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Simple Summary: Obesity, which is characterized by the excess of adipose tissue, is associated with
an increased risk of multiple cancers. We have previously reported that adipsin, a secreted factor
from adipocytes, enhances cancer cell proliferation and stem cell properties. In this study, we found
that adipsin affected adipocytes themselves and enhanced their secretion of hepatocyte growth factor
(HGF). We found that HGF enhanced the adipocyte-cancer cell interactions as a downstream effector
of adipsin. Understanding the adipocyte-cancer cell interaction will provide a novel strategy to treat
cancers whose initiation, invasion, and metastatic progression are associated with adipose tissues.

Abstract: Adipose tissue is a component of the tumor microenvironment and is involved in tumor
progression. We have previously shown that adipokine adipsin (CFD) functions as an enhancer
of tumor proliferation and cancer stem cell (CSC) properties in breast cancers. We established the
Cfd-knockout (KO) mice and the mammary adipose tissue-derived stem cells (mADSCs) from them.
Cfd-KO in mADSCs significantly reduced their ability to enhance tumorsphere formation of breast
cancer patient-derived xenograft (PDX) cells, which was restored by the addition of Cfd in the culture
medium. Hepatocyte growth factor (HGF) was expressed and secreted from mADSCs in a Cfd-
dependent manner. HGF rescued the reduced ability of Cfd-KO mADSCs to promote tumorsphere
formation in vitro and tumor formation in vivo by breast cancer PDX cells. These results suggest that
HGF is a downstream effector of Cfd in mADSCs that enhances the CSC properties in breast cancers.

Keywords: adipocyte; cancer stem cells; adipsin; hepatocyte growth factor; breast cancer

1. Introduction

Cancer stem cells (CSCs) are the cell sub-population of a specific tumor, which are char-
acterized by both a high tumorigenic capacity upon serial transplantation and an ability to
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generate tumors that recreate the cellular diversity of the parent lesions [1,2]. Breast cancer
is the first solid tumor in which the existence of the cells with CSC properties—enriched
in a CD44+/CD24−/low population in breast cancers—is experimentally proposed [3]. We
and others have identified that the stem cell properties of both breast CSC and normal
mammary stem cells are epigenetically regulated by microRNAs, including miR-200c and
miR-142, which suppress the expression of a stem cell gene BMI1, and APC, a suppres-
sor of WNT signaling pathway, respectively [1,4,5]. Furthermore, factors and pathways
such as ZEB1, ZEB2, Sox2, Sox9, Wnt pathway, hedgehog pathway, hippo pathway, and
notch pathway are associated with CSC properties in breast cancers [1,2]. CSCs are re-
sponsible for tumor progression and therapy resistance. We have recently reported that
metastatic progression of breast CSC is characterized by the upregulation of S100A10 and
the downregulation of miR-93 [6,7].

Interaction of CSCs with their specific microenvironments, known as stem cell niches,
is critical for the maintenance of stem cell properties [8]. In the case of mammary tissue,
adipose tissue is an indispensable niche for normal mammary stem cells to develop the
mammary epithelium [9,10], and for breast CSCs to develop cancers [3]. We have previously
shown that adipsin (complement factor D, CFD), an adipokine secreted predominantly from
adipocytes, enhances proliferation and CSC properties of breast cancer patient-derived
xenograft (PDX) cells; and this effect is mediated by C3a, a downstream product of adipsin,
produced in the alternative pathway of the complement system [11].

Adipsin is first identified as a gene that showed differentiation-dependent expression
in cultured mouse adipocyte cell lines and then proved to be identical to complement
factor D (CFD) [12]. Whereas the majority of complement proteins are produced in the
liver, adipsin is mostly produced in adipose tissues and is also expressed in monocytes and
macrophages [12]. In the presence of complement factors D and B, spontaneous hydrolysis
of C3 results in the formation of C3 convertase that cleave C3 to produce C3a and C3b
in the alternative pathway of the complement system [13]. C3b reacts in the complement
pathway to produce membrane-associated complex for the lysis of pathogenic cells, and an
anaphylatoxin C3a binds to its own receptors to activate immune responses. Furthermore,
in addition to the roles in inflammation and tumor immunity [14,15], adipsin is involved in
various biological mechanisms, such as adipocyte differentiation, adipose tissue expansion
in bone marrow and liver, and insulin secretion from β cells in diabetes [16–20].

