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Simple Summary: We use a generative deep learning paradigm for the identification of digital
signatures in radiological imaging data. The model is trained on a small inhouse data set and
evaluated on publicly available data. Apart from using the learned signatures for the characterization
of lesions, in analogy to radiomics features, we also demonstrate that by manipulating them we can
create realistic synthetic CT image patches. This generation of synthetic data can be carried out at
user-defined spatial locations. Moreover, the discrimination of liver lesions from normal liver tissue
can be achieved with high accuracy, sensitivity, and specificity.

Abstract: Modern generative deep learning (DL) architectures allow for unsupervised learning
of latent representations that can be exploited in several downstream tasks. Within the field of
oncological medical imaging, we term these latent representations “digital tumor signatures” and
hypothesize that they can be used, in analogy to radiomics features, to differentiate between lesions
and normal liver tissue. Moreover, we conjecture that they can be used for the generation of synthetic
data, specifically for the artificial insertion and removal of liver tumor lesions at user-defined spatial
locations in CT images. Our approach utilizes an implicit autoencoder, an unsupervised model
architecture that combines an autoencoder and two generative adversarial network (GAN)-like
components. The model was trained on liver patches from 25 or 57 inhouse abdominal CT scans,
depending on the experiment, demonstrating that only minimal data is required for synthetic image
generation. The model was evaluated on a publicly available data set of 131 scans. We show that
a PCA embedding of the latent representation captures the structure of the data, providing the
foundation for the targeted insertion and removal of tumor lesions. To assess the quality of the
synthetic images, we conducted two experiments with five radiologists. For experiment 1, only one
rater and the ensemble-rater were marginally above the chance level in distinguishing real from
synthetic data. For the second experiment, no rater was above the chance level. To illustrate that
the “digital signatures” can also be used to differentiate lesion from normal tissue, we employed
several machine learning methods. The best performing method, a LinearSVM, obtained 95% (97%)
accuracy, 94% (95%) sensitivity, and 97% (99%) specificity, depending on if all data or only normal
appearing patches were used for training of the implicit autoencoder. Overall, we demonstrate that
the proposed unsupervised learning paradigm can be utilized for the removal and insertion of liver
lesions at user defined spatial locations and that the digital signatures can be used to discriminate
between lesions and normal liver tissue in abdominal CT scans.
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1. Introduction

Recent advances in generative adversarial networks (GANs) and other generative
technologies allow for training without ground truth labels. Amongst other applications
GANs [1,2] have been used for medical image synthesis, e.g., for the translation of MR
into CT [3,4], PET into CT [5], or PET into MR images [6]. By employing GANs, it also
has been demonstrated that lung nodules can be introduced into and removed from CT
scans, leading to realistic looking images [7,8]. Related work also originates from the field
referred to as anomaly detection. Here, (variational) autoencoders (VAEs) [9,10] have been
used for the unsupervised lesion detection in MR scans of the brain [11–13].

In this paper we utilize a generative learning paradigm for the identification of digital
signatures in radiological data. Apart from using them in analogy to radiomics features
for the characterization of lesions, we also investigate if realistic synthetic data can be
generated by manipulating these digital signatures.

