= \\ 2.72,6.17) \end{gathered}$
(6 months)		No, n = 857	$\begin{gathered} 3.5-4.210^{12} / \mathrm{L}, \mathrm{n}=1302, \\ \text { events }=960 \end{gathered}$	$\begin{gathered} \mathrm{OR}=1.81(95 \% \mathrm{CI}= \\ 1.53,2.15) \end{gathered}$
			$\begin{gathered} 4.3-4.910^{12} / \mathrm{L}, \mathrm{n}=1119 \\ \text { events }=680 \end{gathered}$	Reference
			$5-5.810^{12} / \mathrm{L}, \mathrm{n}=122 \text {, events }=$ 67	$\begin{gathered} \mathrm{OR}=0.79(95 \% \mathrm{CI}= \\ 0.21,1.15) \end{gathered}$
			$\geq 5.910^{12} / \mathrm{L}, \mathrm{n}=6$, events $=6$	X
Schneider 2018 [43\} 1	Odds ratio	Yes, n=2038	$\begin{gathered} <3.510^{12} / \mathrm{L}, \mathrm{n}=352, \text { events }= \\ 331 \end{gathered}$	$\begin{gathered} \mathrm{OR}=5.68(95 \% \mathrm{CI}= \\ 3.55,9.09) \end{gathered}$
(6 months)		No, n = 857	$\begin{gathered} 3.5-4.210^{12} / \mathrm{L}, \mathrm{n}=1302 \\ \text { events }=960 \end{gathered}$	$\begin{gathered} \mathrm{OR}=1.94(95 \% \mathrm{CI}= \\ 1.60,2.36) \end{gathered}$
			$\begin{gathered} \text { 4.3-4.9 } 10^{12} / \mathrm{L}, \mathrm{n}=1119 \\ \text { events }=680 \end{gathered}$	Reference
			$5-5.810^{12} / \mathrm{L}, \mathrm{n}=122, \text { events }=$ 67	$\begin{gathered} \mathrm{OR}=0.75(95 \% \mathrm{CI}= \\ 0.49,1.14) \end{gathered}$
			$\geq 5.910^{12} / \mathrm{L}, \mathrm{n}=6$, events $=6$	X

6 < outcome time window ≤ 12 months:

UK Everyone Boursi $2016[8] \quad$ Odds ratio \quad Yes, $\mathrm{n}=4929 \quad$ Modelled as continuous \quad| OR $=0.62(95 \% ~ C I=$ |
| :---: |
| $0.57,0.67)$ |<0.001

Abbreviations: $C R C=$ colorectal cancer, $\mathrm{OR}=$ odds ratio, $\mathrm{RR}=$ risk ratio. ${ }^{1}$ Multivariable effect estimate, adjusted for: BMI, smoking status, history of hypertension, diabetes, aspirin or NSAIDS use, vitamin K antagonists, platelet inhibitors

cancers

MDPI

Table S4: White blood cell count for colorectal cancer, with analyses sorted by outcome time window, country, and strata

Country	Strata	Article	Analysis type	CRC outcome groups and no. per group	Blood level categories and no. per group	Analysis estimates	$\begin{gathered} p- \\ \text { value } \end{gathered}$
0 < outcome time window ≤ 6 months:							
China	Everyone	Huang 2019 [25]	T-test	Yes, $\mathrm{n}=162$		$\begin{gathered} \text { Mean }=6.7610^{9} / \mathrm{L} \\ (\mathrm{SD}=1.68) \end{gathered}$	≥ 0.05
		(At admission)		No, $\mathrm{n}=78$		$\begin{gathered} \text { Mean }=6.4210^{9} / \mathrm{L} \\ (\mathrm{SD}=1.60) \end{gathered}$	
		Huang 2019 [25]	T-test	Yes, $\mathrm{n}=162$		$\begin{gathered} \text { Mean }=6.7610^{9} / \mathrm{L} \\ (\mathrm{SD}=1.68) \end{gathered}$	<0.05
		(At admission)		Polyp, $\mathrm{n}=92$		$\begin{gathered} \text { Mean }=6.2510^{9} / \mathrm{L} \\ (\mathrm{SD}=1.5) \\ \hline \end{gathered}$	
		Wu 2019 [50]	T-test	Yes, $\mathrm{n}=186$		$\begin{gathered} \text { Mean }=6.7710^{9} / \mathrm{L} \\ (\mathrm{SD}=1.64) \end{gathered}$	<0.05
		(At diagnosis)		No, $\mathrm{n}=108$		$\begin{gathered} \text { Mean }=6.2310^{9} / \mathrm{L} \\ (\mathrm{SD}=1.02) \end{gathered}$	
		Wu 2019 [50]	T-test	Yes, $\mathrm{n}=186$		$\begin{gathered} \text { Mean }=6.7710^{9} / \mathrm{L} \\ (\mathrm{SD}=1.64) \end{gathered}$	<0.05
		(At diagnosis)		Polyp, $\mathrm{n}=132$		$\begin{gathered} \text { Mean }=6.3210^{9} / \mathrm{L} \\ (\mathrm{SD}=1.61) \end{gathered}$	
		Wu 2019 [50]	ANOVA	Yes $=186$		Mean $=6.7710 \% / \mathrm{L}$	0.003
		(At diagnosis)		Polyp $=132$		$\text { Mean }=6.3210^{9} / \mathrm{L}$	
				Healthy $=108$		Mean $=6.2310 \% / \mathrm{L}$	
		Zhou 2017 [52]	Mann-	Yes, $\mathrm{n}=242$		Median $=6.62109 / \mathrm{L}$	<0.001
		(At diagnosis)	Whitney U	No, $\mathrm{n}=248$		Median $=6.1510 \% / \mathrm{L}$	
		Zhou 2017 [52]	Mann-	Yes, $\mathrm{n}=242$		Median $=6.6210 \% / \mathrm{L}$	<0.001
		(At diagnosis)	Whitney U	Polyp, $\mathrm{n}=248$		Median $=6.2210 \% / \mathrm{L}$	
		Zhou 2017 [52]		Yes $=242$		Median $=6.62109 / \mathrm{L}$	<0.001
		(At diagnosis)	Wallis	Polyp $=248$		Median $=6.22$ 109/L	
				Healthy $=262$		Median $=6.1510 \% / \mathrm{L}$	
Israel	Males	Goshen 2017 [16]	T-test	Yes, $\mathrm{n}=936$		Mean $=7.7910 \%$ L	<0.0001

cancers

MDPI

					IDP1	Mean $=7.20$ 10\%/L	
		(1-6 months)		No, $\mathrm{n}=28491$			
		$\begin{aligned} & \text { Goshen } 2017 \\ & \text { [16] } \\ & (1-6 \text { months }) \end{aligned}$	Risk ratio	Yes	Highest-risk quintile Lowest-risk quintile	$\begin{gathered} \mathrm{RR}= \\ \text { 1.37,3.31 } 35 \% \mathrm{CI}= \\ \text { Reference } \\ \hline \end{gathered}$	
				No			
	Females	Goshen 2017 [16]	T-test	Yes, $\mathrm{n}=819$		$\begin{aligned} & \text { Mean }=7.4610^{9} / \mathrm{L} \\ & \text { Mean }=6.6510^{9} / \mathrm{L} \end{aligned}$	<0.0001
		(1-6 months)		No, $\mathrm{n}=26239$			
		Goshen 2017 [16]	Risk ratio	Yes	Highest-risk quintile	$\begin{gathered} \hline \mathrm{RR}=2.17(95 \% \mathrm{CI}= \\ 1.66,3.02) \\ \text { Reference } \\ \hline \end{gathered}$	
		(1-6 months)		No	Lowest-risk quintile		Reference
Turkey	Everyone	Firat 2016 [14] (At diagnosis)	Chi-squared	$\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$			0.463
6 < outcome time window ≤ 12 months:							
UK	Everyone	Boursi 2016 [8]	Odds ratio	$\begin{gathered} \text { Yes, } \mathrm{n}=4929 \\ \text { No, } \mathrm{n}=11311 \\ \hline \end{gathered}$	Modelled as continuous	$\begin{gathered} \mathrm{OR}=1.11(95 \% \mathrm{CI}= \\ 1.09,1.13) \end{gathered}$	<0.001
		(1 year)					
		Boursi 2016 [8] ${ }^{1}$	Odds ratio	Yes, $\mathrm{n}=3375$	Modelled as fractional polynomials (powers: 1, 1)	$\mathrm{OR}=5.25^{*} \mathrm{WBC}^{1}$	
		(1 year)		No, $\mathrm{n}=8560$		$\begin{gathered} \mathrm{OR}=0.30^{*} \mathrm{WBC}^{1} \times \\ \ln (\mathrm{WBC}) \\ \hline \end{gathered}$	
Outcome time window ≥ 36 months:							
Korea	Males	Lee 2006 [32]	Odds ratio	Yes, $\mathrm{n}=1122$	$\begin{gathered} \leq 5000 \mu \mathrm{~L}, \mathrm{n}=18611, \text { events }= \\ 183 \end{gathered}$	Reference	
		(10 years)		No, $\mathrm{n}=107785$	$\begin{gathered} 5501-6500 \mu \mathrm{~L}, \mathrm{n}=24567, \\ \text { events }=228 \end{gathered}$	$\begin{gathered} \mathrm{OR}=0.94(95 \% \mathrm{CI}= \\ 0.78,1.15) \end{gathered}$	
					$\begin{gathered} 6501-7600 \mu \mathrm{~L}, \mathrm{n}=28018 \\ \text { events }=276 \end{gathered}$	$\begin{gathered} \mathrm{OR}=1.00(95 \% \mathrm{CI}= \\ 0.83,1.21) \end{gathered}$	
					$\begin{gathered} >7600 \mu \mathrm{~L}, \mathrm{n}=37711, \text { events }= \\ 435 \end{gathered}$	$\begin{gathered} \mathrm{OR}=1.18(95 \% \mathrm{CI}= \\ 0.99,1.4) \end{gathered}$	
	Males	Lee 2006 [32] ${ }^{2}$	Hazard ratio	Yes, $\mathrm{n}=1122$	$\begin{gathered} \leq 5000 \mu \mathrm{~L}, \mathrm{n}=18611, \text { events }= \\ 183 \end{gathered}$	Reference	
		(10 years)		No, $\mathrm{n}=107785$	$\begin{gathered} \text { 5501-6500 } \mu \mathrm{L}, \mathrm{n}=24567, \\ \text { events }=228 \end{gathered}$	$\begin{gathered} \mathrm{HR}=0.95(95 \% \mathrm{CI}= \\ 0.78,1.15) \end{gathered}$	

MDPI
$6501-7600 \mu \mathrm{~L}, \mathrm{n}=28018, \quad \mathrm{HR}=1.02(95 \% \mathrm{CI}=$
events $=276$ 0.84, 1.23)
$>7600 \mu \mathrm{~L}, \mathrm{n}=37711$, events $=\quad \mathrm{HR}=1.23(95 \% \mathrm{CI}=$

$$
435
$$

				435	1.03, 1.47)
Females	Lee 2006 [32]	Odds ratio	Yes, $\mathrm{n}=1529$	$\leq 5000, \mathrm{n}=90790$, events $=405$	Reference
	(10 years)		No, n $=313983$	$\begin{gathered} \text { 5501-6500 } \mu \mathrm{L}, \mathrm{n}=84260, \\ \text { events }=400 \end{gathered}$	$\begin{gathered} \mathrm{OR}=1.06(95 \% \mathrm{CI}= \\ 0.93,1.22) \end{gathered}$
				$\begin{gathered} 6501-7600 \mu \mathrm{~L}, \mathrm{n}=73364 \\ \text { events }=353 \end{gathered}$	$\begin{gathered} \mathrm{OR}=1.08(95 \% \mathrm{CI}= \\ 0.94,1.24) \end{gathered}$
				$>7600 \mu \mathrm{~L}, \mathrm{n}=67098, \text { events }=$ 371	$\begin{gathered} \mathrm{OR}=1.24(95 \% \mathrm{CI}= \\ 1.08 .1 .43) \end{gathered}$

$$
1.03,1.47)
$$

Females	Lee 2006 [32] ${ }^{2}$	Hazard ratio	Yes, $\mathrm{n}=1529$
	$(10$ years $)$		No, $\mathrm{n}=313983$

$371 \quad 1.08,1.43$)

No, $\mathrm{n}=313983$
Reference
$\mathrm{HR}=1.03$ (95\% CI = 0.90, 1.19)
$\mathrm{HR}=1.03$ (95\% CI = $0.89,1.19)$
$\mathrm{HR}=1.15(95 \% \mathrm{CI}=$ 0.99, 1.33)
$\mathrm{HR}=1.08$ (95\% CI = $1.04,1.12)$
No, $\mathrm{n}=142407$
Yes, $\mathrm{n}=308 \leq 4.810^{9} / \mathrm{L}, \mathrm{n}=3554$, events $=$

No, $\mathrm{n}=13106$
$\leq 4.810^{9} / \mathrm{L}, \mathrm{n}=3554$, events $=$
$4.9-5.810^{9} / \mathrm{L}, \mathrm{n}=3413$, events
$=65$
5.9-7.0 109/L, n = 3155, events

$$
=86
$$

$\geq 7.110^{9} / \mathrm{L}, \mathrm{n}=3292$, events $=$ 78
$\leq 4.810^{9} / \mathrm{L}, \mathrm{n}=3554$, event $=$
4.9-5.8 10 ${ }^{9} / \mathrm{L}, \mathrm{n}=3413$, events $=65$

Reference
$\mathrm{OR}=0.80(95 \% \mathrm{CI}=$ $0.58,1.12)$
$\mathrm{OR}=1.18(95 \% \mathrm{CI}=$ $0.86,1.60)$
$\mathrm{OR}=1.01(95 \% \mathrm{CI}=$ $0.73,1.38)$
$\mathrm{HR}=0.86(95 \% \mathrm{CI}=$ $0.61,1.21)$

cancers

MDPI

5.9-7.0 $10^{9} / \mathrm{L}, \mathrm{n}=3155$, events	$\mathrm{HR}=1.26(95 \% \mathrm{CI}=$
$=86$	$0.91,1.74)$
$\geq 7.110^{9} / \mathrm{L}, \mathrm{n}=3292$, events $=$	$\mathrm{HR}=1.13(95 \% \mathrm{CI}=$
78	$0.79,1.60)$

$0.79,1.60)$

OUTCOME WINDOW NOT CATEGORISABLE: > 12-month risk of CRC diagnosis:

Netherlands	Everyone	Fijten 1995 [13] (>12 months)	Chi-squared	$\begin{gathered} \text { Yes, } \mathrm{n}=4 \\ \text { No, } \mathrm{n}=215 \end{gathered}$	Low, $\mathrm{n}=194$, events $=1$ High, $\mathrm{n}=25$, events $=3$		<0.01
		Fijten 1995 [13]	Odds ratio	Yes, $\mathrm{n}=4$	Low, $\mathrm{n}=194$, events $=1$	$\begin{gathered} \text { Reference } \\ \mathrm{OR}=26.3(95 \% \mathrm{CI}= \\ 2.6,264.0) \end{gathered}$	
		(>12 months)		No, $\mathrm{n}=215$	High, $\mathrm{n}=25$, events $=3$		

Abbreviations: $\mathrm{CRC}=$ colorectal cancer, $\mathrm{OR}=$ odds ratio, $\mathrm{RR}=$ risk ratio, $\mathrm{HR}=$ hazard ratio, WBC = white blood cell count. ${ }^{1}$ Multivariable effect estimate, adjusted for: haemoglobin, mean corpuscular volume, neutrophil-lymphocyte ratio, platelet count, sex, previous metformin prescriptions, previous prescriptions for oral hypoglycemic drugs other than metformin. ${ }^{2}$ Multivariable effect estimate, adjusted for: age, BMI, total cholesterol, smoking status, regular exercise, alcohol consumption per day, frequency of meat intake per week, hypertension, diabetes. ${ }^{3}$ Multivariable effect estimate, adjusted for: age, ethnicity, smoking, alcohol use, physical activity, aspirin/nonsteroidal anti-inflammatory drug use, hormone therapy use, BMI, history of diabetes, family history of colorectal cancer. ${ }^{4}$ Multivariable effect estimate, adjusted for: age, race, center, education, BMI, aspirin use, smoking status, pack-years of smoking, gender-HRT, diabetes.

Table S5: Haemoglobin levels for colorectal cancer, with analyses sorted by outcome time window, country, and strata

Country	Strata	Article	Analysis type	CRC outcome groups and no. per group	Blood level categories and no. per group	Analysis estimates	$\begin{gathered} p- \\ \text { value } \end{gathered}$
0 < outcome time window ≤ 6 months:							
China	Everyone	Huang 2019 [25]	T-test	Yes, $\mathrm{n}=162$		$\begin{gathered} \text { Mean }=119.62 \\ \mathrm{~g} / \mathrm{dL}(\mathrm{SD}=23.8) \end{gathered}$	<0.05
		(At admission)		No, $\mathrm{n}=78$		$\begin{gathered} \text { Mean }=146.25 \\ \mathrm{~g} / \mathrm{dL}(\mathrm{SD}=15.1) \end{gathered}$	
		Huang 2019 [25]	T-test	Yes, $\mathrm{n}=162$		$\begin{gathered} \text { Mean }=119.62 \\ \mathrm{~g} / \mathrm{dL}(\mathrm{SD}=23.8) \end{gathered}$	<0.05
		(At admission)		Polyp, $\mathrm{n}=92$		$\begin{gathered} \text { Mean }=134.1 \\ \mathrm{~g} / \mathrm{dL}(\mathrm{SD}=16.1) \end{gathered}$	
		Wu 2019 [50]	T-test	Yes, $\mathrm{n}=186$		$\begin{gathered} \text { Mean }=121.27 \\ \mathrm{~g} / \mathrm{L}(\mathrm{SD}=23.07) \end{gathered}$	<0.05
		(At diagnosis)		No, $\mathrm{n}=108$		$\begin{gathered} \text { Mean }=142.47 \\ \mathrm{~g} / \mathrm{L}(\mathrm{SD}=11.80) \end{gathered}$	
		Wu 2019 [50]	T-test	Yes, $\mathrm{n}=186$		$\begin{gathered} \text { Mean }=121.27 \\ \mathrm{~g} / \mathrm{L}(\mathrm{SD}=23.07) \end{gathered}$	<0.05
		(At diagnosis)		Polyp, $\mathrm{n}=132$		$\begin{gathered} \text { Mean }=132.12 \\ \mathrm{~g} / \mathrm{L}(\mathrm{SD}=20.03) \end{gathered}$	
		Wu 2019 [50]	ANOVA	Yes $=186$		$\begin{gathered} \text { Mean }=121.27 \\ \mathrm{~g} / \mathrm{L} \end{gathered}$	<0.001
		(At diagnosis)		Polyp $=132$		$\begin{gathered} \text { Mean }=132.12 \\ \mathrm{~g} / \mathrm{L} \end{gathered}$	
				Healthy = 108		$\begin{gathered} \text { Mean }=142.47 \\ \mathrm{~g} / \mathrm{L} \\ \hline \end{gathered}$	
		Yang 2018 [51] (At admission)	MannWhitney U	$\begin{gathered} \text { Yes, } \mathrm{n}=85 \\ \text { Polyp, } \mathrm{n}=54 \end{gathered}$		$\begin{gathered} \text { Median }=122 \mathrm{~g} / \mathrm{L} \\ \text { Median }=131.5 \\ \mathrm{~g} / \mathrm{L} \\ \hline \end{gathered}$	0.004
Belgium	Everyone	Joosten 2008 [27]	Chi-squared	Yes, $\mathrm{n}=55$	Men<13 g/dL, Women<12 $\mathrm{g} / \mathrm{dL}, \mathrm{n}=251$, events $=42$		0.26

