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Simple Summary: Computed tomography plays a pivotal role in malignant pleural mesothelioma
imaging management, ranging from diagnosis, differential diagnosis and staging to assessment
of therapy response. Indeed, CT still presents some intrinsic limitations such as a poor contrast
resolution between tumor and contiguous soft tissues, resulting in a challenging assessment of
locoregional staging. Moreover, the current response evaluation criteria are based on unidimensional
criteria, while malignant pleural mesothelioma has a complex tridimensional pattern of growth. To
overcome these limits, the recent efforts in literature focused on computer-based methods, such
as radiomics or automated segmentation, and magnetic resonance imaging. This review aims to
describe their potential role in diagnosis, staging and assessment of therapy response in malignant
pleural mesothelioma.

Abstract: Malignant pleural mesothelioma is a rare neoplasm with poor prognosis. CT is the first
imaging technique used for diagnosis, staging, and assessment of therapy response. Although, CT has
intrinsic limitations due to low soft tissue contrast and the current staging system as well as criteria
for evaluating response, it does not consider the complex growth pattern of this tumor. Computer-
based methods have proven their potentiality in diagnosis, staging, prognosis, and assessment of
therapy response; moreover, computer-based methods can make feasible tasks like segmentation that
would otherwise be impracticable. MRI, thanks to its high soft tissue contrast evaluation of contrast
enhancement and through diffusion-weighted-images, could replace CT in many clinical settings.

Keywords: malignant pleural mesothelioma; magnetic resonance; computer-based methods

1. Introduction

Malignant pleural mesothelioma (MPM) is a rare neoplasm that originates from
mesothelial cells of pleural, peritoneal, or pericardial tissues [1]. Asbestos exposure is
an important risk factor for MPM, although it has been proven that it can be related to
mutations in tumor suppressor genes (e.g., BAP1), ionizing radiation [2], and environmental
exposure [3,4]. MPM usually presents itself with a latency of 30–50 years [2], so this disease
is still a global health concern with an increasing incidence [5].

Imaging plays a key role in MPM management because it can provide early detection
of pleural disease, differentiation between the benign and malignant process, staging,
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and evaluation of response to treatments. Among the imaging techniques, chest X-ray
examination has a limited role as it is performed in patients with signs and symptoms of
pleural pathologies and cannot help in distinguishing benign from malignant process [6].

Fluorine 18 fluorodeoxyglucose (FDG) positron emission tomography (PET) is cur-
rently used for MPM staging, although it is not tumor specific and a high uptake of FDG
may be seen in benign process, inflammatory disease, or in talc pleurodesis [7]. In addition,
tumors with low metabolic activity such as early stage epithelioid MPM may show low
FDG uptake in PET/CT examination [8].

Computed tomography (CT) with or without an intravenous contrast agent is currently
used as the first imaging modality for pleural lesion diagnosis, staging, and monitoring
after therapies, as a result of its low cost and its wide distribution [7,9,10]. CT can detect
pleural thickening, suggest the presence of the disease, and support the correct execution
of biopsies [5]. CT scans without an intravenous contrast agent should be used as screening
in risk populations to demonstrate pleural thickening. Once the pleural thickening was
evidenced, a contrast agent is necessary to assess specific CT features highly suggestive
of MPM as pleural thickening >10 mm, interlobar fissure thickening, mediastinal pleural
involvement, and circumferential pleural thickening (Figure 1) [6]. CT is pivotal for clinical
staging and subsequentially to patient management [5]. However, CT still has some limits
about loco-regional staging and lymph-node metastases evaluation and it is affected by a
considerable interobserver variability [8,9]. In particular, CT has a low soft tissue contrast,
and this may determine an inaccurate local extent or an imprecise pleural and adjacent
involvement; moreover, MPM has an irregular, rind-like, and diffuse pattern of growth,
which makes most measurements in single or bidimensional lesions unreliable and not
always replicable [11–13].
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Figure 1. Axial CT scan after contrast administration reconstructed with smooth kernel with medi-
astinal windows demonstrates circumferential pleural nodular thickening with mediastinal pleura
involvement (asterisk) and pleural effusion (arrow).

Given the three-dimensional shape of MPM, a volumetric approach seems to be the
logical evolution of uni-dimensional criteria. Pass et al. in 1998, demonstrated that the
MPM volume measured in a three-dimensional CT performed before surgery correlated
with overall survival, but required the manual segmentation of the disease, an extremely
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time-consuming labor [14]. Since the 90s, a considerable number of other studies have been
conducted in order to allow a semi-automatic or automatic segmentation and computing
of the tumor volume, thanks also to technological improvements and to the rise in more
efficient computer-based methods [11,13]. In addition, computer-based methods have been
implemented with many other purposes, from diagnostic tasks with computer-aided detec-
tion algorithm to differential diagnosis with radiomics features analysis for the purpose of
compensating the intrinsic and above-mentioned limitations of CT.

Chest magnetic resonance imaging (MRI) may be the solution to overcome some
limits of CT, as in recent years, MRI has been demonstrated to have a higher spatial
resolution [15] and a better soft tissue contrast than CT, with an increase in sensitivity in
depicting diaphragm and chest-wall invasion, but not in identifying lymph node metastases
and visceral pleural invasion [5,16]. Through MRI, it is also possible to characterize complex
pleural effusion such as hemorrhage [17] and although it is not as fast as CT and requires a
greater patient compliance, MRI does not have the problem of radiation dose.

The primary aim of this systematic literature review was to summarize the state-of-the-
art of computer-based methods and the application of MRI in MPM diagnosis, staging, and
response to treatment. The most relevant articles published in the past three decades were
reviewed to describe all the investigated applications of chest MRI and computer-based
methods in MPM. The review focuses on the potential role of these techniques on MPM
and highlights the open issues that future research studies will have to address.

2. Materials and Methods
2.1. Methods

A systematic literature review was performed to identify all relevant data on radio-
logical assessment of MPM, particularly the role of MRI and quantitative CT analysis on
diagnosis and follow-up after surgical and/or medical treatment.

2.1.1. Search Strategies

• Search Sources

The examined databases were Scopus, Web of Science, Cochrane, Google Scholar, and
PubMed. The last search was run on February 10, 2021. We have primarily conducted
separated research for CT, MRI, radiomics, deep learning and texture analysis. All selected
articles were systematically evaluated using the inclusion and exclusion criteria.

For the Google Scholar database, due to the excessive amount of data obtained,
only the first 200 results for each search were considered, because further results rapidly
lost relevance.

• Search terms

To obtain the highest search sensitivity, the keywords used to identify relevant articles
were: malignant pleural mesothelioma OR MPM AND MRI AND magnetic resonance
imaging; malignant pleural mesothelioma OR MPM AND MRI AND magnetic resonance
imaging AND contrast enhanced magnetic resonance; malignant pleural mesothelioma OR
MPM AND CT AND computed tomography; malignant pleural mesothelioma OR MPM
AND CT AND computed tomography AND contrast enhanced computed tomography
AND radiomics AND deep learning AND texture analysis.

The terms were chosen to include all relevant non-invasive diagnostic approaches to
MPM including non-routine ones (e.g., radiomics, deep learning and texture analysis).

2.1.2. Study Eligibility Criteria

In this review, we focused on diagnostic and prognostic aspects of malignant pleural
mesothelioma from a radiological point of view, evaluating the strengths and weaknesses
of computed tomography, magnetic resonance, and machine learning approaches for both
diagnosis and follow-up.