Both methods, VAEs and GANs, learn a generative latent variable model of the training
data and come with their respective advantages and disadvantages. Vanilla VAEs, on the
one hand, often use independent Gaussian likelihood functions over individual dimensions
(i.e., voxels or pixels) of the data space. Therefore, they cannot learn structured, spatially
correlated noise. This often leads to a convergence of the generated predictions towards
the mean of the training data, thus resulting in the generation of blurry, not very realistic
samples. Furthermore, VAEs apply a variational approximation, restricting the functional
family of the approximate posterior on latent variables, for a set of given observations, to
Gaussian variables with a diagonal covariance matrix. Thus, by construction, they cannot
learn multimodal or skewed posterior distributions, although this is remedied partially
using reparameterization approaches, such as normalizing flows [14]. GANs, on the other
hand, can learn any distribution on data space, which can be generated by passing some
random latent variables through a deep neural network, as their training objective only
relies on samples from the optimized distributions. Thus, they excel at learning structured
noise and can generate very convincing samples. However, GANs do not provide a
computationally efficient, direct way to map from data samples to a posterior distribution
on latent variables. Recent approaches try to combine the advantages of both approaches,
i.e., the flexibility of purely sampling-based optimization of GANs, and the fast amortized
inference made possible by the recognition network and variational objective function of
VAEs, leading to a new class of likelihood-free variational inference algorithms [15–20].
These algorithms use a similar architecture to VAEs—in terms of learning amortized
generation and inference networks—when mapping from latent states to data samples and
vice versa. However, they apply a learning objective, which approximates the variational
free energy, using discriminator networks on data space and latent space. Thereby, they
only rely on samples from all relevant distributions. This allows these approaches to
combine the fast inference afforded by a variational architecture and objective functions
with the flexibility of an approach that does not have to make strong assumptions about
the functional family of the likelihood or posterior. This leads to powerful and very flexible
architectures that are able to generate realistic medical images and have an accessible
latent code that can be exploited for downstream tasks. In our case, this latent code vector
captures a compressed version of the structures that are present in the liver image patches.
It can be used not only for the generation of (novel) output images but also as a feature
vector for radiomics analyses, making the classification of different tissue types possible.
Hence, we speak of “digital tumor signatures” when referring to this latent code vector.

In the literature, at least four generations of radiomics are described [21]. The first two
generations incorporate handcrafted features in conjunction with classical machine learning
methods. The second generation is characterized by the extraction of a multitude of generic
handcrafted features and currently still represent the primary radiomics approach. In the
3rd generation deep learning (DL) models are utilized to extract features, thereby exploiting
that DL architectures can learn representations without relying on feature engineering.
This should lead to better predictions as it allows to learn complex, non-linear relationships
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within the data. End-to-end approaches are considered 4th generation radiomics. These
approaches combine learning of representations and classification, e.g., distinguishing
clinical endpoints or genetic traits, in a single architecture. An example is the study of
Hosny et al. that demonstrate this approach for lung cancer prognostication [22]. A
disadvantage of an end-to-end solution that is often stated is that the processes leading to
the output are more difficult to comprehend and interpret.

In a recent approach, coined “deep radiomics”, Kobayashi and colleagues proposed
to constrain the internal variability of convolutional neural networks through vector quan-
tization [23]. They demonstrate that the learned internal feature representations can be
exploited as imaging markers that in turn can be used for glioma grading.

This approach is similar to our digital signatures approach. Both methods could be
categorized as 3rd generation radiomics. However, our solution has several advantages.
Training is conducted in an unsupervised fashion, we utilize a generative instead of a
discriminative approach, allowing for generating synthetic data and as mentioned above,
do not need to constrain the expressiveness of the learned distribution as it is done with
vector quantization.

In this article, we present a generative architecture for learning of spatially encoded
digital tumor signatures. To the best of our knowledge, no comparable approaches have
been described in the literature. To evaluate the model, we use abdominal CT scans
containing liver lesions. We investigate how direct alteration of the latent code allows for
the generation of synthetically manipulated high-quality radiological data, i.e., how to
remove or insert liver lesions at a given spatial location and if medical experts are able to
distinguish the synthetic images from real data. Further, we analyze if the digital signatures
can be used to discriminate between lesions and normal appearing liver tissue.

2. Materials and Methods
2.1. Data and Preprocessing

The inhouse training set consisted of abdominal CT scans from 57 patients in the
portal-venous phase; 32 contained at least one lesion, the remaining 25 scans displayed no
visible liver lesion. With lesions we allude to either benign or malignant changes of the
liver tissue.

