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Simple Summary: Variants in the breast cancer susceptibility genes BRCA1 and BRCA2 increase the
risk of developing breast and ovarian cancers. Over the past two decades researchers have aimed
to identify gene expression changes associated with high-risk BRCA1 and BRCA2 variants. In this
review we explore the replicability of BRCA1- and BRCA2-associated gene expression profiles in
diseased and normal tissue. We highlight the impact of experimental factors and study designs on the
comparability and utility of gene expression profiles associated with high-risk BRCA1 and BRCA2
variants. Additionally, we emphasise the importance of controlling for confounding molecular
features that may influence the design of study cohort groups.

Abstract: Germline pathogenic variants in BRCA1 and BRCA2 increase cumulative lifetime risk
up to 75% for breast cancer and 76% for ovarian cancer. Genetic testing for BRCA1 and BRCA2
pathogenic variants has become an important part of clinical practice for cancer risk assessment
and for reducing individual risk of developing cancer. Genetic testing can produce three outcomes:
positive (a pathogenic variant), uninformative (no pathogenic variant) and uncertain significance
(a variant of unknown clinical significance). More than one third of BRCA1 and BRCA2 variants
identified have been classified as variants of uncertain significance, presenting a challenge for
clinicians. To address this important clinical challenge, a number of studies have been undertaken to
establish a gene expression phenotype for pathogenic BRCA1 and BRCA2 variant carriers in several
diseased and normal tissues. However, the consistency of gene expression phenotypes described
in studies has been poor. To determine if gene expression analysis has been a successful approach
for variant classification, we describe the design and comparability of 23 published gene expression
studies that have profiled cells from BRCA1 and BRCA2 pathogenic variant carriers. We show the
impact of advancements in expression-based technologies, the importance of developing larger study
cohorts and the necessity to better understand variables affecting gene expression profiles across
different tissue types.
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1. Introduction

Germline pathogenic variants in the tumour-suppressor genes, BRCA1 and BRCA2,
predispose humans to breast and ovarian cancer with reduced effects on the risk of cancer in other
tissues. Up to 1 in 200 individuals in the population carry a pathogenic variant in these genes [1] which
explains approximately 5% of breast cancers [2] and over 10% high-grade serous ovarian cancers [3].
For pathogenic variants in BRCA1, the cumulative risk by age 70 years is 44–75% for breast cancer
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and 43–76% for ovarian cancer [4]. For pathogenic BRCA2 carriers, the respective risks are 41–70% for
breast cancer and 7.5–34% for ovarian cancer [4]. Predictive genetic testing can identify individuals
who carry variants in BRCA1 and BRCA2 which confer risk and are therefore of clinical importance.
Such information can help clinicians with developing strategies for treatment and the prevention
of disease.

Genetic testing for BRCA1 and BRCA2 can produce three possible results: positive (a pathogenic
variant is identified), uninformative (no pathogenic variant) or a variant of uncertain significance.
Variants of uncertain significance are typically rare alterations to the gene sequence that have been
assessed for association with cancer phenotype/s but risk association remains uncertain [5]. More than
one third of known BRCA1 and BRCA2 variants are reported as variants of uncertain significance
(https://www.ncbi.nlm.nih.gov/clinvar/ accessed March 2020), presenting a challenge for the genetic
counsellor and their patients.

Informed clinical decision-making that is based on genetic test results requires the implementation
of reliable variant classifications. Laboratory-based methods that can distinguish between carriers of
known pathogenic variants and non-carriers have utility for the classification of sequence variants of
unknown clinical significance. There are now many studies demonstrating the association of gene
expression profiles from tumour- and stromal-derived cells with different breast cancer subtypes
(Table 1). Distinct patterns of gene expression have also been explored in different cell types from
individuals with and without BRCA1 and BRCA2 pathogenic variants. However, despite efforts to
identify BRCA-associated gene expression signatures, the level of consensus between studies is unclear.
It therefore remains uncertain whether gene expression analysis has been a successful approach for
variant classification and whether results could translate into a diagnostic setting. Here we address
these issues by reviewing reported gene expression profiles from BRCA1 and BRCA2 pathogenic
variant carriers, and consider the impact of the design of studies on their comparability.

https://www.ncbi.nlm.nih.gov/clinvar/
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Table 1. Experimental approaches for gene expression studies of BRCA1/2 pathogenic variants BRCAx pathogenic variants or controls.

Reference Tissue Source Statistical Analysis P-Value Adjustments
Number of Samples

(Number of
Familial Samples)

Transcriptome Platform

Hedenfalk et al. [6] (2001) Breast tumour
LOO-CV, Modified F-test,

t-test, weighted gene
analysis and InfoScore

None 21 (7 BRCA1, 7 BRCA2) cDNA array
(~6500 probes)

Jazaeri et al. [7] (2002) Ovarian tumour Modified F-test None, p < 0.001 61 (18 BRCA1, 16 BRCA2) cDNA microarray chips
(7651 probes)

van’t Veer et al. [8] (2002) Breast tumour Pearson correlation,
LOO-CV None 98 (18 BRCA1, 2 BRCA2) Hu25K microarrays

Kote-Jarai et al. [9] (2004) Breast fibroblasts Class prediction, SAM,
SVM, LOOCV, None 14 (9 BRCA1) cDNA array

(~5600 probes)

Kote-Jarai et al. [10] (2006) Breast fibroblasts
SVM, Fisher score, t test

Mann-Whitney, GPC,
LOO-CV.

None 30 (10 BRCA1, 10 BRCA2) cDNA array
(~14,000 probes)

Dudaladava et al. [11] (2006) Breast tumour Parametric Welch test BH 20 (7 BRCA1) Affymetrix HG U133
Plus 2.0 Gene Chip

Martin et al. [12] (2007) Breast tumour Random variance t tests None van’t Veer dataset Hu25K microarrays

Waddell et al. [13] (2008) LCLs
SVM, Fisher score, t test

Mann-Whitney, GPC,
LOO-CV.

None 72 (23 BRCA1, 22 BRCA2,
27 BRCAx)

Illumina Human-6
version 1 BeadChips

Vuillaume et al. [14] (2009) Peripheral blood Welch t-test BH 30 (15 BRCA1, 15 BRCAx)
Agilent 44 K Whole

Human genome Oligo
Microarray

Walker et al. [15] (2010) LCLs F-test, t-test FDR – Korn et al. approach 36 (9 BRCA1, 9 BRCA2,
9 BRCAx)

Illumina HumanRef8-V2
Beadchips

Press et al. [16] (2010) Fallopian tube and
ovarian tumour Welch t-test None, p < 0.01 30 (19 BRCA1) Affymetrix HG U133A

Plus 2.0 Gene Chip

Konstantinopoulos et al. [17]
(2010) Ovarian tumour Fisher’s exact test None Jazaeria et al., (2002) 61

(18 BRCA1, 16 BRCA2)
cDNA microarray chips

(7651 probes)
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Table 1. Cont.