In this study, we established the Cfd-knockout mice and the mammary adipose
tissue-derived stem cells (mADSCs) from their mammary fat pad. We found that Cfd-
KO mADSCs significantly reduced their ability to enhance tumorsphere formation that
reflected CSC properties of breast cancer PDX cells. We then found that the secretion of
HGF from mADSCs was Cfd-dependent, and HGF effectively alleviated the suppressive
effect of Cfd-KO on tumorsphere formation. These results suggest that Cfd-dependent HGF
secretion from mADSCs is one of the molecular mechanisms for ADSC-CSC interaction in
breast cancer.

2. Materials and Methods
2.1. Ethics Statements

Human primary breast cancers were obtained from patients admitted to the Division of
Breast and Endocrine Surgery of Kobe University Hospital. The research was pre-approved
by Kobe University’s Institutional Review Board (permission number: 1299 and 1481) and
Fujita Health University’s Institutional Review Board (permission number: HM19-105) and
was conducted in accordance with recognized ethical guidelines. All patients included in
the study provided written informed consent. Animal experiments were performed with
the approval of Fujita Health University’s Animal Care and Use Committee (permission
number: AP19062) and carried out according to the Animal Experiment Regulations of
Fujita Health University.
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2.2. Generation of Cfd-Knockout (KO) Mouse

Guide RNA (gRNA): the guide RNA (gRNA) target sites were selected for mouse
Cfd. The gRNA 1 and gRNA 2 sites were chosen to delete the full coding sequence of
Cfd (Figure 1A). The gRNAs were synthesized and purified by GeneArt Precision gRNA
Synthesis Kit (Thermo Fisher Scientific, Waltham, MA, USA) and dissolved in Opti-MEM
(Thermo Fisher Scientific, Waltham, MA, USA).

Figure 1. Generation of Cfd-null mice. (A) Schematic representation of the Cfd locus in the mouse
genome. Cfd gene is located on chromosome 10. Two sgRNAs were designed which targeted the
upstream and downstream of the full coding sequence of the Cfd gene. PAM sequences are marked
in bold. F1, R1, R2, and R3 represent the position of the primers used to genotype wild type (WT)
and KO alleles. (B) PCR analysis of the genomic DNA obtained from the mouse tail at 3 weeks of age.
The band for WT allele (primers used: F1 and R2, 576 bp) and that for KO allele (primers used: F1
and R3, 577 bp) were determined. Deletion of the Cfd sequence was confirmed by sequencing.

The pregnant mare serum gonadotropin (PMSG) (5 units) and the human chorionic
gonadotropin (hCG) (5 units) were intraperitoneally injected into sexually mature female
C57 BL/6 J mice (Charles River Laboratories, Kanagawa, Japan) with a 48-h interval,
and unfertilized oocytes were collected from their oviducts. We then performed in vitro
fertilization with these oocytes and sperm from sexually mature male C57 BL/6 J mice
(Charles River Laboratories, Kanagawa, Japan) according to standard protocols. Five
hours later, the gRNAs (25 ng/µL each) and GeneArt Platinum Cas9 Nuclease (Thermo
Fisher Scientific, Waltham, MA, USA), (100 ng/µL) were electroplated to zygotes by using
NEPA 21 electroplater (NEPAGNENE, Chiba, Japan) in the same condition that we have
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reported [21]. After electroporation, fertilized eggs that had developed to the two-cell
stage were transferred into oviducts in pseudo-pregnant ICR females, and newborns
were obtained.