The spiral images were acquired during routine clinical workup on a 2 × 64-slice
dual source dual energy CT (Siemens Somatom Definition Flash, Siemens AG, Forchheim,
Germany), using two different tube voltages (100 kV and tin filtered 140 kV, reference tube
currents 200/155 mAs). The two images were fused to a virtual image of 120 kV with a
weighting factor of 0.5. Using a standard soft tissue kernel (B31f) 3 mm axial slices were
reconstructed with an in-plane pixel spacing ranging from 0.65 to 0.97 mm. The portal
venous images were acquired 60 s after intravenous application of nonionic iodinated
contrast agent (Imeron 300, Bracco, Konstanz, Germany) with a body weight adapted
amount and flow rate.

In addition, we used the publicly available LiTS data set containing 131 scans that
originated from 5 different institutions and was annotated by experts as described in
Bilic et al. [24]. The heterogenous LiTS imaging data were acquired with different CT
scanners and acquisition protocols, leading to distinct differences in resolution and image
quality. The axial resolution varies from 0.56 to 1.0 mm and the z- spacing from 0.45 to
6.0 mm. No information is given on the contrast agent administration, but visual inspection
reveals the presence of some arterial phase images.

The CT volumes were used without resampling or normalization and split into patches
of 96 pixels × 96 pixels by sliding a two-dimensional window over each axial slice. A step
size of 48 pixels was used and extracted patches had to contain liver tissue, resulting in
approximately 500,000 patches in total. The HU values of the patches were clipped to a
range between −110 and 190 HU and scaled to be in the range [−1, 1]. From the LiTS data
set we created balanced test sets with the same number of normal and lesion patches, by
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randomly selecting 1024 patches for the principal component analysis (PCA) embedding
and 1000 patches for the classification experiment.

2.2. Model Architecture and Training

The architecture (Figure 1) is an extension of the IAE architecture [17] with a fully
convolutional encoder and decoder.
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convolutional and fully connected layers. The regularizer is built of three fully connected layers. Abbreviations: FC—fully
connected layer, Conv—convolutional layer, ReLU—rectified linear unit.

We augmented the previously proposed loss function of the decoder by an additional
pixel-wise L1 term, i.e., the absolute difference between the predicted and true value,
which was weighted by a factor of 500 to account for approximately 80% of the total loss
value. Empirical analysis yielded that this was necessary to obtain reconstructions as
similar as possible to the original images. In the original architecture the latent code was
divided into a global and local part. It was shown that the global part captures general
information whereas the local part introduced stochasticity for variations of the output. In
our experiments we removed the local code, thereby turning this part of the architecture into
a deterministic autoencoder. The reasoning is that the reconstructions should be as realistic
as possible and we wanted to deterministically modify regions of the image by directed
modifications to the latent code. For this purpose, we additionally extended the latent code
by a third dimension. The first two dimensions correspond to the spatial locations of the
input patch, while the third dimension, i.e., the channel dimension, encodes the information
for a specific location. We chose the latent code to be of size 3 × 3 × 128. The latent space
was adversarially constrained to be close to a standard normal distribution with zero mean
and unit variance. This normalization in latent space allowed the architecture to learn a
full generative model of the data distribution, which could be used to generate samples
representative of the training distribution, or to automatically detect outliers by quantifying
the prior probability of embedded data in latent space. To further improve the quality
of reconstructions, we turned the AE into a denoising AE by using an input noise vector
sampled from a Gaussian distribution with zero mean and variance of 0.1 [25]. The input
noise vector was not used during the prediction.
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The model was trained for 400 epochs using the Adam optimizer with an initial learn-
ing rate of 0.0002, which was reduced to 0.00002 after 200 epochs. For data augmentation,
random rotations and up–down/right–left flipping were applied with equal probability.
Training took approximately 12 h on a desktop PC with an 11 Gb NVIDIA Geforce RTX
2080 Ti GPU.

2.3. Evaluation of Synthetic Images

To evaluate the visual appearance of the synthetically generated images, we conducted
a survey with five radiologists. Their radiological experience ranged from less than one
year to over 30 years with a median experience of 3 years.