cancers

		(8 weeks)		No, $\mathrm{n}=304$	Hen $\geq 13 \mathrm{~g} / \mathrm{dL}$, Women ≥ 12 $\mathrm{g} / \mathrm{dL}, \mathrm{n}=108$, events $=13$		
		Joosten 2008 [27]	T-test	Yes, $\mathrm{n}=55$		$\begin{gathered} \text { Mean }=10.2 \mathrm{~g} / \mathrm{dL} \\ (\mathrm{SD}=2.9) \end{gathered}$	0.14
		(8 weeks)		No, n = 304		$\begin{gathered} \text { Mean }=10.8 \mathrm{~g} / \mathrm{dL} \\ (\mathrm{SD}=2.7) \\ \hline \end{gathered}$	
		Joosten 2008 [27]	Odds ratio	Yes, $\mathrm{n}=55$	Men<13 g/dL, Women<12 $\mathrm{g} / \mathrm{dL}, \mathrm{n}=251$, events $=42$	$\begin{aligned} \mathrm{OR} & =1.47(95 \% \mathrm{CI} \\ & =0.75,2.86) \end{aligned}$	
		(8 weeks)		No, $\mathrm{n}=304$	Men $\geq 13 \mathrm{~g} / \mathrm{dL}$, Women ≥ 12 $\mathrm{g} / \mathrm{dL}, \mathrm{n}=108$, events $=13$	Reference	
		Joosten 2008 [27] ${ }^{1}$ (8 weeks)	Odds ratio	Yes, $\mathrm{n}=55$ No, $\mathrm{n}=304$			≥ 0.05
Israel	Males	Goshen 2017 [16]	T-test	Yes, $\mathrm{n}=936$		$\begin{gathered} \text { Mean = } 13.30 \\ \mathrm{~g} / \mathrm{dL} \end{gathered}$	<0.0001
		(1-6 months)		No, $\mathrm{n}=28491$		$\begin{gathered} \text { Mean }=14.43 \\ \mathrm{~g} / \mathrm{dL} \\ \hline \end{gathered}$	
		Goshen 2017 [16]	Risk ratio	Yes	Highest-risk quintile Lowest-risk quintile	$\begin{aligned} \mathrm{RR} & =3.06(95 \% \mathrm{CI} \\ & =2.76,3.52) \end{aligned}$	
		(1-6 months)		No		Reference	
		Goshen 2017 [16] ${ }^{2}$	Risk ratio	Yes, n = 936	Highest-risk quintile Lowest-risk quintile	$\begin{aligned} \mathrm{RR} & =3.83(95 \% \mathrm{CI} \\ & =3.38,4.46) \end{aligned}$	
		(1-6 months)		No, $\mathrm{n}=28491$		Reference	
	Females	Goshen 2017 [16]	T-test	Yes, $\mathrm{n}=819$		$\begin{gathered} \text { Mean = } 11.80 \\ \mathrm{~g} / \mathrm{dL} \end{gathered}$	<0.0001
		(1-6 months)		No, $\mathrm{n}=26239$		$\begin{gathered} \text { Mean }=13.02 \\ \mathrm{~g} / \mathrm{dL} \\ \hline \end{gathered}$	
		Goshen 2017 [16]	Risk ratio	Yes	Highest-risk quintile Lowest-risk quintile	$\begin{aligned} \mathrm{RR} & =5.69(95 \% \mathrm{CI} \\ & =4.31,7.97) \end{aligned}$	
		(1-6 months)		No		Reference	
		Goshen 2017 [16] ${ }^{3}$	Risk ratio	Yes, $\mathrm{n}=819$	Highest-risk quintile	$\begin{aligned} \mathrm{RR} & =5.69(95 \% \mathrm{CI} \\ & =4.31,7.97) \end{aligned}$	
		(1-6 months)		No, $\mathrm{n}=26239$	Lowest-risk quintile	Reference	

Netherlands	Everyone	MDP\|					
		van Boxtel-Wilms 2016 [49]	Descriptive	Yes	Anaemia, $\mathrm{n}=5$, events $=5$		
		(3 months)		No	No anaemia, $\mathrm{n}=545$, events $=$ 0		
Spain	Everyone	Cubiella 2016 [12] ${ }^{4}$	Odds ratio	Yes, $\mathrm{n}=214$	$<10 \mathrm{~g} / \mathrm{dL}$	$\begin{aligned} \mathrm{OR} & =4.8(95 \% \mathrm{CI} \\ & =2.2,10.3) \end{aligned}$	
		(1 week)		No, $\mathrm{n}=1358$	$10-12 \mathrm{~g} / \mathrm{dL}$	$\begin{aligned} \mathrm{OR} & =1.8(95 \% \mathrm{CI} \\ & =1.1,3.0) \end{aligned}$	
					$>12 \mathrm{~g} / \mathrm{dL}$	Reference	
Turkey	Everyone	Ay 2015 [3]	T-test	Yes, $\mathrm{n}=30$		$\begin{gathered} \text { Mean }=13.5 \mathrm{~g} / \mathrm{dL} \\ (\mathrm{SD}=1.1) \end{gathered}$	≥ 0.05
		(1 week)		Polyp, $\mathrm{n}=110$		$\begin{gathered} \text { Mean }=13.9 \mathrm{~g} / \mathrm{dL} \\ (\mathrm{SD}=1.1) \end{gathered}$	
		Cakmak 2017 [9]	T-test	Yes, $\mathrm{n}=59$		$\begin{gathered} \text { Mean }=11.9 \mathrm{~g} / \mathrm{dL} \\ (\mathrm{SD}=2.2) \end{gathered}$	<0.001
		(6 months)		No, $\mathrm{n}=59$		$\begin{gathered} \text { Mean }=14.4 \mathrm{~g} / \mathrm{dL} \\ (\mathrm{SD}=1.1) \end{gathered}$	
		Firat 2016 [14] (At diagnosis)	Chi-squared	$\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$			0.002
		Kilincalp 2015 [28]	T-test	Yes, $\mathrm{n}=144$		$\begin{gathered} \text { Mean }=11.6 \mathrm{~g} / \mathrm{dL} \\ (\mathrm{SD}=2.20) \end{gathered}$	<0.001
		(At diagnosis)		No, $\mathrm{n}=143$		$\begin{gathered} \text { Mean }=14.2 \mathrm{~g} / \mathrm{dL} \\ (\mathrm{SD}=1.17) \\ \hline \end{gathered}$	
UK	Everyone	$\begin{gathered} \text { Acher } 2003 \text { [1] }{ }^{5} \\ (6 \text { months }) \end{gathered}$	Descriptive	$\begin{aligned} & \text { Yes } \\ & \text { No } \\ & \hline \end{aligned}$	$\begin{gathered} <10.1 \mathrm{~g} / \mathrm{dl}, \mathrm{n}>5000, \text { events }= \\ 112 \\ \geq 10.1 \mathrm{~g} / \mathrm{dL}, \text { events }=274 \\ \hline \end{gathered}$		
		Mashlab 2018 [35]	Chi-squared	Yes, $\mathrm{n}=60$	$\begin{gathered} \text { Men }<130 \mathrm{~g} / \mathrm{L}, \text { Women }<120 \\ \mathrm{~g} / \mathrm{L}, \mathrm{n}=388, \text { events }=39 \end{gathered}$		0.001
		(2 weeks)		No, n = 955	Men $\geq 130 \mathrm{~g} / \mathrm{L}$, Women ≥ 120 $\mathrm{g} / \mathrm{L}, \mathrm{n}=627$, events $=21$		
		Mashlab 2018 [35]	Odds ratio	Yes, $\mathrm{n}=60$	$\begin{gathered} \text { Men }<130 \mathrm{~g} / \mathrm{L}, \text { Women }<120 \\ \mathrm{~g} / \mathrm{L}, \mathrm{n}=388, \text { events }=39 \end{gathered}$	$\begin{aligned} \mathrm{OR} & =3.22(95 \% \mathrm{CI} \\ & =1.87,5.57) \end{aligned}$	

cancers

MDPI

	(2 weeks)		No, n = 955	$\begin{gathered} \text { Gen } \geq 130 \mathrm{~g} / \mathrm{L}, \text { Women } \geq 120 \\ \mathrm{~g} / \mathrm{L}, \mathrm{n}=627, \text { events }=21 \end{gathered}$	Reference	
	Mashlab 2018 [35] ${ }^{6}$ (2 weeks)	Odds ratio	Yes, $\mathrm{n}=60$ No, n = 955	$\begin{gathered} \text { Men }<130 \mathrm{~g} / \mathrm{L}, \text { Women }<120 \\ \mathrm{~g} / \mathrm{L}, \mathrm{n}=388, \text { events }=39 \\ \text { Men } \geq 130 \mathrm{~g} / \mathrm{L}, \text { Women } \geq 120 \\ \mathrm{~g} / \mathrm{L}, \mathrm{n}=627, \text { events }=21 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{OR}=2.77(95 \% \mathrm{CI} \\ =1.55,4.95) \\ \text { Reference } \end{gathered}$	
	$\begin{array}{r} \text { Raje } 2007 \text { [42] } \\ (1-2 \text { months }) \\ \hline \end{array}$	Descriptive	$\begin{aligned} & \text { Yes } \\ & \text { No } \\ & \hline \end{aligned}$	Men<11 g/dL, Women <10 $\mathrm{g} / \mathrm{dL}, \mathrm{n}=142$, events $=9$		
Centre A	Panagiotopoulou 2014 [38]	Chi-squared	Yes, $\mathrm{n}=30$	Anaemia, $\mathrm{n}=105$, events = 16		0.434
	(3 months)		No, n = 199	No anaemia, $\mathrm{n}=124$, events $=$ 14		
	Panagiotopoulou 2014 [38]	Odds ratio	Yes, $\mathrm{n}=30$	Anaemia, $\mathrm{n}=105$, events = 16	$\begin{aligned} \mathrm{OR} & =1.4(95 \% \mathrm{CI} \\ & =0.7,3.1) \end{aligned}$	
	(3 months)		No, n=199	No anaemia, $\mathrm{n}=124$, events $=$ 14	Reference	
Centre B	Panagiotopoulou 2014 [38]	Chi-squared	Yes, $\mathrm{n}=76$	Anaemia, $\mathrm{n}=257$, events $=35$		0.103
	(3 months)		No, $\mathrm{n}=613$	No anaemia, $n=432$, events $=$ 41		
	Panagiotopoulou 2014 [38]	Odds ratio	Yes, $\mathrm{n}=76$	Anaemia, $\mathrm{n}=257$, events $=35$	$\begin{aligned} \mathrm{OR} & =1.5(95 \% \mathrm{CI} \\ & =0.9,2.4) \end{aligned}$	
	(3 months)		No, $\mathrm{n}=613$	No anaemia, $\mathrm{n}=432$, events $=$ 41	Reference	
	Panagiotopoulou 2014	Odds ratio	Yes, $\mathrm{n}=76$	Anaemia, $\mathrm{n}=257$, events $=35$	$\begin{aligned} \mathrm{OR} & =1.5(95 \% \mathrm{CI} \\ & =0.9,2.5) \end{aligned}$	
	[38] ${ }^{8}$ (3 months)		No, $\mathrm{n}=613$	No anaemia, $\mathrm{n}=432$, events $=$ 41	Reference	
Males	Schneider 2018 [43\} (6 months)	Odds ratio	Yes, $\mathrm{n}=2551$ No, $\mathrm{n}=1113$	$\leq 9 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=243$, events $=243$ $9-9.9 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=207$, events $=$ 193	$\begin{aligned} \mathrm{OR} & =10.3(95 \% \mathrm{CI} \\ & =5.9,17.8) \end{aligned}$	

MDPI

$\mathrm{I}_{0}-10.9 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=284$, events $=$ 255	$\begin{aligned} \mathrm{OR} & =6.5(95 \% \mathrm{CI} \\ & =4.4,9.7) \end{aligned}$
$\begin{gathered} 11-11.9 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=379, \text { events }= \\ 296 \end{gathered}$	$\begin{aligned} \mathrm{OR} & =2.7(95 \% \mathrm{CI} \\ & =2.0,3.4) \end{aligned}$
$\begin{gathered} 12-12.9 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=497, \text { events }= \\ 384 \end{gathered}$	$\begin{aligned} \mathrm{OR} & =2.5(95 \% \mathrm{CI} \\ & =2.0,3.2) \end{aligned}$
$\begin{gathered} 13-15.9 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=1834, \text { events } \\ =1052 \end{gathered}$	Reference
$\geq 16 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=180$, events $=88$	$\begin{aligned} \mathrm{OR} & =0.71(95 \% \mathrm{CI} \\ & =0.52,0.97) \end{aligned}$
$\leq 9 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=243$, events $=243$	$\begin{aligned} \mathrm{OR} & =95.9(95 \% \mathrm{CI} \\ & =23.5,391.8) \end{aligned}$
$\begin{gathered} 9-9.9 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=207, \text { events }= \\ 193 \end{gathered}$	$\begin{aligned} \mathrm{OR} & =12.2(95 \% \mathrm{CI} \\ & =6.8,21.8) \end{aligned}$
$\begin{gathered} 10-10.9 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=284, \text { events }= \\ 255 \end{gathered}$	$\begin{aligned} \mathrm{OR} & =8.6(95 \% \mathrm{CI} \\ & =5.3,13.8) \end{aligned}$
$\begin{gathered} 11-11.9 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=379, \text { events }= \\ 296 \end{gathered}$	$\begin{aligned} \mathrm{OR} & =3.1(95 \% \mathrm{CI} \\ & =2.3,4.2) \end{aligned}$
$\begin{gathered} 12-12.9 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=497, \text { events }= \\ 384 \end{gathered}$	$\begin{aligned} \mathrm{OR} & =2.9(95 \% \mathrm{CI} \\ & =2.2,3.8) \end{aligned}$
$\begin{gathered} 13-15.9 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=1834, \text { events } \\ = \\ =1052 \end{gathered}$	Reference
$\geq 16 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=180$, events $=88$	$\begin{aligned} \mathrm{OR} & =0.7(95 \% \mathrm{CI} \\ & =0.5,1.04) \end{aligned}$
$\leq 9 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=341$, events $=336$	$\begin{aligned} \mathrm{OR} & =70.6(95 \% \mathrm{CI} \\ & =29,172.2) \end{aligned}$
$\begin{gathered} 9-9.99 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=368 \text {, events }= \\ 252 \end{gathered}$	$\begin{aligned} \mathrm{OR} & =16.5(95 \% \mathrm{CI} \\ & =9.8,27.8) \end{aligned}$
$\begin{gathered} 10-10.9 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=379, \text { events }= \\ 333 \end{gathered}$	$\begin{aligned} \mathrm{OR} & =7.6(95 \% \mathrm{CI} \\ & =5.5,10.6) \end{aligned}$
$\begin{gathered} 11-11.9 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=442, \text { events }= \\ 326 \end{gathered}$	$\begin{aligned} \mathrm{OR} & =3.0(95 \% \mathrm{CI} \\ & =2.3,3.8) \end{aligned}$

MDPI

$12-12.9 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=667$, events $=$	$\mathrm{OR}=1.5(95 \% \mathrm{CI}$
365	$=1.2,1.8)$
$13-15.9 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=978$, events $=$	
	Reference

$\geq 16 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=0$

Schneider 2018 [43 $]^{9}$	Odds ratio	Yes, $\mathrm{n}=2089$
(6 months)		No, $\mathrm{n}=1086$

$\leq 9 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=341$, events $=336$

| $9-9.99 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=368$, events $=$ | OR | $=23.3(95 \% \mathrm{Cl}$ |
| ---: | :--- | ---: | :--- |
| 252 | | $=12.4,43.5)$ |

$10-10.9 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=379$, events $=\quad \mathrm{OR}=10.6(95 \% \mathrm{CI}$ 333
$=6.9,16.1$)
$11-11.9 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=442$, events $=\quad \mathrm{OR}=3.7(95 \% \mathrm{CI}$ 326
$12-12.9 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=667$, events $=\quad \mathrm{OR}=1.5(95 \% \mathrm{CI}$ 365
$13-15.9 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=978$, events $=$
477
$\geq 16 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=0$

					$\geq 16 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=0$	X	
USA	Everyone	Spell 2004 [46] (6 months)	Chi-squared	$\begin{aligned} & \text { Yes, } n=225 \\ & \text { No, } n=487 \end{aligned}$	Men $<13 \mathrm{~g} / \mathrm{dL}$, Women <11 $\mathrm{g} / \mathrm{dL}, \mathrm{n}=160$, events $=130$ Men $\geq 13 \mathrm{~g} / \mathrm{dL}$, Women ≥ 11 $\mathrm{g} / \mathrm{dL}, \mathrm{n}=552$, events $=95$		<0.001
		Spell 2004 [46] (6 months)	Odds ratio	Yes, $\mathrm{n}=225$ No, $\mathrm{n}=487$	Men<13 g/dL, Women<11 $\mathrm{g} / \mathrm{dL}, \mathrm{n}=160$, events $=130$ Men $\geq 13 \mathrm{~g} / \mathrm{dL}$, Women ≥ 11 $\mathrm{g} / \mathrm{dL}, \mathrm{n}=552$, events $=95$	$\begin{gathered} \text { OR }=20.8(95 \% \mathrm{CI} \\ =13.2,32.8) \\ \text { Reference } \end{gathered}$	
6 < outcome time window ≤ 12 months:							
UK	Everyone	Acher 2003 [1] ${ }^{5}$ (6-12 months)	Descriptive	$\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$	$\begin{gathered} <10.1 \mathrm{~g} / \mathrm{dl}, \mathrm{n}>5000, \text { events }=28 \\ \geq 10.1 \mathrm{~g} / \mathrm{dL}, \text { events }=274 \end{gathered}$		
		Boursi 2016 [8] (1 year)	Odds ratio	$\begin{gathered} \text { Yes, } \mathrm{n}=4929 \\ \text { No, } \mathrm{n}=11491 \end{gathered}$	Modelled as continuous	$\begin{aligned} \mathrm{OR} & =0.67(95 \% \mathrm{CI} \\ & =0.66,0.69) \end{aligned}$	<0.001

MDPI				
Boursi 2016 [8] ${ }^{10}$	Odds ratio	Yes, $\mathrm{n}=3375$	Modelled as fractional polynomials (powers: 2, 2)	$\mathrm{OR}=0.02^{*} \mathrm{Hb}^{2}$
(1 year)		No, n = 8560		$\begin{gathered} \mathrm{OR}=32.17^{*} \mathrm{Hb}^{2} \times \\ \ln (\mathrm{Hb}) \end{gathered}$
Hamilton 2009 [19]	Odds ratio	Yes, $\mathrm{n}=5477$	$<12 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=3227$, events = 1424	$\begin{aligned} \mathrm{OR} & =7.11(95 \% \mathrm{CI} \\ & =6.59,7.68) \end{aligned}$
(2 years)		No, $\mathrm{n}=38314$	$\begin{gathered} \geq 12 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=40564, \text { events }= \\ 4053 \end{gathered}$	Reference
Hamilton 2009 [19] ${ }^{11}$	Odds ratio	Yes	$<9 \mathrm{~g} / \mathrm{dL}$	$\begin{gathered} \mathrm{OR}=18(95 \% \mathrm{CI}= \\ 14,25) \end{gathered}$
(2 years)		No	$9-9.9 \mathrm{~g} / \mathrm{dl}$	$\begin{aligned} \mathrm{OR} & =9.3(95 \% \mathrm{CI} \\ & =7.1,12) \end{aligned}$
			$10-10.9 \mathrm{~g} / \mathrm{dl}$	$\begin{aligned} \mathrm{OR} & =5.9(95 \% \mathrm{CI} \\ & =4.8,7.2) \end{aligned}$
			$11-11.9 \mathrm{~g} / \mathrm{dl}$	$\begin{aligned} \mathrm{OR} & =2.8(95 \% \mathrm{CI} \\ & =2.4,3.2) \end{aligned}$
			$12-12.9 \mathrm{~g} / \mathrm{dl}$	$\begin{aligned} \mathrm{OR} & =1.7(95 \% \mathrm{CI} \\ & =1.5,1.9) \end{aligned}$
			$\geq 12 \mathrm{~g} / \mathrm{dL}$	Reference
Lawrenson 2006 [31] (1 year)	Rate ratios	Yes	Anaemia	
		No	No anaemia	
Marshall 2011 [34]	Odds ratio	Yes, n = 5477	$<9 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=487$, events $=385$	$\begin{aligned} \mathrm{OR} & =50.9(95 \% \mathrm{CI} \\ & =40.2,64.5) \end{aligned}$
(2 years)		No, $\mathrm{n}=38314$	$\begin{gathered} 9-9.999 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=421, \text { events }= \\ 268 \end{gathered}$	$\begin{aligned} \mathrm{OR} & =23.5(95 \% \mathrm{CI} \\ & =18.9,29.1) \end{aligned}$
			$\begin{gathered} 10-10.999 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=771 \\ \text { events }=354 \end{gathered}$	$\begin{aligned} \mathrm{OR} & =12.3(95 \% \mathrm{CI} \\ & =10.5,14.4) \end{aligned}$
			$\begin{gathered} 11-11.999 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=1548, \\ \text { events }=417 \end{gathered}$	$\begin{aligned} \mathrm{OR} & =5.4(95 \% \mathrm{CI} \\ & =4.7,6.1) \end{aligned}$
			$\begin{gathered} 12-12.999 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=3001, \\ \text { events }=517 \end{gathered}$	$\begin{aligned} \mathrm{OR} & =3.0(95 \% \mathrm{CI} \\ & =2.7,3.3) \end{aligned}$
			$\begin{gathered} 13-13.999 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=4284 \\ \text { events }=573 \end{gathered}$	$\begin{aligned} \mathrm{OR} & =2.0(95 \% \mathrm{CI} \\ & =1.8,2.2) \end{aligned}$