Cancers 2021, 13, 4377 4 of 22

Filters were applied in order to include only articles published in English and de-
scribed as original research, considering articles published up to 10 February 2021. Any
restrictions on the country of publication, comparator, and outcomes were not applied.

2.1.3. Study Selection

Two authors, AM and FV, independently screened the titles of the identified studies.
AM and another author (CR) independently screened the titles and the abstracts of the
studies that passed the title screening; then, they read the full text of studies that passed the
title and abstract screening. Any disagreement was analyzed and overcome by discussion
and reaching a mutual agreement.

2.1.4. Data Synthesis

After collecting the studies and data extraction from the selected articles, we used a
narrative approach. In particular, we analyzed different non-invasive types of investigation
method for MPM separately and described how their importance and their role have
changed thanks to technological evolution, considering the strengths and weaknesses of
each method.

2.2. Results
Search Results

We obtained 4079 studies through searches conducted in the aforementioned databases.
Then, we removed 3108 because they were not related to the topic and 837 duplicate
records. We screened the titles and abstracts of the remaining 134 studies. After this
process, 79 articles were excluded and 55 were assessed for eligibility. After the reading
of full text studies, 10 articles were excluded because they did not meet all the eligibility
criteria. Overall, 45 studies were included in this review. Figure 2 shows the flowchart for
all harvested papers. The studies were then separated into two categories: computer-based
methods (Table 1) and magnetic resonance imaging (Table 2).
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Table 1. Summary of studies on computer-based methods included in the review.

Publication Computer Based Method Types of
Data N Patients Problem/Assignment Validation Method Accuracy/Results

Chaisaowong K.
et al., 2007 [18]

A convexity model with a Hounsfield Unit
threshold was implemented to detect

pleural thickness
CT 3

To develop an automatic image
processing approach to detect and

quantitatively assess
pleural thickenings

Pena E. et al.,
2017 [19]

Combinations of radiomics features used
to generate logistic regression models. 3

texture and 3 shape features
CT and MRI 34

To identify a radiomic approach that
may help differentiate benign versus

malignant pleural lesions

Visual assessment by
thoracic and

abdominal radiologists

CT model revealed an AUC of 0.92 ±
0.05 outperforming

abdominal radiologists

Pavic M. et al.,
2018 [20]

An in-house developed software was
implemented to extract features from

manually contoured CT scans
CT 11

To investigate the impact of
inter-observer variability in manual

tumor delineation on the reliability of
radiomic features

3 experienced radiation
oncologists manually
segmented CT scans

Median Dice Sørensen coefficient
(DSC) was low (0.26) with a low

stability rate of radiomic features (36%
of total parameters)

Gill R. R. et al.,
2012 [21]

Selective segmentation with the 3D feature
of the software, with manual segmentation

of extrapleural sites of disease
CT 338

To assess the usefulness of CT-derived
tumor volume for stratifying survival

after surgery-based
multimodality treatment

At multivariate analysis a tumor
volume > 500 cm3 showed a

HR = 2.02, p = 0.0109

Pavic M. et al.,
2020 [22]

Extraction of CT and FDG PET features to
build a Cox regression model

FDG PET
and CT 123

To build a CT and FDG PET radiomics
model for the prediction of prediction

free survival (PFS) in MPM

Concordance index of 0.66 was
obtained for the PET radiomics model,

CT radiomics model not
successfully validated

Labby Z. E. et al.,
2013 [23]

Semiautomated segmentation with
semiautomated shape-based interpolation

requiring seeding
CT 81

To create a comprehensive model for
MPM survival utilizing continuous,
time-varying estimates of disease

volume from CT imaging in
conjunction with clinical covariates

Final multivariate survival model
included continuous specific growth

rate from baseline (HR = 1.31)

Fan Liu, et al.,
2010 [24]

Semiautomated segmentation method
combining chest-rib interpolation,

gradient vector flow snake and multiple
thresholding technique with manual

editing of suboptimal results by a
thoracic radiologist

CT 30

To calculate the tumor volume and to
investigate whether the baseline
volume or volume change after

chemotherapy predicts
patient survival

A second radiologist
independently reviewed the

computer results

Percentage change of tumor volume
from baseline to first follow-up CT
was significantly associated with

overall survival (HR = 1.94)

Labby Z. E. et al.,
2013 [12]

5 observers manually contoured tumor on
3 selected sections, then contours were
converted to area measurements using

Green’s theorem

CT 31

To evaluate manual area
measurements as an alternate
response assessment metric,

specifically through the study of
measurement interobserver variability

The time required to contour tumor
for each scan was 20 min; the 95% CI
for relative interobserver variability
for summed area measurements was

[−71%, +240%] for baseline and
[−41%, +70%] for FU scan
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Table 1. Cont.

Publication Computer Based Method Types of
Data N Patients Problem/Assignment Validation Method Accuracy/Results

Frauenfelder T.
et al., 2011 [25]

A dedicated software semiautomatic
feature with linear interpolation was

implemented to segmentate MPM and
compute the tumor volume

CT 30

To assess robustness of volumetric
measurement of MPM before and after

chemotherapy compared to
mRECIST criteria

3 readers independently
assessed the

tumors response

For tumor volume compared to
mRECIST were found a high

inter-rater reliability (0.99) and
inter-observer agreement (general

k 0.9)

Armato III S. G.
et al., 2004 [26]

6 computerized algorithms (from
Minimum-distance algorithm to

Normal-to-initial-end-point algorithm)
given a specified initial endpoint

measured tumor thickness

CT 22

To evaluate the variability of manual
MPM thickness measurements in CT

scans and to assess the relative
performance of six computerized

measurement algorithms

5 observers manually
measured tumor thickness

Computer based tumor thickness
measurements highly correlated with
the average of observer measurements

(R ≥ 0.93)

Armato III S. G.
et al., 2005 [27]

A semiautomated method computes
tumor thickness requiring the manual
selection of a point in the outer margin

of tumor

CT 22

To evaluate the clinical acceptability of
semiautomated methods for the

measurement of MPM thickness in
CT scans

3 radiologists and
oncologists independently
reviewed measurements

86% of semiautomated measurements
were accepted without modification

Sensakovic W.F.
et al., 2011 [28]

An automated method based on grey level,
texture and shape analysis segmented

lung and nonlinear diffusion and a
k-means classifier identified MPM in the

pleural space

CT 31
To present a computerized method for
the three-dimensional segmentation

and volumetric analysis of MPM

3 observers independently
contoured 5 randomly

selected sections for
each scan

The median Jaccard index between the
computer based and manual

segmentation was 0.484

Chen M. et al.,
2017 [29]

A random walk-based algorithm was
implemented to segment the tumor CT 15

To assess the performance of a
computer-aided semi-automated

algorithm for the purpose of
segmenting MPM on CT

Manual delineation by a
clinical radiologist

A mean DSC of 0.825 was achieved; a
Pearson’s correlation coefficient of

0.6392 was established between
changes in mRECIST and

tumor volume

Brahim W. et al.,
2019 [30]

After supervised delineation of thoracic
cavity the tumor was automatically

extracted through a statistical texture
analysis approach

CT 10
To propose a diagnostic aid system

capable of segmenting and measuring
the pleural thickening caused by MPM

Manual segmentation of a
representative database

The algorithm obtained an average
Jaccard index of 0.72

Gudmundsson E.
et al., 2018 [31]

Two convolutional neural networks (CNN)
were trained to segmentate pleural

thickenings of left and right hemithorax
CT 130 To automatically segmentate MPM on

CT scans using CNNs
Manual segmentation of 8

different observers
Median DSC ranged from 0.662 to

0.800 over the two test sets

Gudmundsson E.
et al., 2020 [32]

Two CNNs were trained for segmentation
of tumor implementing layers pretrained

on ImageNet
CT 203

To automatically segmentate MPM on
CT scans using CNNs also in more

complex scenarios as of
pleural effusion

Manual segmentation on 2
different test sets

Median DSC of 0.69 on the tumor and
a fusion test set
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Table 1. Cont.