Using a custom browser-based presentation tool two image patches were presented
next to each other to the participants. We measured the classification accuracy and the
decision time for each participant. They only received minimal instructions and were not
informed about the time measurements. For each experiment we used 40 patches from the
inhouse data. In the first experiment 20 synthetic images had a lesion that was inserted
into a previously patch of normal liver tissue and the remaining 20 synthetic images were
modified such that a real lesion was removed. Modified patches were selected manually.
That means, only such patches were selected that contained a lesion in a suitable position
for being removed or that provided a suitable spot for inserting a lesion. However, once
the selection was fixed, the modification was applied without discarding patches that
showed any artifacts or abnormalities, aiming for a patch selection as unbiased as possible
for the first experiment. The data for the second experiment consisted of 40 randomly
selected patches.

To assess the inter-rater reliability, we computed Fleiss’ kappa. We modeled the
experiments as binomial processes to determine if rater decisions were above the chance
level for a given significance level defined with p < 0.05. Further, by combining the answers
using majority voting we obtained an ensemble rater that was also tested against chance
level. To assess the difference in reaction times we used two-sided t-tests, deliberately
without correction for multiple comparison (Appendix A).

2.4. Latent Code Lesion Classification

To investigate the differences of encodings from normal and lesion patches we fol-
lowed two strategies. For visual inspection of the learned structure, we reduced the latent
code to two dimensions using principal component analysis. Additionally, we trained
different classifiers to distinguish between healthy and diseased patches in the latent space,
assuming that classification accuracies are indicative for separability in the latent space.
For this purpose we used the sklearn version 0.20.3 implementations of LinearSVM, ran-
dom forest (RF), multi-layer perceptron (MLP), and naive Bayes [26]. For the RF we used
1000 trees with a maximum depth of 10. For all other methods we kept the default parame-
ters (listed in Appendix B). We ran a 10-fold cross validation and trained all classifiers on
the flattened latent space.

3. Results
3.1. Latent Code Manipulation

We distinguish three different types of images: original, reconstructed, and synthetic.
The term original denotes the acquired CT image prior to feeding it into the model, re-
constructed refers to the deterministic output of the model, i.e., the encoded and decoded
image without any modifications of the latent code, and synthetic describes the artificially
altered image by adjusting the latent code.

For adjustments to the latent code, we replaced the channel information of the latent
code for a given spatial location with the channel information of a spatial location from
another patch (Figure 2).
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Figure 2. Schematic for latent code manipulation. Each shown CT patch is 96 × 96 pixels in size, corresponding to an
approximate physical size of 96 × 96 mm.

Specifically, to generate synthetic images with and without lesions, the latent code
of a lesion patch was replaced with the latent code of normal liver tissue and vice versa.
This enabled us to “convert” regions containing lesions to normal liver tissue and to insert
lesions into selected, previously normal appearing liver regions. This can be done for any
spatial location on a given patch. By design, the first two dimensions of the latent code
determine the spatial location whereas the third dimension encodes what we refer to as a
digital tissue signature, i.e., the encoding of the latent code as it was learned by the model.
This digital signature can be manipulated resulting in images that are hard to distinguish
from real data, since the decoder learned to combine several spatial locations to a single
perceptually consistent image by adversarial training. Examples of synthetically modified
images are shown in Figure 3.
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Further, by linearly interpolating between a digital signature encoding normal tissue
and a signature encoding a lesion (and vice versa) we were able to gradually insert and
remove lesions at given spatial locations (see Videos S1 and S2, Supplementary Materials).
For instance, this could be used to synthetically generate different stages of lesion growth
resulting in CT scans with different levels of visual discernibility.