The founders were genotyped by PCR followed by DNA sequencing analysis. The pos-
itive founders were bred to the next generation (F1) and subsequently genotyped by PCR
and DNA sequencing analysis. PCR analysis of the genomic DNA was used to assess the
deletion of the Cfd gene in the mouse (Figure 1). Genomic DNA was extracted from the tails
of mice and analyzed via PCR using primers: Cfd-F1 (5′-AATCTCTCCCCTCTAGAACC-3′);
Cfd-R1 (5′-GTCTGTCATGGTGTCTGTTA-3′), Cfd-R2 (5′-GACAGATGATGTGAACCTGT-
3′), and Cfd-R3 (5′-CTTCAGTAAACCAGGAAGGG-3′). The reaction program comprised
the following steps: 98 ◦C for 2 min, 40 cycles of 98 ◦C for 10 s, 58 ◦C for 10 s and 68 ◦C for 20
s. The PCR products were cloned into the pCR2.1-TOPO vector (Invitrogen, Carlsbad, CA,
USA) and sequenced to determine the exact sequences of both alleles. The DNA sequencing
primer is: 5′-GTCAAGCAACCTTCTCTCC-3′ or 5′-GAGGAGGGAGAGATGATG-′. Cfd-
KO mice were fertile and able to raise pups. We bread all Cfd-KO mice for two generations
and further bred over several generations.

2.3. Reverse Transcription PCR Analysis

Total RNA was extracted using the PureLink RNA Mini Kit (Invitrogen Cat no.
12183018A). First-strand cDNA was synthesized from total RNA (1 µg) with a MultiScribe
Reverse Transcriptase Kit (Invitrogen Cat no. 4308228). The Cfd cDNA was amplified
with real-time PCR, using the primers Cfd-F (5′-TGCACAGCTCCGTGTACTTC-3′) and
Cfd-R (5′-CACCTGCACAGAGTCGTCAT-3′). GAPDH cDNA was amplified with PCR,
using the primers GAPDH-F (5′-GGTGAAGGTCGGTGTGAACG-3′) and GAPDH-R (5′-
CTCGCTCCTGGAAGATGGTG-3′). The reaction conditions were as follows: 98 ◦C, 2 min;
40 cycles of 98 ◦C for 10 s, 60 ◦C for 10 s, and 68 ◦C for 30 s. PCR produce size was estimated
by electrophoresis on a 2% agarose gel.

2.4. Establishment of Murine mADSCs

mADSCs were isolated from the mammary fat pad tissues harvested from the wild-
type and Cfd-KO mice, following the protocols previously published. References [11,22]
Multiple lines of mADSCs were established from the mammary fat pad tissues of the
wild-type and Cfd-KO mice, and early passaged ones were used throughout the experi-
ments. Briefly, adipose tissue was cut into small fragments, put in medium 199 (Thermo
Fisher Scientific, Waltham, MA, USA), containing 1 mg/mL collagenase I (Worthington
Biochemical, Lakewood, NJ, USA) and 10 unit/mL DNase I (Sigma, St. Louis, MO, USA)
and incubated in a shaking water bath at 37 ◦C for 1 h. After filtration, the cells were
collected by centrifugation, and precipitates were resuspended and cultured in Dulbecco’s
modified Eagle’s medium/nutrient mixture F12 (DMEM/F12) medium (Gibco, Thermo
Fisher Scientific, Waltham, MA, USA) containing 10% fetal bovine serum (FBS), 100 U/mL
penicillin and 100 µg/mL streptomycin (Gibco, Thermo Fisher Scientific, Waltham, MA,
USA). The cells were maintained in a humidified tissue culture incubator at 37 ◦C with
5% CO2.

2.5. Establishment of Breast Cancer Patient-Derived Tumor Xenografts (PDXs)

Human breast cancer PDX was established using surgical specimens of breast cancer
patients as previously described [23]. Human breast cancer PDX cells were collected from
the dissociated single-cell suspension of the early-passage PDX tumor.