Publication Computer Based Method Types of
Data N Patients Problem/Assignment Validation Method Accuracy/Results

Armato III S. G.
et al., 2015 [33]

Computation of CT-based tumor volume,
after manual segmentation by a

radiologist, as a number of pixels
CT 28

This study evaluated the validity of
image-based tumor volume against

the physical volume of the tumor bulk

A correlation coefficient r-squared
value of 0.66 was found

Gill R. R. et al.,
2016 [34]

Semiautomated segmentation using HU
thresholding with manual editing

(exclusion of pleura effusion and chest
wall musculature) by
2 thoracic radiologists

CT 129
To assess feasibility and logistics of
setting up a quantitative imaging
study for clinical staging of MPM

AJCC pathological staging
was assessed by the two

radiologists on preoperative
CT scans

A good overall correlation between
computed tumor volume was found

(Spearman Corr. = 0.822); tumor
volume correlated with pathological T

stage (results are reported in a
separate manuscript)

Gill R. R. et al.,
2018 [35]

Semiautomated segmentation with HU
thresholding and manual correction to

exclude pleural fluid and normal tissue; a
software integrated measurement caliper

was used to measure maximal
fissural thickness

CT 472

To improve prognostic classification of
MPM exploring alternative staging

models based on quantitative
parameters such as volume assessed
from CT scans (VolCT) and maximal

fissural thickness (Fmax)

AJCC pathological staging
information were obtained
from the electronic medical

record for each patient

A quantitative model with both VolCT
and Fmax was found to be a better
prognostic classifier compared to
cTNM (c-index = 0.638, p = 0.001)

Burt B.M. et al.,
2020 [36]

The 3D volume feature of the software was
implemented to render the thoracic cage
and, after manual removing of undesired

objects, to calculate TCV (thoracic
cage volume)

CT 170
To determine the incidence and

preoperative predictors of diffuse
chest wall invasion

In univariable analysis decreased TCV
demonstrated the strongest

association with diffuse chest wall
invasion (p = 0.009)

Brahim W. et al.,
2017 [37]

A texture analysis method based on
statistical approach was implemented to

segmentate MPM
CT 10

To present a texture-based
segmentation method of the MPM

from thoracic CT scans

Tumoral regions were
manually contoured and

used as ground truth
The average Jaccard index was 0.73
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Table 2. Summary of magnetic resonance studies included in the review.

Publication Study Design Study Population
(Period, Location)

N Eligible
Patients

N Included
Patients

N MPM
Patients Imaging Technique MRI Sequences

Podobnik J.
et al., 2010 [38] Not reported 15 15 10 3T MR and CT T2-weighted cardiac-gated breath-hold TSE sequences, and T1-weighted

cardiac-gated breath-hold TSE black blood

Tsim S. et al.,
2018 [8]

Prospective
cohort study Not reported 66 60 31 3T MR and CT T1 weighted, fat saturated, 3D spoiled gradient echo sequences and images

acquired after injection of contrast

Knuuttila A.
et al., 2001 [39]

January 1997
December 1998 34 34 18 1.5T MR and CT

T1-weighted 2D FLASH images, T2-weighted true FISP and T2-weighted
fat-suppressed HASTE sequences in the axial plane; After contrast agent

injection T1-weighted fat-suppressed 2D FLASH images

Boraschi P.
et al., 1999 [40] Not reported 30 30 11

0.5T MR for 26
patients 1,5T MR for

4 patients

Conventional spin-echo (SE) technique: cardiac-gated TI-weighted images
before and after an intravenous injection of contrast, cardiac-gated proton

density and T2-weighted images

Coolen J. et al.,
2012 [7]

Prospective
study

November
2009–May 2010 31 31 14 3T MR and PET/TC

Pre-contrast T2-weighted single-shot turbo spin-echo and diffusion weighted
(DW) sequences spin-echo, followed by a dynamic contrast enhancement (DCE)

T1-weighted fast field-echo sequence and postcontrast T1-weighted fast
field-echo sequence

Coolen J.et al.,
2015 [41]

Prospective
study

November
2009–December 2012 109 100 67 3T MR and PET/TC

and CT

Nonenhanced T2-weighted single-shot turbo spin-echo (and fat sup pression by
means of spectral selection attenuated inversion recovery, or SPAIR) and DW

spin-echo echo-planar imaging sequence

Hierholzer J.
et al., 2000 [6]

Retrospective
study

January
1992–June 1998 88 42 9 1.5T MR and CT Heart rate-dependent T1-weighted sequence, T2-weighted images with a

nongated turbo spin echo sequence, contrast-enhanced T1-weighted imaging

Revelli M. et al.,
2016 [9]

Retrospective
study

May
2011–January 2016 56 56 44 1.5T MR

Pre-contrast multiplanar fast field echo (FFE) T1-weighted, turbo spin echo
single shot T2-weighted and sensitivity encoding balanced turbo field echo

two-dimensional sequences, an axial DWI sequence, multiplanar FFE
three-dimensional T1-weighted sequences with fat suppression (THRIVE)

acquired before and after injection of contrast

Koc M. et al.,
2017 [42]

Retrospective
study

May 2014 and
June 2015 62 62 30 1.5T MR DWI

Gill R. R. et al.,
2010 [43]

June
2008–January 2009 62 62 57 3T MR

T2-weighted single-shot acquisition (HASTE), 3D T1-weighted
volume-interpolated gradient-echo acquisitions, DW images were acquired with

fat suppression and a free-breathing single shot spin- echo EPI sequence

Mehndiratta A.
et al., 2009 [44]

Prospective
clinical study Not reported 19 19 19 1.5T MR DCE-MRI T1-weighted 2D gradient echo sequence

Giesel F.L. et al.,
2006 [45] Not reported 19 19 19 1.5T MR DCE-MRI T1-weighted two-dimensional fat gradient-echo sequence

Plathow C.
et al., 2008 [46] Not reported 50 50 50 1.5T MR and CT HASTE, VIBE before and after contrast media, T2- weighted TSE with

respiratory gating
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Table 2. Cont.