Reference Tissue Source Statistical Analysis P-Value Adjustments
Number of Samples

(Number of
Familial Samples)

Transcriptome Platform

Waddell et al. [18] (2010) Breast tumour limma None, positive B 75 (19 BRCA1, 30 BRCA2,
25 BRCAx)

Illumina Human-6
version 2 BeadChips

Lisowska [19] (2011) Breast tumour Welch t test, ANOVA BH 35 (12 BRCA1, 1 BRCA2, 5
BRCAx)

Affymetrix HG U133
Plus 2.0 Gene Chip

Jönsson et al. [20] (2012) Breast tumour Fisher exact test None 577 (34 BRCA1, 39 BRCA2) Swegene H_v2.1.1 55K

Salmon et al. [21] (2013) Lymphocytes one-way Welch ANOVA BH 80 (13 BRCA1, 10 BRCA2,
43 BRCAx)

Affymetrix U133A
Plus 2.0

Ovarian tumour limma FDR

TCGA dataset (27 BRCA1,
28 BRCA2, 145 BRCAx) RNA-sequencing

George et al. [22] (2013) AOCS dataset (18 BRCA1,
11 BRCA2, 103 BRCAx)

Affymetrix U133A
Plus 2.0

Jazaeria et al., (2002) 61
(18 BRCA1, 16 BRCA2)

cDNA microarray chips
(7651 probes)

Larsen et al. [23] (2013) Breast tumour limma, Welch t-test,
LOOCV, SVM None 183 (33 BRCA1, 22 BRCA2)

Agilent SurePrint G3
Human GE 8 × 60K

Microarray

Feilotter et al. [24] (2014) LCLs PAM, SAM None 69 (31 BRCA1)
Agilent Whole Human

Genome Oligo 4 × 44K GE
arrays

Massink et al. [25] (2015) Breast tumour ANNOVA FDR
Nagel et al., (2012) 120
(17 CHEK2, 35 BRCA1,
5 BRCA2, 63 BRCAx)

Affymetrix U133A
Plus 2.0

Pouliot et al. [26] (2017) LCLs ANOVA,
Scheffe post-hoc test Bonferroni correction 117 (36 BRCA1, 49 BRCA2,

32 BRCAx) RNA Sequencing
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Table 1. Cont.

Reference Tissue Source Statistical Analysis P-Value Adjustments
Number of Samples

(Number of
Familial Samples)

Transcriptome Platform

Zahavi et al. [27] (2018) Lymphocytes limma None, p < 0.001 50 (11 BRCA1, 13 BRCA2) mRNA Sequencing

Tanaka et al. [28] (2018) Peripheral blood ANOVA None 40 (10 BRCA1, 10 BRCA2,
9 BRCAx) Illumina DASL array

Akbari et al. [29] (2019) Breast tumour
Four study Meta-analysis

(Fisher’s). limma FDR

45 (BRCA1 BRCA2) + 25
BRCAx)

Illumina Human-6
version 1 BeadChips

43 (BRCA1 BRCA2) + 29
BRCAx)

Illumina Whole
Genome-DASL

55 (BRCA1 BRCA2) + 65
BRCAx)

Agilent SurePrint G3
Human GE 8x60K

Microarray

53 (BRCA1 BRCA2) + 76
BRCAx)

Affymetrix U133A
Plus 2.0

BH, Benjamini-Hochberg adjustment. BRCAx; non-BRCA1/2. FDR; False discovery rate. GPC; Gaussian Process Classifier. LCLs; lymphoblastoid cell lines. LOO-CV; Leave One Out Cross
Validation. PAM, Prediction Analysis of Microarray. SAM; Significance Analysis of Microarrays. SVM; Support Vector Machine.
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2. BRCA1- and BRCA2-Associated Breast Tumours

We reviewed a total of nine studies (Table 1) that assessed differences in gene expression
profiles between breast tumours from BRCA1 pathogenic variant carriers and non-BRCA1 pathogenic
variant carriers. Four of these also assessed differences between BRCA2 and non-BRCA2 pathogenic
variant carriers.

The first study that attempted to identify a BRCA-like expression phenotype quantified the
expression of 5000 probes across 21 breast tumours [6]. The expression of 51 genes was able to
accurately segregate the three tumour genotypes (BRCA1, BRCA2 and sporadic). Furthermore, 9 genes
were associated with BRCA1-related breast tumours and 11 genes were associated with BRCA2-related
breast tumours. The nine genes associated with BRCA1 carriers accurately classified 95% (21/22) of
breast tumours. Similarly, the 11-gene BRCA2-related list correctly classified 82% (18/22) of tumours.
The only misclassified tumour using the BRCA1 classifier had BRCA1 promoter hypermethylation
and reduced BRCA1 expression, suggesting tumours without a pathogenic variant may display a
“BRCA-like” phenotype. As the classifications were performed on the same samples used to generate
the classifier, any interpretation of accuracy should be made cautiously. In an independent dataset,
the 51 genes were not able to segregate BRCA1-associated tumours from sporadic tumours [11].
The dataset generated by Dudaladava and colleagues only identified 40 of the 51 genes described by
the Hedenfalk study. Additionally, a major confounder of the Hedenfalk study was the oestrogen
receptor (ER) status of the samples selected [6]. All the BRCA1-associated tumours were ER negative,
compared with 33% of the non-BRCA1-associated tumours. ER status has since been revealed as a
major driver of gene expression differences, irrespective of genotypes [8,19]. Therefore, the lack of
classification accuracy in the Dudaladava study may be due to tumour phenotype, as all tumours were
ER negative in this study or, alternatively, the strength of the 51 gene classifiers may hinge on the 11
absent genes.

In an attempt to account for BRCA1-associated tumour phenotypes, investigators have explored
BRCA1-associated gene expression profiles in hormonal negative tumours [8,11,12]. van’t Veer and
colleagues optimised a 100 gene BRCA1 classifier by exploring gene expression profiles of 38 ER-negative
breast tumours [8]. The 100 gene classifier accurately classified 95% (36/38) of ER-negative breast
tumours. Similarly to Hedenfalk et al., one tumour misclassified as a BRCA1-associated tumour was
reported to have hypermethylation of the BRCA1 promoter. Martin and colleagues [12] utilised the data
generated by van’t Veer et al., and investigated genes involved in BRCA1-related functions. Three genes
(RAD51, RAD54 and RAD51AP1) involved in homologous recombination were differentially expressed
in BRCA1-associated ER-negative tumours. Despite using the same dataset, none of these three genes
were present in van’t Veer’s 100 gene classifier. Dudaladava et al. [11] selected the 100 most differentially
expressed BRCA1-associated genes. Unfortunately, as significance was not provided it is difficult to
interpret the likelihood of a real difference between tumour types. Nevertheless, these 100 genes were
able to accurately cluster 93% (13/14) of breast tumours based on BRCA1 variant status.

The development of breast tumour intrinsic subtype predictions allowed investigators to
interrogate tumour based on subtype [18,19,23,30,31]. Similar to ER status, subtype has a major
influence on gene expression profiles [18,19]. Lisowska and colleagues were able to identify 423 genes
significantly (p < 0.001) differentially expressed in BRCA1-associated tumours. The 423 genes were
a poor predictor for variant status, only correctly classifying 69% of tumours in the training dataset.
Similarly, the 423 genes poorly classified the 21 tumours from the Hedenfalk et al., study, with only
64% correctly classified [19]. Gene expression profiles from BRCA1-associated tumours were observed
to be more similar to sporadic breast tumours than non-BRCA1/2 (BRCAx) hereditary breast tumours.
The similarity of some sporadic tumours to BRCA1-associated tumours is consistent with those
observations in tumours with hypermethylated BRCA1 promoters described in early studies [6,8]. One
large study (n = 577) combined tumours containing hypermethylated BRCA1 promoters with BRCA1
carriers [20]. BRCA1-impaired (pathogenic carriers and hypermethylated BRCA1 promoter) tumours
had 321 genes differentially expressed from basal-like sporadic tumours. Unfortunately, we only
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identified four genes (RB1, BRCA1, CDK6 and CCDN1) in the manuscript, making interpretation of
their findings difficult.