2.6. Flow Cytometry

The cells were detached with Accutase (Nacalai, Kyoto, Japan) and blocked with
normal mouse IgG (1:100; Wako, Osaka, Japan) and stained with an allophycocyanin
(APC)-conjugated anti-mouse CD29 (1:100, clone MMβ1-1, 102215, Biolegend, San Diego,
CA, USA), biotin-conjugated anti-mouse CD31 (1:100, clone 390, 13-0311-81, eBioscience,
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Thermo Fisher Scientific, Waltham, MA, USA), APC-conjugated anti-mouse/human CD44
(1:100, clone IM7 1:20, 103012, Biolegend, San Diego, CA, USA), biotin-conjugated anti-
mouse CD45 (1:40, Clone 30-F11, 553078, BD Pharmingen, Franklin Lakes, , NJ, USA), Rat
anti-mouse CD49b (1:40, clone DX5, 108901, Biolegend, San Diego, CA, USA), and APC-
conjugated anti-mouse CD90.2 (1:100, clone 30-H12 1:20, 105311, Biolegend, San Diego,
CA, USA) antibodies, PE-Cy5 streptavidin (1:200, 554062, BD Pharmingen, Franklin Lakes,
NJ, USA), goat anti-Rat IgM (Heavy chain) secondary antibody, Alexa Fluor 647 (1:100,
A-21248, Invitrogen, Waltham, MA, USA) and PI. Expression levels of cell surface markers
were evaluated using a Gallios (Beckman Colter, Brea, CA, USA) or a BD FACSCalibur (BD
Bioscience, Franklin Lakes, , NJ, USA) flow cytometer.

2.7. Coculture of PDX Cells and mADSCs

Human breast cancer PDX cells (5 × 104 cells/well) and murine mADSCs (1 × 104

cells/well) were well-mixed and plated in a low-attachment 3D culture plate (NanoCulture
96-well plate, low-binding, micro-honeycomb pattern JSR Life Sciences, Tsukuba, Japan).
The cells were cultured in DMEM/F12 with 2% FBS, 100 U/mL penicillin, and 100 µg/mL
streptomycin. Human HGF (50 ng/mL, 100-39H PeproTech, Cranbury, NJ, USA) was
added to the culture medium twice a week. All images of the cultured cells were taken on
day 7 after plating using an IX2-SLP microscope (OLYMPUS, Tokyo, Japan). To evaluate
sphere-forming ability, the number of spheres larger than 100 µm in diameter was counted.

2.8. Adipsin Purification

HEK293 LTV cells were transfected with a pcDNA3.1/V5-HisB plasmid encoding
either human or mouse cDNA using Lipofectamine 3000 transfection kit (L3000-015, Invit-
rogen, Carlsbad, CA, USA). The supernatant media was collected 48 h after transfection and
cleared by two successive centrifugation, 2000× g at 4 ◦C for 10 min and 8500× g at 4 ◦C for
10 min. The His-tagged adipsin proteins were purified using a HisPur Ni-NTA purification
kit (Thermo Scientific, Waltham, MA, USA) according to the manufacturer’s instructions.
Briefly, the HisPur Ni-NTA spin column was equilibrated with an equilibration buffer
containing 10 mM imidazole. Approximately 16 mL of clarified medium was applied
to a HisPur Ni-NTA spin column and incubated for 30 min at room temperature on a
rotator. The medium was discarded by centrifugation at 700× g for 2 min. After three times
washing using 25 mM imidazole containing wash buffer, the His-tagged protein was eluted
using a 3 mL elution buffer containing 250 mM imidazole. In order to exchange the elution
buffer and concentrate the product, the eluted fraction was applied to Amicon Ultra-4
centrifugal filter device with 10,000 molecular weight cutoff (MWCO) (No. UFC801008,
Merck Millipore, Burlington, MA, USA) according to the manufacturer’s instructions.

2.9. Western Blotting

The cells were lysed with a lysis buffer (62.5 mM Tris-HCl (pH 6.8), 10% glycerol,
2.3% SDS, 5% β-mercaptoethanol, 0.2 mg/mL bromophenol blue (BPB)). Samples were
separated on SDS-12% polyacrylamide gel electrophoresis and transferred to polyvinyli-
dene difluoride membrane using Trans-Blot Turbo Mini PVDF Transfer system (Bio-Rad,
Hercules, CA, USA). After blocking with ImmunoBlock (No. CTKN001, KAC, Kyoto,
Japan), filters were incubated with an anti-mouse adipsin (1:400, Clone: AF5430, R&D
Systems, Minneapolis, NM, USA) or an HRP conjugated anti-β-actin (1:5000, Clone: AC-15,
Sigma) antibody. HRP conjugated donkey anti-sheep immunoglobulin G (1:2000, Clone:
713-035-147, Jackson ImmunoResearch, West Grove, PA, USA) was then added, and the
bands were detected using the Chemi-Lumi One Ultra (Nacalai, Kyoto, Japan) and the
Fusion Solo S (Vilber, Collégien, France). Intensities of protein bands were quantitated
using the ImageJ Gel Analysis program. All the whole western blot figures can be found in
the Supplementary Materials.
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2.10. Cytokine Array