Publication Study Design Study Population
(Period, Location)

N Eligible
Patients

N Included
Patients

N MPM
Patients Imaging Technique MRI Sequences

Plathow C.
et al., 2008 [47] Not reported 54 54 54 1.5T MR and PET/TC

and TC
HASTE, VIBE before and after contrast media, T2- weighted TSE with

respiratory gating

Stewart. D.
et al., 2003 [48] 45 months 76 76 76 1.5T MR and CT T1- weighted breath-hold 2D FLASH before and after intravenous

administration of contrast

Heelan R. T.
et al., 1999 [16]

Prospective
staging
protocol

Not reported 95 65 65 1.5T MR and CT T1-weighted, T2-weighted spin-echo cardiac gated and respiratory compensated

Patel A. M.
et al., 2017 [49]

Retrospective
study 2000–2016 42 12 12 1.5T or 3T MR Pre-contrast and post-contrast fat saturated axial T1-weighted gradient

echo (GRE)

Ohno Y. et al.,
2019 [15]

Comparative
study

January
2011–December 2017 23 23 23

3T MR, PET/MR,
PET/CT, FDG

PET/CT

Dual-phase T1-weighted fast gradient-echo sequence, 3D T1-weighted spoiled
gradient-echo, sequentially reordered half-Fourier multi-shot STIRFASE,

sequentially reordered half-Fourier single-shot STIR spin-echo EPI,
contrast-enhanced 3D with DFS sequence

Usuda K. et al.,
2019 [50] Not reported 43 43 11 1.5T MR, CT,

FDG-PET/CT

T1-weighted spin-echo sequence, T2-weighted fast spin-echo sequences, DWI
using a single-shot echo-planar technique performed under SPAIR with

respiratory triggered scan

Vivoda T. et al.,
2019 [49]

Prospective
study

October 2013 until
July 2015 29 19 19 3T MR

T2-weighted turbo spin echo sequence with fat saturation; T1-weighted 3D
gradient-echo breath hold sequence; DCE-MRI T1-weighted 3D gradient echo

sequence and 3D gradient-echo breath-hold post-contrast T1-weighted

Falaschi F. et al.,
1996 [51]

June
1992–January 1994 45 34 9 0.5T MR and CT T1-weighted, proton density-weighted, T2-weighted, and enhanced

T1-weighted spin-echo

Knuuttila A.
et al., 1998 [52]

Comparative
study

September
1996–December1997 14 14 1.5T MR and CT 2D Flush, HASTE, true-FISP

Tsim S. et al.,
2020 [13]

Prospective
observational

study

January 2013 and
October 2016 58 31 31 3T MR and CT T1-weighted, fat saturated, 3D-spoiled gradient echo sequences pre and

post contrast
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3. Results
3.1. Role of Computer-Based Methods in MPM
3.1.1. Introduction

Despite significant progress in MPM management, many of the critical issues above-
mentioned, persist. Computer-based methods could represent the solution to overcome
some of these issues. There are many computer-based methods based on different software,
approach, and aims. Semi-automatic or automatic computer-based methods have been
implemented to segment the MPM from surrounding structures, a result that is difficult to
obtain without computer assistance due to time limitations and interobserver variability.
Moreover, in the last few years, many algorithms have been developed to compute the
tumor volume and other quantitative features as well as to extract statistical or radiomics
features. Radiomics has been defined as a quantitative approach to medical imaging and its
purpose is to extract, quantify, and analyze specific features (shape, intensity and texture)
of tumor images [20]. Texture analysis was developed to classify regions through statistical
measures of the spatial distribution of gray levels. Recently, an artificial neural network
in which higher-level features are extracted from images through multiple interconnected
layers to create deep learning (DL) models has been developed.

The specific tasks of computer-based methods can be summarized in three categories:
diagnosis, staging, prognosis and therapy response.

3.1.2. Diagnosis

To date, detection of early stage MPM on CT is still extremely difficult due to the
intrinsic limitations of CT and the particular growth pattern of the MPM. For this rea-
son, Chaisaowong et al. in 2007 implemented a convexity model used together with a
Hounsfield unit (HU) threshold to automatically detect and quantitatively assess pleural
thickening on axial chest CT images. To detect pleural thickening, two algorithms were
subsequently developed to carry out the segmentation of pleural contours and to perform
automatic detection. Detection was based on morphology, as pleural thickenings appear
as concave irregularities on the outer pleural surface, density, and thickness excluding all
cases with negative Hounsfield values and extension less than three slices. Assessment of
characteristic properties (i.e., maximal width and volume of the thickening) was based on a
thin plate spline interpolation. Unfortunately, the algorithms were tested only on a limited
dataset (only 14 CT from three patients) and neither the detection nor the quantification
model performance were validated against experienced radiologist performance [18].

Once the pleural thickening was identified, radiologists use qualitative visual assess-
ment to distinguish between benign and malignant disease. A clear differentiation is not
always feasible, in fact, both benign and malignant disease may occur with pleural thicken-
ing or effusion [53]. Radiomics could be a potential tool to assist in the interpretation of
these complex findings, providing objective and reproducible quantitative information. In
2017, Pena et al. analyzed radiomics features extracted from both CT and MR pleural thick-
enings to differentiate between the benign and malignant nature, using histopathologic
disease as a gold standard [19]. After normalization of the images and manual segmenta-
tion of pleural lesions on CT and MR, three textural and three shape features were extracted.
Then, combinations of features were inputted as predictors in logistic regression models to
compute the ROC curves. The diagnostic accuracy of the model and of both thoracic and
abdominal radiologists were then compared. The AUCCT and AUCMR achieved by the
best combinations of shape and texture features were 0.92 and 0.87, respectively. The best
radiomics model did not outperform the visual assessment of thoracic radiologists on CT
and MR, while a better performance of radiomics model was demonstrated compared to
abdominal radiologists on both modalities. An important limit of this study is the manual
segmentation performed by a single observer that introduce a subjective bias. To underline
this limit, in 2018, Pavic et al. demonstrated the importance of inter-observer delineation
variability on radiomics analysis, particularly for MPM compared to other tumors. To
evaluate the inter-observer segmentation variability, Dice Sørensen coefficient (DSC) was



Cancers 2021, 13, 4377 11 of 22

calculated over all possible pairs of the three experienced radiation oncologists. Median
DSC result was very low for MPM (0.26), with very low stability for radiomics features
(36%) [20].

3.1.3. Staging

Staging is a crucial process to estimate the prognosis, evaluate treatment options, and
stratify patients for clinical trials. In 2004, Armato III and colleagues compared manual
measurements of tumor thickness with six semi-automatic computerized measurement
algorithms, achieving a good agreement (r ≥ 0.95). Slices were selected by a radiologist
who identified a starting point at each measurement site, then the algorithm identified
an endpoint to delineate a line-segment whose length represented the tumor thickness.
Computer-based measurements were highly correlated with the mean of observer mea-
surements (r ≥ 0.93) [26]. In 2005, the same author implemented an interactive interface
to evaluate how many times radiologists and oncologists modified the measurement per-
formed by the algorithm, with an encouraging 75% of measurements accepted without
modification [27]. These studies by Armato III demonstrated an interesting performance,
however, still did not tackle the intrinsic limitation of using a uni-dimensional measurement
to describe the bulk of a tumor with an extremely complex growth pattern.

The natural evolution of computer-based uni-dimensional measurement has been
the semi-automatic or automatic volumetric approach. Indeed, in 2011, Sensakovic et al.
implemented a more complex algorithm to segment the lung parenchyma and non-linear
diffusion and k-means classifier to identify MPM findings in the pleural space. This
algorithm only required minimal initialization by the user. The performance was then
compared to manual segmentation of three observers in a small testing set (31 CT) using
the Jaccard similarity coefficient (J). For each of the 31 MPM CT scans, the three observers
independently segmented five axial scans. The average J between the computer-based and
manual segmentation was 0.506, 0.407, and 0.493 for each observer. Despite there being no
significant differences between manual and computer-based segmentation, the algorithm
is not valid for a wider clinical application due to some segmentation errors. Most of these
errors occur in the lung bases and intercostal spaces and are related to concomitant pleural
effusion or atelectasis and to partial volume artifact [28].

In 2017, Chen et al. implemented a semi-automatic random walk-based segmentation
method able to segment MPM tumor and to incorporate end-users’ input. The radiologist
has more control of the segmentation due to user-defined values, placed in regions known
to be tumor, which are the starting point of the segmentation. To validate the segmentation,
the algorithm performance was compared to manual segmentation. The median time-spent
for the computer-aided procedure was 23.1 min, while for manual segmentation, it was
68.1 min. The DSC was 0.825 and represents a good result in MPM segmentation [29].