Three studies employed well-utilised expression arrays (Illumina and Affymetrix) which consisted
of approximately 40,000 probes targeting approximately 25,000 RefSeq annotated genes [18,23,31].
Waddell et al. [18] assessed familial breast tumours from 75 patients who carried pathogenic variants
in BRCA1 or BRCA2, or were BRCAx, to determine molecular heterogeneity between and within
each subgroup. A total of 277 genes were differentially expressed between BRCA1 and BRCAx
tumours, and 31 genes were differentially expressed between BRCA2 pathogenic variants and BRCAx
tumours. The difference observed in the size of the gene lists suggested that BRCAx tumours are
more similar to tumours from BRCA2 pathogenic variant carriers than BRCA1 pathogenic variant
carriers. This hypothesis is reinforced by the intrinsic subtypes of BRCA1, BRCA2 and BRCAx
tumours. BRCA1 carriers were largely (74%) basal-like, while tumours from BRCA2 carriers and
BRCAx were largely (73% and 60%) luminal, an observation which has also been observed in subsequent
studies [20,23,25]. Larsen and colleagues [23] studied 183 breast tumours (33 BRCA1, 22 BRCA2) and
developed a 110-probe signature to classify BRCA1 breast tumour within the basal-like subtype with an
accuracy of 83% (sensitivity: 82%, specificity 85%). Similarly, a 100-probe signature was identified for
classification of luminal B BRCA2 carriers with an accuracy of 89% (sensitivity: 88%; specificity: 90%).

A meta-analysis using four published datasets [18,25,31,32] was conducted to identify differentially
expressed genes between different BRCA1/2 pathogenic variant carriers and BRCAx/sporadic breast
tumours [29]. Two hundred and seventy eight genes were consistently differentially expressed
(p < 0.05, 0.6 < log2FC < −0.6) amongst the four studies. Differentially expressed genes were mapped
to transcription factor binding sites to identify key regulators, including five transcription factors
(FOXM1, TFAP2C, FOXA1, ESR1 and GATA3) that were differentially expressed (p < 0.05, FC > 1.5) in
at least three studies.

Table 2 highlights the poor overlap between studies of gene expression profiles in breast tumours.
The largest overlap is seen between analyses performed by Waddell et al., and Akbari et al. [18,29].
However, the overlap may be driven by the Akbari et al., using data generated by Waddell et al.
Furthermore, each of these analyses produced the greatest amount of genes associated with BRCA1
or BRCA2 pathogenic status. Only one gene, TOB1, was identified as associated with BRCA1 carrier
status by more than two studies [6,11,19].
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Table 2. Gene overlap between gene expression profiles.

Breast Tumour Ovarian Tumour Fibroblast LCLs/Lymphocytes/Blood

H
edenfalk

etal.,2001

van
’tVeer

etal.,2002

D
udaladava

etal.,2006

M
artin

etal.,2007

W
addelletal.,2010

Lisow
ska,2011

Jönsson
etal.,2012

Larsen
etal.,2013

A
kbarietal.,2013

Jazaerietal.,2002

Press
etal.,2008

K
onstantinopoulos

etal.,2010

G
eorge

etal.,2013

K
ote-Jaraietal.,2004

K
ote-Jaraietal.,2006

W
addelletal.,2008

V
uillaum

e
etal.,2009

W
alker

etal.,2010

Salm
on

etal.,2013

Feilotter
etal.,2014

Pouliotetal.,2017

Tanaka
etal.,2018

Z
ahavietal.,2018

Hedenfalk et al. [6] 2001
(n = 50) 0 1 0 3 1 0 1 2 0 0 2 0 3 1 0 2 1 0 0 2 2 0

van ’t Veer et al. [8] 2002
(n = 71) 0 0 1 0 0 0 5 0 2 1 0 2 2 1 0 1 0 0 0 0 3

Dudaladava et al. [11]
2006 (n = 88) 0 1 9 0 2 0 0 0 0 0 1 2 1 1 4 0 0 2 0 1

Martin et al. [12] 2007
(n = 3) 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Waddell et al. [18] 2010
(n = 227) 3 0 2 49 0 0 1 2 2 7 3 1 9 0 0 0 0 5

Lisowska, [19] 2011
(n = 61) 0 0 5 0 2 0 1 0 1 1 0 5 0 0 1 0 0

Jönsson et al. [20] 2012
(n = 4) 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2

Larsen et al. [23] 2013
(n = 210) 8 0 0 1 2 2 3 2 1 7 0 0 0 0 2

Akbari et al. [29] 2018
(n = 278) 1 2 2 1 4 4 1 1 7 1 1 0 0 7

Jazaeri et al. [7] 2002
(n = 12) 0 2 1 0 0 0 0 0 0 0 0 0 0

Press et al. [16] 2008
(n = 33) 0 1 0 2 0 0 1 0 1 0 0 0

Konstantinopoulos
et al. [17] 2010 (n = 60) 0 2 3 3 0 2 0 0 1 0 0
George et al. [22] 2013

(n = 75) 5 3 2 1 2 0 0 0 0 1
Kote-Jarai et al. [9] 2004

(n = 122) 3 2 2 4 0 1 1 1 3
Kote-Jarai et al. [10] 2006

(n = 330) 3 0 21 1 2 1 4 3
Waddell et al. [13] 2008

(n = 333) 1 11 0 2 0 1 3
Vuillaume et al. [14] 2009

(n = 81) 5 0 0 3 1 1
Walker et al. [15] 2010

(n = 687) 1 4 3 3 3
Salmon et al. [21] 2013

(n = 21) 1 0 0 0
Feilotter et al. [24] 2014

(n = 43) 0 1 0
Pouliot et al. [26] 2017

(n = 62) 1 4
Tanaka et al. [28] 2018

(n = 51) 1
Zahavi et al. [27] 2018

(n = 228)

Black text, between tissue comparison; blue text across tissue comparison; (n = The number of unique gene symbol).
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3. BRCA1- and BRCA2-Associated Ovarian Tumours

Additional to breast tumours, three studies have been published (Table 1) that assessed differences
in gene expression profiles between BRCA1/2-associated ovarian tumours and BRCAx ovarian
tumours [7,17,22], and a further study identified a precancerous signature in the fallopian tube tissue
of the BRCA1 pathogenic variant [16]. Jazaeri and colleagues quantified gene expression for 61 ovarian
tumours, which included 18 BRCA1- and 16 BRCA2-associated tumours [7]. The expression of all
approximately 7500 probes was able to distinguish BRCA1-associated tumours from BRCA2-associated
tumours. However, the sporadic ovarian tumours were mixed amongst these two populations,
reinforcing the observation that a potential “BRCA-like” expression profile may exist in a subset of
sporadic tumours previously described in breast tumour analyses [6,8,19]. In addition, only 9 and 3
genes were differentially expressed between sporadic tumours and BRCA1- and BRCA2-associated
tumours, respectively. By comparison, 110 genes were differentially expressed genes between BRCA1-
and BRCA2-associated ovarian tumours. Interestingly, in a later study, George et al. [22] were unable to
replicate the tumour clustering despite performing the analysis on the same dataset, thus implicating
that these results may be a false positive.