mADSCs were 3D-cultured for 3 days. The culture supernatants were collected by
centrifugation at 300× g for 10 min at 4 ◦C. The expression profile of the 111 murine
cytokines was analyzed using Proteome Profiler Mouse XL Cytokine Array Kit (R&D
Systems, Minneapolis, NM, USA), according to the manufacture’s instruction. Images of
the membrane were taken using the Fusion Solo S (Vilber, Collégien, France).

2.11. Xenotransplantation Assay

Breast cancer PDX cells and mADSCs were mixed, suspended in Matrigel (Corning,
Glendale, AZ, USA), and then injected into the mammary fat pad region of female BRJ
mice [24], NOD/SCID mice (CLEA, Osaka, Japan), or NSG mice (Charles River, Wilmington,
MA, USA). Four hundred thousand PDX cells and 8 × 104 mADSCs were cocultured to
form tumorspheres for three days with or without human HGF (50 ng/mL, 100-39H,
PeproTech, Cranbury, NJ, USA) in a low-attachment 3D culture plate (NanoCulture 96-well
plate, low-binding, micro-honeycomb pattern JSR Life Sciences, Tsukuba, Japan); and then
tumorspheres were detached from the plate and injected into mammary fat pad region of
female mice. After transplantation, HGF (2.5 ng/injection) was subcutaneously injected
twice a week. Tumor sizes were measured twice a week and tumor volumes (mm3) were
estimated using the formula: volume = ab2/2 [a length; b, width (mm)] [4].

2.12. Statistical Analysis

Data are presented as means ± standard deviation (SD). Comparisons between contin-
uous data normally distributed with equal variance or unequal variances between groups
were performed using unpaired two-tailed Student’s t-tests. Sample sizes, statistical tests,
and p-values are indicated in the figures or figure legends. All p-values were two-sided, and
p-values < 0.05 were deemed statistically significant. Asterisks denote p-value significance.

3. Results
3.1. Generation of Adipsin-KO Mouse and Mammary ADSCs

Adipocyte is a component of the tumor microenvironment in breast cancers. We have
reported that adipokine adipsin (CFD) is a mediator of adipocyte-cancer cell interaction in
human breast cancers [11]. Based on these findings, we generated Cfd-KO mice using the
CRISPR/Cas9 gene editing system (Figure 1A). We designed two sgRNAs targeted on the
upstream and downstream of the full coding sequence of the mouse Cfd gene. Deletion of
Cfd in the mouse was confirmed using the PCR analysis and sequencing of the genomic
DNA of the tail (Figure 1). Wild-type (WT) and Cfd-KO mammary ADSCs (mADSCs)
were established from the mammary fat pad of the WT and Cfd-KO mouse, respectively
(Figure 2A). Cfd mRNA and protein were detectable in WT ADSCs, but undetectable in
Cfd-KO mADSCs (Figure 2B,C). Adipsin (Cfd) is a serine protease that is involved in the
conversion of complement C3 to the small fragments C3a and C3b [25]. Consistent with the
previous findings [11,26], the murine mADSCs were characterized by highly ubiquitous
expression of the cell surface markers CD29, CD44, CD49b, and CD90, and lacked the
expression of endothelial and hematopoietic lineage markers CD31 and CD45 (Figure 2D).
The distribution patterns of CD29, CD44, and CD90 in the histograms were similar, but
that of CD49b was broader in Cfd-KO mADSCs than in WT mADSCs (Figure 2D).
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Figure 2. Establishment of Cfd-KO mADSCs. (A) Microscopic appearance of WT and Cfd-KO
mADSCs. Scale bar: 50 µm. (B) The expression level of Cfd mRNA in mADSCs. Cfd mRNA was
undetectable in Cfd KO mADSCs. GAPDH was used as a control. * p < 0.05. (C) The expression
level of Cfd protein in differentiated mADSCs. Murine Cfd protein is composed of a mixture of
glycosylated isoforms with two prominent bands observed between 30 and 50 kDa [27]. Cfd protein
was undetectable in the cell lysate of Cfd-KO mADSC. Actin was used as a control. (D) Expression
levels of cell surface markers in WT and KO mADSCs. Expression levels were analyzed using a flow
cytometer. The percentage of cells positive for cell surface marker expression is presented.