The approaches described above, linear and volumetric, were then combined in
2017 by Brahim et al. in two different papers. The proposed methods were developed
in three steps: supervised delineation of the thoracic cavity, automatic segmentation
of tumor through a statistical texture analysis approach, and finally pleural thickening
estimation. The algorithms achieved an interesting J of 0.72 and 0.73 compared with
manual segmentation. The differences between the two segmentations were mostly due to
algorithm over-segmentation around the mediastinal spaces and under-segmentation in
the tumor region [30,37].

For accurate image content analysis and therefore overcome the misclassification
problem of the tumor region, deep neural networks may represent a solution. CNNs are
a specific type of neural network used in deep learning consisting of multiple layers of
convolutional filters that can be trained to recognize image features based-on these features
to classify image regions. In 2018, Gudmundsson et al. separately trained two deep CNNs
for the left and right lungs to detect pleural thickenings. To train the two CNNs, 4259 and
6192 segmented axial CT sections of the right and left lungs were used. Then, two distinct
sets of 131 axial CT sections were used as test-sets to evaluate the performance of the
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algorithm compared to the manual segmentation performed by eight different observers.
As result, the DSC ranged from 0.662 to 0.800, showing more disagreement on test-set 2
due to the greater number of CT-scans with pleural effusions in this set. Misclassification
was observed particularly when large pleural effusion was present and misclassified as
tumor by the CNNs, leading to a relative difference ≥29.4% between the CNNs and the
observers [31].

To overcome this issue, the same authors in 2020 trained a two-dimensional U-net
with a dataset of 5230 axial CT sections. A test-set of 94 CT sections with both tumor and
pleural effusions was used to validate the network. Despite the extremely complex task,
the algorithm achieved a median DSC of 0.690 when compared to manual segmentation,
outperforming the past model. This result was achieved thanks to transfer learning, which
is a pre-training of the layers on large natural image datasets [32]. Again, the study
demonstrated a greater disagreement in manual segmentation between the observers when
pleural effusions was shown in the CT scans, raising questions about which gold standard
is appropriate to evaluate the performance of these automatic methods.

These intrinsic limitations of manual segmentation can be overcome by using the
gross tumor specimen volume as the gold standard. Armato et al. in 2015 compared the CT
tumor volume after manual segmentation to the gross tumor specimen volume, resulting
in a modest correlation coefficient of 0.66 that further decreased at 0.18 considering only
a lower volume of disease [33]. This modest result showed not only the limits of manual
segmentation, but also the weakness of using gross tumor volume as a reference standard
for MPM segmentation because pathologic volume also includes non-tumor tissue.

The first study that investigated a quantitative staging was made by Gill et al. in
2018, who proposed alternative clinical staging models implementing two quantitative
parameters: tumor volume assessed from CT scans (VolCT) and maximal fissural thickness
(Fmax). Pre-operative CT scans of 472 patients who underwent macroscopically complete
surgical resection of MPM were analyzed by a radiologist both qualitatively, using the
American Joint Committee on Cancer (AJCC) Staging Manual, and quantitatively, assessing
tumor volume by semiautomatic segmentation (VolCT) and measuring the maximum
thickness of interlobular fissural thickenings (Fmax). Pathological staging for each patient
was also evaluated and used as the gold standard. One third of the patients in the study
cohort was assigned to a training set to generate staging models inclusive of the quantitative
parameters; the performance of these models was evaluated in a test set including the
remaining 2/3 of the patient cohort. Aiming to create quantitative models that could be a
surrogate to clinical staging, VolCT and Fmax values were transformed into categorical
variables; considering values derived by hazard ratio and overall survival analysis in the
test set, the process resulted in a four-level bivariate model with four stages based on
VolCT, with upstaging by one level if a Fmax threshold was surpassed. The performance
of the staging models as prognostic classifiers was assessed with the Harrel’s C index;
the baseline clinical AJCC showed a modest performance (c-index = 0.562), while the
quantitative models had a superior discriminative performance statistically significant both
when using VolCT alone (c-index = 0.629, p = 0.004) and the bivariate four level model
(c-index = 0.638, p = 0.001) [35].

The first multicenter volumetric CT study was performed by Gill et al. in 2016. Two
radiologists independently performed a semi-automatic volumetric assessment of MPM
through manual editing after an initial automated tumor segmentation based on HU value.
The correlation between the measurements of the two radiologists was good (Spearman
Corr. = 0.822), an accurate analysis of discordant cases showed that they were attributed
mostly to perception errors, data entry errors, and user errors in tool knowledge [34].

The above-mentioned papers measure quantitative parameters that are directly related
to the tumor, but other parameters must be mentioned such as the thoracic cage volume
(TCV). Burt et al. in 2020 investigated the incidence of preoperative predictors of diffuse
chest wall invasion (DCWI), the most common factor precluding macroscopic complete
resection (MCR) of MPM. DCWI is generally assessed by the surgeon at the time of resection;
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a preoperative identification of DCWI is necessary to avoid worthless thoracotomy, and to
save time in order to start non-surgical therapy patients with MPM as early as possible.
Several potential predictive factors were evaluated in two cohorts of patients, one with
MCR (n = 143) and one with DCWI (n = 27). TCV was computed on pre-operative CT scans
applying 3D volume analysis in imaging software. In univariable regression analysis, a
reduction in TCV ipsilateral to the MPM compared to the contralateral demonstrated an
interesting and strong association with DCWI (p = 0.009); additionally, the entity of the
ipsilateral TCV reduction was demonstrated to be significantly higher in patients with
DCWI, showing an AUC of 0.67% and setting as cutoff a percentage change value in TCV
of −5% [36].

3.1.4. Prognosis and Therapy Response

The research of prognostic factors and scores to carefully select candidates for curative
purposes and potentially toxic multimodal treatment is still ongoing. In fact, current
staging systems do not effectively stratify prognosis [54]. The first potential prognostic
factor, as can be easily conceived on the basis of the reports above-mentioned, is the tumor
volume. In 2012, Gill et al. investigated the prognostic value of pre-operative tumor
volume CT together with other clinical factors in a cohort of 88 patients with histologic
features of epithelial MPM treated with adjuvant chemo/radiotherapy and extrapleural
pneumectomy. The tumor volume was identified and segmented with 3D volume software,
while extrapleural sites or discontinuous regions of involvement were identified and
manually added by a thoracic radiologist. Pre-operative tumor volume and hemoglobin
concentration had strong results in multivariate analysis and was independently associated
with survival after extrapleural pneumectomy. A threshold of 500 cm3 for pre-operative
tumor volume showed a hazard ratio of 2.02 and resulted in the strongest prognostic factor;
moreover, it was independent of clinical stage [21]. However, these results need to be
generalized to nonepithelial disease and to other types of cytoreductive procedures.

Additionally, radiomics features could be useful as prognostic factors. In 2020,
Pavic et al. extracted 1404 CT and 1410 FDG PET-CT features from pre-operative exams of
72 MPM patients treated with curatively intended extrapleural pneumectomy or pleurec-
tomy/decortication. Primary tumors were manually segmented by four radiation oncolo-
gists and subsequently shape, intensity, texture, and wavelet features were extracted. Only
stable features independent of inter-observer segmentation variability were considered
and non-redundant features were included in the multivariate Cox regression analysis.
As a result, only the final FDG-PET radiomics model was predictive for progression free
survival (PFS) (concordance-index = 0.66), while the CT radiomics model could not be
successfully validated [22].