The Jazaeri dataset was analysed by Konstantinopoulos et al., and a 60-gene “BRCA-like”
signature was identified using a selective sample exclusion criteria [17]. Samples were excluded
based on transcriptome-wide unsupervised clustering which generated three distinct clusters termed
“sporadic”, “BRCA1” and “BRCA2”. In an attempt to purify these groups, samples that were
misclassified were excluded from further analysis, leaving only 23 familial (13 BRCA1, 10 BRCA2) and
14 sporadic ovarian tumour samples. These 37 samples were used to identify a 60-gene signature that
accurately classified (94%) the selected BRCA-associated ovarian tumours from sporadic tumours.
As the accuracy was only tested on the training dataset it is difficult to determine the utility of a 60-gene
classifier. Furthermore, the highly selective exclusion criteria implemented limits the translation of the
classifier to any real world clinical sample sets.

George et al., used three public datasets [7,33,34] to identify differences between ovarian tumours
defective for BRCA1 and BRCA2 compared to sporadic tumours [22]. Expression data from The Cancer
Genome Atlas (TCGA) [33] network was used to identify genes differentially expressed that correlated
with BRCA1 and BRCA2 mutation status (somatic or germline variants). A total of 65 genes were
differentially expressed between BRCA1/2-mutated and non-mutated ovarian tumours, and 34 genes
were differentially expressed between BRCA1-mutated and non-BRCA-mutated ovarian tumours.
No genes were differentially expressed between BRCA2-mutated and non-BRCA-mutated ovarian
tumours. In addition to identifying differentially expressed genes, George et al., investigated the
discriminatory power of Konstantinopoulos’ 60-gene “BRCA-like” classifier [17]. Three independent
datasets [7,33,34] were used to compare classifiers from George et al., and Konstantinopoulos et al.
All three cohorts showed that the TCGA-derived classifiers outperformed the previously published
60-gene “BRCA-like” signature with area under the receiver operating characteristic (ROC) curves
ranging from 0.77–0.89 versus 0.55–0.63, respectively.

To assess early tumorigenic events, Press et al., conducted a study of noncancerous fallopian tube
(with and without BRCA1 pathogenic variants) and ovarian carcinomas from individuals with BRCA1
pathogenic variants [16]. This study identified 152 probes differentially expressed (FC > 1.8 and p < 0.01)
between noncancerous BRCA1 and BRCAx fallopian tubes. A further 4079 probes were differentially
expressed between noncancerous fallopian tubes from BRCAx and BRCA1-associated ovarian tumours.
A preneoplastic signature was defined by the 41 probes differentially expressed in the same direction
across each analysis [16]. Unsupervised hierarchical clustering was performed with an additional 12
normal fallopian tube samples with BRCA1 pathogenic variants. Interestingly, five samples clustered
with BRCA1-associated tumours (fallopian or ovarian), the remaining seven clustered with normal
fallopian tubes with no pathogenic variant. These results suggest the limitation of implementing
tumour-derived classifiers to predict variant status in normal tissue. Similar to that seen in breast tissue,
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there was overwhelmingly poor overlap of genes between studies (Table 1). Pairwise comparison saw
no more than two genes in common between BRCA1/2-associated ovarian studies.

4. Non-Tumour Tissue from BRCA1 and BRCA2 Pathogenic Variant Carriers

To assess gene expression patterns of BRCA-variant carriers, studies have also investigated stromal
noncancerous tissue, lymphoblastoid cell lines (LCLs), lymphocytes and peripheral blood mononuclear
cells (Table 1).

4.1. Fibroblasts

Under the hypothesis that DNA repair is impaired in BRCA1/2 pathogenic variant carriers,
two studies explored induced DNA damage in short-term cultures of fibroblasts after γ-irradiation.
Kote-Jarai and colleagues established short-term fibroblast cultures from 14 women (9 BRCA1
pathogenic variant carriers) who underwent prophylactic mastectomy or breast reductive
surgery [9]. Using two independent methods involving differential expression and class prediction,
122 BRCA1-associated genes were identified, of which 79 were identified by both methods.
Genes differentially expressed accurately clustered BRCA1-associated fibroblasts and only one sample
was misclassified as wild-type BRCA1.

A subsequent study utilised skin biopsies of 30 (10 BRCA1, 10 BRCA2 and 10 sporadic) women
with a history of breast cancer who were disease free at time of recruitment [10]. The top 200 genes
were identified that best discriminated between each genotype post γ-irradiation. Thus, three gene
panels were developed (BRCA1 vs. BRCAx, BRCA2 vs. BRCAx and BRCA1 vs. BRCA2). The three gene
panels accurately clustered all samples based on BRCA1/2 genotype. However, hierarchical clustering
was performed on the training dataset and no inclusion of the third genotype was tested. Therefore,
the accuracy and robustness of the genes’ discriminative power was not examined. Furthermore,
each of the studies by Kote-Jarai et al. [9,10] has poor overlap in discriminative genes, with only four
genes (ADNP, CDKN1B, FYN and SPIN) in common. One explanation for the lack of concordance may
be due to sample type. In the later study, normal breast tissue was acquired from women post-cancer
and post-treatment. It is plausible that the development and treatment of breast cancer may have
altered the expression profile of local normal breast tissue.

4.2. Lymphoblastoid Cell Lines (LCLs)

Eight studies investigated the effect of BRCA1/2 pathogenic variants on gene expression in
immortalised LCLs [13,15,24,26] or peripheral blood [14,21,27,28]. Waddell et al. [13] assessed the
effects of missense and truncating BRCA1/2 pathogenic variants postγ-irradiation in 78 LCLs (23 BRCA1,
22 BRCA2, 27 BRCAx). Compared to missense pathogenic variants, truncating pathogenic variants had
a larger effect on expression profiles. Truncating BRCA1 pathogenic variant carriers had 2474 genes
differentially expressed compared with BRCAx cases, and missense BRCA1 pathogenic variant carriers
only had 599 genes differentially expressed. Similarly for BRCA2 pathogenic variant carriers, 3932 genes
were differentially expressed when assessing truncating variants and 788 genes were differentially
expressed when assessing missense variants. The top 200 genes (ranked by p-Value) of each gene
list were used to predict the pathogenic variant status of LCLs. Only the details of these 200 genes
were made available in the published report. For the two BRCA1 gene lists (truncating and missense),
the truncating variant classifier was most accurate, correctly predicting the mutation status in 76% (38/50)
of the LCLs. In comparison, both the truncating and missense BRCA2 classifiers correctly predicted
73% of the LCLs. However, the classifier derived from BRCA2 truncating variants misclassified all
BRCA2 missense-associated LCLs. It is unclear whether inclusion of all differentially expressed genes
would improve accuracy.

Walker et al. [15] used a pooled-RNA strategy to assess 27 LCLs derived from affected women
in high-risk breast cancer families (9 BRCA1, 9 BRCA2 pathogenic variant carriers and 9 BRCAx)
and 9 LCLs from healthy individuals, before and after treatment with mitomycin C. This study
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identified 36 genes which overlapped three different analyses that compared samples based on:
(1) BRCA variant status, (2) mitomycin C treatment status and (3) disease status. A classifier was
built using the expression profile of nine RT-qPCR validated genes which distinguished BRCA1 from
BRCA2 variant carriers with 83% accuracy. However, inclusion of all BRCA1, BRCA2 and BRCAx LCLs
decreased the performance with a maximum of 59% prediction accuracy.