3.2. Adipokine Cfd-Dependent Tumorsphere Formation by Breast Cancer PDX Cells

To evaluate the ability of mADSCs to enhance the sphere formation abilities of breast
cancer PDX cells, human breast cancer PDX cells (KUB06, 5 × 104 cells/well) were co-
cultured with mADSCs (1 × 104 cells/well) using the 3D-coculture system that we had
previously reported [11]. Coculture with WT mADSCs significantly increased the number
of spheres formed by PDX cells, while a significant decrease was observed when cocultured
with Cfd-KO mADSCs (Figure 3A). Essentially identical findings were observed when
Cfd-KO mADSCs were cocultured with other breast cancer PDXs derived from distinct
breast tumors (Figure 3A). The sizes of smaller tumorspheres did not increase even after the
longer incubation. The addition of purified Cfd (9.5 µg/mL) in the culture medium signifi-
cantly increased the number of tumorspheres formed by PDX cells cocultured with Cfd-KO
mADSCs, further confirming that tumorsphere formation was at least partly dependent on
Cfd (Figure 3B). These results suggest that Cfd secreted from mADSCs enhances the CSC
properties of breast cancer PDX cells.
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Figure 3. Cfd-KO in mADSCs suppressed the tumorsphere formation of cocultured breast cancer
PDX cells. (A) Representative images of the tumorspheres formed by coculture of breast cancer PDX
cells (PDX KUB06, KUB11, or KUB22) with WT or Cfd-KO mADSCs. Scale bar, 100 µm. The bar
graph shows the number of tumorspheres (>100 µm in diameter) formed by PDX cells cocultured
with mADSCs. * p < 0.05. (B) Cfd rescued the reduced ability of Cfd-KO mADSCs to induce sphere
formation of breast cancer PDX cells. Representative images of the tumorspheres formed by coculture
of breast cancer PDX cells (PDX KUB06, or KUB11) with Cfd-KO mADSCs with or without Cfd
(9.5 µg/mL) in the culture medium were presented. Scale bar, 100 µm. The bar graph shows the
number of tumorspheres (>100 µm in diameter) formed by PDX cells cocultured with Cfd-KO
mADSCs. * p < 0.05.



Cancers 2021, 13, 4238 9 of 14

3.3. HGF Alleviated the Reduced Ability of Cfd-KO mADSCs to Promote Tumorsphere Formation

Cfd has multiple roles other than the cleavage of C3 to produce C3a and C3b in the
alternative pathway of the complement system [13]. Profiling of adipokines secreted from
Cfd-KO mADSCs revealed that secretion of multiple adipokines, including HGF and EGF,
were modulated by Cfd-KO (Figure 4A, Supplementary Table S1). The expression level
of HGF in Cfd-KO mADSCs was increased when Cfd was added to the culture medium
(Figure 4B). The addition of HGF in the culture medium increased the number of tumor-
spheres formed by breast cancer PDX cells cocultured with Cfd-KO mADSCs (Figure 4C).
The mRNA expression levels of CSC-related genes CD44, ZEB1, and SNAI1, and the cell
surface expression level of CD44 were significantly lower when breast cancer PDX cells
were cocultured with Cfd-KO mADSCs than when cocultured with WT mADSCs; and
were recovered when HGF was added to the culture medium (Supplementary Figure S1).
In contrast, the addition of EGF in the culture medium increased the size of tumorspheres
formed by breast cancer PDX cells cocultured with Cfd-KO mADSCs but failed to rescue
the number of tumorspheres formed by cocultured PDX cells (Supplementary Figure S2).
Furthermore, a combination of HGF and EGF did not show a synergistic effect to increase
the number of tumorspheres (Supplementary Figure S3). These results suggest that HGF
is a downstream effector of Cfd in mADSCs that promotes the sphere formation of breast
cancer PDX cells in vitro.