Accurate and reproducible assessment of disease response to therapy is crucial to
evaluate the efficacy of such therapy in both clinical trials and clinical practice. Compared
to the traditional methods, a more accurate and reproducible approach could be the com-
parison of overall tumor volume before and after treatment. Manual segmentation of the
entire tumor volume would be extremely time-consuming and presents some interobserver
variability. Driven by the aim of overcoming the mRECIST and entire volume manual
segmentation issues, Labby et al. in 2013 performed manual area measurements of the
MPM findings. Baseline and first follow-up CT scans were obtained for 31 patients. In
a similar manner to the mRECIST, three sections with significant MPM findings were
selected by a single experienced radiologist and then five radiologists proceeded to inde-
pendently contour the tumor for each baseline and follow-up CT scans. For each lesion
contoured, the area was calculated using Green’s theorem; the areas for each CT scan were
then summed to produce a “pseudovolume”, that is, the volume of disease on a small
subset of slices of CT. However, the results showed a high inter-observer variability due to
different approaches in contouring lesions or different perceptions of tumor. This study,
according to previous ones, demonstrated that manual segmentation, although limited
to only three slices, has inter-observer variability that prevents meaningful and reliable
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response assessment. Moreover, the time required for each segmentation was to the order
of 20 min per scan, still too long time for implementation in clinical practice [12].

Computer-aided measurement techniques could improve the time needed to segment
tumor volume and the reproducibility of the process. In 2010, Liu and colleagues used a
semiautomatic computer-aided method to measure tumor volumes in 30 MPM patients
from two clinical trials, before and after chemotherapy. mRECIST measurements were also
available. The computer method segmented the tumor from adjacent non pathological
tissues (i.e., lungs, chest wall, heart etc.); two radiologists then corrected each scan inde-
pendently to assess interobserver reliability. It was found that a change in tumor volume
was significantly associated with overall survival (HR: 1.94, p = 0.04); in contrast, mRECIST
could not predict a change in overall survival (HR: 1.06, p = 0.25). The volumetric measure-
ment showed a significantly higher predictive ability than that of mRECIST (C-index = 0.74
vs. C-index = 0.5, p = 0.05). The patients were divided into two groups based on the
increase or decrease in tumor volume, and a significant difference was found in median
survival between the two groups (11.5 months vs. 18.1 months, p = 0.03). This method
showed good reproducibility: the concordance of correlation coefficients between the two
radiologists for both baseline (CCC = 0.993) and follow-up (CCC = 0.991) measurements
were good [24].

Similarly, in 2013, Labby and colleagues created a model in order to analyze tumor
volumes continuously during chemotherapy, in conjunction with clinical covariates, to
predict survival. An average of four scans per patient were obtained from 81 patients at
baseline and during follow up after chemotherapy. The tumor volumes were segmented
using a semiautomated method with manual editing requiring 10–20 min per case. The
disease volume, through continuous and time varying measurements, was modeled as the
specific growth rate (SGR) from baseline according to a logarithmic equation; the SGR was
found to be predictive for survival in univariate proportional hazard models [23].

In 2011, Frauenfelder et al. also evaluated the accuracy of volumetric measurement
before and after therapy compared to the mRECIST criteria. In this study, three readers
independently analyzed CT scans from 30 patients before and after therapy, presenting
their measurements according to mRECIST criteria and with a volumetric approach. For
the latter, they used dedicated software (Myrian, Intrasense, Paris, France), which was
previously developed for liver segmentation, to measure tumor volume following three
steps: normal lung was segmented semi-automatically, pleural effusion and atelectatic
lung were excluded manually, and the outer edge of the pleura was segmented semi-
automatically. The three readers were tasked to manually segment only one every 4–5 slices,
leaving the rest of the work to an interpolation algorithm, thus drastically reducing the time
needed to perform the segmentation to 10–15 min per case (but still higher than the 3 min
required to apply mRECIST measurements). When comparing the classification of tumor
response according to mRECIST criteria, it was found that there was a mismatch between
the readers in 16 cases out of 30, suggesting a moderate interrater agreement (kappa = 0.33).
On the other hand, there was no mismatch between readers with the volumetric approach,
with a k value of 0.89, indicating an excellent inter-rater agreement [25].

3.2. Role of MRI in MPM
3.2.1. Introduction

The role of magnetic resonance imaging (MRI) in the assessment of pleural diseases has
grown in the past years and is already considered the imaging of choice in the evaluation of
superior sulcus carcinoma [40]. MRI advantages include the absence of ionizing radiation,
the high soft tissue contrast, and the intrinsic flow sensitivity [41]. Some of the greatest
limitations to MRI use are its high costs and the poor availability of MRI scans. Therefore,
the advantage of CT guided biopsy compared to MRI utility has been proposed as an
alternative to improve pleural disease differential diagnosis [6]. Because MRI evaluation
is not related to radiation exposure, it could be a suitable tool for repeatedly screening
programs and in monitoring patients treated with chemotherapy [38].
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3.2.2. Diagnosis

One of the first studies regarding the role of MRI in assessing pleural disease evaluated
the morphological appearance of benign and malignant lesions and their differential
diagnosis. In 1999, Boraschi et al. analyzed the appearance of MRI in asbestos-related
benign and malignant pleural disease. Thirty patients underwent MRI examination due to
the previous detection of suspected pleural tumor on CT. The differential diagnosis was
based on morphological features like thickness of pleural lesion, regularity of internal and
external margins, mediastinal pleural involvement, circumferential pleural thickening or
“pleural -rind”, pleurisy, diffusion to other structures, and signal intensity in T1 and T2
weighted images [40]. The assessment of a lesion with a thickness lower than 1 cm, regular
margin, hypo, or isointense signal intensity on T2-weighted sequences (compared to that
of muscle) and homogenous contrast enhancement were defined as signs of benignity,
whereas malignant lesions were characterized by thicknesses greater than 1 cm, irregular
margins, mediastinal pleural involvement, pleural “rind”, pleurisy, and extension to other
thoracic structures. The signal intensity of the malignant process was low-to-intermediate
in T1-weighted images and inhomogeneously hyperintense both in the proton density
and T2-weighted images, with significant enhancement in T1 weighted sequences after
intravenous paramagnetic contrast administration. A sensitivity of 100% and a specificity of
95% of MRI in the detection of pleural malignancies was highlighted. The extension of the
tumor was better evaluated in MRI than CT, especially in the coronal plane, assessing the
apical, diaphragmatic, infradiaphragmatic involvement and the relation with mediastinal
structures (Figure 3) [40].
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Figure 3. T2-weighted image acquired in the axial plane clearly demonstrates circumferential pleural
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MRI superiority in morphological evaluation of pleural lesions and in assessing lo-
coregional extension was also demonstrated in two other studies: one by Knuutila A. et al.
in 1998 [52] and the second by Falaschi et al. in 1996 [51]. In the latter work, it was re-
ported that signal hyperintensity in proton-density and T2-weighted images in pleural
malignancies (like mesothelioma, metastasis, or non-Hodgkin’s lymphoma) demonstrated
a 100% sensitivity and a 87% specificity [51]. Mesothelioma and secondary pleural involve-
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ment such as lymphoma or metastasis represent 10% and 90% of pleural malignancies,
respectively [7,9].