MDPI
$\geq 14 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=33279$, events $=$ 2963

MDPI
$>12.9 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=4939$, events $=$

			$\begin{gathered} >12.9 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=4939, \text { events }= \\ 805 \end{gathered}$	Reference	
Hippisley-Cox 2012 [21] 13	Hazard ratio	Yes	$<11 \mathrm{~g} / \mathrm{dL}$	$\begin{gathered} \mathrm{HR}=3.33(95 \% \\ \mathrm{CI}=2.86,3.87) \end{gathered}$	
(2 years)		No	$\geq 11 \mathrm{~g} / \mathrm{dL}$	Reference	
Hippisley-Cox 2013 [22] 14, 15	Odds ratio	Yes, $\mathrm{n}=3250$	$<11 \mathrm{~g} / \mathrm{dL}$	$\begin{aligned} \mathrm{OR} & =4.08(95 \% \mathrm{CI} \\ & =3.65,4.57) \end{aligned}$	
(2 years)		No, $\mathrm{n}=1240550$	$\geq 11 \mathrm{~g} / \mathrm{dL}$	Reference	
Stapley 2006 [47]	Odds ratio	A	$\begin{gathered} 10-12.9 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=80 \text {, Stage } \mathrm{A} \\ =3, B=3, C=11, D=10 \end{gathered}$	$\begin{aligned} \mathrm{OR} & =2.2(95 \% \mathrm{CI} \\ & =1.2,4.3) \end{aligned}$	0.021
(1 year)		B	$\geq 12.9 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=269$	Reference	

C
D

D					
Females	Hamilton 2008 [18]	Odds ratio	Yes, $\mathrm{n}=1579$	$<9 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=257$, events $=221$	$\begin{gathered} \mathrm{OR}=40.0(95 \% \\ \mathrm{CI}=27.8,57.7) \end{gathered}$
	(1 year)		No, $\mathrm{n}=5226$	$\begin{gathered} 9-9.9 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=231, \text { events }= \\ 146 \end{gathered}$	$\begin{aligned} \mathrm{OR} & =14.0(95 \% \mathrm{CI} \\ & =3.3,59.3) \end{aligned}$
				$\begin{gathered} 10-10.9 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=451, \text { events }= \\ 226 \end{gathered}$	$\begin{aligned} \mathrm{OR} & =6.6(95 \% \mathrm{CI} \\ & =5.3,8.1) \end{aligned}$
				$11-11.9 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=854$, events $=$ 238	$\begin{aligned} \mathrm{OR} & =2.5(95 \% \mathrm{CI} \\ & =2.1,3.0) \end{aligned}$
				$\begin{gathered} 12-12.9 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=1626, \text { events } \\ =289 \end{gathered}$	$\begin{aligned} \mathrm{OR} & =1.4(95 \% \mathrm{CI} \\ & =1.2,1.7) \end{aligned}$
				$\begin{gathered} >12.9 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=3451, \text { events }= \\ 459 \end{gathered}$	Reference
	Hippisley-Cox 2012 [21] 16	Hazard ratio	Yes	$<11 \mathrm{~g} / \mathrm{dL}$	$\begin{gathered} \mathrm{HR}=3.26(95 \% \\ \mathrm{CI}=2.84,3.74) \end{gathered}$
	(2 years)		No	$\geq 11 \mathrm{~g} / \mathrm{dL}$	Reference
	Hippisley-Cox 2013 [23] 14, 15	Odds ratio	Yes, $\mathrm{n}=2607$	$<11 \mathrm{~g} / \mathrm{dL}$	$\begin{aligned} \mathrm{OR} & =4.37(95 \% \mathrm{CI} \\ & =3.94,4.86) \end{aligned}$
	(2 years)		No, $\mathrm{n}=1217648$	$\geq 11 \mathrm{~g} / \mathrm{dL}$	Reference

12 < outcome time window ≤ 36 months:

cancers

UK	Everyone				PI	
		Cross 2019 [11] (3 years)	Odds ratio	Yes, $\mathrm{n}=337$ No, $\mathrm{n}=4405$	$\begin{aligned} & \text { Men }<13 \mathrm{~g} / \mathrm{dL}, \text { Women }<12 \\ & \mathrm{~g} / \mathrm{dL}, \mathrm{n}=1660, \text { events }=184 \\ & \text { Men } \geq 13 \mathrm{~g} / \mathrm{dL}, \text { Women } \geq 12 \\ & \mathrm{~g} / \mathrm{dL}, \mathrm{n}=3082, \text { events }=153 \end{aligned}$	$\begin{aligned} \mathrm{OR} & =2.39(95 \% \mathrm{CI} \\ & =1.91,2.98) \end{aligned}$ Reference
		Cross 2019 [11]	Yield	Yes	Anaemia with distal cancer	Yield $=6.4 \%$
		(3 years)		No	Anaemia with proximal cancer	Yield $=4.7 \%$
					No anaemia with distal cancer	Yield $=4.3 \%$
					No anaemia with proximal cancer	Yield $=0.6 \%$
		Hamilton 2005 [17]	Odds ratio	Yes, $\mathrm{n}=349$	$<10 \mathrm{~g} / \mathrm{dl}, \mathrm{n}=61$, events $=40$	$\begin{aligned} \mathrm{OR} & =12.4(95 \% \mathrm{CI} \\ & =7.2,21.38) \end{aligned}$
		(2 years)		No, n = 1744	$10-11.9 \mathrm{~g} / \mathrm{dl}, \mathrm{n}=87$, events $=$ 38	$\begin{aligned} \mathrm{OR} & =5.05(95 \% \mathrm{CI} \\ & =3.24,7.87) \end{aligned}$
					$12-12.9 \mathrm{~g} / \mathrm{dl}, \mathrm{n}=37$, events $=$ 17	$\begin{aligned} \mathrm{OR} & =5.5(95 \% \mathrm{CI} \\ & =2.7,10.7) \end{aligned}$
					$\begin{gathered} \geq 13 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=1908, \text { events }= \\ 254 \end{gathered}$	Reference
		Hamilton 2005 [17] ${ }^{17}$	Odds ratio	Yes, $\mathrm{n}=349$	$<10 \mathrm{~g} / \mathrm{dl}, \mathrm{n}=61$, events $=40$	$\begin{aligned} \mathrm{OR} & =13.0(95 \% \mathrm{CI} \\ & =6.2,28.0) \end{aligned}$
		(2 years)		No, n = 1744	$10-11.9 \mathrm{~g} / \mathrm{dl}, \mathrm{n}=87$, events $=$ 38	$\begin{aligned} \mathrm{OR} & =4.3(95 \% \mathrm{CI} \\ & =2.1,9.0) \end{aligned}$
					$12-12.9 \mathrm{~g} / \mathrm{dl}, \mathrm{n}=37$, events $=$ 17	$\begin{aligned} \mathrm{OR} & =2.5(95 \% \mathrm{CI} \\ & =0.95,6.8) \end{aligned}$
					$\begin{gathered} \geq 13 \mathrm{~g} / \mathrm{dL}, \mathrm{n}=1908, \text { events }= \\ 254 \end{gathered}$	Reference
		Thompson 2017 [48]	Odds ratio	Yes	IDA	$\begin{aligned} \mathrm{OR} & =6.09(95 \% \mathrm{CI} \\ & =5.04,7.35) \end{aligned}$
		(3 years)		No	No IDA	Reference
		Thompson 2017 [48] ${ }^{18}$	Odds ratio	Yes, $\mathrm{n}=990$	IDA	$\begin{gathered} \mathrm{OR}=8.38(95 \% \mathrm{CI} \\ =5.10,16.05) \end{gathered}$
		(3 years)		No, $\mathrm{n}=16413$	No IDA	Reference

Outcome time window > 36 months:							
Taiwan	Everyone	Hung 2015 [26] (1-10 years)	Incidence ratio	$\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$	IDA, $\mathrm{n}=32390$, events $=171$ No IDA	$\begin{gathered} \mathrm{SIR}=1.48(95 \% \\ \mathrm{CI}=1.27,1.72) \end{gathered}$	
		Hung 2015 [26] (1-10 years)	Incidence ratio	$\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$	IDA, $\mathrm{n}=32390, \mathrm{CRC}=54$ No IDA	$\begin{gathered} \mathrm{SIR}=1.14(95 \% \\ \mathrm{CI}=0.85,1.48) \end{gathered}$	
UK	Everyone	Pilling 2018 [40] ${ }^{19}$ (4.5 years)	Hazard ratio	$\begin{gathered} \text { Yes, } \mathrm{n}=914 \\ \text { No, } \mathrm{n}=237,302 \\ \hline \end{gathered}$	Modelled as continuous	$\begin{gathered} \mathrm{sHR}=0.97(95 \% \\ \mathrm{CI}=0.87,1.08) \end{gathered}$	
		$\begin{gathered} \text { Pilling } 2018 \text { [40] }{ }^{19} \\ (4.5-9 \text { years }) \\ \hline \end{gathered}$	Hazard ratio	$\begin{gathered} \text { Yes, } \mathrm{n}=413 \\ \text { No, } \mathrm{n}=237,451 \\ \hline \end{gathered}$	Modelled as continuous	$\begin{gathered} \mathrm{sHR}=1.01(95 \% \\ \mathrm{CI}=0.87,1.18) \end{gathered}$	
OUTCOME WINDOW NOT CATEGORISABLE: > 3-month risk of CRC diagnosis:							
Iran	Everyone	Bafandeh 2008 [5] (>3 months)	Odds ratio	Yes Polyp	Unexplained anaemia, $\mathrm{n}=35$ No unexplained anaemia, $n=$ 445	Reference	0.004
		Bafandeh 2008 [5] ${ }^{20}$ (>3 months)	Odds ratio	Yes Polyp	Unexplained anaemia, $\mathrm{n}=35$, events $=5$ No unexplained anaemia, $\mathrm{n}=$ 445	Reference	0.006
OUTCOME WINDOW NOT CATEGORISABLE: > 12-month risk of CRC diagnosis:							
Netherlands	Everyone	Fijten 1995 [13] (> 1 year)	Chi-squared	Yes, $\mathrm{n}=6$ No, $\mathrm{n}=219$	$\begin{gathered} \text { Men }<8.5 \mathrm{mmol} / \mathrm{L}, \text { Women }<7.5 \\ \mathrm{mmol} / \mathrm{L}, \mathrm{n}=14, \text { events }=2 \\ \mathrm{Men} \geq 8.5 \mathrm{mmol} / \mathrm{L}, \text { Women } \geq 7.5 \\ \mathrm{mmol} / \mathrm{L}, \mathrm{n}=211, \text { events }=4 \end{gathered}$		<0.01
		Fijten 1995 [13] (> 1 year)	Odds ratio	$\begin{gathered} \text { Yes, } \mathrm{n}=6 \\ \text { No, } \mathrm{n}=219 \end{gathered}$	Low, $\mathrm{n}=14$, events $=2$ High, $\mathrm{n}=211$, events $=4$	$\begin{aligned} \mathrm{OR} & =8.6(95 \% \mathrm{CI} \\ & =1.4,51.9) \\ & \text { Reference } \end{aligned}$	
UK	Everyone	Acher 2003 [1] ${ }^{5}$ (> 1 year)	Descriptive	$\begin{aligned} & \text { Yes } \\ & \text { No } \\ & \hline \end{aligned}$	$\begin{gathered} <10.1 \mathrm{~g} / \mathrm{dl}, \mathrm{n}>5000, \text { events }=26 \\ \geq 10.1 \mathrm{~g} / \mathrm{dL}, \text { events }=274 \\ \hline \end{gathered}$		

Unspecified outcome time window:

cancers

Italy	Everyone	Panzuto 2003 [39] ${ }^{21}$	Odds ratio	MDPI			
				Yes, $\mathrm{n}=41$ No, $n=239$	Then<14 g/dL, Women<12 $\mathrm{g} / \mathrm{dL}, \mathrm{n}=69$, events $=28$ Men $\geq 14 \mathrm{~g} / \mathrm{dL}$, Women ≥ 12 $\mathrm{g} / \mathrm{dL}, \mathrm{n}=211$, events $=13$	$\begin{aligned} \mathrm{OR} & =10.4(95 \% \mathrm{CI} \\ & =4.9,21.7) \\ & \text { Reference } \end{aligned}$	
		Panzuto 2003 [39] ${ }^{22,23}$	Odds ratio	Yes, $\mathrm{n}=41$ No, $n=239$	Men $<14 \mathrm{~g} / \mathrm{dL}$, Women<12 $\mathrm{g} / \mathrm{dL}, \mathrm{n}=69$, events $=28$ Men $\geq 14 \mathrm{~g} / \mathrm{dL}$, Women ≥ 12 $\mathrm{g} / \mathrm{dL}, \mathrm{n}=211$, events $=13$	$\begin{aligned} \hline \mathrm{OR} & =8.8(95 \% \mathrm{CI} \\ & =3.9-19.8) \\ & \text { Reference } \end{aligned}$	
Japan	Everyone	Nakama 2000 [37] ${ }^{24}$	Chi-squared	$\text { Yes, } \mathrm{n}=96$ No, $n=17568$	$\begin{gathered} \text { Men }<12.5 \mathrm{~g} / \mathrm{dL}, \text { Women }<11.5 \\ \mathrm{~g} / \mathrm{dL}, \mathrm{n}=1132, \text { events }=31 \\ \text { Men } \geq 12.5 \mathrm{~g} / \mathrm{dL}, \text { Women } \geq 11.5 \\ \mathrm{~g} / \mathrm{dL}, \mathrm{n}=16532, \text { events }=65 \end{gathered}$		<0.05
		Nakama 2000 [37] ${ }^{24}$	Odds ratio	Yes, $\mathrm{n}=96$ No, $\mathrm{n}=17568$	$\begin{gathered} \text { Men }<12.5 \mathrm{~g} / \mathrm{dL}, \text { Women }<11.5 \\ \mathrm{~g} / \mathrm{dL}, \mathrm{n}=1132, \text { events }=31 \\ \text { Men } \geq 12.5 \mathrm{~g} / \mathrm{dL}, \text { Women } \geq 11.5 \\ \mathrm{~g} / \mathrm{dL}, \mathrm{n}=16532, \text { events }=65 \\ \hline \end{gathered}$	$\begin{aligned} \mathrm{OR} & =7.1(95 \% \mathrm{CI} \\ & =4.6,11.0) \\ & \text { Reference } \end{aligned}$	
Switzerland	Everyone	Naef 1999 [36]	Descriptive	$\begin{gathered} \hline \text { Yes } \\ \text { Polyp } \\ \hline \end{gathered}$	Anaemic, $\mathrm{n}=23$, events $=16$ Non-anaemic, $\mathrm{n}=31$		

Abbreviations: $C R C=$ colorectal cancer, $\mathrm{OR}=$ odds ratio, $\mathrm{RR}=$ risk ratio, $\mathrm{SIR}=$ standardised incidence ratios. ${ }^{1}$ Multivariable effect estimate, adjusted for: age, sex serum iron, transferrin, saturation index, and ferritin. ${ }^{2}$ Multivariable effect estimate, adjusted for: mean corpuscular volume, neutrophil count, platelets, red blood cell distribution width, alanine aminotransferase, protein, iron, ferritin. 3Multivariable effect estimate, adjusted for: mean corpuscular volume, monocyte count, platelets, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, iron, ferritin. ${ }^{4}$ Multivariable effect estimate, adjusted for: change in bowl habit, rectal bleeding, benign anorrectal lesion, rectal mass, serum CEA, Faecal haemoglobin, previous colonoscopy, aspirin use, sex, age. ${ }^{5}$ In the presence of serum ferritin<12 $\mathrm{ng} / \mathrm{ml}$ and mean corpuscular volume $<78 \mathrm{fL}$. ${ }^{6}$ Multivariable effect estimate, adjusted for: age, sex. ${ }^{7}$ In the presence of serum ferritin $<12 \mathrm{ng} / \mathrm{ml}$ and mean corpuscular volume $<78 \mathrm{fL}$. ${ }^{8}$ Multivariable effect estimate, adjusted for: sex, age, change in bowel habit, weight loss, bleeding per rectum, mucus per rectum, abdominal mass, abdominal fullness, lesion on digital rectal examination, anal lesion, abdominal distension, abdominal pain, family history, previous polyps, FOBt. ${ }^{9}$ Multivariable effect estimate, adjusted for: BMI, smoking status, history of hypertension, diabetes, aspirin or NSAIDS use, vitamin K antagonists, platelet inhibitors. ${ }^{10}$ In the presence of mean corpuscular volume<78 fL and/or mean corpuscular haemoglobin concentration $<32 \mathrm{~g} / \mathrm{dL}$. ${ }^{11}$ Multivariable effect estimate, adjusted for: mean corpuscular volume, white blood cell count, neutrophil-lymphocyte ratio, platelets, sex, previous metformin prescriptions, previous prescriptions for oral hypoglycemic drugs other than metformin. ${ }^{12}$ Multivariable effect estimate, adjusted for: rectal bleeding, change in bowel habit, abdominal pain, diarrhoea, constipation, weight loss, mean corpuscular volume. ${ }^{13}$ Multivariable effect estimate, adjusted for: constipation, diarrhoea, change in bowel habit, flatulence, Irritable bowel syndrome, abdominal pain/antispasmodic, rectal bleeding, mean corpuscular volume, weight loss, deep venous thrombosis/pulmonary embolism, diabetes, obesity. ${ }^{14}$ Multivariable effect estimate, adjusted for: alcohol status, family history of gastrointestinal cancer, current rectal bleeding, current abdominal pain, current appetite loss, current weight

cancers

MDPI

loss, change in bowel habit in previous year. ${ }^{15}$ Effect estimates are from multinomial logistic regression model, where the outcomes are different types of cancer. The estimates for the colorectal cancer vs no cancer are reported here. ${ }^{16}$ Multivariable effect estimate, adjusted for: family history gastrointestinal cancer, alcohol status, abdominal distension, abdominal pain, appetite loss, rectal bleeding, weight loss, change in bowel habit, constipation. ${ }^{17}$ Multivariable effect estimate, adjusted for: family history of gastrointestinal cancer, current rectal bleeding, current abdominal pain, current appetite loss, current weight loss. ${ }^{18}$ Multivariable effect estimate, adjusted for: rectal bleeding, weight loss, number of episodes of abdominal pain, constipation, number of episodes of diarrhoea, rectal disease on rectal examination, tenderness on palpation of abdomen, positive faecal occult blood, blood sugar. ${ }^{19}$ Multivariable effect estimate, adjusted for: age, sex, symptom combinations, physical signs, characteristics of rectal bleeding, characteristics of change in bowel habit, other characteristics of bowel cancer. ${ }^{20}$ Multivariable effect estimate, adjusted for: age, sex, smoking status, highest education level attained, mean corpuscular volume, red blood cell distribution width. ${ }^{21}$ Multivariable effect estimate, adjusted for: age, gender, duration of symptoms. ${ }^{22}$ In the presence of ferritin <30 and mean corpuscular volume $<80 \mathrm{fL}$. ${ }^{23} \mathrm{Multivariable}$ effect estimate, adjusted for: age, weight loss. ${ }^{24}$ In the presence of serum ferritin $<45.5 \mu \mathrm{~g} / \mathrm{L}$ and serum iron $<40 \mu \mathrm{~g} / \mathrm{L}$

cancers

MDPI
Table S6: Haematocrit (or packed cell volume) for colorectal cancer, with analyses sortedby outcome time window, country, and strata