3.2. Evaluation of Synthetic Images

To determine the quality of our results, we conducted two surveys with five radiolo-
gists. For the first experiment, they were asked to distinguish between the synthetic and
original image. In the second experiment, they had to distinguish between reconstructed
images and original images. The results (Table 1) indicate that the experts were neither able
to differentiate with sufficient confidence between the synthetic and original nor between
the reconstructed and original image patches.
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Table 1. Results of the visual Turing test (std indicates ± 1 standard deviation, n = 40).

Rater Accuracy
Experiment

Times s (std)
Experiment 1

Accuracy
Experiment 2

Times s (std)
Experiment 2

1 0.65 8.05 (4.71) 0.425 5.03 (2.9)
2 0.625 14.34 (13.53) 0.575 7.84 (5.84)
3 0.575 7.62 (13.99) 0.6 4.01 (3.67)
4 0.6 9.86 (6.65) 0.6 6.21 (4.5)
5 0.725 72.3 (216.61) 0.65 15.29 (9.48)

Ensemble 0.7 - 0.65 -

For both experiments they achieved accuracy scores with an average accuracy of 0.635
and 0.57 respectively. From the modeled binomial process we were able to infer the chance
level interval for the accuracy to be in the range of [0.35, 0.65]. For experiment 1, only rater 5
and the ensemble rater were marginally above the chance level. For the second experiment,
no rater was above chance level. The results were independent of the experience level of
the raters. There were significant differences between some experts w.r.t. the time they
needed for a decision (see Supplementary Materials). However, the reaction times did not
impact accuracy. It should be noted that the discriminator could not be fooled, indicating
that the adversarial training was successful.

3.3. Latent Code Lesion Classification

Aside from using the learned digital signatures for synthetic image generation we
also exploited them to determine whether a given patch contained a lesion. For this
purpose, we used PCA to reduce the high dimensional latent space into two dimensions.
No normalization of the latent space was necessary as it is constrained to be close to a
standard normal distribution with zero mean and unit variance during training. The
inherent structure was visible and distinct clusters could be easily discriminated (Figure 4).

The discriminability increased even further, when training was conducted only with
patches that did not contain any lesion.

To confirm and quantify the visual results we trained four different out-of-the box
classifiers on the latent space obtained with inhouse data for discriminating normal tissue
from tissue patches that contain lesions. This led to a classification accuracy on the LiTS data
of up to 95% (sensitivity of 94% and specificity of 97%) with a LinearSVM when utilizing
patches with normal appearing liver tissue and lesions for constructing the latent space
(Table 2, all data). The MLP achieved comparable scores (95% accuracy, 93% sensitivity,
and 98% specificity). Using only normal appearing liver tissue for training of the digital
signatures, the accuracy of the LinearSVM could be improved further, yielding up to 97%
accuracy, a sensitivity of 95%, and a specificity of 99%.

Table 2. Classification accuracies of digital signatures. ((std) indicates ± 2 standard deviation, ACC accuracy, SE sensitivity,
SP specificity, AUC area under the curve, n = 1000 patches.)

Classifier All Data Normal

ACC SE SP AUC ACC SE SP AUC

Linear SVM 0.95 (0.02) 0.94 (0.04) 0.97 (0.01) 0.96 (0.02) 0.97 (0.02) 0.95 (0.03) 0.99 (0.02) 0.97 (0.02)
Random Forest 0.87 (0.04) 0.93 (0.04) 0.80 (0.06) 0.86 (0.04) 0.91 (0.04) 0.92 (0.06) 0.89 (0.04) 0.90 (0.04)

MLP 0.95 (0.03) 0.93 (0.05) 0.98 (0.03) 0.95 (0.02) 0.96 (0.02) 0.93 (0.04) 0.99 (0.02) 0.96 (0.02)
Naive Bayes 0.84 (0.05) 0.92 (0.05) 0.76 (0.09) 0.84 (0.05) 0.88 (0.04) 0.91 (0.06) 0.84 (0.06) 0.88 (0.04)
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sensitivity, and 98% specificity). Using only normal appearing liver tissue for training of 
the digital signatures, the accuracy of the LinearSVM could be improved further, yielding 
up to 97% accuracy, a sensitivity of 95%, and a specificity of 99%. 