Fielotter et al. [24] compared the expression profiles of 31 BRCA1-associated LCLs against 38 control
LCLs post γ-irradiation. Genes were identified based on the predictive value of classifying BRCA1
status. Interestingly, the authors used raw microarray data along with quantile normalised expression
data to identify candidate genes. The analysis of raw intensity values may introduce biases especially
with fluctuations in sample RNA load. In total, 43 genes were identified that best classified the
53 samples used as a training set. All 16 test samples were correctly classified and in total the gene set
performed accurately (sensitivity = 84%, specificity = 92%). However, only 3/43 genes were validated
by RT-qPCR.

Pouliot et al. [26] investigated gene expression profiles in LCLs from 117 women with (affected) and
without breast cancer (unaffected) from related individuals with or without pathogenic BRCA1 or BRCA2
variants. Ninety-five transcripts were differentially expressed between unaffected BRCAx LCLs and
either BRCA1 pathogenic variants, BRCA2 pathogenic variants or affected BRCAx. These 95 transcripts
segregated BRCA1 and BRCA2 pathogenic variants from BRCAx LCLs; however, they were not
able to discriminate each variant type. Post-hoc analysis suggested that 69 transcripts were
differentially expressed between LCLs with BRCA1 pathogenic variants and unaffected BRCAx
LCLs, and 71 transcripts were differentially expressed between LCLs with BRCA2 pathogenic variants
and unaffected BRCAx LCLs.

4.3. Peripheral Blood

Expression profiles of 30 peripheral blood samples identified 133 differentially expressed genes
associated with BRCA1 pathogenic variants [14]. However, after adjusting for multiple testing no
genes were statistically significant. The 133 genes were able to accurately classify 80% (11/15) of the
BRCA1 pathogenic variants and 100% (15/15) of the non-variants. Again, the classification was only
performed on the training dataset and not validated in an independent cohort.

Salmon and colleagues used peripheral blood (lymphocytes) from 80 individuals, including BRCA1
(n = 13) and BRCA2 (n = 10) pathogenic variant carriers [21]. Analysis of γ-irradiated lymphocytes from
BRCA1 pathogenic variants revealed 137 probes that were differentially expressed compared to control
lymphocytes. Interestingly, a greater effect was observed in BRCA2-associated lymphocytes with
1345 probes differentially expressed compared to controls. In an attempt to select the most discriminate
genes, only genes with fold changes greater than two and consistent expression patterns across all
samples were considered. Thirty-six genes met this criteria, the majority of which were enriched for
transcription and DNA binding processes. Furthermore, RT-qPCR was used to test the accuracy of the
classification and to refine these discriminatory genes. Firstly, of the 36 genes, 21 showed significant
differences (measured by RT-qPCR) associated with BRCA1 or BRCA2 status. The classifier was further
refined by ROC curve analysis of each gene. ROC curve analysis concluded that three genes performed
poorly and these were excluded from the classifier. The remaining 18 genes accurately classified
lymphocytes based on BRCA1 and BRCA2 status in an independent cohort of 57 individuals. In contrast
to findings in irradiated lymphocytes, non-irradiated lymphocytes displayed a greater change in
expression profiles for carriers of pathogenic BRCA1 variants compared to BRCA2 variants [27].
Compared to wild-type controls, 203 and 29 genes were differentially expressed associated with BRCA1
and BRCA2 pathogenic variants. The discrepancy between irradiated and non-irradiated lymphocytes
and variant status may be due to differential dependency of BRCA1 and BRCA2 and the response to
γ-irradiation. In addition, immortalised LCLs BRCA1 but not BRCA2-associated LCLs are sensitive to
γ-irradiation [35].
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Due to the association of BRCA1 and BRCA2 proteins with telomere maintenance [36],
peripheral blood was collected from 40 women (31 with breast cancer) and telomere-associated
gene expression levels were assessed [28]. BRCA1 pathogenic variants had a greater disruption on
telomere-associated genes. Forty-six and eight genes were differentially expressed between BRCA1
and BRCA2 carriers, respectively. Despite greater disruption to the expression of telomere-associated
genes, there was no difference in telomere length between BRCA1 and BRCA2 carriers.

5. Reproducibility between Expression Studies

We found a poor overlap of BRCA1/2 associated genes between expression studies, irrespective of
tissue type (Table 2). The majority of studies identified a high number of differentially expressed
genes compared to sample sizes, and used these to produce classifiers. The lack of agreement between
studies is consistent with the classifiers over-fitting the dataset. Furthermore, lack of consensus may be
due to other factors, including differences in study design and statistical approaches undertaken.

5.1. Sample Selection

Differences in sample selection can be summarised as three broad ideas: (1) definitions of
experimental and control groups, (2) tumour matching and (3) purity of tumour samples.

Control arms can broadly be split into two categories: unselected (e.g., sporadic cancer) or BRCAx
individuals. BRCAx and sporadic tumours themselves are heterogeneous and generate distinct gene
expression profiles [37]. Fernàndez-Ramires et al., identified two BRCAx subgroups and two sporadic
subgroups based on gene expression profiling. Although there was some overlap between the BRCAx
and sporadic subgroups, results suggest that there are sub-populations of tumours that differ within
each control group. Therefore, comparison of BRCA1 or BRCA2 variant carriers would be expected to
exhibit distinct differences between each control group.

For the experimental arms, studies generally incorporated all pathogenic variants into a
BRCA1- or BRCA2-associated arm. However, Waddell et al. [13] observed differences between
truncating and missense pathogenic variants. Mixed populations of variant types used by other
studies may confound any observed difference. Furthermore, two studies highlighted that sporadic
tumours with hypermethylated BRCA1 promoters exhibit expression profiles similar to BRCA1
pathogenic variants [6,8]. Two further studies directly addressed the hypermethylated BRCA1
promoter by excluding [22] or combining with them pathogenic variants [20]. In addition, George et al.,
combined tumours with BRCA1 and BRCA2 somatic mutations with germline pathogenic variants.
It remains unclear whether tumours that harbour somatic mutations would exhibit similar expression
profiles to tumours developed in germline pathogenic variant carriers. In addition, one study
had particularly extreme exclusion criteria for both control and experimental ovarian tumours [17].
Konstantinopoulos and colleagues selected only those tumours which clustered in the correct groups,
effectively removing tumours in order to fit classifications. It is unlikely that this method of sample
selection would generate a gene expression signature reflective of BRCA1 or BRCA2 carriers. This was
highlighted by an independent study which demonstrated poor accuracy of the Konstantinopoulos
“BRCA-like” signature [22].

Secondly, the importance of sample matching was highlighted by the early studies in breast tumours
which identified ER status as a major driver of expression variation [8]. Subsequent studies showed
that tumour subtype was also a major driver of variability in expression [18,19,25]. The development of
ovarian subtypes is not yet as well defined as those in breast. However, Tothill et al. [34] identified six
molecular subtypes in high-grade ovarian tumours. Subsequently, BRCA1-associated ovarian tumours
were shown to be enriched for immunoreactive (C2) subtype, which is characterised by lymphocytic
infiltrate in the epithelium [22]. However, these have yet to be a consideration in BRCA-associated gene
expression studies in ovarian cancers. Despite inconsistencies in tumour matching between studies,
the similarities between a small subset suggest that differences between study expression profiles
are not solely due to sample matching. For example, three studies investigated BRCA1-associated
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expression profiles in ER-negative breast cancers [8,11,12] and no gene was common between these
three studies (Table 2).