Country	Strata	Article	Analysis type	CRC outcome groups and no. per group	Blood level categories and no. per group	Analysis estimates	$\begin{gathered} p- \\ \text { value } \end{gathered}$
6 < outcome time window ≤ 12 months:							
UK	Everyone	Boursi 2016 [8] (1 year)	Odds ratio	$\begin{aligned} & \text { Yes, } \mathrm{n}=4929 \\ & \text { No, } \mathrm{n}=11311 \\ & \hline \end{aligned}$	Modelled as continuous	$\begin{gathered} \mathrm{OR}=0.97(95 \% \mathrm{CI}= \\ 0.95,0.98) \end{gathered}$	<0.001
		Boursi 2016 [8] ${ }^{1}$	Odds ratio	Yes, $\mathrm{n}=4929$	Modelled as fractional polynomials (powers: -1, -1)	$\mathrm{OR}=0.681 * \mathrm{Hc}^{-1}$	<0.001
		(1 year)		No, $\mathrm{n}=11311$		$\begin{gathered} \mathrm{OR}=0.894^{*} \mathrm{Hc}^{-1} \times \\ \ln (\mathrm{Hc}) \\ \hline \end{gathered}$	

Abbreviations: $\mathrm{CRC}=$ colorectal cancer, $\mathrm{OR}=$ odds ratio, $\mathrm{Hc}=$ haematocrit. ${ }^{1}$ Multivariable effect estimate, adjusted for: mean corpuscular volume, lymphocyte count, neutrophil-lymphocyte ratio.

cancers

MDPI
Table S7: Mean corpuscular volume for colorectal cancer, with analyses sorted by outcome time window, country, and strata

Country	Strata	Article	Analysis type	CRC outcome groups and no. per group	Blood level categories and no. per group	Analysis estimates	$\begin{gathered} \mathrm{P}- \\ \text { value } \end{gathered}$
0 < outcome time window ≤ 6 months:							
Israel	Males	Goshen 2017 [16] (1-6 months)	T-test	$\begin{gathered} \text { Yes, } \mathrm{n}=936 \\ \text { No, } \mathrm{n}=28491 \\ \hline \end{gathered}$		$\begin{aligned} & \text { Mean }=85.7 \mathrm{fL} \\ & \text { Mean }=88.9 \mathrm{fL} \end{aligned}$	<0.0001
		Goshen 2017 [16] (1-6 months)	Risk ratio	$\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$	Highest-risk quintile Lowest-risk quintile	$\begin{gathered} \hline \mathrm{RR}=3.44(95 \% \mathrm{CI}= \\ 2.7,4.87) \\ \text { Reference } \\ \hline \end{gathered}$	
		Goshen 2017 [16] ${ }^{1}$ (1-6 months)	Risk ratio	$\begin{gathered} \text { Yes, } \mathrm{n}=936 \\ \text { No, } \mathrm{n}=28491 \end{gathered}$	Highest-risk quintile Lowest-risk quintile	$\begin{gathered} \mathrm{RR}=2.98(95 \% \mathrm{CI}= \\ 2.58,3.42) \\ \text { Reference } \\ \hline \end{gathered}$	<0.001
	Females	Goshen 2017 [16] (1-6 months)	T-test	$\begin{gathered} \text { Yes, } \mathrm{n}=819 \\ \text { No, } \mathrm{n}=26239 \end{gathered}$		$\begin{aligned} & \text { Mean }=84.5 \mathrm{fL} \\ & \text { Mean }=88.6 \mathrm{fL} \end{aligned}$	<0.0001
		Goshen 2017 [16] (1-6 months)	Risk ratio	$\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$	Highest-risk quintile Lowest-risk quintile	$\begin{gathered} \hline \mathrm{RR}=3.52(95 \% \mathrm{CI}= \\ 2.84,4.39) \\ \text { Reference } \\ \hline \end{gathered}$	
		Goshen 2017 [16] ${ }^{2}$ (1-6 months)	Risk ratio	$\begin{gathered} \text { Yes, } \mathrm{n}=819 \\ \text { No, } \mathrm{n}=26239 \end{gathered}$	Highest-risk quintile Lowest-risk quintile	$\begin{gathered} \hline \mathrm{RR}=3.04(95 \% \mathrm{CI}= \\ 2.7,3.54) \\ \text { Reference } \\ \hline \end{gathered}$	<0.001
Spain	Everyone	Cubiella 2016 [12] (1 week)	Mann- Whitney U	$\begin{gathered} \text { Yes, } \mathrm{n}=214 \\ \text { No, } \mathrm{n}=1358 \end{gathered}$		$\begin{aligned} & \text { Median }=89.1 \mathrm{fL} \\ & \text { Median }=90.8 \mathrm{fL} \end{aligned}$	<0.001
Turkey	Everyone	Ay 2015 [3] (1 week)	T-test	Yes, $\mathrm{n}=30$ Polyp, $\mathrm{n}=110$		$\begin{gathered} \text { Mean }=85.2 \mathrm{fL}(\mathrm{SD}= \\ 4.8) \\ \text { Mean }=86.7 \mathrm{fL}(\mathrm{SD}= \\ 4.9) \end{gathered}$	≥ 0.05
UK	Everyone	Raje 2007 [42] ${ }^{3}$ (1-2 months)	Descriptive	$\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$	$\begin{aligned} <78 \mathrm{fL}, \mathrm{n} & =142, \text { events }=9 \\ & \geq 78 \mathrm{fL} \end{aligned}$		
		Acher 2003 [1] ${ }^{4}$ (6 months)	Descriptive	$\begin{aligned} & \text { Yes } \\ & \text { No } \\ & \hline \end{aligned}$	$\begin{gathered} <78 \text { fL, } \mathrm{n}>5000, \text { events-112 } \\ \geq 78 \text { fL, events-274 } \end{gathered}$		
	Males	Schneider 2018 [43\}	Odds ratio	Yes, $\mathrm{n}=544$	$\leq 80 \mathrm{fL}, \mathrm{n}=561$, events $=$ 544	$\begin{gathered} \mathrm{OR}=18.7(95 \% \mathrm{CI}= \\ 11.5,30.6) \end{gathered}$	

cancers

MDPI

(6 months)			No, n = 3000	81-85 fL, $\mathrm{n}=440$, events $=$ 364	$\begin{gathered} \mathrm{OR}=2.80(95 \% \mathrm{CI}= \\ 2.15,3.65) \end{gathered}$
				$\begin{aligned} 86-95 \mathrm{fL}, \mathrm{n} & =1944, \text { events } \\ & =1226 \end{aligned}$	Reference
				$\begin{gathered} 96-100 \mathrm{fL}, \mathrm{n}=475, \text { events } \\ =260 \end{gathered}$	$\begin{gathered} \mathrm{OR}=0.7(95 \% \mathrm{CI}= \\ 0.6,0.9) \end{gathered}$
				$\begin{gathered} >100 \mathrm{fL}, \mathrm{n}=124 \text {, events }= \\ 63 \end{gathered}$	$\begin{gathered} \mathrm{OR}=0.6(95 \% \mathrm{CI}= \\ 0.4,0.9) \end{gathered}$
	Schneider 2018 [43\} ${ }^{5}$	Odds ratio	Yes, $\mathrm{n}=2457$	$\leq 80 \mathrm{fL}, \mathrm{n}=561$, events $=$ 544	$\begin{gathered} \mathrm{OR}=25.5(95 \% \mathrm{CI}= \\ 13.9,46.8) \end{gathered}$
	(6 months)		No, n = 1087	$\begin{gathered} 81-85 \mathrm{fL}, \mathrm{n}=440, \text { events }= \\ 364 \end{gathered}$	$\begin{gathered} \mathrm{OR}=2.8(95 \% \mathrm{CI}= \\ 2.1,3.8) \end{gathered}$
				$\begin{aligned} 86-95 \mathrm{fL}, & \mathrm{n} \end{aligned}=1944 \text {, events } \mathrm{s}$	Reference
				96-100 fL, $\mathrm{n}=475$, events	$\mathrm{OR}=0.7(95 \% \mathrm{CI}=$
				$\begin{gathered} =260 \\ >100 \mathrm{fL}, \mathrm{n}=124 \text {, events }= \\ 63 \end{gathered}$	$\begin{gathered} 0.5,0.8) \\ \mathrm{OR}=0.6(95 \% \mathrm{CI}= \\ 0.4,0.9) \\ \hline \end{gathered}$
Females	Schneider 2018 [43\}	Odds ratio	Yes, n= 2089	$\begin{gathered} \leq 80 \mathrm{fL}, \mathrm{n}=616 \text {, events }= \\ 585 \end{gathered}$	$\begin{gathered} \mathrm{OR}=12.8(95 \% \mathrm{CI}= \\ 8.8,18.7) \end{gathered}$
(6 months)			No, n = 1086	$\begin{gathered} 81-85 \mathrm{fL}, \mathrm{n}=512, \text { events }= \\ 409 \end{gathered}$	$\begin{gathered} \mathrm{OR}=2.7(95 \% \mathrm{CI}= \\ 2.1,3.4) \end{gathered}$
				$\begin{aligned} 86-95 \mathrm{fL}, \mathrm{n} & =1499, \text { events } \\ & =893 \end{aligned}$	Reference
				$\begin{gathered} 96-100 \mathrm{fL}, \mathrm{n}=280 \text {, events } \\ =127 \end{gathered}$	$\begin{gathered} \mathrm{OR}=0.6(95 \% \mathrm{CI}= \\ 0.4,0.7) \end{gathered}$
				$>100 \mathrm{fL}, \mathrm{n}=82$, events $=42$	$\begin{gathered} \mathrm{OR}=0.7(95 \% \mathrm{CI}= \\ 0.5,1.1) \end{gathered}$
	Schneider 2018 [43\} ${ }^{6}$	Odds ratio	Yes, n=2056	$\begin{gathered} \leq 80 \mathrm{fL}, \mathrm{n}=616, \text { events }= \\ 585 \end{gathered}$	$\begin{gathered} \mathrm{OR}=11.4(95 \% \mathrm{CI}= \\ 7.6,17.1) \end{gathered}$
(6 months)			No, $\mathrm{n}=933$	$\begin{gathered} 81-85 \mathrm{fL}, \mathrm{n}=512, \text { events }= \\ 409 \end{gathered}$	$\begin{gathered} \mathrm{OR}=2.8(95 \% \mathrm{CI}= \\ 2.1,3.6) \end{gathered}$

cancers

MDPI

$$
\begin{array}{cc}
86-95 \mathrm{fL}, \mathrm{n}=1499, \text { events } & \text { Reference } \\
=893 & \mathrm{OR}=0.5(95 \% \mathrm{CI}= \\
96-100 \mathrm{fL}, \mathrm{n}=280 \text {, events } & 0.4,0.6) \\
=127 & \mathrm{OR}=0.7(95 \% \mathrm{CI}= \\
>100 \mathrm{fL}, \mathrm{n}=82, \text { events }=42 & 0.4,1.1) \\
\hline
\end{array}
$$

				0.4, 1.1)			
	Centre B	Panagiotopoulou 2014 [38]	Odds ratio	Yes, $\mathrm{n}=17$	$\begin{aligned} <80 \mathrm{fL}, \mathrm{n} & =106, \text { events }=17 \\ & \geq 80 \mathrm{fL} \end{aligned}$	$\begin{gathered} \hline \mathrm{OR}=1.73(95 \% \mathrm{CI}= \\ 0.96,3.1) \\ \text { Reference } \\ \hline \end{gathered}$	
		(3 months)		No, $\mathrm{n}=672$			
		Panagiotopoulou 2014 [38] ${ }^{2}$ (3 months)	Odds ratio	Yes, $\mathrm{n}=76$ No, $\mathrm{n}=613$	$\begin{aligned} <80 \mathrm{fL}, \mathrm{n} & =106, \text { events }=17 \\ & \geq 80 \mathrm{fL} \end{aligned}$	$\begin{gathered} \mathrm{OR}=2.2(95 \% \mathrm{CI}= \\ 1.2,4.1) \\ \text { Reference } \end{gathered}$	
USA	Everyone	Spell 2004 [46] (6 months)	Chi-squared	Yes, $\mathrm{n}=225$ No, $\mathrm{n}=487$	$\begin{gathered} <80 \mathrm{fL}, \mathrm{n}=108, \text { events }=92 \\ \geq 80 \mathrm{fL}, \mathrm{n}=604, \text { events }= \\ 133 \end{gathered}$		<0.001
		Spell 2004 [46] (6 months)	Odds ratio	Yes, n = 92 No, $n=620$	$\begin{gathered} <80 \mathrm{fL}, \mathrm{n}=108, \text { events }=92 \\ \geq 80 \mathrm{fL}, \mathrm{n}=604, \text { events }= \\ 133 \end{gathered}$	$\begin{gathered} \mathrm{OR}=20.4(95 \% \mathrm{CI}= \\ 11.6,35.8) \\ \text { Reference } \end{gathered}$	

6 < outcome time window ≤ 12 months:							
UK	Everyone	Acher 2003 [1] ${ }^{4}$ (6-12 months)	Descriptive	$\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$	$\begin{gathered} <78 \text { fL, n>5000, events }=28 \\ \geq 78 \text { fL, events-274 } \end{gathered}$		
		Boursi 2016 [8] (1 year)	Odds ratio	$\begin{aligned} & \text { Yes, } \mathrm{n}=4929 \\ & \text { No, } \mathrm{n}=11311 \end{aligned}$	Modelled as continuous	$\begin{gathered} \mathrm{OR}=0.90(95 \% \mathrm{CI}= \\ 0.89,0.91) \end{gathered}$	<0.001
		Boursi 2016 [8] ${ }^{7}$	Odds ratio	Yes, $\mathrm{n}=4929$	Modelled as fractional polynomials (powers: 3, 3)	$\mathrm{OR}=0.933^{*} \mathrm{MCV}^{3}$	
		(1 year)		No, $\mathrm{n}=11311$		$\begin{gathered} \mathrm{OR}=1.026^{*} \mathrm{MCV}^{3} \times \\ \ln (\mathrm{MCV}) \end{gathered}$	
		Boursi 2016 [8] ${ }^{8}$	Odds ratio	Yes, n = 3375	Modelled as fractional polynomials (powers: 3, 3)	$\mathrm{OR}=0.971^{*} \mathrm{MCV}^{3}$	
		(1 year)		No, n = 8560		$\begin{aligned} \mathrm{OR}= & 1.010^{*} \mathrm{MCV}^{3} \times \\ & \ln (\mathrm{MCV}) \end{aligned}$	

MDPI

		Hamilton 2008 [18] (1 year)	Odds ratio	$\begin{aligned} & \text { Yes, } \mathrm{n}=2951 \\ & \text { No, } \mathrm{n}=9648 \end{aligned}$	$\begin{gathered} <80, \mathrm{n}=974 \\ >=80, \mathrm{n}=11625 \end{gathered}$	$\begin{gathered} \hline \mathrm{OR}=15.7(95 \% \mathrm{CI}= \\ \text { 13.4, 18.4) } \\ \text { Reference } \end{gathered}$
12 < outcome time window ≤ 36 months:						
UK	Everyone	Marshall 2011 [34]	Odds ratio	Yes, $\mathrm{n}=5477$	$<80, \mathrm{n}=1045$, events $=761$	$\begin{gathered} \hline \mathrm{OR}=26.1(95 \% \mathrm{CI}= \\ 22.4,30.4) \end{gathered}$
		(2 years)		No, n = 38314	$\begin{gathered} 80-84.999 \mathrm{fL}, \mathrm{n}=1306, \\ \text { events }=444 \\ \geq 85 \mathrm{fL}, \mathrm{n}=41440 \text {, events }= \\ 4272 \end{gathered}$	$\begin{gathered} \mathrm{OR}=4.95(95 \% \mathrm{CI}= \\ 4.37,5.61) \\ \text { Reference } \end{gathered}$
		Marshall 2011 [34]	Odds ratio	Yes, $\mathrm{n}=5477$	$\begin{gathered} <80 \mathrm{fL}, \mathrm{n}=1045, \text { events }= \\ 761 \end{gathered}$	$\begin{gathered} \hline \mathrm{OR}=23.3(95 \% \mathrm{CI}= \\ 20.0,27.1) \end{gathered}$
		(2 years)		No, n=38314	$\begin{gathered} \geq 80 \mathrm{fL}, \mathrm{n}=42746 \text {, events }= \\ 4716 \end{gathered}$	Reference
		Marshall 2011 [34] ${ }^{9}$	Odds ratio	Yes, $\mathrm{n}=5477$	$<80, \mathrm{n}=1045$, events $=761$	$\begin{gathered} \mathrm{OR}=7.67(95 \% \mathrm{CI}= \\ 6.23,9.44) \end{gathered}$
		(2 years)		No, n = 38314	$\begin{gathered} 80-84.999 \mathrm{fL}, \mathrm{n}=1306, \\ \text { events }=444 \end{gathered}$	$\begin{gathered} \mathrm{OR}=2.71(95 \% \mathrm{CI}= \\ 2.30,3.19) \end{gathered}$
					$\begin{gathered} \geq 85 \mathrm{fL}, \mathrm{n}=41440 \text {, events }= \\ 4272 \end{gathered}$	Reference
		Hamilton 2009 [19]	Odds ratio	Yes, $\mathrm{n}=363$	$<80, \mathrm{n}=1286$, events $=363$	$\begin{gathered} \mathrm{OR}=2.86(95 \% \mathrm{CI}= \\ 2.52,3.24) \end{gathered}$
		(2 years)		No, $\mathrm{n}=43428$	$\begin{gathered} \geq 80 \mathrm{fL}, \mathrm{n}= \\ 512505, \text { events }= \\ 5114 \end{gathered}$	Reference
		Hamilton 2009 [19] ${ }^{10}$	Odds ratio	Yes		$\begin{gathered} \mathrm{OR}=6.5(95 \% \mathrm{CI}= \\ 5.3,7.9) \end{gathered}$
		(2 years)		No	$\geq 80 \mathrm{fL}$	Reference
Outcome time window > 36 months:						
UK	Everyone	Pilling 2018 [40] ${ }^{11}$ (4.5 years)	Hazard ratio	$\begin{gathered} \text { Yes, } \mathrm{n}=914 \\ \text { No, } \mathrm{n}=237,302 \\ \hline \end{gathered}$	Modelled as continuous	$\begin{gathered} \mathrm{sHR}=0.98(95 \% \mathrm{CI}= \\ 0.96,1.00) \end{gathered}$
		Pilling 2018 [40] ${ }^{11}$	Hazard ratio	Yes, $\mathrm{n}=413$	Modelled as continuous	$\begin{gathered} \mathrm{sHR}=1.00(95 \% \mathrm{CI}= \\ 0.97,1.04) \end{gathered}$

(4.5-9 years)

No, $\mathrm{n}=237,451$
OUTCOME WINDOW NOT CATEGORISABLE: > 12-month risk of CRC diagnosis:

OUTCOME WINDOW NOT CATEGORISABLE: > 12-month risk of CRC diagnosis:							
UK	Everyone	Acher 2003 [1] ${ }^{4}$ (> 1 year)	Descriptive	$\begin{aligned} & \hline \text { Yes } \\ & \text { No } \\ & \hline \end{aligned}$	$\begin{gathered} <78 \mathrm{fL}, \mathrm{n}>5000, \text { events }=26 \\ \geq 78 \mathrm{fL}, \text { events }=274 \end{gathered}$		
Unspecified outcome time window:							
Italy	Everyone	Panzuto 2003 [39] 12,13	Odds ratio	Yes, $\mathrm{n}=41$	$<80 \mathrm{fL}, \mathrm{n}=69$, events $=28$	$\begin{gathered} \mathrm{OR}=8.8(95 \% \mathrm{CI}= \\ 3.9-19.8) \end{gathered}$	<0.001
				No, $\mathrm{n}=170$	$\geq 80 \mathrm{fL}, \mathrm{n}=211$, events $=13$	Reference	