In 2000, Hierholzer et al. analyzed the role of CT and MRI in differential diagnosis of
pleural disease in 42 patients previously selected on the basis of the presence of pleural
thickening on CT. Again, the major CT features related to malignant nature were medi-
astinal pleura involvement, diffuse and circumferential pleural thickening, evidence of
nodularity or irregularity of pleural contour, and finally infiltration of diaphragm and/or
chest wall [6].

The detection of pleural calcification on CT was suggestive for benign disease even
if some benign diseases may mimic a neoplastic process as reactive pleurisy, although it
usually spares mediastinal pleura and tuberculous empyema [40]. In the end, MRI was
more sensitive in the assessment of chest wall and diaphragm involvement with MRI
morphological and signal intensity features, which showed a sensitivity of 100% and
specificity of 93% in malignant pleural process detection [6].

In the following years, the 3-Tesla-high-field magnetic resonance scan was improved,
and in 2010, Podobnik et al. evaluated fifteen patients with asbestos-related pleural disease.
In this study, the proposed MR protocol was: T2-weighted cardiac-gated breath-hold
turbo spin echo (TSE) sequences in three planes, a T1-weighted cardiac-gated breath-hold
TSE black blood sequence, and a T2 weighted-spectral pulse inversion recovery (SPIR)
sequence with fat saturation signal. The signal intensity differences between the benign
and malignant process were the same reported in the previous studies above-mentioned
and no significant differences between MRI and CT evaluation were highlighted. However,
a small number of patients was analyzed [38].

In the last few years, despite the morphological features detectable on MRI, more
importance to quantitative analysis has been given thanks to the introduction of diffusion
weighted imaging (DWI) and dynamic contrast-enhanced sequences (DCE). DW imaging
contrast sets its basis on the random Brownian motion of water protons in a tissue [55].
From this noninvasive technique, it is possible to obtain quantitative information of water
molecule mobility using apparent diffusion coefficient (ADC) maps [7]. Briefly, ADC values
are generally measured automatically by software and are then shown as a parametric map
that displays the degree of diffusion of water molecules in different tissues [56]. Both DWI
and ADC could help in differentiating benign from malignant lesions and in distinguishing
false positive PET/CT pleural disease as inflammation and talc pleurodesis [7].

In 2012, Coolen et al. evaluated the role of DWI and DCE sequences in pleural lesion
differential diagnosis. The optimal ADC cut-off value highlighted was 1.52 × 10−3 mm2/s.
However, ADC may provide false-negative results due to the presence of intra-tumoral
necrosis or inflammation. When the ADC was between 1.52 and 2.00 × 10−3 mm2/s,
perfusion parameters were used to assess the malignant nature of the lesion, then improving
the accuracy with ADC. The addition of DCE to DWI-ADC analysis improved the sensitivity
from 71.4% to 92.8%, but the specificity decreased from 92.8% to 94.1% with an overall
accuracy of 93.5% [7].

The relevance of DCE sequences was highlighted in another study by Knuuttila et al. in
1998, in which the enhancement of interlobar fissures was described as a feature suggestive
of MPM together with the already known morphological features. The superiority of MRI
compared to CT in loco-regional staging was also confirmed [39].

In the study by Mehndiratta A. et al. in 2009, the role of DCE was analyzed by ra-
diologists who assessed both the diagnostic significance and tumor vasculature display
examining a sequence of two different functional MRI post processed display methods:
color coded and grey-scaled images. A higher diagnostic quality as well as a more accu-
rate tumor vasculature in DCE-MRI were demonstrated by color coded rather than grey
scale images.

Thus, since even unperceivable changes are better distinguished in color coded display,
an extended use of this technique should be considered [44].
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In a more recent study by Tsim et al. (2018), MRI early contrast enhancement (ECE)
of pleural lesions was analyzed. Sixty patients were included in the study. First, benign
and malignant lesions were classified based on morphological evaluation. Then, perfusion
analysis was performed by placing from five to 15 ROI (region of interest) on the pleural
mass lesion or, where a lesion was not identified, randomly. If ECE was not detected in any
of the ROIs and morphological appearance was typical for a benign nature, the lesion was
classified as benign. If morphological appearance was typical for malignancies, a diagnosis
of MPM was proposed. Otherwise, if morphological presentation was benign but ECE was
assessed, malignant nature was indicated. Of the 60 patients, 36 had malignant lesions,
five had secondary pleural malignancies, and 31 MPM. Altogether, ECE showed a higher
diagnostic sensitivity (83%) and negative predictive value (92%), outperforming subjective
morphology evaluation both on CT without perfusion analysis and on MRI (56% and 67%,
68% and 78%, respectively). ECE was characterized by a higher interobserver agreement
(k 0.784) compared to CT (k 0.65) and MRI morphology (k 0.593) [8].

In another study by Coolen et al. in 2015, the relevance of visual assessment of “pleural
pointillism” on high b-value DWI sequences was highlighted as a useful tool in differential
diagnosis between benign and malignant pleural diseases. Pleural pointillism means the
presence of multiple hyperintense spots on high b-value DWI because it is visually reminis-
cent of the Post-Impressionistic painting technique known as Pointillism. The advantage of
pleural pointillism is its detection in early stages of MPM. In addition, it could be used to
identify the optimal biopsy sampling site together with PET/CT information [41]. Another
relevant feature reported in this work was the “shrinking lung”, the contraction of the
affected hemithorax, although this may also be seen in other pathologies, mostly autoim-
mune disorders such as systemic sclerosis, systemic lupus erythematosus, and Sjogren
syndrome or as consequences of chronic empyema and hemothorax [41].

The role of the DWI sequence in differential diagnosis of pleural disease was confirmed
in a retrospective study by Revelli et al. in 2016, in which respiratory triggered DWI
sequences were applied in a group of 56 patients with suspect malignant pleural tumor.
Respiratory triggered DWI provides a more accurate measurement of ADC values despite
a longer acquisition time, which can be reduced using high value parallel imaging. All
patients underwent thoracoscopic biopsy and MRI exam: 44 patients had a histological
diagnosis of MPM (31 epithelioid, four biphasic, and nine sarcomatoid). The ADC optimal
cut-off value was 1.5 × 10−3 mm2s−1 with a sensitivity of 100% and specificity of 91.67%.
The correlation between different subtypes and ADC values was analyzed: a higher value
of ADC in the epithelioid subtype was highlighted, while in sarcomatoid, lower ADC
mean values were linked to the frequent more extensive intratumoral necrosis and cellular
edema [9].

A cut-off ADC value of 1.28 × 10−3 mm2s−1 was highlighted in another study by
Koc et al. in 2017, in which a group of 62 patients underwent MRI examination and subse-
quent histological diagnosis showed a lower specificity, sensitivity, and predictive value of
ADC compared to those in the previous studies mentioned [42].

DWI utility in differentiating between different MPM histological subtypes was con-
firmed in a study by Gill R.R. et al. in patients affected by MPM and ADC maps were
computed from the DWI sequence. The results showed good correlation between ADC
values and the three different histologic subtypes. ADC value of 1.31 × 10−3 mm2/s was
typical for epithelioid MPM, 1.01 × 10−3 mm2/s for biphasic MPM and 0.9910−3 mm2/s
for sarcomatoid MPM. As a result, the ADC value of the epithelioid subtype was compared
to the sarcomatoid subtype and was found significantly higher p < 0.05). No significant
differences between the ADC values of biphasic and sarcomatoid MPM were revealed [43].