Table 2. Classification accuracies of digital signatures. ((std) indicates ± 2 standard deviation, ACC accuracy, SE sensitivity, 
SP specificity, AUC area under the curve, n = 1000 patches.) 

Classifier All Data    Normal    
 ACC SE SP AUC ACC SE SP AUC 

Linear SVM 0.95 (0.02) 0.94 (0.04) 0.97 (0.01) 0.96 (0.02) 0.97 (0.02) 0.95 (0.03) 0.99 (0.02) 0.97 (0.02) 
Random Forest 0.87 (0.04) 0.93 (0.04) 0.80 (0.06) 0.86 (0.04) 0.91 (0.04) 0.92 (0.06) 0.89 (0.04) 0.90 (0.04) 

MLP 0.95 (0.03) 0.93 (0.05) 0.98 (0.03) 0.95 (0.02) 0.96 (0.02) 0.93 (0.04) 0.99 (0.02) 0.96 (0.02) 
Naive Bayes 0.84 (0.05) 0.92 (0.05) 0.76 (0.09) 0.84 (0.05) 0.88 (0.04) 0.91 (0.06) 0.84 (0.06) 0.88 (0.04) 
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We propose to use a combination of a denoising autoencoder and two GAN-like units 

for unsupervised learning of 3D latent representations, encoding image content together 
with its spatial location. We refer to these encodings as digital signatures and demonstrate 

Figure 4. Latent space visualization after PCA utilizing the first two principal components. The
model was trained on the inhouse data containing patches with normal appearing liver tissue (green)
and lesions (red). Evaluation was performed on the external LiTS data. The insets depict 6 example
patches out of 1024 randomly chosen raw image patches. Each patch is 96 × 96 pixels in size,
corresponding to an approximate physical size of 96 × 96 mm.

4. Discussion

We propose to use a combination of a denoising autoencoder and two GAN-like units
for unsupervised learning of 3D latent representations, encoding image content together
with its spatial location. We refer to these encodings as digital signatures and demonstrate
two possible applications on abdominal liver CT scans: (i) they can be manipulated to
insert and remove liver lesions in order to generate 2D image patches that to human experts
appear convincingly realistic and (ii) they can be used to discriminate between normal
appearing liver tissue and tissue containing lesions.

It should be stressed that the model was trained on a homogeneous internal data set
and evaluated on external data, which exhibits drastically different imaging characteristics
due to heterogeneous acquisition parameters, contrast agent administration, and scanner
vendors. Next to clipping and scaling the data, no additional preprocessing of the data was
necessary. Moreover, the internal data set only contained 57 or 25 CT scans, depending
on the experiment. Yet, training and results proved to be robust as demonstrated by the
evaluation on the public data set.

The presented line of research combines several subfields currently explored in medi-
cal imaging: image synthesis, anomaly detection, and disentanglement. Whereas current
literature usually focuses on a single topic, we combine the discoveries. This is achieved by
focusing on the digital signatures, i.e., the latent code, as common ground.

Mirsky et al. proposed to use conditional GANs for insertion and removal of lung
nodules to tamper with 3D CT scans in a malicious attack scenario within clinical IT
infrastructures [8]. They use two distinct GANs, one for the insertion and the other one for
the removal of nodules. Apart from a single architecture being arguably more elegant, this
also requires prelabeling of images for training as being benign or malignant. This is not
necessary in our approach. For the location specification to be altered, they determine a
candidate voxel and cut out a cuboid region of size 32 × 32 × 32 around it. Post-processing
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is necessary, like histogram equalization and Gaussian blurring, so it can be seamlessly
blended into the surrounding anatomy. In contrast, by altering the latent space, our
approach leads to a perceptually consistent image by design.