Abbreviations: $\mathrm{CRC}=$ colorectal cancer, $\mathrm{OR}=$ odds ratio, $\mathrm{RR}=$ risk ratio, $\mathrm{SIR}=$ standardised incidence ratios, $\mathrm{sHR}=$ sub-distribution hazard ratio. ${ }^{1}$ Multivariable effect estimate, adjusted for: haemoglobin, neutrophil count, platelets, red blood cell distribution width, alanine aminotransferase, protein, iron, ferritin. ${ }^{2}$ Multivariable effect estimate, adjusted for: haemoglobin, monocyte count, platelets, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, iron, ferritin. ${ }^{3}$ In the presence of serum ferritin $<12 \mathrm{ng} / \mathrm{ml}$ and haemoglobion $<11 \mathrm{~g} / \mathrm{dL}$ for males and $<10 \mathrm{~g} / \mathrm{dL}$ for females. ${ }^{4}$ In the presence of haemoglobin $<10.1 \mathrm{~g} / \mathrm{dL}$ and/or mean corpuscular haemoglobin concentration $<32 \mathrm{~g} / \mathrm{dL}$. ${ }^{5}$ Multivariable effect estimate, adjusted for: BMI, smoking status, history of hypertension, diabetes, aspirin or NSAIDS use, vitamin K antagonists, platelet inhibitors. ${ }^{6}$ Multivariable effect estimate, adjusted for: sex, age, change in bowel habit, weight loss, bleeding per rectum, mucus per rectum, abdominal mass, abdominal fullness, lesion on digital rectal examination, anal lesion, abdominal distension, abdominal pain, family history, previous polyps, FOBt. ${ }^{7}$ Multivariable effect estimate, adjusted for: haematocrit, lymphocyte count, neutrophil-lymphocyte ratio. ${ }^{8}$ Multivariable effect estimate, adjusted for: haemoglobin, white blood cell count, neutrophil-lymphocyte ratio, platelets, sex, previous metformin prescriptions, previous prescriptions for oral hypoglycemic drugs other than metformin. ${ }^{9}$ Multivariable effect estimate, adjusted for: constipation, diarrhoea, change in bowel habit, flatulence, irritable bowel syndrome, abdominal pain/antispasmodic, rectal bleeding, haemoglobin, weight loss, deep venous thrombosis/pulmonary embolism, diabetes, obesity. ${ }^{10}$ Multivariable effect estimate, adjusted for: rectal bleeding, change in bowel habit, abdominal pain, diarrhoea, constipation, weight loss, haemoglobin. ${ }^{11}$ Multivariable effect estimate, adjusted for: age, sex, smoking status, highest education level attained, haemoglobin, red blood cell distribution width. ${ }^{12}$ In the presence of ferritin<30 and haemoglobion $<14 \mathrm{~g} / \mathrm{dL}$ for males and $<12 \mathrm{~g} / \mathrm{dL}$ for females. ${ }^{13}$ Multivariable effect estimate, adjusted for: age, weight loss.

cancers

MDPI
Table S8: Red blood cell distribution width for colorectal cancer, with analyses sorted by outcome time window, country, and strata

Country	Strata	Article	Analysis type	CRC outcome groups and no. per group	Blood level categories and no. per group	Analysis estimates	$\begin{gathered} p- \\ \text { value } \end{gathered}$
0 < outcome time window ≤ 6 months:							
China	Everyone	Yang 2018 [51] (At admission)	MannWhitney U	$\begin{gathered} \text { Yes, } \mathrm{n}=85 \\ \text { Polyp, } \mathrm{n}=54 \end{gathered}$		$\begin{aligned} & \text { Median }=13.2 \% \\ & \text { Median }=12.6 \% \end{aligned}$	0.004
		Yang 2018 [51] (At admission)	ROC	$\begin{gathered} \text { Yes, } \mathrm{n}=30 \\ \text { Polyp, } \mathrm{n}=110 \end{gathered}$	13.25\% (derived using Youden's index)	$\begin{gathered} \text { AUC }=0.72(95 \% \mathrm{CI}= \\ 0.61,0.83) \\ \text { Sensitivity }=65.9 \% \\ \text { Specificity }=75.6 \% \\ \text { PPV }=81.2 \% \\ \text { NPV }=58.6 \% \end{gathered}$	
		Shi 2019 [44] (2 weeks)	T-test	Yes, $\mathrm{n}=211$ Polyp, $\mathrm{n}=103$		$\begin{gathered} \text { Median }=14.3 \%(\mathrm{SD}= \\ 2.7) \\ \text { Median }=12.7 \%(\mathrm{SD}= \\ 1.1) \end{gathered}$	<0.001
		Shi 2019 [44] (2 weeks)	ROC	$\begin{gathered} \text { Yes, } \mathrm{n}=30 \\ \text { Polyp, } \mathrm{n}=110 \end{gathered}$	13.2\% (derived using Youden's index)	$\begin{gathered} \text { AUC }=0.72 \\ \text { Sensitivity }=53.1 \% \\ \text { Specificity }=7.7 \% \\ \text { PPV }=58.3 \% \\ \text { NPV }=18.9 \% \\ \hline \end{gathered}$	
		Song 2018 [45] (At diagnosis)	Mann- Whitney U	$\begin{aligned} & \text { Yes, } \mathrm{n}=783 \\ & \text { No, } \mathrm{n}=331 \end{aligned}$		$\begin{aligned} & \text { Median }=13.3 \% \\ & \text { Median }=12.9 \% \end{aligned}$	<0.001
		Song 2018 [45] (At diagnosis)	Mann- Whitney U	$\begin{gathered} \text { Yes, } \mathrm{n}=783 \\ \text { Polyp, } \mathrm{n}=463 \\ \hline \end{gathered}$		$\begin{aligned} & \text { Median }=13.3 \% \\ & \text { Median }=13.0 \% \end{aligned}$	<0.05
		Song 2018 [45] (At diagnosis)	ROC	Yes, $\mathrm{n}=783$ No, $n=331$	13.95\% (derived using Youden's index)	$\begin{gathered} \hline \text { AUC }=0.64(95 \% \mathrm{CI}= \\ 0.61,0.67) \\ \text { Sensitivity }=41 \% \\ \text { Specificity }=94 \% \\ \text { PPV }=94 \% \\ \text { NPV }=40 \% \end{gathered}$	

		Song 2018 [45] (At diagnosis)	ROC	$\begin{gathered} \text { Yes, } \mathrm{n}=30 \\ \text { Polyp, } \mathrm{n}=110 \end{gathered}$	14.05\% (derived using Youden's index)	$\begin{gathered} \hline \text { AUC }=0.50(95 \% \text { CI }= \\ 0.47,0.53) \\ \text { Sensitivity }=29 \% \\ \text { Specificity }=82 \% \\ \text { PPV }=73 \% \\ \text { NPV }=41 \% \\ \hline \end{gathered}$	
Israel	Males	Goshen 2017 [16] (1-6 months)	T-test	$\begin{gathered} \text { Yes, } \mathrm{n}=936 \\ \text { No, } \mathrm{n}=28491 \\ \hline \end{gathered}$		$\begin{aligned} & \text { Mean }=14.26 \% \\ & \text { Mean }=13.61 \% \end{aligned}$	<0.0001
		$\begin{gathered} \text { Goshen } 2017 \\ {[16]} \\ (1-6 \text { months }) \end{gathered}$	Risk ratio	$\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$	Highest-risk quintile Lowest-risk quintile	$\begin{gathered} \hline \mathrm{RR}=2.87(95 \% \mathrm{CI}= \\ 2.23,3.78) \\ \text { Reference } \end{gathered}$	
	Females	$\begin{aligned} & \text { Goshen } 2017 \\ & \text { [16] } \\ & (1-6 \text { months }) \end{aligned}$	T-test	$\begin{gathered} \text { Yes, } \mathrm{n}=819 \\ \text { No, } \mathrm{n}=26239 \end{gathered}$		$\begin{aligned} & \text { Mean }=14.81 \% \\ & \text { Mean }=13.71 \% \end{aligned}$	<0.0001
		$\begin{gathered} \text { Goshen } 2017 \\ {[16]} \\ (1-6 \text { months }) \\ \hline \end{gathered}$	Risk ratio	Yes No	Highest-risk quintile Lowest-risk quintile	$\begin{gathered} \mathrm{RR}=4.54(95 \% \mathrm{CI}= \\ 3.58,6.26) \\ \text { Reference } \\ \hline \end{gathered}$	
		$\begin{gathered} \text { Goshen } 2017 \\ \text { [16] }^{1} \\ (1-6 \text { months }) \\ \hline \end{gathered}$	Risk ratio	$\begin{gathered} \text { Yes, } \mathrm{n}=819 \\ \text { No, } \mathrm{n}=26239 \end{gathered}$	Highest-risk quintile Lowest-risk quintile	$\begin{gathered} \hline \mathrm{RR}=3.14(95 \% \mathrm{CI}= \\ 2.81,3.66) \\ \text { Reference } \\ \hline \end{gathered}$	<0.0001
Turkey	Everyone	Ay 2015 [3] (1 week)	T-test	$\text { Yes, } \mathrm{n}=30$ Polyp, $\mathrm{n}=110$		$\begin{aligned} & \hline \text { Mean }= 17.7 \%(\mathrm{SD}= \\ &2.7) \\ & \text { Mean }= 15.5 \%(\mathrm{SD}= \\ &1.9) \end{aligned}$	0.02
		$\begin{gathered} \text { Ay } 2015 \text { [3] } \\ \text { (1 week) } \end{gathered}$	ROC	$\begin{gathered} \text { Yes, } \mathrm{n}=30 \\ \text { Polyp, } \mathrm{n}=110 \end{gathered}$	17.5\% (derived using unknown methods)	$\begin{gathered} \text { AUC }=0.747 \\ \text { Sensitivity }=53.3 \% \\ \text { Specificity }=91.4 \% \end{gathered}$	
		Cakmak 2017 [9] (6 months)	T-test	Yes, $\mathrm{n}=59$ No, $\mathrm{n}=59$		$\begin{aligned} & \hline \text { Mean }= 16.1 \%(\mathrm{SD}= \\ &3.4) \\ & \text { Mean }= 13.6 \%(\mathrm{SD}= \\ &0.6) \end{aligned}$	<0.001

cancers

MDPI

		Cakmak 2017 [9] (6 months)	ROC		14% (derived using unknown methods)	$\begin{gathered} \text { AUC }=0.774 \\ \text { Sensitivity }=68 \% \\ \text { Specificity }=73 \% \end{gathered}$	
				Yes, $\mathrm{n}=59$ No, $\mathrm{n}=59$			
USA	Everyone	$\begin{aligned} & \text { Spell } 2004 \text { [46] } \\ & \text { (} 6 \text { months) } \end{aligned}$	Chi-squared	$\begin{aligned} & \text { Yes, } n=255 \\ & \text { No, } n=487 \end{aligned}$	$\begin{aligned} & \geq 14.2 \%, \mathrm{n}=213, \text { events }=156 \\ & <14.2 \%, \mathrm{n}=499, \text { events }=69 \end{aligned}$		<0.001
		$\begin{gathered} \text { Spell } 2004 \text { [46] } \\ \text { (6 months) } \\ \hline \end{gathered}$	Odds ratio	$\begin{aligned} & \text { Yes, } \mathrm{n}=156 \\ & \text { No, } \mathrm{n}=556 \\ & \hline \end{aligned}$	$\begin{gathered} \geq 14.2 \%, \mathrm{n}=213, \text { events }=156 \\ <14.2 \%, \mathrm{n}=499, \text { events }=69 \end{gathered}$	$\begin{gathered} \mathrm{OR}=17.1(95 \% \mathrm{CI}= \\ 11.5,25.3) \\ \text { Reference } \\ \hline \end{gathered}$	
Outcome time window > 36 months:							
UK	Everyone	Pilling 2018 [40] ${ }^{2}$	Hazard ratio	Yes	<12\%	Reference	
		(4.5 years)		No	$\geq 12.5-12.9 \%$	$\begin{gathered} \mathrm{sHR}=1.25(95 \% \mathrm{CI}= \\ 0.90,1.72) \end{gathered}$	
					$\geq 13-13.4 \%$	$\begin{gathered} \mathrm{sHR}=1.28(95 \% \mathrm{CI}= \\ 0.94,1.75) \end{gathered}$	
					$\geq 13.5-13.9 \%$	$\begin{gathered} \mathrm{sHR}=1.55(95 \% \mathrm{CI}= \\ 1.33,2.12) \end{gathered}$	
					$\geq 14-14.4 \%$	$\begin{gathered} \mathrm{sHR}=1.39(95 \% \mathrm{CI}= \\ 0.99,1.97) \end{gathered}$	
					$\geq 14-14.9 \%$	$\begin{gathered} \mathrm{sHR}=1.88(95 \% \mathrm{CI}= \\ 1.26,2.80) \end{gathered}$	
					$\geq 15 \%$	$\begin{gathered} \mathrm{sHR}=2.24(95 \% \mathrm{CI}= \\ 1.47,3.40) \end{gathered}$	
		Pilling 2018 [40] ${ }^{2}$	Hazard ratio	Yes	<12\%	Reference	
		(4.5-9 years)		No	$\geq 12.5-12.9 \%$	$\begin{gathered} \mathrm{sHR}=1.04(95 \% \mathrm{CI}= \\ 0.68,1.59) \end{gathered}$	
					$\geq 13-13.4 \%$	$\begin{gathered} \mathrm{sHR}=1.23(95 \% \mathrm{CI}= \\ 0.82,1.84) \end{gathered}$	
					$\geq 13.5-13.9 \%$	$\begin{gathered} \mathrm{sHR}=0.91(95 \% \mathrm{CI}= \\ 0.59,1.40) \end{gathered}$	

$\geq 14-14.4 \%$	$\mathrm{sHR}=1.13(95 \% \mathrm{CI}=$
	$0.70,1.81)$
$\geq 14-14.9 \%$	$\mathrm{sHR}=1.25(95 \% \mathrm{CI}=$
	$0.69,2.24)$
$\geq 15 \%$	$\mathrm{sHR}=1.46(95 \% \mathrm{CI}=$
$0.76,2.79)$	

$0.76,2.79)$
Abbreviations: $\mathrm{CRC}=$ colorectal cancer, $\mathrm{OR}=$ odds ratio, $\mathrm{RR}=$ risk ratio, $\mathrm{sHR}=$ sub-distribution hazard ratio (from Fine-Gray model), ROC $=$ receiver operating characteristic, $\mathrm{AUC}=$ area under the curve, $\mathrm{PPV}=$ positive predictive value, $\mathrm{NPV}=$ negative predictive value. ${ }^{1}$ Multivariable effect estimate, adjusted for: haemoglobin, monocyte count, platelets, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, iron, ferritin. ${ }^{2}$ Multivariable effect estimate, adjusted for: age, sex, smoking status, highest education level attained, haemoglobin, red blood cell distribution width.

Table S9: Platelet levels for colorectal cancer, with analyses sorted by outcome time window, country, and strata

Country	Strata	Article	Analysis type	CRC outcome groups and no. per group	Blood level categories and no. per group	Analysis estimates	$\begin{gathered} p- \\ \text { value } \end{gathered}$
0 < outcome time window ≤ 6 months:							
China	Everyone	Wu 2019 [50]	T-test	Yes, $\mathrm{n}=186$		$\begin{gathered} \text { Mean }=279.810^{9} / \mathrm{L}(\mathrm{SD}= \\ 80.56) \end{gathered}$	<0.05
		(At diagnosis)		No, $\mathrm{n}=108$		$\begin{aligned} \text { Mean }= & 207.8310^{9} / \mathrm{L}(\mathrm{SD} \\ = & 37.4) \end{aligned}$	
		Wu 2019 [50]	T-test	Yes, $\mathrm{n}=186$		$\begin{gathered} \text { Mean }=279.810^{9} / \mathrm{L}(\mathrm{SD}= \\ 80.56) \end{gathered}$	<0.05
		(At diagnosis)		Polyp, $\mathrm{n}=132$		$\begin{gathered} \text { Mean }=223.910^{9} / \mathrm{L}(\mathrm{SD}= \\ 42.59) \end{gathered}$	
		Wu 2019 [50]	ANOVA	Yes $=186$		$\begin{gathered} \text { Mean }=279.810^{9} / \mathrm{L}(\mathrm{SD}= \\ 80.56) \end{gathered}$	<0.001
		(At diagnosis)		Polyp $=132$		$\begin{gathered} \text { Mean }=223.910^{9} / \mathrm{L}(\mathrm{SD}= \\ 42.59) \end{gathered}$	
				Healthy = 108		$\begin{gathered} \text { Mean = } 207.83 \text { 109/L (SD } \\ =37.4) \end{gathered}$	
		Yang 2018 [51] (At admission)	MannWhitney U	$\begin{gathered} \text { Yes, } \mathrm{n}=85 \\ \text { Polyp, } \mathrm{n}=54 \end{gathered}$		$\begin{aligned} & \text { Median }=219 \text { 109} / \mathrm{L} \\ & \text { Median }=201 \text { 109/L } \end{aligned}$	0.021
			T-test	Yes, $\mathrm{n}=783$		$\begin{gathered} \text { Mean }=272.410^{9} / \mathrm{L}(\mathrm{SD}= \\ 86.86) \end{gathered}$	<0.01
		(At diagnosis)		No, $\mathrm{n}=689$		Mean = 220 109/L	
			T-test	Yes, $\mathrm{n}=783$		$\begin{gathered} \text { Mean }=272.410^{9} / \mathrm{L}(\mathrm{SD}= \\ 86.86) \end{gathered}$	<0.01
		(At diagnosis)		Polyp, $\mathrm{n}=463$		Mean $=216.67$ 109/L	
		Zhu 2018 [53]	ROC	Yes, $\mathrm{n}=783$Polyp, $\mathrm{n}=689$	242.5 109$/ \mathrm{L}$ (derived using Youden's index)	$\begin{gathered} \hline \text { AUC }=0.71(95 \% \text { CI }= \\ 0.68,0.74) \\ \text { Sensitivity }=62 \% \\ \text { Specificity }=72 \% \\ \text { PPV }=78.9 \% \\ \text { NPV }=52.8 \% \\ \hline \end{gathered}$	
		(At diagnosis)					