Third is the purity of the sample collected for RNA isolation and the influence of cell type
heterogeneity (e.g., tumour and stromal cells) on gene expression profiles. Subsequent to the majority
of studies Massink et al. [25] highlighted the importance of invading tumour lymphocytes on gene
expression profiles. The presence of invading tumour lymphocytes, a feature of BRCA1-associated
breast tumours, added complexity to gene expression profiles. Although the effect of lymphocyte
presence was not tested, George et al., highlighted the enrichment of BRCA1-associated ovarian
tumours for the C2 molecular subtype. The C2 subtype is characterised by the presence of lymphocytes
in the epithelial fraction [34]. Four studies [8,18,23,31] selected samples based on >50% tumour content
as assessed by histological review, and one study [16] enriched for tumour content using laser capture
microdissection. The remaining studies digested tumour samples with no apparent knowledge of
cellular content.

Taken together, there are subtle differences in sample selection criteria across all studies. It is
difficult to determine the effect these differences have on recapturing gene expression changes. However,
there were several consistent observations between studies, for example the ability to identify the ER
status of tumours based on expression profiles [8,19]. Furthermore, there was consistent association
of BRCA1-associated breast tumours with basal-like subtype [18,19,25]. As these observations were
consistent, it can be assumed that any BRCA1/2 gene expression profile is more subtle, and would be
confounded by any differences in molecular features.

5.2. Differences in DNA Damaging Treatments of Normal Tissue

Table 3 summarises the differences in the design and methods of studies in normal tissue,
which may limit their comparability. The majority of studies (6/10) induced DNA damage to elicit a
change in expression, under the hypothesis that BRCA1 and BRCA2 carriers would have an impaired
DNA damage response. Only Walker et al., used Mitomycin C as a DNA damage-inducing reagent
as the authors observed a greater effect on expression compared to γ-irradiation [15]. The remaining
five studies treated fibroblast [9,10], lymphocytes [21] and LCLs [13,24] with γ-irradiation. A further
four studies [14,26–28] identified expression changes in untreated LCLs. Despite LCLs requiring
Epstein–Barr virus (EBV) transformation to become immortal, there is evidence that transformation
has little effect on gene expression profiles [38]. However, BRCA1-associated LCLs are not susceptible
to DNA damage, a phenotype expected for functionally damaged BRCA1 [39]. Thus it is important to
better understand the effect of EBV transformation in the context of impaired BRCA1 to appreciate the
impact on gene expression.

Table 3. A summary of design and methods within of studies focusing on normal tissue. BC-Breast
cancer, OC-Ovarian cancer, LCLs-Lymphoblastoid cell lines.

Study (Year) Tissue Source Tissue Criteria Comparison(s) Treatment

Kote-Jarai et al. [9]
(2004) Breast fibroblast Prophylactic mastectomy

or breast reduction
BRCA1 vs.

non-BRCA1 γ irradiation

Kote-Jarai et al. [10]
(2006) Breast fibroblast

Skin biopsy women post
BC (disease-free at time

of collection)

BRCA1 vs. BRCAx;
BRCA2 vs. BRCAx γ irradiation

Waddell et al. [13]
(2008) LCLs Breast cancer

affected women

BRCA1 (truncating
variants) vs.

BRCAx; BRCA1
(missense variants)
vs. BRCAx; BRCA2

(truncating
variants) vs.

BRCAx; BRCA2
(missense variants)

vs. BRCAx;

γ irradiation
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Table 3. Cont.

Study (Year) Tissue Source Tissue Criteria Comparison(s) Treatment

Vuillaume et al. [14]
(2009)

Peripheral blood
Mononuclear Cells

High risk breast cancer
family members,

disease-free at time of
collection (some had

BC/OC history)

BRCA1 vs.
non-BRCA1 None

Walker et al. [15] (2010) LCLs–pooled from
3x individuals

Breast cancer affected
women

BRCA1 vs. BRCA2
vs. BRCAx Mitomycin C

Salmon et al. [21]
(2013) Lymphocytes

No personal history of
cancer with family

member with history of
breast cancer

BRCA1 vs. BRCAx;
BRCA2 vs. BRCAx γ irradiation

Feilotter et al. [24]
(2014) LCLs

Samples deposited in NIH
Breast Cancer Family
Registries with and

without BRCA1 variants.

BRCA1 vs.
non-BRCA1 γ irradiation

Pouliot et al. [26]
(2017) LCLs

Individuals of high risk
breast cancer families with
and with disease history.

Included the oldest
BRCAx sister with no

cancer history

BRCA1 vs. BRCAx
(no BC history);

BRCA2 vs. BRCAx
(no BC history);

BRCAx (BC
history) vs. BRCAx

(no BC history)

None

Tanaka et al. [28]
(2018) Peripheral blood

Carriers of pathogenic
BRCA1 or BRCA2 variant

with or without cancer,
BRCAx carriers

with cancer.

BRCA1 vs.
non-BRCA1;
BRCA2 vs.

non-BRCA2

None

Zahavi et al. [27] (2018) Lymphocytes
No personal history of

cancer. Controls had no
family history of BC or OC

BRCA1 vs. BRCAx;
BRCA2 vs. BRCAx None

5.3. Advancement in Technologies and Statistical Approaches

Early gene expression studies were limited by both cost and microarray technology. The earliest
studies used cDNA spotted arrays, which were limited to 1000 s of targets, while the more modern
arrays are able to detect 10,000 s of targets and next generation sequencing platforms are able to detect
the entire transcriptome. Such advancement in gene expression technology means that the latter studies
are measuring transcripts not tested in the earlier studies [40,41]. Furthermore, transcript annotations
and guidelines around publishing large gene expression array studies have developed alongside these
studies. This led to occasions where early gene panels could not be validated in later, much larger
expression arrays. For example Dudaladava et al., only had expression data for 40 of the Hedenfalk
51 gene panels, making validation of earlier results difficult [6,11]. The reduced cost of performing
transcriptome analysis and ongoing importance of tissue biobanking has allowed more recent studies
to test a greater number of samples thus increasing statistical power [18,23]. Importantly, genome-wide
transcriptome analysis requires consideration of multiple testing to control the false positive rate.
A total of 14 of the 23 studies discussed here used no p-value adjustments and 2 of the 23 studies [7,27] set
a strict p-Value threshold (p < 0.0001). Eight of the remaining nine studies controlled the false-discovery
rate, an attempt to reduce false positives, whilst the last used the more conservative Bonferroni
correction method. Although p-values were not adjusted in the majority of studies, given sufficient
power and effect size we would still expect that true positive results be shared between different
expression datasets independent of the method and technology applied. However, only a small overlap
of genes associated with BRCA1/2 pathogenic variant status was observed between studies (Table 2).
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5.4. Methods of Transcriptome Analysis

Two general approaches, class prediction and differential expression analysis, have been
undertaken to identify gene differences between tumour genotypes. Class prediction attempts to identify
genes with the ability to segregate samples into distinct subgroups, whilst differential expression
identifies genes that differ between multiple subgroups. The latter approach requires knowledge
of the genotypes or tumour subtypes. If the major driver of expression variability was due to the
variant status of the tissue then it would be reasonable to expect a large overlap of gene lists between
methodologies, as seen by Kote-Jarai et al. [9]. However, the aforementioned differences in study
design and sample selection has likely led to study biases and confounding variables, which dilute any
genotype-associated expression differences. Furthermore, the selection of genes lists was inconsistent.
For example, studies using class prediction methods typically optimised gene lists to contain the
smallest number of genes required to accurately segregate samples into subgroups. A common
limitation between studies was the lack of validation in independent datasets. To be able to fully
appreciate the strength of a classifier and to compare performance between studies these independent
validations need to be performed.