Using a multiconditional GAN for synthetic lung nodule generation in CT scans, Han
et al. were able to obtain realistically looking image patches of size 32 × 32 × 32 [7]. They
introduced two discriminators, one to distinguish between real and synthetic nodules
within noise box-centered surroundings, the other based on size/attenuation conditions.
In our approach the attenuation can be tuned by interpolating between different digital
signatures. They also report that GAN training with an improved data augmentation ratio
instead of L1 loss leads to better performance. This is contrary to our observation where L1
loss was essential for robust, high quality generation of images. This discrepancy will be
investigated in future projects.

Several approaches have been presented for the classification of CT liver lesions [27–31].
They have in common the lesion that first needs to be delineated. The classification then
relies on handcrafted features, e.g., texture or histogram features. Frid-Adar and colleagues
used a CNN for the classification [32]. For training purposes, they used GAN variants to
generate patches of size 64 × 64.

A comparison with other results reported in the literature is not possible directly.
Different data sets have been used and different class labels have been considered [27–32].
Reported accuracies range from 81.7% to 97%. The highest reported sensitivity and speci-
ficity values were 85.7% [32] and 93.6% [31], respectively. We yield 97% accuracy, 95%
sensitivity, and 99% specificity with unsupervised training solely on normal appearing
liver tissue and without prior segmentation or delineation of the lesion. Yet, we only
considered two separate classes. We would like to stress that the main goal of our approach
was not to distinguish liver lesions. Instead, it should be considered as a proxy experiment,
together with the visual Turing test, to demonstrate that suitable “digital signatures” can
be learned. Next to the generation of synthetic patches, these can be utilized for discrimi-
nation without substantial effort, i.e., tuning a specific machine learning method to yield
optimal performance.

Based on the presented results, we conjecture that the digital signatures learned by
unsupervised training, next to classification, can be exploited as radio(geno)mics features.
For this purpose, disentanglement methods could help to understand the structure of
the latent code and to identify components that are indicative of normal and pathologic
observations. For instance, informative latent variables have been discovered that encode
the style of handwritten letters and digits by structuring the latent space with nonlinear
independent component analysis [33]. Chen and colleagues learned representations using
an autoencoder and clustered them with a Gaussian mixture model [34]. However, they
used canonical radiomics features as an input to the model. The proposed pipeline was
evaluated on 108 MRI scans of patients with liver metastases originating from colorectal
cancer, assigning patients to clusters of differing survival times. Recently, Song et al.
proposed to use DL-derived semantic features, akin to our digital signatures, to identify
patients suffering from non-small cell lung cancer that will not benefit from a specific
therapy [35]. They utilized the BigBiGAN network for their experiments [36].

For our approach, additional potential applications are conceivable, e.g., it could be
utilized for the education of medical students and radiologists in training. By interpolating
the latent space only faintly visible lesions could be generated for educating the “eye” of
the reader (Figure 3), training them for higher accuracy at the border of perceptibility. Since
the position of the lesion can be specified automatically with our method, performance
could be evaluated, e.g., by clicking on the lesion as soon as it becomes visible—without
any manual intervention.

An ideal method for synthetic data generation should not require large amounts of
data for training. However, this is usually required for GANs to capture the data distribu-
tion well. In our experiments we deliberately decided to avoid the generation of synthetic
data based on random noise vectors. Instead, we took the learned digital signatures of real
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lesions and recombined them to generate new lesions at arbitrary locations. This led to
authentic lesions, while using only a few training examples.

Future research will address current limitations of the proposed framework. So far,
we evaluated the method only on 2D data patches. Due to anatomical consistency the
task is more challenging in 3D and also requires more GPU-RAM. Additionally, we only
demonstrated the applicability of the method for a single tissue type and modality. The
limitations will be addressed in future experiments. These will be conducted using 3D
patches originating from different anatomical regions and acquired with different imaging
modalities, e.g., also including MR images. To enforce anatomical consistency adjustments
to the architecture might be necessary. Further, we will investigate disentanglement
methods to enhance the explainability of the latent space, which is necessary for potential
clinical applicability.