cancers

Israel	Males	Goshen 2017 [16] (1-6 months)	T-test	$\begin{gathered} \text { Yes, } \mathrm{n}=936 \\ \text { No, } \mathrm{n}=28491 \\ \hline \end{gathered}$		$\begin{aligned} & \text { Mean }=261 \text { 10 }{ }^{9} / \mathrm{L} \\ & \text { Mean }=22210^{9} / \mathrm{L} \end{aligned}$	<0.0001
		$\begin{aligned} & \hline \text { Goshen } 2017 \\ & \text { [16] } \\ & \text { (1-6 months) } \end{aligned}$	Risk ratio	Yes No	Highest-risk quintile Lowest-risk quintile	$\begin{gathered} \mathrm{RR}=3.78(95 \% \mathrm{CI}=2.95, \\ 4.88) \\ \text { Reference } \end{gathered}$	
		$\begin{gathered} \text { Goshen } 2017 \\ \text { [16] }^{2} \\ (1-6 \text { months }) \\ \hline \end{gathered}$	Risk ratio	$\begin{gathered} \text { Yes, } \mathrm{n}=936 \\ \text { No, } \mathrm{n}=28491 \end{gathered}$	Highest-risk quintile Lowest-risk quintile	$\begin{gathered} \mathrm{RR}=2.84(95 \% \mathrm{CI}=2.5, \\ 3.27) \\ \text { Reference } \\ \hline \end{gathered}$	
	Females	Goshen 2017 [16] (1-6 months)	T-test	$\begin{gathered} \text { Yes, } \mathrm{n}=819 \\ \text { No, } \mathrm{n}=26239 \end{gathered}$		$\begin{aligned} & \text { Mean }=305 \text { 109} / \mathrm{L} \\ & \text { Mean }=254 \text { 10 } 0^{9} / \mathrm{L} \end{aligned}$	<0.0001
		$\begin{gathered} \text { Goshen } 2017 \\ \text { [16] } \\ \text { (1-6 months) } \\ \hline \end{gathered}$	Risk ratio	Yes No	Highest-risk quintile Lowest-risk quintile	$\begin{gathered} \mathrm{RR}=3.87(95 \% \mathrm{CI}=3.09 \\ 5.21) \\ \text { Reference } \\ \hline \end{gathered}$	
		Goshen 2017 [16] ${ }^{3}$ (1-6 months)	Risk ratio	$\begin{gathered} \text { Yes, } \mathrm{n}=819 \\ \text { No, } \mathrm{n}=26239 \end{gathered}$	Highest-risk quintile Lowest-risk quintile	$\begin{gathered} \mathrm{RR}=2.95(95 \% \mathrm{CI}=2.56, \\ 3.35) \\ \text { Reference } \end{gathered}$	
Turkey	Everyone	Ay 2015 [3] (1 week)	T-test	Yes, $\mathrm{n}=30$ Polyp, $\mathrm{n}=110$		$\begin{gathered} \hline \text { Mean }=287.7 / \mu \mathrm{L}(\mathrm{SD}= \\ 78.4) \\ \text { Mean }=278.9 / \mu \mathrm{L}(\mathrm{SD}= \\ 59.6) \\ \hline \end{gathered}$	≥ 0.05
		Cakmak 2017 [9] (6 months)	T-test	Yes, $\mathrm{n}=59$ No, $\mathrm{n}=59$		$\begin{aligned} & \text { Mean }=308.910^{9} / \mathrm{L}(\mathrm{SD}= \\ & 99.1) \\ & \text { Mean }=24310^{9} / \mathrm{L}(\mathrm{SD}= \\ & 46.2) \end{aligned}$	<0.001
		Firat 2016 [14] (At diagnosis)	Chi-squared	$\begin{aligned} & \text { Yes } \\ & \text { No } \\ & \hline \end{aligned}$			0.001
		Kilincalp 2015 [28]	T-test	Yes, $\mathrm{n}=144$		$\begin{gathered} \text { Mean }=280.810^{9} / \mathrm{L}(\mathrm{SD}= \\ 106) \end{gathered}$	<0.001
		(At diagnosis)		No, $\mathrm{n}=143$		$\begin{gathered} \text { Mean }=239.710^{9} / \mathrm{L}(\mathrm{SD}= \\ 50.7) \end{gathered}$	

cancers

Abbreviations: $\mathrm{CRC}=$ colorectal cancer, $\mathrm{OR}=$ odds ratio, $\mathrm{RR}=$ risk ratio, $\mathrm{ROC}=$ receiver operating characteristic, $\mathrm{AUC}=$ area under the curve, $\mathrm{PPV}=$ positive predictive value, NPV = negative predictive value. ${ }^{1}$ Mean measured from graphs. ${ }^{2}$ Multivariable effect estimate, adjusted for: haemoglobin, mean corpuscular volume, neutrophil count, red blood cell distribution width, alanine aminotransferase, protein, iron, ferritin. ${ }^{3}$ Multivariable effect estimate, adjusted for: haemoglobin, mean corpuscular volume, monocyte count, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, iron, ferritin. ${ }^{4}$ Multivariable effect estimate, adjusted for: haemoglobin, mean corpuscular volume, white blood cell count, neutrophil-lymphocyte ratio, sex, previous metformin prescriptions, previous prescriptions for oral hypoglycemic drugs other than metformin.

cancers

MDPI
Table S10: Mean platelet volume for colorectal cancer, with analyses sorted by outcome time window, country, and strata

Country	Strata	Article	Analysis type	CRC outcome groups and no. per group	Blood level categories and no. per group	Analysis estimates	$\begin{gathered} p- \\ \text { value } \end{gathered}$
$0<$ outcome time window ≤ 6 months:							
China	Everyone	Wu 2019 [50]	T-test	Yes, $\mathrm{n}=186$		$\begin{aligned} & \text { Mean }= 8.48 \mathrm{fL}(\mathrm{SD}= \\ &1.10) \end{aligned}$	<0.001
		(At diagnosis)		No, $\mathrm{n}=108$		$\begin{gathered} \text { Mean }=8.98 \mathrm{fL}(\mathrm{SD}= \\ 0.77) \\ \hline \end{gathered}$	
		$\text { Wu } 2019 \text { [50] }$	T-test	Yes, $\mathrm{n}=186$		$\begin{aligned} \text { Mean }= & 8.48 \mathrm{fL}(\mathrm{SD}= \\ & 1.10) \end{aligned}$	<0.05
		(At diagnosis)		Polyp, $\mathrm{n}=132$		$\begin{gathered} \text { Mean = } 8.83 \mathrm{fL}(\mathrm{SD}= \\ 0.90) \end{gathered}$	
		$\text { Wu } 2019 \text { [50] }$	ROC	$\text { Yes, } \mathrm{n}=186$		$\begin{gathered} \mathrm{AUC}=0.66(95 \% \mathrm{CI}= \\ 0.60,0.71) \end{gathered}$	
		(At diagnosis)		Healthy, $\mathrm{n}=108$		Sensitivity $=92.6 \%$	
						NPV $=91.2 \%$	
		$\text { Zhu } 2018 \text { [53] ¹ }$	T-test	$\text { Yes, } \mathrm{n}=783$		$\begin{gathered} \text { Mean }=10 \mathrm{fL}(\mathrm{SD}= \\ 5.82) \end{gathered}$	<0.01
		(At diagnosis)		$\text { No, } n=689$		Mean $=9.13 \mathrm{fL}$	
		Zhu 2018 [53] ${ }^{1}$	T-test	$\text { Yes, n = } 783$		$\begin{gathered} \text { Mean }=10 \mathrm{fL}(\mathrm{SD}= \\ 5.82) \end{gathered}$	<0.01
		(At diagnosis)		Polyp, $\mathrm{n}=463$		Mean $=9.2 \mathrm{fL}$	
			ROC	Yes, $\mathrm{n}=783$	<9.25 fL optimal (calculated using Youden's index)	$\begin{gathered} \mathrm{AUC}=0.66(95 \% \mathrm{CI}= \\ 0.66,0.69) \end{gathered}$	
		(At diagnosis)		Polyp, $\mathrm{n}=463$		Sensitivity $=69 \%$	
						Specificity $=59 \%$	
						$\mathrm{PPV}=74 \%$	
Israel	Males	Goshen 2017 [16]	T-test	Yes, $\mathrm{n}=936$		Mean $=10.08 \mathrm{fL}$	<0.0001

cancers

[^1] negative predictive value. ${ }^{1}$ Mean measured from graphs.

cancers

Figure S1: Forest plot of mean difference in mean platelet volume between those with and without a diagnosis of colorectal cancer 0-6 months later. Abbreviations: $\mathrm{SD}=$ standard deviation, $\mathrm{CI}=$ confidence interval. Mean platelet volume measurements are in fL .

cancers

MDPI
Table S11: Basophil count for colorectal cancer, with analyses sorted by outcone time window, country, and strata

Country	Strata	Article	Analysis type	CRC outcome groups and no. per group	Blood level categories and no. per group	Analysis estimates	$\begin{gathered} p- \\ \text { value } \end{gathered}$
0 < outcome time window ≤ 6 months:							
Israel	Males	$\begin{gathered} \text { Goshen } 2017 \\ {[16]} \\ (1-6 \text { months }) \\ \hline \end{gathered}$	T-test	$\begin{gathered} \text { Yes, } \mathrm{n}=936 \\ \text { No, } \mathrm{n}=28491 \end{gathered}$		$\begin{aligned} & \text { Mean }=0.0310^{9} / \mathrm{L} \\ & \text { Mean }=0.0310^{9} / \mathrm{L} \end{aligned}$	0.0017
		Goshen 2017 [16] (1-6 months)	Risk ratio	$\begin{aligned} & \text { Yes } \\ & \text { No } \\ & \hline \end{aligned}$	Highest-risk quintile Lowest-risk quintile	$\begin{gathered} \mathrm{RR}=1.4(95 \% \mathrm{CI}=1.14, \\ 1.75) \\ \text { Reference } \end{gathered}$	
	Females	$\begin{gathered} \text { Goshen } 2017 \\ {[16]} \\ (1-6 \text { months }) \end{gathered}$	T-test	$\begin{gathered} \text { Yes, } \mathrm{n}=819 \\ \text { No, } \mathrm{n}=26239 \end{gathered}$		$\begin{aligned} & \text { Mean }=0.0310^{9} / \mathrm{L} \\ & \text { Mean }=0.0310^{9} / \mathrm{L} \end{aligned}$	0.0003
		$\begin{gathered} \text { Goshen } 2017 \\ {[16]} \\ (1-6 \text { months }) \\ \hline \end{gathered}$	Risk ratio	Yes No	Highest-risk quintile Lowest-risk quintile	$\begin{gathered} \mathrm{RR}= \\ 1.19(95 \% \mathrm{CI}= \\ 1.02,1.48) \\ \text { Reference } \\ \hline \end{gathered}$	
6 < outcome time window ≤ 12 months:							
UK	Everyone	Boursi 2016 [8] (1 year)	Odds ratio	$\begin{aligned} & \text { Yes, } \mathrm{n}=4929 \\ & \text { No, } \mathrm{n}=11311 \end{aligned}$	Modelled as continuous	$\begin{gathered} \mathrm{OR}=1.34(95 \% \mathrm{CI}= \\ 0.93,1.95) \end{gathered}$	0.12

[^2]
cancers

MDPI
Table S12: Eosinophil count for colorectal cancer, with analyses sorted by outcome time window, country, and strata

Country	Strata	Article	Analysis type	CRC outcome groups and no. per group	Blood level categories and no. per group	Analysis estimates	$\begin{gathered} p- \\ \text { value } \end{gathered}$
0 < outcome time window ≤ 6 months:							
Israel	Males	Goshen 2017 [16] (1-6 months)	T-test	$\begin{gathered} \text { Yes, } \mathrm{n}=936 \\ \text { No, } \mathrm{n}=28491 \end{gathered}$		$\begin{aligned} & \text { Mean }=0.2510^{9} / \mathrm{L} \\ & \text { Mean }=0.2210^{9} / \mathrm{L} \end{aligned}$	<0.0001
		$\begin{gathered} \text { Goshen } 2017 \\ \text { [16] } \\ (1-6 \text { months }) \\ \hline \end{gathered}$	Risk ratio	Yes No	Highest-risk quintile Lowest-risk quintile	$\begin{gathered} \hline \mathrm{RR}=1.62(95 \% \mathrm{CI}= \\ 1.29,2.04) \\ \text { Reference } \\ \hline \end{gathered}$	
	Females	Goshen 2017 [16] (1-6 months)	T-test	$\begin{gathered} \text { Yes, } \mathrm{n}=819 \\ \text { No, } \mathrm{n}=26239 \end{gathered}$		$\begin{aligned} & \text { Mean }=0.2110^{9} / \mathrm{L} \\ & \text { Mean }=0.1810^{9} / \mathrm{L} \end{aligned}$	<0.0001
		$\begin{gathered} \text { Goshen } 2017 \\ {[16]} \\ (1-6 \text { months }) \\ \hline \end{gathered}$	Risk ratio	Yes No	Highest-risk quintile Lowest-risk quintile	$\begin{gathered} \mathrm{RR}=2.03(95 \% \mathrm{CI}= \\ 1.58,2.79) \\ \text { Reference } \\ \hline \end{gathered}$	
6 < outcome time window ≤ 12 months:							
UK	Everyone	Boursi 2016 [8] (1 year)	Odds ratio	$\begin{aligned} & \text { Yes, } \mathrm{n}=4929 \\ & \text { No, } \mathrm{n}=11311 \end{aligned}$	Modelled as continuous	$\begin{gathered} \mathrm{OR}=1.09(95 \% \mathrm{CI}= \\ 0.98,1.2) \end{gathered}$	0.1

[^3]
cancers

Table S23: Lymphocyte count for colorectal cancer, with analyses sorted by outcome time window, country, and strata

Country	Strata	Article	Analysis type	CRC outcome groups and no. per group	Blood level categories and no. per group	Analysis estimates	$\begin{gathered} p- \\ \text { value } \end{gathered}$
0 < outcome time window ≤ 6 months:							
China	Everyone	Huang 2019 [25]	T-test	Yes, $\mathrm{n}=162$		$\begin{aligned} \text { Mean }= & 1.9710^{9} / \mathrm{L}(\mathrm{SD} \\ & =0.57) \end{aligned}$	≥ 0.05
		$\begin{gathered} \text { (At } \\ \text { admission) } \\ \hline \end{gathered}$		No, $\mathrm{n}=78$		$\begin{aligned} \text { Mean } & =2.0310^{9} / \mathrm{L}(\mathrm{SD} \\ & =0.57) \end{aligned}$	
		Huang 2019 [25]	T-test	Yes, $\mathrm{n}=162$		$\begin{aligned} \text { Mean }= & 1.9710^{9} / \mathrm{L}(\mathrm{SD} \\ & =0.57) \end{aligned}$	≥ 0.05
		$\begin{gathered} \text { (At } \\ \text { admission) } \\ \hline \end{gathered}$		Polyp, $\mathrm{n}=92$		$\begin{aligned} \text { Mean } & =1.9810^{9} / \mathrm{L}(\mathrm{SD} \\ & =0.61) \end{aligned}$	
		Wu 2019 [50]	T-test	Yes, $\mathrm{n}=186$		$\begin{aligned} \text { Mean } & =1.9910^{9} / \mathrm{L}(\mathrm{SD} \\ & =0.58) \end{aligned}$	<0.05
		(At diagnosis)		No, $\mathrm{n}=108$		$\begin{aligned} \text { Mean } & =2.1810^{9} / \mathrm{L}(\mathrm{SD} \\ & =0.51) \end{aligned}$	
		Wu 2019 [50]	T-test	Yes, $\mathrm{n}=186$		$\begin{aligned} \text { Mean } & =1.9910^{9} / \mathrm{L}(\mathrm{SD} \\ & =0.58) \end{aligned}$	≥ 0.05
		(At diagnosis)		Polyp, $\mathrm{n}=132$		$\begin{aligned} \text { Mean } & =1.9910^{9} / \mathrm{L}(\mathrm{SD} \\ & =0.60) \end{aligned}$	
		Wu 2019 [50]	ANOVA	Yes $=186$		$\begin{aligned} \text { Mean } & =1.9910^{9} / \mathrm{L}(\mathrm{SD} \\ & =0.58) \end{aligned}$	0.01
		(At diagnosis)		$\text { Polyp = } 132$		$\begin{aligned} \text { Mean }= & 1.9910^{9} / \mathrm{L}(\mathrm{SD} \\ & =0.60) \end{aligned}$	
				Healthy = 108		$\begin{aligned} \text { Mean } & =2.1810^{9} / \mathrm{L}(\mathrm{SD} \\ & =0.51) \end{aligned}$	
		$\begin{gathered} \text { Yang } 2018 \text { [51] } \\ \text { (At } \\ \text { admission) } \\ \hline \end{gathered}$	MannWhitney U	$\begin{gathered} \text { Yes, } \mathrm{n}=85 \\ \text { Polyp, } \mathrm{n}=54 \end{gathered}$		$\begin{aligned} & \text { Median }=1.610^{9} / \mathrm{L} \\ & \text { Median }=1.710^{9} / \mathrm{L} \end{aligned}$	0.526
Israel	Males	$\begin{gathered} \text { Goshen } 2017 \\ {[16]} \\ (1-6 \text { months }) \end{gathered}$	T-test	$\begin{gathered} \text { Yes, } \mathrm{n}=936 \\ \text { No, } \mathrm{n}=28491 \end{gathered}$		$\begin{aligned} & \text { Mean }=2.1310^{9} / \mathrm{L} \\ & \text { Mean }=2.2110^{9} / \mathrm{L} \end{aligned}$	0.026

cancers

MDPI

[^4]MDPI
Table S34: Lymphocyte proportion for colorectar cancer

Country	Strata	Article	Analysis type	CRC outcome groups and no. per group	Median per outcome group	p value
0 < outcome time window ≤ 6 months:						
China	Everyone	$\begin{gathered} \text { Zhou } 2017 \\ {[52]} \end{gathered}$	Mann-	Yes, $\mathrm{n}=242$	Median $=23.95 \%$	<0.001
		(At diagnosis)	Whitney U	No, $\mathrm{n}=262$	Median $=35.15 \%$	
		$\begin{gathered} \text { Zhou } 2017 \\ {[52]} \end{gathered}$	Mann-	Yes, $\mathrm{n}=242$	Median $=23.95 \%$	<0.001
		(At diagnosis)	Whitney U	Polyp, $\mathrm{n}=248$	Median $=31.50 \%$	
		Zhou 2017 [52]		Yes, $\mathrm{n}=242$	Median $=23.95 \%$	<0.001
		(At diagnosis)	Kruskal-Wallis	Polyp, $\mathrm{n}=248$	Median $=31.50 \%$	
				No, $\mathrm{n}=262$	Median $=35.15 \%$	

[^5]Table S45: Monocyte count for colorectal cancer, with analyses sorted by outcome time window, country, and strata

Country	Strata	Article	Analysis type	CRC outcome groups and no. per group	Blood level categories and no. per group	Analysis estimates	$\begin{gathered} p- \\ \text { value } \end{gathered}$
0 < outcome time window ≤ 6 months:							
China	Everyone	Wu 2019 [50]	T-test	Yes, $\mathrm{n}=186$		$\begin{aligned} \text { Mean }= & 0.5310^{9} / \mathrm{L}(\mathrm{SD} \\ & =0.19) \end{aligned}$	<0.05
		(At diagnosis)		No, $\mathrm{n}=108$		$\begin{aligned} \text { Mean } & =0.4510^{9} / \mathrm{L}(\mathrm{SD} \\ & =0.15) \end{aligned}$	
		Wu 2019 [50]	T-test	Yes, $\mathrm{n}=186$		$\begin{aligned} \text { Mean }= & 0.5310^{9} / \mathrm{L}(\mathrm{SD} \\ & =0.19) \end{aligned}$	≥ 0.05
		(At diagnosis)		Polyp, $\mathrm{n}=132$		$\begin{aligned} \text { Mean } & =0.5010^{9} / \mathrm{L}(\mathrm{SD} \\ & =0.17) \end{aligned}$	
		Wu 2019 [50] (At diagnosis)	ANOVA	$\begin{gathered} \text { Yes }=186 \\ \text { Polyp }=132 \\ \text { Healthy }=108 \end{gathered}$		$\begin{aligned} & \text { Mean }=0.5310^{9} / \mathrm{L} \\ & \text { Mean }=0.5010^{9} / \mathrm{L} \\ & \text { Mean }=0.4510^{9} / \mathrm{L} \end{aligned}$	0.001
Israel	Males	$\begin{aligned} & \text { Goshen } 2017 \\ & \text { [16] } \\ & (1-6 \text { months }) \end{aligned}$	T-test	$\begin{gathered} \text { Yes, } \mathrm{n}=936 \\ \text { No, } \mathrm{n}=28491 \end{gathered}$		$\begin{aligned} & \text { Mean }=0.6810^{9} / \mathrm{L} \\ & \text { Mean }=0.6110^{9} / \mathrm{L} \end{aligned}$	<0.0001
		Goshen 2017 [16]	Risk ratio	Yes	Highest-risk quintile	$\begin{gathered} \mathrm{RR}=2.11(95 \% \mathrm{CI}= \\ 1.74,2.8) \end{gathered}$	
		(1-6 months)		No	Lowest-risk quintile	Reference	
		Goshen 2017 [16] ${ }^{1}$	Risk ratio	Yes, $\mathrm{n}=936$	Highest-risk quintile	$\begin{gathered} \hline \mathrm{RR}=1.85(95 \% \mathrm{CI}= \\ 1.6,2.12) \end{gathered}$	
		(1-6 months)		No, $\mathrm{n}=28491$	Lowest-risk quintile	Reference	
	Females	$\begin{gathered} \hline \text { Goshen } 2017 \\ \text { [16] } \\ (1-6 \text { months }) \end{gathered}$	T-test	$\begin{gathered} \text { Yes, n }=819 \\ \text { No, n }=26239 \end{gathered}$		$\begin{aligned} & \text { Mean }=0.5610^{9} / \mathrm{L} \\ & \text { Mean }=0.5110^{9} / \mathrm{L} \end{aligned}$	<0.0001
		Goshen 2017 [16]	Risk ratio	Yes	Highest-risk quintile	$\begin{gathered} \mathrm{RR}=1.99(95 \% \mathrm{CI}= \\ 1.63,2.65) \end{gathered}$	
		(1-6 months)		No	Lowest-risk quintile	Reference	