6. Conclusions

Identifying individuals with pathogenic variants in BRCA1 or BRCA2 is critical in the management
and prevention of breast and ovarian cancer. The increasing DNA profiling of tumours will continue
to identify greater number of variants of uncertain significance and the need to classify these will
become greater.

Due to the enormity of literature surrounding BRCA1 and BRCA2 pathogenic variants, there may
further gene expression studies outside of this review. However, the inclusion of any further study
would not materially change the conclusions, rather they would further highlight the complexity of
BRCA1-associated gene expression phenotypes.

The studies included in this review have each identified gene sets associated with BRCA1 or
BRCA2 variant status. Despite overlapping aims, there is a distinct lack of consensus between datasets
(Table 4). Rather, each study identified specific genes likely driven by the differences in study designs
rather than BRCA1/2 variant status. The lack of consensus may be due to differences in study design
and statistical approaches (Table 4). Furthermore, all studies had modest cohort sizes (<80 familial
breast cancers) that limited the ability to identify subtle changes in expression.

Table 4. Difference in study design that limit comparability.

Study design
Variant classifications (missense/truncating, germline/somatic)
Sample size
Control arm (unselected, BRCAx, healthy controls)
Technology (spotted microarray, oligo array, RNA-sequencing)
Tissue type/purity
Tissue treatments

Identification of BRCA1 associated genes
Class comparison
Class prediction

Other
Non-variant effect
Epigenetic silencing
Environmental effects

It also remains unclear from the current studies whether somatic changes occurring during
tumorigenesis overwhelm any germline “BRCA-like” expression profile. For tumours with no
pathogenic variant, BRCA1 promotor hypermethylation status should be determined as it is unclear
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whether this would lead to expression profiles that mimic those associated with pathogenic variants.
Despite the lack of consensus between study datasets, gene expression profiles associated with
pathogenic variant status remain as a potential molecular phenotype to aid in variant classification.
However, utilising the advancements in expression-based technologies, developing larger study
cohorts and better understanding the variables affecting gene expression profiles across different tissue
types must be carefully considered for future studies.
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Pękala, W.; Grzybowska, E.; et al. Gene Expression Profiling in Hereditary, BRCA1-linked Breast Cancer:
Preliminary Report. Hered. Cancer Clin. Pract. 2006, 4, 28–38. [CrossRef] [PubMed]

12. Martin, R.W.; Orelli, B.J.; Yamazoe, M.; Minn, A.J.; Takeda, S.; Bishop, D.K. RAD51 Up-regulation Bypasses
BRCA1 Function and Is a Common Feature of BRCA1-Deficient Breast Tumors. Cancer Res. 2007, 67,
9658–9665. [CrossRef] [PubMed]

13. Waddell, N.; Haaf, A.T.; Marsh, A.; Johnson, J.; Walker, L.C.; kConFab Investigators; Gongora, M.; Brown, M.;
Grover, P.; Girolami, M.; et al. BRCA1 and BRCA2 Missense Variants of High and Low Clinical Significance
Influence Lymphoblastoid Cell Line Post-Irradiation Gene Expression. PLoS Genet. 2008, 4, e1000080.
[CrossRef] [PubMed]

14. Vuillaume, M.-L.; Uhrhammer, N.; Vidal, V.; Vidal, V.S.; Chabaud, V.; Jesson, B.; Kwiatkowski, F.; Bignon, Y.-J.
Use of Gene Expression Profiles of Peripheral Blood Lymphocytes to Distinguish BRCA1 Mutation Carriers
in High Risk Breast Cancer Families. Cancer Inform. 2009, 7, 41–56. [CrossRef]

http://dx.doi.org/10.1200/JCO.2016.67.0554
http://dx.doi.org/10.1126/science.1251827
http://www.ncbi.nlm.nih.gov/pubmed/24675953
http://dx.doi.org/10.1002/cncr.21536
http://www.ncbi.nlm.nih.gov/pubmed/16284991
http://dx.doi.org/10.1093/jnci/djt095
http://www.ncbi.nlm.nih.gov/pubmed/23628597
http://dx.doi.org/10.1136/jmedgenet-2018-105872
http://www.ncbi.nlm.nih.gov/pubmed/30962250
http://dx.doi.org/10.1056/NEJM200102223440801
http://dx.doi.org/10.1093/jnci/94.13.990
http://dx.doi.org/10.1038/415530a
http://dx.doi.org/10.1158/1078-0432.CCR-1067-3
http://dx.doi.org/10.1158/1078-0432.CCR-05-2805
http://dx.doi.org/10.1186/1897-4287-4-1-28
http://www.ncbi.nlm.nih.gov/pubmed/20223001
http://dx.doi.org/10.1158/0008-5472.CAN-07-0290
http://www.ncbi.nlm.nih.gov/pubmed/17942895
http://dx.doi.org/10.1371/journal.pgen.1000080
http://www.ncbi.nlm.nih.gov/pubmed/18497862
http://dx.doi.org/10.4137/CIN.S931


Cancers 2020, 12, 3015 17 of 18

15. Walker, L.C.; Thompson, B.A.; Waddell, N.; kConFab Investigators; Grimmond, S.M.; Spurdle, A.B. Use of
DNA–Damaging Agents and RNA Pooling to Assess Expression Profiles Associated with BRCA1 and BRCA2
Mutation Status in Familial Breast Cancer Patients. PLoS Genet. 2010, 6, e1000850. [CrossRef]

16. Press, J.Z.; Wurz, K.; Norquist, B.M.; Lee, M.K.; Pennil, C.; Garcia, R.; Welcsh, P.; Goff, B.A.; Swisher, E.M.
Identification of a Preneoplastic Gene Expression Profile in Tubal Epithelium of BRCA1 Mutation Carriers.
Neoplasia 2010, 12, 993-IN8. [CrossRef]

17. Konstantinopoulos, P.A.; Spentzos, D.; Karlan, B.Y.; Taniguchi, T.; Fountzilas, E.; Francoeur, N.; Levine, D.A.;
Cannistra, S.A. Gene Expression Profile of BRCAness That Correlates With Responsiveness to Chemotherapy
and With Outcome in Patients With Epithelial Ovarian Cancer. J. Clin. Oncol. 2010, 28, 3555–3561. [CrossRef]

18. Waddell, N.; kConFab Investigators; Arnold, J.; Cocciardi, S.; Da Silva, L.; Marsh, A.; Riley, J.; Johnstone, C.N.;
Orloff, M.; Assié, G.; et al. Subtypes of familial breast tumours revealed by expression and copy number
profiling. Breast Cancer Res. Treat. 2009, 123, 661–677. [CrossRef]

19. Lisowska, K.M. BRCA1-related gene signature in breast cancer: The role of ER status and molecular type.
Front. Biosci. 2011, 3, 125–136. [CrossRef]

20. Jönsson, G.; Staaf, J.; Vallon-Christerson, J.; Ringnér, M.; Gruvberger-Saal, S.K.; Saal, L.H.; Holm, K.;
Hegardt, C.; Arason, A.; Fagerholm, R.; et al. The Retinoblastoma Gene Undergoes Rearrangements
inBRCA1-Deficient Basal-like Breast Cancer. Cancer Res. 2012, 72, 4028–4036. [CrossRef]