5. Conclusions

In conclusion, we present the robust application of an unsupervised learning paradigm
for the removal and insertion of liver lesions at user defined spatial locations. Further, we
demonstrate that the learned digital signatures can be used to discriminate lesions from
normal liver tissue with high accuracy.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13133108/s1, Video S1: [animation_insert_lesion.mov]. Synthetic insertion of a lesion
at different locations of the same patch. The “digital signature”, i.e., the third dimension of the latent
code, is taken from a lesion patch and inserted at a chosen spatial location of normal appearing
liver tissue. It is linearly inter-polated between the original and altered latent code for generating
this animation, Video S2: [ani-mation_remove_lesion.mov]. Synthetic removal of two lesions. The
“digital signature”, i.e., the third dimension of the latent code, is taken from a normal patch and
inserted at the spatial location of the lesion. It is linearly interpolated between the original and altered
latent code for generating this animation.
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Appendix A—Statistical Analysis

The statistical analyses were performed using custom python scripts. Below the results
of the two sided t-tests for the comparison of reaction times are given. Asterisks indicate a
significance level of p < 0.05.
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Experiment 1
Rater 1 vs. Rater 2 (statistic = −2.7420538784160478, p value = 0.007569154296333987) *
Rater 1 vs. Rater 2 (statistic = 0.1820547772716781, p value = 0.8560120482099625)
Rater 1 vs. Rater 2 (statistic = −1.3866046545098654, p value = 0.1695127800979864)
Rater 1 vs. Rater 2 (statistic = −1.8521007888269003, p value = 0.06779495429447562)
Rater 2 vs. Rater 3 (statistic = 2.1570553441546894, p value = 0.0340805997172787) *
Rater 2 vs. Rater 3 (statistic = 1.8564265023707884, p value = 0.06716890115419788)
Rater 2 vs. Rater 3 (statistic = −1.6678510940888802, p value = 0.09935541002215911)
Rater 3 vs. Rater 4 (statistic = −0.9032535586447072, p value = 0.36917244828206985)
Rater 3 vs. Rater 4 (statistic = −1.861069472879768, p value = 0.06650233614344676)
Rater 4 vs. Rater 5 (statistic = −1.7995055802104227, p value = 0.0758059791388329)

Experiment 2
Rater 1 vs. Rater 2 (statistic = −2.685734151471288, p value = 0.008838749480933973) *
Rater 1 vs. Rater 2 (statistic = 1.3632679062509367, p value = 0.17672031901173887)
Rater 1 vs. Rater 2 (statistic = −1.3765153811881174, p value = 0.17260079372736484)
Rater 1 vs. Rater 2 (statistic = −6.462580475410759, p value = 8.137130260702532

× 10−9) *
Rater 2 vs. Rater 3 (statistic = 3.4631820348205937, p value = 0.0008698600759136433) *
Rater 2 vs. Rater 3 (statistic = 1.3772858777094696, p value = 0.17236346640916345)
Rater 2 vs. Rater 3 (statistic = −4.180303065472304, p value = 7.544941128344643

× 10−5) *
Rater 3 vs. Rater 4 (statistic = −2.3677053810044373, p value = 0.020376584836282633) *
Rater 3 vs. Rater 4 (statistic = −6.9294854378836135, p value = 1.0726186719247145

× 10−9) *
Rater 4 vs. Rater 5 (statistic = −5.4044324519727915, p value = 6.858611514979791

× 10−7) *

Appendix B—Classifier Parameters

For the LinearSVM the l2-penalty and squared_hinge loss were used, tolerance for the
stopping criterion was set to 0.0001 and the regularization parameter C was set to 0.025.
The MLP had two hidden layers with 100 neurons each, ReLU as an activation function
and Adam as optimizer were used. The random forest had a maximum depth of 10 and
only 1 feature was considered for splitting. The Gaussian naive Bayes classifier with no
priors was used.
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