6 < outcome time window ≤ 12 months:

cancers

MDPI

Modelled as continuous
Yes, $\mathrm{n}=4929$
No, $\mathrm{n}=11311$
$\mathrm{OR}=1.08(95 \% \mathrm{CI}=$ 1.03, 1.14)
(1 year)
Abbreviations: $\mathrm{CRC}=$ colorectal cancer, $\mathrm{OR}=$ odds ratio, $\mathrm{RR}=$ risk ratio. ${ }^{1}$ Multivariable effect estimate, adjusted for: haemoglobin, mean corpuscular volume, platelets,
alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, iron, ferritin

Table S56: Neutrophil count for colorectal cancer, with analyses sorted by outcome time window, country, and strata

Country	Strata	Article	Analysis type	CRC outcome groups and no. per group	Blood level categories and no. per group	Analysis estimates	$\begin{gathered} p- \\ \text { value } \end{gathered}$
0 < outcome time window ≤ 6 months:							
China	Everyone	Wu 2019 [50]	T-test	Yes, $\mathrm{n}=186$		$\begin{aligned} \text { Mean }= & 3.9210^{9} / \mathrm{L}(\mathrm{SD} \\ & =1.26) \end{aligned}$	<0.05
		(At diagnosis)		No, $\mathrm{n}=108$		$\begin{aligned} \text { Mean } & =3.4010^{9} / \mathrm{L}(\mathrm{SD} \\ & =0.79) \end{aligned}$	
		Wu 2019 [50]	T-test	Yes, $\mathrm{n}=186$		$\begin{aligned} \text { Mean }= & 3.9210^{9} / \mathrm{L}(\mathrm{SD} \\ & =1.26) \end{aligned}$	<0.05
		(At diagnosis)		Polyp, $\mathrm{n}=132$		$\begin{aligned} \text { Mean }= & 3.5710^{9} / \mathrm{L}(\mathrm{SD} \\ & =1.26) \end{aligned}$	
		Wu 2019 [50] (At diagnosis)	ANOVA	$\begin{gathered} \text { Yes }=186 \\ \text { Polyp }=132 \\ \text { Healthy }=108 \\ \hline \end{gathered}$		$\begin{aligned} & \text { Mean }=3.9210^{9} / \mathrm{L} \\ & \text { Mean }=3.5710^{9} / \mathrm{L} \\ & \text { Mean }=3.4010^{9} / \mathrm{L} \end{aligned}$	<0.001
		Yang 2018 [51] (At admission)	MannWhitney U	$\begin{gathered} \text { Yes, } \mathrm{n}=85 \\ \text { Polyp, } \mathrm{n}=54 \end{gathered}$		$\begin{aligned} & \text { Median }=3.610^{9} / \mathrm{L} \\ & \text { Median }=3.210^{9} / \mathrm{L} \end{aligned}$	0.136
Israel	Males	$\begin{gathered} \text { Goshen } 2017 \\ {[16]} \\ (1-6 \text { months }) \\ \hline \end{gathered}$	T-test	$\begin{gathered} \text { Yes, } \mathrm{n}=936 \\ \text { No, } \mathrm{n}=28491 \end{gathered}$		$\begin{aligned} & \text { Mean }=4.6910^{9} / \mathrm{L} \\ & \text { Mean }=4.1310^{9} / \mathrm{L} \end{aligned}$	<0.0001
		$\begin{gathered} \text { Goshen } 2017 \\ \text { [16] } \\ (1-6 \text { months }) \\ \hline \end{gathered}$	Risk ratio	Yes No	Highest-risk quintile Lowest-risk quintile	$\begin{gathered} \hline \mathrm{RR}=2.29(95 \% \mathrm{CI}= \\ 1.73,2.96) \\ \text { Reference } \\ \hline \end{gathered}$	
		$\begin{gathered} \text { Goshen } 2017 \\ \text { [16] }^{1} \\ \text { (1-6 months) }^{2} \end{gathered}$	Risk ratio	$\begin{gathered} \text { Yes, } \mathrm{n}=936 \\ \text { No, } \mathrm{n}=28491 \end{gathered}$	Highest-risk quintile Lowest-risk quintile	$\begin{gathered} \mathrm{RR}=2.03(95 \% \mathrm{CI}= \\ 1.82,2.35) \\ \text { Reference } \\ \hline \end{gathered}$	<0.0001
	Females	$\begin{aligned} & \text { Goshen } 2017 \\ & \text { [16] } \\ & (1-6 \text { months }) \end{aligned}$	T-test	$\begin{gathered} \text { Yes, } \mathrm{n}=819 \\ \text { No, } \mathrm{n}=26239 \end{gathered}$		$\begin{aligned} & \text { Mean }=4.3310^{9} / \mathrm{L} \\ & \text { Mean }=3.710^{9} / \mathrm{L} \end{aligned}$	<0.0001
		$\begin{gathered} \text { Goshen } 2017 \\ {[16]} \\ (1-6 \text { months }) \\ \hline \end{gathered}$	Risk ratio	Yes No	Highest-risk quintile Lowest-risk quintile	$\begin{gathered} \mathrm{RR}= \\ 1.99(95 \% \mathrm{CI}= \\ 1.63,2.65) \\ \text { Reference } \\ \hline \end{gathered}$	

cancers

6 < outcome time window ≤ 12 months?

UK Everyone	Boursi 2016 [8]					
	(1 year)	Odds ratio	Yes, $\mathrm{n}=4929$	No, $\mathrm{n}=11311$	\quad Melled as continuous \quad	OR $=1.24(95 \% \mathrm{CI}=$
:---:						

[^6]MDPI
Table S67: Neutrophil proportion for colorectaleancer

Country	Strata	Article	Analysis type	CRC outcome groups and no. per group	Median per outcome group	p value
0 < outcome time window ≤ 6 months:						
China	Everyone	$\begin{gathered} \text { Zhou } 2017 \\ {[52]} \end{gathered}$	Mann-	Yes, $\mathrm{n}=242$	Median $=66.50 \%$	<0.001
		(At diagnosis)	Whitney U	No, $\mathrm{n}=262$	Median $=56.75 \%$	
		$\begin{gathered} \text { Zhou } 2017 \\ {[52]} \end{gathered}$	Mann-	Yes, $\mathrm{n}=242$	Median $=66.50 \%$	<0.001
		(At diagnosis)	Whitney U	Polyp, $\mathrm{n}=248$	Median $=58.15 \%$	
		Zhou 2017 [52]		Yes, $\mathrm{n}=242$	Median $=66.50 \%$	<0.001
		(At diagnosis)	Kruskal-Wallis	Polyp, $\mathrm{n}=248$	Median $=58.15 \%$	
				No, $\mathrm{n}=262$	Median $=56.75 \%$	

[^7]
cancers

MDPI
Table S78: Combined components for colorectal cancer, with analyses sorted by outcome time window, country, and strata

Country	Strata	Article	Analysis type	CRC outcome groups and no. per group	Combined component	Blood level categories and no. per group	Analysis estimates	$\begin{gathered} p- \\ \text { value } \end{gathered}$
0 < outcome time window ≤ 6 months:								
China	Everyone	Huang 2019 [25] (At admission)	T-test	Yes No	Red blood cell distribution widthlymphocyte ratio		$\begin{gathered} \text { Mean }=8.21 \\ \text { Mean }=7.2 \end{gathered}$	<0.05
		$\begin{gathered} \text { Huang } 2019 \\ \text { [25] } \\ \text { (At admission) } \\ \hline \end{gathered}$	T-test	Yes Polyp	Red blood cell distribution widthlymphocyte ratio		$\begin{aligned} & \text { Mean }=8.21 \\ & \text { Mean }=7.59 \end{aligned}$	≥ 0.05
		Huang 2019 [25] (At admission)	ROC	$\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$	Red blood cell distribution widthlymphocyte ratio	8.91 cut-off	$\begin{gathered} \text { AUC }=0.57(95 \% \mathrm{CI}= \\ 0.73,0.83) \\ \text { Sensitivity }=41 \% \\ \text { Specificity }=72 \% \\ \hline \end{gathered}$	
		$\text { Wu } 2019 \text { [50] }$ (At diagnosis)	T-test	$\begin{aligned} & \hline \text { Yes } \\ & \text { No } \\ & \hline \end{aligned}$	Mean platelet volume-platelet ratio		$\begin{aligned} & \text { Mean }=0.0330 \\ & \text { Mean }=0.0447 \end{aligned}$	<0.05
		Wu 2019 [50] (At diagnosis)	T-test	$\begin{gathered} \text { Yes } \\ \text { Polyp } \end{gathered}$	Mean platelet volume-platelet ratio		$\begin{aligned} & \text { Mean }=0.0330 \\ & \text { Mean }=0.0411 \end{aligned}$	<0.05
		Wu 2019 [50] (At diagnosis)	ANOVA	Yes Polyp Healthy	Mean platelet volume-platelet ratio		Mean $=0.0330$ Mean $=0.0411$ Mean $=0.0447$	<0.001
		Wu 2019 [50] (At diagnosis)	ROC	Yes No	Mean platelet volume-platelet ratio		$\begin{gathered} \mathrm{AUC}=0.81(95 \% \mathrm{CI}= \\ 0.76,0.86) \end{gathered}$	
		Wu 2019 [50] (At diagnosis)	T-test	$\begin{aligned} & \hline \text { Yes } \\ & \text { No } \\ & \hline \end{aligned}$	Neutrophil-lymphocyte ratio		$\begin{aligned} & \text { Mean }=1.98 \\ & \text { Mean }=1.57 \end{aligned}$	<0.05
		Wu 2019 [50] (At diagnosis)	T-test	$\begin{gathered} \text { Yes } \\ \text { Polyp } \end{gathered}$	Neutrophil-lymphocyte ratio		$\begin{aligned} & \text { Mean }=1.98 \\ & \text { Mean }=1.67 \end{aligned}$	<0.05
		Wu 2019 [50] (At diagnosis)	ANOVA	Yes Polyp Healthy	Neutrophil-lymphocyte ratio		$\begin{aligned} & \text { Mean }=1.98 \\ & \text { Mean }=1.67 \\ & \text { Mean }=1.57 \\ & \hline \end{aligned}$	<0.001
		Wu 2019 [50] (At diagnosis)	ROC	Yes No	Neutrophil-lymphocyte ratio		$\begin{gathered} \mathrm{AUC}=0.67(95 \% \mathrm{CI}= \\ 0.62,0.73) \end{gathered}$	
		Wu 2019 [50] (At diagnosis)	T-test	Yes No	Platelet-lymphocyte ratio		$\begin{gathered} \text { Mean }=140.26 \\ \text { Mean }=94.55 \end{gathered}$	<0.05

cancers

			MDP1			
$\begin{aligned} & \text { Wu } 2019 \text { [50] } \\ & \text { (At diagnosis) } \end{aligned}$	T-test	$\begin{gathered} \text { Yes } \\ \text { Polyp } \end{gathered}$	Platelet-lymphocyte ratio		$\begin{aligned} & \text { Mean }=140.26 \\ & \text { Mean }=113.03 \end{aligned}$	<0.05
Wu 2019 [50] (At diagnosis)	ANOVA	Yes Polyp Healthy	Platelet-lymphocyte ratio		$\begin{gathered} \text { Mean }=140.26 \\ \text { Mean }=113.03 \\ \text { Mean }=94.55 \\ \hline \end{gathered}$	<0.001
Wu 2019 [50] (At diagnosis)	ROC	$\begin{aligned} & \text { Yes } \\ & \text { No } \\ & \hline \end{aligned}$	Platelet-lymphocyte ratio		$\begin{gathered} \mathrm{AUC}=0.78(95 \% \mathrm{CI}= \\ 0.73,0.82) \end{gathered}$	
Yang 2018 [51] (At admission)	MannWhitney U	$\begin{gathered} \text { Yes } \\ \text { Polyp } \\ \hline \end{gathered}$	Neutrophil-lymphocyte ratio		$\begin{aligned} & \text { Median }=2.08 \\ & \text { Median }=1.87 \end{aligned}$	0.091
$\begin{aligned} & \text { Yang } 2018 \text { [51] } \\ & \text { (At admission) } \\ & \hline \end{aligned}$	MannWhitney U	$\begin{gathered} \text { Yes } \\ \text { Polyp } \\ \hline \end{gathered}$	Platelet-lymphocyte ratio		$\begin{aligned} & \text { Median }=124.48 \\ & \text { Median }=113.19 \end{aligned}$	0.059
Zhou 2017 [52] (At diagnosis)	MannWhitney U	$\begin{aligned} & \hline \text { Yes } \\ & \text { No } \\ & \hline \end{aligned}$	Neutrophil-white blood cell count ratio		$\begin{aligned} & \text { Median }=66.50 \\ & \text { Median }=58.15 \\ & \hline \end{aligned}$	<0.001
Zhou 2017 [52] (At diagnosis)	MannWhitney U	$\begin{gathered} \text { Yes } \\ \text { Polyp } \\ \hline \end{gathered}$	Neutrophil-white blood cell count ratio		$\begin{aligned} & \text { Median }=66.50 \\ & \text { Median }=58.15 \end{aligned}$	<0.001
Zhou 2017 [52] (At diagnosis)	KruskalWallis	Yes Polyp Healthy	Neutrophil-white blood cell count ratio		$\begin{aligned} & \text { Median }=66.50 \\ & \text { Median }=58.15 \\ & \text { Median }=58.15 \end{aligned}$	<0.001
Zhou 2017 [52] (At diagnosis)	MannWhitney U	$\begin{gathered} \hline \text { Yes } \\ \text { Polyp } \\ \hline \end{gathered}$	Neutrophil-white blood cell count ratio		$\begin{aligned} & \text { Median }=23.95 \\ & \text { Median }=31.50 \end{aligned}$	<0.001
Zhou 2017 [52] (At diagnosis)	MannWhitney U	Yes Healthy	Neutrophil-white blood cell count ratio		$\begin{aligned} & \text { Median }=23.95 \\ & \text { Median }=35.15 \end{aligned}$	<0.001
Zhou 2017 [52] (At diagnosis)	Kruskal- Wallis	Yes Polyp Healthy	Neutrophil-white blood cell count ratio		$\begin{aligned} & \text { Median }=23.95 \\ & \text { Median }=31.50 \\ & \text { Median }=35.15 \end{aligned}$	<0.001
Zhou 2017 [52] (At diagnosis)	MannWhitney U	$\begin{aligned} & \hline \text { Yes } \\ & \text { No } \\ & \hline \end{aligned}$	Neutrophil-lymphocyte ratio		$\begin{aligned} & \text { Median }=2.76 \\ & \text { Median }=1.60 \end{aligned}$	<0.001
Zhou 2017 [52] (At diagnosis)	MannWhitney U	$\begin{gathered} \text { Yes } \\ \text { Polyp } \end{gathered}$	Neutrophil-lymphocyte ratio		$\begin{aligned} \text { Median } & =2.76 \\ \text { Median } & =1.875 \end{aligned}$	<0.001
Zhou 2017 [52] (At diagnosis)	Kruskal- Wallis	Yes Polyp Healthy	Neutrophil-lymphocyte ratio		$\begin{aligned} & \text { Median }=2.76 \\ & \text { Median }=1.875 \\ & \text { Median }=1.60 \\ & \hline \end{aligned}$	<0.001
Zhou 2017 [52] (At diagnosis)	ROC	$\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$	Neutrophil-lymphocyte ratio	2.33 cut-off	$\begin{aligned} & \text { Sensitivity }=66.9 \% \\ & \text { Specificity }=77.6 \% \end{aligned}$	

			Yes	Neutrophil-lymphocyte ratio

cancers

Abbreviations: $C R C=$ colorectal cancer, $\mathrm{OR}=$ odds ratio, $\mathrm{RR}=$ risk ratio, $\mathrm{NLR}=$ Neutrophil-lymphocyte ratio, $\mathrm{ROC}=$ receiver operating characteristic, $\mathrm{AUC}=$ area under the curve, MPV = mean platelet volume. ${ }^{1}$ Multivariable effect estimate, adjusted for: haematocrit, mean corpuscular volume, lymphocyte count. ${ }^{2} \mathrm{Multivariable}$ effect estimate, adjusted for: haemoglobin, mean corpuscular volume, white blood cell count, platelets, sex, previous metformin prescriptions, previous prescriptions for oral hypoglycemic drugs other than metformin.

cancers

4. Performance statistics from model validation studies

Table S89: Performance statistics from internal $(\mathrm{n}=9)$ and external $(\mathrm{n}=11)$ validation models.

Article	Model name/description	Primary outcome window	No. cases	$\begin{gathered} \text { No. } \\ \text { controls } \end{gathered}$	Discrimination: AUC (95\% CI)	Calibration
Internal validation:						
Boursi 2016 [8]	Laboratory model	1 year			0.77 (0.75, 0.78)	
Boursi 2016 [8]	Combined model	1 year	1702	3324	0.73 (0.71, 0.74)	Calibration plot
Firat 2016 [14]		At diagnosis			0.81	
Hippisley-Cox 2012 [21]	QCancer Colorectal males	2 years			$0.91(0.90,0.91)$	Calibration plot
Hippisley-Cox 2012 [21]	QCancer Colorectal females	2 years			0.89 (0.88, 0.90)	Calibration plot
Hippisley-Cox 2013 [22]	QCancer males	2 years	125	667261	0.90 (0.90, 0.91)	Calibration plot
Hippisley-Cox 2013 [23]	QCancer females	2 years	1356	655311	0.89 (0.88, 0.90)	Calibration plot
Kinar 2016 [29]	ColonFlag	0-1 month			0.84 (0.81, 0.86)	
		3-6 months	698		0.82 (0.79, 0.84)	$\begin{gathered} \text { Hosmer-Lemeshow: } \mathrm{p}= \\ 0.47 \end{gathered}$
		22-24 months			0.72 (0.69, 0.75)	
Thompson 2017 [48]		3 years	636	10966	0.86 (0.84, 0.87)	Calibration plot
External validation:						
Ayling 2019 [4]	ColonFlag		21	571		
Birks 2017 [7]	ColonFlag	3-6 months	5935	2478764	0.84 (0.84, 0.85)	
		6-12 months	6821	2429503	0.81 (0.81, 0.82)	
		12-24 months	5744	2328636	0.79 (0.79, 0.80)	
		18-24 months	5141	2220108	0.78 (0.78, 0.78)	
		24-36 months	7360	2102947	0.75 (0.75, 0.76)	
Collins 2012 [10]	QCancer Colorectal males	2 years	2036	1057729	0.92 (0.91, 0.92)	Calibration plot
Collins 2012 [10]	QCancer Colorectal females	2 years	1676	1074099	0.91 (0.90, 0.92)	Calibration plot

cancers

MDPI

${ }^{1}$ The CAPER model was developed study by Hamilton and includes haemoglobin level as a predictor, but was not included in this review because it was never published, instead only a conference abstract was available [54].