In a recent study by Usuda et al. published in 2019, the role of DWI sequences in
differentiating between pleural dissemination of lung cancer, empyema, pleural effusion,
and mesothelioma was analyzed. DWI was confirmed as a valid tool in differentiating
between the malignant and benign process and was even able to differentiate between
MPM and pleural dissemination of lung cancer [50].
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3.2.3. Staging

PET/CT proved to be the most precise technique in MPM staging with a higher
accuracy compared to other imaging modalities such as CT and MRI, thanks to the precise
evaluation of lymphatic nodes and the early detection of initial MPM. However, PET/CT
showed some limitations in the evaluation of thoracic wall invasion because of the limited
spatial resolution. As reported in a study by Plathow et al. in 2008, and as already
explained in the mentioned studies regarding MRI morphological evaluation of MPM, MRI
is a more suitable tool in assessing locoregional invasion, particularly in diaphragm and
infra-diaphragm invasion. T2-weighted HASTE images have been proven to better identify
pleural effusion compared to CT. MRI also has a higher contrast resolution, resulting in a
better delineation of the desmoplastic reaction and differentiation between tumor tissue
and contiguous connective tissue [47].

In a work by Tsim et al. in 2020, volumetric analyses performed on CT and MRI were
compared. Interobserver agreement and accuracy were higher for MRI volumetric analysis
because of the improved contrast resolution between the tumor and the surrounding soft
tissues [13].

In the differentiation of T3 and T4 stage disease, contrast enhanced (CE)-MRI also
appeared as a reliable method to provide an accurate evaluation of tumor extension to
assess resectability, as demonstrated by Stewart et al. in 2003. It is unlikely to contribute
significantly to nodal staging, but it remains a helpful adjuvant in the selection of patients
designated for radical surgery [48].

According to the study of Patel et al. in 2017, the best time delay to program CE-
MRI and achieve the peak of MPM tumor enhancement is between 150 and 300 s after
contrast administration. This specific time range correlates with a better tumor perception
when MR images are viewed by radiologists. This result was obtained by comparing
the measurable tumor enhancement with a qualitative difference in tumor dimension
perceived by radiologists. Thus, an optimal tumor enhancement could improve the clinical
interpretation of exams performed for MPM, further increasing the conspicuity of the
tumor compared to contiguous soft tissues [57].

Heelan et al., in 1999, according to the International Mesothelioma Interest Group
staging system, evaluated patients using both CT and MR imaging. MRI showed a higher
sensibility to reveal involvement of chest wall, endothoracic fascia involvement, and
diaphragmatic muscle. However, no statistically significant differences were found between
CT and MR when MPM staging was performed [16].

Ohno et al., in 2019, demonstrated a higher diagnostic accuracy for TNM stage assess-
ment of whole-body MRI and of combined imaging modalities such as FDG PET/MRI, and
FDG PET/CT compared to conventional imaging examination. In particular, whole-body
MRI and FDG PET/MRI outperformed conventional imaging for nodal assessment and
evaluation of the MPM stage [15].

3.2.4. Assessment of Therapy Response

To estimate tumor response after therapy, mRECIST and volumetric approaches
present the most accurate scores. In contrast, CT and conventional RECIST proved to be
not as precise. MRI (HASTE, VIBE, T2-TSE sequences) was superior in detecting soft tissue
contrast even without intravenous contrast media administration and better delineates the
local extent of MPM. In summary, in the study of Plathow et al. in 2008, it was assessed
that to evaluate early therapy response, mRecist criteria applied to MRI are recommended,
however, in the evaluation of pleural lesion, nowadays, CT remains the gold standard, even
for mRecist application, especially in patients with limited physical status and breathing
problems because of the shorter acquisition time [46].

Further studies have attempted to prove the role of MRI in the assessment of MPM
response to chemotherapy. In 2006, Giesel et al. investigated the potential role of DCE-MRI
and the pharmacokinetic parameters of MPM enhancement after contrast administration
to assess biological effects in patients undergoing chemotherapy. Indeed, DCE-MRI with
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the implementation of these new parameters may help to identify microscopic features
such as microvascular properties and tumor heterogeneity while monitoring response
to chemotherapy. The pharmacokinetic parameters computed to characterize the tumor
region were amplitude (Amp), redistribution rate constant (kep), and elimination rate
constant (kel). A correlation was found between pharmacokinetic kep values and poor
overall response to therapy. MPM has a rapid contrast uptake and washout in relation
to an increased neo-angiogenesis and vascular permeability. High tumor expression of
pro-angiogenetic factors (VEGF, VEGF type C) in MPM is associated with shorter survival.
New therapeutic antivascular-targeted agents like anti-VEGF antibodies require functional
imaging, in order to detect the response and facilitate personalized treatment as early as
possible, so MRI seems to be a promising tool [45].

In a recent study by Tomsic M.V. et al. (2019) DCE was proposed as a reliable biomarker
for the evaluation of chemotherapy response. In this work, two kinetic models for DCE-MRI
analysis were tested, Extended Tofts (ET) and adiabatic approximation tissue homogeneity
model (AATH) and were compared to mRecist evaluation. Perfusion analysis turned out
be more sensitive in detecting early tumor response to therapy [49].

4. Conclusions

CT scan is still the primary imaging modality used for MPM evaluation. Despite this,
the CT features for MPM detection have a low negative predictive value, even more so
in the early stage of disease [6]. Meanwhile, MRI is characterized by better sensitivity
and specificity through the combination of morphologic features, and signal intensity
information confers a higher sensitivity for the detection of pleural malignancy.

Regarding staging, the critical distinction to perform is differentiation between re-
sectable (T3) and unresectable (T4) tumors. The role of CT to assess the T parameter is
limited by a low contrast resolution between the tumor and chest wall, whose involvement
defines T4 staging. Indeed, CT scans could underestimate the stage of disease, especially
in cases of early invasion [16]. MRI has the advantage of a higher contrast resolution,
resulting in better delineation between tumor tissue and contiguous connective tissue [47].
In selected cases, MRI should be used to detect the initial involvement of the diaphragm,
lung apex, or thoracic wall.

To assess response to treatment, the morphology and asymmetric growth of the
tumor still represent significant challenges for accurate measurement of tumor burden on
CT. Computer-based methods have demonstrated their potential role in filling this gap.
Semi-automated and, moreover, automatic methods make feasible the extremely difficult
and time-consuming task of segmentation, opening to other possibilities such as volume
computing or the extraction of radiomics features. These quantitative parameters could be
implemented in clinical practice, as has already been demonstrated through their role not
only in the assessment of therapy response, but also in diagnosis and staging. Moreover,
DWI and DCE MRI sequences increased accuracy, providing elements that may be used
for assessing chemotherapy response instead of or in combination with the well-known
mRecist criteria when using novel drugs as the anti-VEGF, etc.

The limits of MRI and computer-based methods may be summarized in the paucity
of MPM incidence, indeed, the cohort are often limited in number, making the results
not generalizable. Most of the mentioned studies included patients with already known
pleural lesions: this caused a bias in evaluating the accuracy/sensitivity of various imaging
modalities. For studies on computer-based methods, the dataset implemented is often not
public and even less the algorithm implemented, making it difficult to reproduce the results
or directly compare different methods. The limits to MRI application in pleural lesion
evaluation are its high costs, the poor availability of scanners, and a longer acquisition
time compared to those of CT. However, MRI should be considered in order to avoid more
invasive examination such as CT guided biopsy or thoracoscopy, especially in patients
with poor performance status.
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In conclusion, MRI and computer-based methods are new techniques with the poten-
tial to overcome the issues of CT in MPM imaging management. However, to introduce
these new techniques in clinical practice, new prospective studies with a larger cohort of
patients will be necessary.
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