Figure 4. HGF rescues the reduction of tumorsphere formation by Cfd-KO mADSCs. (A) Profiling of
adipokines secreted from WT- and Cfd-KO mADSCs. Culture medium of mADSCs was analyzed
using cytokine arrays. The intensity of the spot for Cfd in WT mADSCs was set at 1.0. (B) Reduction
of the HGF mRNA levels in the Cfd-KO mADSCs. The addition of Cfd in the culture medium (Cfd,
9.5 µg/mL) upregulated the expression level of Cfd mRNA in the Cfd-KO mADSCs. * p < 0.05.
(C) HGF rescued the reduced ability of Cfd-KO ADSCs to induce sphere formation of breast cancer
PDX cells. HGF (50 ng/mL) was added to the culture medium. The number of PDX tumorspheres
(>100 µm in diameter) were presented. Scale bar, 100 µm. * p < 0.05.

3.4. HGF Alleviated the Reduced Effect of Cfd-KO mADSCs on Tumor Formation

CSC properties are associated with tumor initiation and progression. We have pre-
viously shown that CFD-knockdown in mADSCs using sh-CFD expression lentivirus
significantly reduced the ability of mADSCs to enhance tumor growth of breast cancer
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PDX cells in vivo [11]. Because HGF, but not EGF, significantly alleviated the suppressive
effect of Cfd-KO mADSCs on tumorsphere formation in vitro (Figure 4, Supplementary
Figure S2), we evaluated the effect of HGF to alleviate the suppressive effect of Cfd-KO
mADSCs on tumor formation in vivo. Tumorspheres were formed by coculturing PDX
cells and mADSCs for three days with or without HGF and then xenotransplanted in the
immunodeficient mice (Figure 5A). HGF-treated PDX tumors grew significantly faster
than control PDX tumors (Figure 5B). The tumor weight of HGF-treated PDX tumors was
significantly higher than untreated PDX tumors (Figure 5C). These results suggest that
HGF is a downstream effector of Cfd for the enhancement of CSC properties and tumor
formation in breast cancers (Figure 5D).

Figure 5. HGF enhanced the tumor formation by breast cancer PDX cells co-injected with Cfd-KO
mADSCs. (A) Schematic presentation of experimental procedures. Breast cancer PDX cells and
mADSCs were cocultured for three days with or without HGF (50 ng/mL) and xenotransplanted to
the mammary fat pad regions of the immunodeficient mice. (B) HGF enhanced the tumor formation
by breast cancer PDX cells co-injected with Cfd-KO mADSCs. Four hundred thousand breast cancer
PDX cells (KUB06) and 8 × 104 Cfd-KO mADSCs were cocultured with or without HGF (50 ng/mL)
for 3 days in vitro and xenotransplanted in the mammary fat pad regions of the immunodeficient
mice (n = 5). HGF or control PBS was subcutaneously injected twice a week. * p < 0.05. (C) The
appearance of the xenograft tumor. Scale bar, 10 mm. The bar graph shows the weight of tumors
at day 28. * p < 0.05. (D) Schematic illustration of the molecular functions of adipsin (Cfd) in the
adipocyte-breast cancer cell interaction. 1. Anaphylatoxin C3a, the product of Cfd in the alternative
complement pathway, functions as an activator of the CSC properties of breast cancer PDX cells [11].
2. HGF is a downstream effector of Cfd secreted from mADSCs and enhances the CSC properties of
breast cancer PDX cells.
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4. Discussion

Growing evidence proposed an adipose-epithelial cell interaction as an active player
in the tumor microenvironment [28]. In fact, obesity, which is characterized by the ex-
cess of adipose tissue, is associated with an increased risk of multiple cancers, including
postmenopausal breast, endometrial, and colorectal cancers [29]. Various mechanisms
have been proposed to explain how mature adipocytes alter breast cancer cell behavior,
including secretion of adipokines, remodeling of the extracellular matrix, enhanced in-
flammation, and metabolic changes [30–33]. Furthermore, bone marrow adipocytes are
responsible for bone metastasis [34,35]. The best described of these involves secreted factors
(adipokines), such as leptin, adiponectin, interleukin-6, and insulin-like growth factor 1.
We have previously shown that adipokine adipsin (CFD) secreted predominantly from
mADSCs enhances the proliferation and CSC properties of breast cancer PDX cells [11].