References

1. Acher, P.L.; Al-Mishlab, T.; Rahman, M.; Bates, T. Iron-deficiency anaemia and delay in the diagnosis of colorectal cancer. Colorectal Dis. 2003, 5, 145-148, doi:10.1046/j.14631318.2003.00415.x.
2. Ankus, E.; Price, S.J.; Ukoumunne, O.C.; Hamilton, W.; Bailey, S.E.R. Cancer incidence in patients with a high normal platelet count: A cohort study using primary care data. Fam. Pract. 2018, 35, 671-675, doi:10.1093/fampra/cmy018.
3. Ay, S.; Eryilmaz, M.A.; Aksoy, N.; Okus, A.; Unlu, Y.; Sevinc, B. Is early detection of colon cancer possible with red blood cell distribution width? Asian Pac. J. Cancer Prev.2015, 16, 753-756
4. Ayling, R.M.; Lewis, S.J.; Cotter, F. Potential roles of artificial intelligence learning and faecal immunochemical testing for prioritisation of colonoscopy in anaemia. Br. J. Haematol. 2019, 185, 311-316, doi:10.1111/bjh. 15776.
5. Bafandeh, Y.; Khoshbaten, M.; Sadat, A.T.E.; Farhang, S. Clinical predictors of colorectal polyps and carcinoma in a low prevalence region: Results of a colonoscopy based study. World J. Gastroenterol. 2008, 14, 1534-1538, doi:10.3748/wjg.14.1534.
6. Bailey, S.E.R.; Ukoumunne, O.C.; Shephard, E.A.; Hamilton, W. Clinical relevance of thrombocytosis in primary care: A prospective cohort study of cancer incidence using English electronic medical records and cancer registry data. Br. J. Gen. Pract. 2017, 67, e405-e413, doi:10.3399/bjgp17X691109.
7. Birks, J.; Bankhead, C.; Holt, T.A.; Fuller, A.; Patnick, J. Evaluation of a prediction model for colorectal cancer: retrospective analysis of 2.5 million patient records. Cancer Med. 2017, 6, 2453-2460, doi:10.1002/cam4.1183.
8. Boursi, B.; Mamtani, R.; Hwang, W.T.; Haynes, K.; Yang, Y.X. A Risk Prediction Model for Sporadic CRC Based on Routine Lab Results. Dig. Dis. Sci. 2016, 61, 2076-2086, doi:10.1007/s10620-016-4081-x.
9. Cakmak, E.; Soylu, S.; Yonem, O.; Yilmaz, A. Neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and red blood cell distribution width as new biomarkers in patients with colorectal cancer. Erciyes Med. J. 2017, 39, 131-136, doi:10.5152/etd.2017.0051.
10. Collins, G.S.; Altman, D.G. Identifying patients with undetected colorectal cancer: An independent validation of QCancer (Colorectal). Br. J. Cancer 2012, 107, 260-265, doi:10.1038/bjc.2012.266.

cancers

MDPI

11. Cross, A.J.; Wooldrage, K.; Robbins, E.C.; Pack, K.; Brown, J.P.; Hamilton, W.; Thompson, M.R.; Flashman, K.G.; Halligan, S.; Thomas-Gibson, S., et al. Whole-colon investigation vs. flexible sigmoidoscopy for suspected colorectal cancer based on presenting symptoms and signs: a multicentre cohort study. Br. J. Cancer 2019, 120, 154164, doi:10.1038/s41416-018-0335-z.
12. Cubiella, J.; Vega, P.; Salve, M.; Diaz-Ondina, M.; Alves, M.T.; Quintero, E.; Alvarez-Sanchez, V.; Fernandez-Banares, F.; Boadas, J.; Campo, R., et al. Development and external validation of a faecal immunochemical test-based prediction model for colorectal cancer detection in symptomatic patients. BMC Med. 2016, 14, s12916-s016.
13. Fijten, G.H.; Starmans, R.; Muris, J.W.; Schouten, H.J.; Blijham, G.H.; Knottnerus, J.A. Predictive value of signs and symptoms for colorectal cancer in patients with rectal bleeding in general practice. Fam. Pract. 1995, 12, 279-286.
14. Firat, F.; Arslan, A.K.; Colak, C.; Harputluoglu, H. Estimation of risk factors associated with colorectal cancer: an application of knowledge discovery in databases. Kuwait J. Sci. 2016, 43, 151-161.
15. Goldshtein, I.; Neeman, U.; Chodick, G.; Shalev, V. Variations in hemoglobin before colorectal cancer diagnosis. Eur. J. Cancer Prev. 2010, 19, 342-344, doi:10.1097/CEJ.0b013e32833c1be0.
16. Goshen, R.; Mizrahi, B.; Akiva, P.; Kinar, Y.; Choman, E.; Shalev, V.; Sopik, V.; Kariv, R.; Narod, S.A. Predicting the presence of colon cancer in members of a health maintenance organisation by evaluating analytes from standard laboratory records. Br. J. Cancer 2017, 116, 944-950, doi:10.1038/bjc.2017.53.
17. Hamilton, W.; Round, A.; Sharp, D.; Peters, T.J. Clinical features of colorectal cancer before diagnosis: A population-based case-control study. Br. J. Cancer 2005, 93, 399405, doi:10.1038/sj.bjc.6602714.
18. Hamilton, W.; Lancashire, R.; Sharp, D.; Peters, T.J.; Cheng, K.K.; Marshall, T. The importance of anaemia in diagnosing colorectal cancer: a case-control study using electronic primary care records. Br. J. Cancer 2008, 98, 323-327, doi:10.1038/sj.bjc.6604165
19. Hamilton, W.; Lancashire, R.; Sharp, D.; Peters, T.J.; Cheng, K.K.; Marshall, T. The risk of colorectal cancer with symptoms at different ages and between the sexes: A casecontrol study. BMC Med. 2009, 7, doi:10.1186/1741-7015-7-17.
20. Hilsden, R.J.; Heitman, S.J.; Mizrahi, B.; Narod, S.A.; Goshen, R. Prediction of findings at screening colonoscopy using a machine learning algorithm based on complete blood counts (ColonFlag). PLoS ONE 2018, 13, doi:10.1371/journal.pone. 0207848.
21. Hippisley-Cox, J.; Coupland, C. Identifying patients with suspected colorectal cancer in primary care: Derivation and validation of an algorithm. Br. J. Gen. Pract. 2012, 62, e29-e37, doi:10.3399/bjgp12X616346.
22. Hippisley-Cox, J.; Coupland, C. Symptoms and risk factors to identify men with suspected cancer in primary care: Derivation and validation of an algorithm. Br. J. Gen. Pract. 2013, 63, e1-e10, doi:10.3399/bjgp13X660724.
23. Hippisley-Cox, J.; Coupland, C. Symptoms and risk factors to identify women with suspected cancer in primary care: Derivation and validation of an algorithm. Br. J. Gen. Pract. 2013, 63, e11-e21, doi:10.3399/bjgp13X660733.
24. Hornbrook, M.C.; Goshen, R.; Choman, E.; O'Keeffe-Rosetti, M.; Kinar, Y.; Liles, E.G.; Rust, K.C. Early Colorectal Cancer Detected by Machine Learning Model Using Gender, Age, and Complete Blood Count Data. Dig. Dis. Sci. 2017, 62, 2719-2727, doi:10.1007/s10620-017-4722-8.
25. Huang, J.; Zhao, Y.; Liao, L.; Liu, S.; Lu, S.; Wu, C.; Wei, C.; Xu, S.; Zhong, H.; Liu, J., et al. Evaluation of Red Cell Distribution Width to Lymphocyte Ratio as Potential Biomarker for Detection of Colorectal Cancer. Biomed. Res. Int. 2019, doi:10.1155/2019/9852782.
26. Hung, N.; Shen, C.C.; Hu, Y.W.; Hu, L.Y.; Yeh, C.M.; Teng, C.J.; Kuan, A.S.; Chen, S.C.; Chen, T.J.; Liu, C.J. Risk of cancer in patients with iron deficiency anemia: A nationwide population-based study. PLoS ONE 2015, 10, doi:10.1371/journal.pone.0119647.

cancers

MDPI

27. Joosten, E.; Meeuwissen, J.; Vandewinckele, H.; Hiele, M. Iron status and colorectal cancer in symptomatic elderly patients. Am. J. Med. 2008, 121, 1072-1077, doi:10.1016/j.amjmed.2008.06.039.
28. Kilincalp, S.; Coban, S.; Akinci, H.; Hamamc, M.; Karaahmet, F.; Coskun, Y.; Ustun, Y.; Simsek, Z.; Erarslan, E.; Yuksel, I. Neutrophil/lymphocyte ratio, platelet/lymphocyte ratio, and mean platelet volume as potential biomarkers for early detection and monitoring of colorectal adenocarcinoma. Eur. J. Cancer Prev. 2015, 24, 328-333, doi:10.1097/CEJ.0000000000000092.
29. Kinar, Y.; Kalkstein, N.; Akiva, P.; Levin, B.; Half, E.E.; Goldshtein, I.; Chodick, G.; Shalev, V. Development and validation of a predictive model for detection of colorectal cancer in primary care by analysis of complete blood counts: A binational retrospective study. J. Am. Med. Inform. Assoc. 2016, 23, 879-890, doi:10.1093/jamia/ocv195.
30. Kinar, Y.; Akiva, P.; Choman, E.; Kariv, R.; Shalev, V.; Levin, B.; Narod, S.A.; Goshen, R. Performance analysis of a machine learning flagging system used to identify a group of individuals at a high risk for colorectal cancer. PLoS ONE 2017, 12, doi:10.1371/journal.pone.0171759.
31. Lawrenson, R.; Logie, J.; Marks, C. Risk of colorectal cancer in general practice patients presenting with rectal bleeding, change in bowel habit or anaemia. Eur. J. Cancer Care 2006, 15, 267-271, doi:10.1111/j.1365-2354.2005.00637.x.
32. Lee, Y.J.; Lee, H.R.; Nam, C.M.; Hwang, U.K.; Jee, S.H. White blood cell count and the risk of colon cancer. Yonsei Med. J. 2006, 47, 646-656.
33. Margolis, K.L.; Rodabough, R.J.; Thomson, C.A.; Lopez, A.M.; McTiernan, A. Prospective study of leukocyte count as a predictor of incident breast, colorectal, endometrial, and lung cancer and mortality in postmenopausal women. Arch. Intern. Med. 2007, 167, 1837-1844, doi:10.1001/archinte.167.17.1837.
34. Marshall, T.; Lancashire, R.; Sharp, D.; Peters, T.J.; Cheng, K.K.; Hamilton, W. The diagnostic performance of scoring systems to identify symptomatic colorectal cancer compared to current referral guidance. Gut. 2011, 60, 1242-1248, doi:10.1136/gut.2010.225987.
35. Mashlab, S.; Large, P.; Laing, W.; Ng, O.; D'Auria, M.; Thurston, D.; Thomson, S.; Acheson, A.G.; Humes, D.J.; Banerjea, A., et al. Anaemia as a risk stratification tool for symptomatic patients referred via the two-week wait pathway for colorectal cancer. Ann. R. Coll. Surg. Engl. 2018, 100, 350-356, doi:10.1308/rcsann.2018.0030.
36. Naef, M.; Buhlmann, M.; Baer, H.U. Small bowel tumors: Diagnosis, therapy and prognostic factors. Langenbeck's Arch. Surg. 1999, 384, 176-180, doi:10.1007/s004230050188.
37. Nakama, H.; Zhang, B.; Fattah, A.S.; Zhang, X. Colorectal cancer in iron deficiency anemia with a positive result on immunochemical fecal occult blood. Int. J. Colorectal Dis. 2000, 15, 271-274.
38. Panagiotopoulou, I.G.; Fitzrol, D.; Parker, R.A.; Kuzhively, J.; Luscombe, N.; Wells, A.D.; Menon, M.; Bajwa, F.M.; Watson, M.A. The yield of colorectal cancer among fast track patients with normocytic and microcytic anaemia. Ann. R. Coll. Surg. Engl. 2014, 96, 289-293, doi:10.1308/003588414x13814021680076.
39. Panzuto, F.; Chiriatti, A.; Bevilacqua, S.; Giovannetti, P.; Russo, G.; Impinna, S.; Pistilli, F.; Capurso, G.; Annibale, B.; Delle Fave, G., et al. Symptom-based approach to colorectal cancer: Survey of primary care physicians in Italy. Dig. Liver Dis. 2003, 35, 869-875, doi:10.1016/j.dld.2003.07.005.
40. Pilling, L.C.; Atkins, J.L.; Kuchel, G.A.; Ferrucci, L.; Melzer, D. Red cell distribution width and common disease onsets in 240,477 healthy volunteers followed for up to 9 years. PLoS ONE 2018, 13, 1-12, doi:10.1371/journal.pone.0203504.
41. Prizment, A.E.; Anderson, K.E.; Visvanathan, K.; Folsom, A.R. Association of inflammatory markers with colorectal cancer incidence in the atherosclerosis risk in communities study. Cancer Epidemiol. Biomark. Prev. 2011, 20, 297-307, doi:10.1158/1055-9965.EPI-10-1146.
42. Raje, D.; Mukhtar, H.; Oshowo, A.; Ingham Clark, C. What proportion of patients referred to secondary care with iron deficiency anemia have colon cancer? Dis. Colon Rectum 2007, 50, 1211-1214, doi:10.1007/s10350-007-0249-y.
43. Schneider, C.; Bodmer, M.; Jick, S.S.; Meier, C.R. Colorectal cancer and markers of anemia. Eur. J. Cancer Prev. 2018, 27, 530-538, doi:10.1097/cej.0000000000000397.
44. Shi, C.; Xie, M.; Li, L.; Li, K.; Hu, B.L. The association and diagnostic value of red blood cell distribution width in colorectal cancer. Med. (Baltim.) 2019, 98, e15560, doi:10.1097/MD.0000000000015560.

cancers

MDPI

45. Song, Y.; Huang, Z.; Kang, Y.; Lin, Z.; Lu, P.; Lin, Q.; Cai, Z.; Cao, Y.; Zhu, X. Clinical Usefulness and Prognostic Value of Red Cell Distribution Width in Colorectal Cancer. Biomed. Res. Int. 2018, http://dx.doi.org/10.1155/2018/9858943, 1-7, doi:10.1155/2018/9858943.
46. Spell, D.W.; Jones, D.V., Jr.; Harper, W.F.; David Bessman, J. The value of a complete blood count in predicting cancer of the colon. Cancer Detect. Prev. 2004, 28, 37-42.
47. Stapley, S.; Peters, T.J.; Sharp, D.; Hamilton, W. The mortality of colorectal cancer in relation to the initial symptom at presentation to primary care and to the duration of symptoms: A cohort study using medical records. Br. J. Cancer 2006, 95, 1321-1325, doi:10.1038/sj.bjc.6603439.
48. Thompson, M.R.; O'Leary, D.P.; Flashman, K.; Asiimwe, A.; Ellis, B.G.; Senapati, A. Clinical assessment to determine the risk of bowel cancer using Symptoms, Age, Mass and Iron deficiency anaemia (SAMI). Br. J. Surg. 2017, 104, 1393-1404, doi:10.1002/bjs. 10573
49. Van Boxtel-Wilms, S.J.M.; van Boven, K.; Bor, J.H.H.; Bakx, J.C.; Lucassen, P.; Oskam, S.; van Weel, C. The value of reasons for encounter in early detection of colorectal cancer. Eur. J. Gen. Pract. 2016, 22, 91-95, doi:10.3109/13814788.2016.1148135.
50. Wu, Y.Y.; Zhang, X.; Qin, Y.Y.; Qin, J.Q.; Lin, F.Q. Mean platelet volume/platelet count ratio in colorectal cancer: a retrospective clinical study. BMC Cancer 2019, 19, 7, doi:10.1186/s12885-019-5504-9
51. Yang, D.; Quan, W.; Wu, J.; Ji, X.; Dai, Y.; Xiao, W.; Chew, H.; Sun, Z.; Li, D. The value of red blood cell distribution width in diagnosis of patients with colorectal cancer. Clin. Chim. Acta 2018, 479, 98-102, doi:10.1016/j.cca.2018.01.022
52. Zhou, W.W.; Chu, Y.P.; An, G.Y. Significant difference of neutrophil-lymphocyte ratio between colorectal cancer, adenomatous polyp and healthy people. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 5386-5391.
53. Zhu, X.J.; Cao, Y.P.; Lu, P.X.; Kang, Y.L.; Lin, Z.; Hao, T.S.; Song, Y.F. Evaluation of platelet indices as diagnostic biomarkers for colorectal cancer. Sci. Rep. 2018, 8, 7, doi:10.1038/s41598-018-29293-x.
54. Hamilton, W. Derivation of a score for identifying colorectal cancer in primary care. Gut. 2007, 56(Suppl. II), A49-A50

[^0]: 18. Neutrophils/
 19. Basophils/
 20. Eosinophils/
 21. Lymphocytes/
 22. Monocytes/
 23. Occult Blood/
 24. Thrombocytosis/
 25. Leukocytosis/
 26. Lymphocytosis/
 27. Eosinophilia/
 28. Anemia/
 29. Leukopenia/
 30. Neutropenia/
 31. Lymphopenia/
 32. Thrombocytopenia/
 33. Polycythemia/
 34. Erythrocytes/
 35. Leukocytes/
 36. Pancytopenia/
 37. ((blood or platelet) adj2 count\$).ti,ab,kw.
 38. (CBC or FBC).ti,ab,kw.
 39. (blood adj2 exam\$).ti,ab,kw.
 40. (haematolog\$ or hematolog\$ or haemoglobin or hemoglobin or haematocrit or hematocrit).ti,ab,kw.
 41. ((red or white) adj1 blood adj1 cell\$).ti,ab,kw.
 42. (mean adj1 (platelet or corpuscular) adj1 volume\$).ti,ab,kw.
 43. (mean adj1 corpuscular adj1 (haemoglobin or hemoglobin)).ti,ab,kw.
 44. (platelet\$ or basophil or basophils or eosinophil or eosinophils or lymphocyte\$ or monocyte\$ or neutrophil or neutrophils or erythrocyte\$ or leukocyte\$).ti,ab,kw.
 45. (blood adj1 (test\$ or draw\$)).ti,ab,kw.
 46. (neutrophili\$ or monocytosis or basophili\$ or anemi\$ or anaemi\$ or monocytopenia or eosinopenia or basopenia or basocytopenia or thrombocytopeni\$ or leucocytosis or lymphocytosis or eosinophili\$ or leucopenia or leukopenia or neutropenia or lymphopenia or lymphocytopenia or pancytopenia or polycythemia or bicytopenia).ti,ab,kw.
 47. or/15-46
 48. (abnormalit\$ or diagnos\$ or "pre-diagnos\$" or prediagnos\$ or change\$ or detect\$ or elevat\$ or distribut\$ or deficien\$ or identif\$ or presence or indicati\$ or determin\$ or undiagnosed or definition\$ or altered or alteration\$).ti,ab,kw.
 49. 47 and 48
 50. (predict\$ or prognos\$ or suspected).ti,ab,kw.
 51. (risk adj1 (predict\$ or marker\$ or scor\$)).ti,ab,kw.
 52. Predictive Value of Tests/
 53. Probability/
 54. Prognosis/
 55. Risk Factors/
 56. Risk Assessment/
 57. Incidence/
 58. or/50-57
 59. 14 and 49 and 58
[^1]: Abbreviations: $C R C=$ colorectal cancer, $\mathrm{RR}=$ risk ratio, $\mathrm{ROC}=$ receiver operating characteristic, $\mathrm{AUC}=$ area under the curve, $\mathrm{PPV}=$ positive predictive value, $\mathrm{NPV}=$

[^2]: Abbreviations: $\mathrm{CRC}=$ colorectal cancer, $\mathrm{OR}=$ odds ratio, $\mathrm{RR}=$ risk ratio

[^3]: Abbreviations: $\mathrm{CRC}=$ colorectal cancer, $\mathrm{OR}=$ odds ratio, $\mathrm{RR}=$ risk ratio

[^4]: Abbreviations: $\mathrm{CRC}=$ colorectal cancer, $\mathrm{OR}=$ odds ratio, $\mathrm{RR}=$ risk ratio. ${ }^{1}$ Multivariable effect estimate, adjusted for: haematocrit, mean corpuscular volume, neutrophillymphocyte ratio.

[^5]: Abbreviations: $\mathrm{CRC}=$ colorectal cancer

[^6]: Abbreviations: $\mathrm{CRC}=$ colorectal cancer, $\mathrm{OR}=$ odds ratio, $\mathrm{RR}=$ risk ratio. ${ }^{1}$ Multivariable effect estimate, adjusted for: haemoglobin, mean corpuscular volume, platelets, red blood cell distribution width, alanine aminotransferase, protein, iron, ferritin

[^7]: Abbreviations: $\mathrm{CRC}=$ colorectal cancer