21. Salmon, A.Y.; Salmon-Divon, M.; Zahavi, T.; Barash, Y.; Levy-Drummer, R.S.; Jacob-Hirsch, J.; Peretz, T.
Determination of Molecular Markers for BRCA1 and BRCA2 Heterozygosity Using Gene Expression Profiling.
Cancer Prev. Res. 2013, 6, 82–90. [CrossRef] [PubMed]

22. George, J.; Alsop, K.; Etemadmoghadam, D.; Hondow, H.; Mikeska, T.; Dobrovic, A.; DeFazio, A.; Smyth, G.K.;
Levine, D.A.; Mitchell, G.; et al. Nonequivalent Gene Expression and Copy Number Alterations in High-Grade
Serous Ovarian Cancers with BRCA1 and BRCA2 Mutations. Clin. Cancer Res. 2013, 19, 3474–3484. [CrossRef]

23. Larsen, M.J.; Kruse, T.A.; Tan, Q.; Lænkholm, A.-V.; Bak, M.; Lykkesfeldt, A.E.; Sørensen, K.P.; Hansen, T.V.O.;
Ejlertsen, B.; Gerdes, A.-M.; et al. Classifications within Molecular Subtypes Enables Identification of
BRCA1/BRCA2 Mutation Carriers by RNA Tumor Profiling. PLoS ONE 2013, 8, e64268. [CrossRef]

24. Feilotter, H.E.; Michel, C.; Uy, P.; Bathurst, L.; Davey, S. BRCA1 Haploinsufficiency Leads to Altered
Expression of Genes Involved in Cellular Proliferation and Development. PLoS ONE 2014, 9, e100068.
[CrossRef] [PubMed]

25. Massink, M.P.G.; Kooi, I.E.; Van Mil, S.E.; Jordanova, E.S.; Ameziane, N.; Dorsman, J.C.; Van Beek, D.M.;
Van Der Voorn, J.P.; Sie, D.; Ylstra, B.; et al. Proper genomic profiling of (BRCA1-mutated) basal-like
breast carcinomas requires prior removal of tumor infiltrating lymphocytes. Mol. Oncol. 2015, 9, 877–888.
[CrossRef]

26. Pouliot, M.-C.; Kothari, C.; Joly-Beauparlant, C.; Labrie, Y.; Ouellette, G.; Simard, J.; Droit, A.; Durocher, F.
Transcriptional signature of lymphoblastoid cell lines of BRCA1, BRCA2 and non-BRCA1/2 high risk breast
cancer families. Oncotarget 2017, 8, 78691–78712. [CrossRef]

27. Zahavi, T.; Sonnenblick, A.; Shimshon, Y.; Kadouri, L.; Peretz, T.; Salmon, A.Y.; Salmon-Divon, M.
SYK expression level distinguishes control from BRCA1-mutated lymphocytes. Cancer Manag. Res.
2018, 10, 589–598. [CrossRef]

28. Tanaka, H.; Phipps, E.A.; Wei, T.; Wu, X.; Goswami, C.; Liu, Y.; Sledge, J.G.W.; Mina, L.; Herbert, B.-S.
Altered expression of telomere-associated genes in leukocytes among BRCA1 and BRCA2 carriers.
Mol. Carcinog. 2018, 57, 567–575. [CrossRef]

29. Akbari, V.; Kallhor, M.; Akbari, M.T. Transcriptome mining of non-BRCA1/A2 and BRCA1/A2 familial breast
cancer. J. Cell. Biochem. 2018, 120, 575–583. [CrossRef]

30. Parker, J.S.; Mullins, M.; Cheang, M.C.; Leung, S.; Voduc, D.; Vickery, T.; Davies, S.; Fauron, C.; He, X.;
Hu, Z.; et al. Supervised Risk Predictor of Breast Cancer Based on Intrinsic Subtypes. J. Clin. Oncol. 2009, 27,
1160–1167. [CrossRef]

31. Larsen, M.J.; Thomassen, M.; Tan, Q.-R.; Laenkholm, A.-V.; Bak, M.; Sørensen, K.P.; Andersen, M.K.;
Kruse, T.A.; Gerdes, A.-M. RNA profiling reveals familial aggregation of molecular subtypes in non-BRCA1/2
breast cancer families. BMC Med. Genom. 2014, 7, 9. [CrossRef] [PubMed]

32. Waddell, N.; Cocciardi, S.; Johnson, J.; Healey, S.; Marsh, A.; Riley, J.; Da Silva, L.; Vargas, A.C.; Reid, L.;
Simpson, P.T.; et al. Gene expression profiling of formalin-fixed, paraffin-embedded familial breast tumours
using the whole genome-DASL assay. J. Pathol. 2010, 221, 452–461. [CrossRef] [PubMed]

http://dx.doi.org/10.1371/journal.pgen.1000850
http://dx.doi.org/10.1593/neo.101044
http://dx.doi.org/10.1200/JCO.2009.27.5719
http://dx.doi.org/10.1007/s10549-009-0653-1
http://dx.doi.org/10.2741/e227
http://dx.doi.org/10.1158/0008-5472.CAN-12-0097
http://dx.doi.org/10.1158/1940-6207.CAPR-12-0105
http://www.ncbi.nlm.nih.gov/pubmed/23341570
http://dx.doi.org/10.1158/1078-0432.CCR-13-0066
http://dx.doi.org/10.1371/journal.pone.0064268
http://dx.doi.org/10.1371/journal.pone.0100068
http://www.ncbi.nlm.nih.gov/pubmed/24950059
http://dx.doi.org/10.1016/j.molonc.2014.12.012
http://dx.doi.org/10.18632/oncotarget.20219
http://dx.doi.org/10.2147/CMAR.S156359
http://dx.doi.org/10.1002/mc.22773
http://dx.doi.org/10.1002/jcb.27413
http://dx.doi.org/10.1200/JCO.2008.18.1370
http://dx.doi.org/10.1186/1755-8794-7-9
http://www.ncbi.nlm.nih.gov/pubmed/24479546
http://dx.doi.org/10.1002/path.2728
http://www.ncbi.nlm.nih.gov/pubmed/20593485


Cancers 2020, 12, 3015 18 of 18

33. The Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma.
Nat. Cell Biol. 2011, 474, 609–615. [CrossRef]

34. Tothill, R.W.; Tinker, A.V.; George, J.; Brown, R.; Fox, S.B.; Lade, S.; Johnson, D.S.; Trivett, M.K.;
Etemadmoghadam, D.; Locandro, B.; et al. Novel Molecular Subtypes of Serous and Endometrioid
Ovarian Cancer Linked to Clinical Outcome. Clin. Cancer Res. 2008, 14, 5198–5208. [CrossRef]

35. Bourton, E.C.; Foster, H.A.; Plowman, P.N.; Harvey, A.J.; Parris, C.N. Hypersensitivity of BRCA1 Heterozygote
Lymphoblastoid Cells to Gamma Radiation and PARP Inhibitors. J. Genet. Syndr. Gene Ther. 2013, 4.
[CrossRef]

36. Rosen, E.M. BRCA1 in the DNA damage response and at telomeres. Front. Genet. 2013, 4, 85. [CrossRef]
37. Fernández-Ramires, R.; Gómez, G.; Muñoz-Repeto, I.; De Cecco, L.; Llort, G.; Cazorla, A.; Blanco, I.;

Gariboldi, M.; Pierotti, M.A.; Benítez, J.; et al. Transcriptional characteristics of familial non-BRCA1/BRCA2
breast tumors. Int. J. Cancer 2010, 128, 2635–2644. [CrossRef]
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