While most of the complement factors are produced in the liver, CFD is mostly
produced in the adipocytes. The reason why adipose tissue is involved in the activation of
innate immunity has not been fully elucidated. In this study, we established Cfd-KO mice
and established mADSCs from them (Figures 1 and 2). We then showed that Cfd regulated
the expression profiles of adipokines, including HGF and EGF (Figure 5D, Supplementary
Table S1). These results indicate that in addition to its role in innate immunity, Cfd functions
as an autocrine regulator of adipocytes. Furthermore, our results showed that HGF was a
downstream effector of Cfd and more effectively enhanced the CSC properties of breast
cancer PDX cells than EGF (Figure 4, Supplementary Figure S2).

HGF is a growth factor that binds to MET receptor, and human and murine HGF
proteins are more than 90% identical and 96% similar. HGF/MET signaling promotes CSC
properties by inducing YAP nuclear translocation and HIF-1α stabilization in pancreas
cancer [36]. Among the growth factors secreted from mesenchymal cells, HGF, IL-6, VEGF,
IL-8, IL-23 are the factors that significantly enhance the CSC properties [37]. Specific roles of
HGF in the maintenance of CSCs are also reported in glioblastoma, colorectal, and prostate
cancers [38–41]. In contrast, although VEGF is an enhancer of CSC properties [42], upreg-
ulation of VEGF by Cfd-KO did not appear to have affected the tumorsphere formation
(Figure 4A).In addition, at least partly consistent with previous observation [37], EGF did
not promote the CSC properties (Supplementary Figures S2 and S3). Further studies are
required to clarify relatively specific roles of HGF in the adipocyte-CSC interactions and
stem cell niche. As presented in colorectal CSCs [43], it is highly reasonable to speculate
that breast CSCs acquire niche independence and become more independent from CFD,
HGF, and/or other factors during metastatic progression. Indeed, activation of c-MET
signaling in breast cancer cells promotes metastasis of breast cancer cells and secretion of
HGF from tumor-associated astrocytes in the brain [44].

We have previously reported that shRNA-mediated knockdown of CFD in human
mammary ADSCs suppresses their ability to support tumorsphere formation of PDX
cells [11]. However, probably because of the residual amount of CFD produced by sh-CFD
ADSCs, the suppressive effect is weaker than those achieved by the specific inhibitor of
CFD-C3a signaling, SB290157. In this study, using Cfd-KO mADSCs, we showed that the
sphere formation ability of PDX cells was clearly and significantly suppressed by Cfd-KO
in mADSCs. The sequences of CFD and Cfd are 66% identical and all three residues
critical for enzymatic activity are conserved between them [45] (Supplementary Figure S4).
These observations further support our notion that adipsin (CFD) is an active player of
adipocyte-cancer cell interactions. Because the addition of Cfd rescued the reduction of
tumorsphere formation by PDX cells cocultured with mADSCs, murine Cfd was functional
in this culture system.

5. Conclusions

Adipsin (Cfd)-KO mADSCs significantly reduced their ability to enhance tumorsphere
formation that reflected CSC properties of breast cancer PDX cells. We then found that the
secretion of HGF from mADSCs was Cfd-dependent, and HGF effectively alleviated the
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suppressive effect of Cfd-KO on tumorsphere formation. These results suggest that adipsin
and its downstream effector HGF are active players of adipocyte-cancer cell interactions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13164238/s1, Table S1: Adipokine expression profiles of WT and Cfd-KO mADSCs,
Figure S1: The effect of HGF on the expression levels of CSC markers in breast cancer PDX tumor-
spheres, Figure S2: EGF failed to rescue the reduction of tumorsphere formation by Cfd-KO mADSCs,
Figure S3: No synergistic effect of the combination of EGF and HGF on the reduction of tumorsphere
formation by Cfd-KO in mADSCs: Figure S4: Protein sequences of human CFD and murine Cfd.
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