
cancers

Article

A Comprehensive Evaluation and Benchmarking of
Convolutional Neural Networks for Melanoma Diagnosis

Saeed Alzahrani 1,*, Baidaa Al-Bander 2 and Waleed Al-Nuaimy 1

����������
�������

Citation: Alzahrani, S.; Al-Bander, B.;

Al-Nuaimy, W. A Comprehensive

Evaluation and Benchmarking of

Convolutional Neural Networks for

Melanoma Diagnosis. Cancers 2021,

13, 4494. https://doi.org/10.3390/

cancers13174494

Academic Editors: Andreas

Stadlbauer, Anke Meyer-Baese and

Max Zimmermann

Received: 3 August 2021

Accepted: 4 September 2021

Published: 6 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK;
wax@liverpool.ac.uk

2 Department of Computer Engineering, University of Diyala, Baqubah 32010, Iraq; baidaa@uodiyala.edu.iq
* Correspondence: S.G.A.Alzahrani@liverpool.ac.uk

Simple Summary: Melanoma is the most dangerous type of skin cancer. It grows quickly and has the
ability to spread to any organ. This study aims to evaluate and benchmark deep learning models for
automatic melanoma diagnosis considering nineteen convolutional neural networks and ten criteria.
Multi-Criteria Decision Making methods (MCDMs) are exploited to conduct the benchmarking and
subsequently selecting the optimal model considering the predefined criteria. The study findings
would help in the model selection, designing quick and reliable diagnostic tools based on image
data, and contributing to the development of more accurate and efficient point-of-care diagnostic
and detection systems.

Abstract: Melanoma is the most invasive skin cancer with the highest risk of death. While it is
a serious skin cancer, it is highly curable if detected early. Melanoma diagnosis is difficult, even
for experienced dermatologists, due to the wide range of morphologies in skin lesions. Given the
rapid development of deep learning algorithms for melanoma diagnosis, it is crucial to validate and
benchmark these models, which is the main challenge of this work. This research presents a new
benchmarking and selection approach based on the multi-criteria analysis method (MCDM), which
integrates entropy and the preference ranking organization method for enrichment of evaluations
(PROMETHEE) methods. The experimental study is carried out in four phases. Firstly, 19 convo-
lution neural networks (CNNs) are trained and evaluated on a public dataset of 991 dermoscopic
images. Secondly, to obtain the decision matrix, 10 criteria, including accuracy, classification error,
precision, sensitivity, specificity, F1-score, false-positive rate, false-negative rate, Matthews correlation
coefficient (MCC), and the number of parameters are established. Third, entropy and PROMETHEE
methods are integrated to determine the weights of criteria and rank the models. Fourth, the pro-
posed benchmarking framework is validated using the VIKOR method. The obtained results reveal
that the ResNet101 model is selected as the optimal diagnosis model for melanoma in our case study
data. Thus, the presented benchmarking framework is proven to be useful at exposing the optimal
melanoma diagnosis model targeting to ease the selection process of the proper convolutional neural
network architecture.

Keywords: melanoma; convolution neural networks; benchmarking

1. Introduction

Skin cancer is the most frequent type of cancer and can be highly truculent [1]. In
the UK, more than 100,000 new cases of skin cancer are reported each year [2]. In 2016,
1319 death cases from non-melanoma skin cancer and 2285 death cases from melanoma
skin cancer were reported [3,4]. The initial stage in melanoma diagnosing is usually a
visual assessment of the skin lesions. In comparison to inspection with the naked eye,
dermatoscopy is one of the dermatologists’ most popular imaging procedures, and a
frequently used diagnostic tool that enhances and improves the diagnosis of malignant
and benign pigmented skin lesions [5].
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A dermoscopy magnifies the surface of the skin lesion, allowing better visualization of
deeper skin structures. It provides improved diagnostic accuracy of skin lesions, enabling
the dermatologist to examine them more thoroughly. There are two main dermoscopy
modes: non-polarized dermoscopy (NPD) and polarized dermoscopy (PD). Non-polarized
dermoscopy (NPD) is integrated with a magnification lens and light-emitting diodes to
provide illumination, enabling the visualization of subsurface structures in the epidermis.
Non-polarized dermoscopy (NPD) requires direct contact of the glass plate with the skin
surface and the presence of a liquid interface, such as alcohol, liquid paraffin, water,
or ultrasound gel. The interface fluid dramatically increases the penetration of light,
reduces scattered radiation, and produces a clear, low-reflection image, which allows
excellent visualization of the superficial layers of the skin from the epidermis to the dermal–
epidermal junction (DEJ). Like NPD, polarized dermoscopy (PD) contains light-emitting
diodes to provide illumination and are equipped with a magnification lens. However,
PDs use two polarized filters to achieve cross-polarization. NPD does not require direct
contact with the skin and does not require the use of immersion liquids. PD allows
visualization of subsurface structures located at the dermal–epidermal junction (DEJ) or
superficial dermis. PD nearly blinds to the skin’s surface and structures in the superficial
epidermis. Hence, non-polarized dermoscopy reveals superficial features, while polarized
dermoscopy shows deeper structures, inferring that the use of both methods can provide
complementary information [6,7]. Melanoma is diagnosed in two ways: visual inspection
and biopsy. ABCDE (asymmetric, shape, border, color, diameter, and evolution) [8] are
the main criteria used for visual screening of melanoma lesions based on a geometric
description. Because the ABCDE approach is entirely dependent on the practitioner’s
visual acuity and experience, this approach can be performed efficiently only by trained
dermatologists [9].

However, manual review by dermatologists is a time-consuming, controversial, and
error-prone task. The number of required dermatologists comparing the size of the popula-
tion in the United States, Australia, and the UK is considerably low [10–12]. In the USA,
the required number of dermatologists should be more than 4 per 100,000 individuals,
which is the number that is suggested to adequately care for a population. However, it is
currently estimated at 3.4 per 100,000 individuals. Similarly, there are just 550 practicing
dermatologists in Australia, which is almost 15 % less than what is required to meet the
needs of the population [11]. In the UK, the Royal College of Physicians (RCP) [13] recom-
mends one full-time equivalent (FTE) consultant per 62,500 of the population. The RCP
recommends 989 FTE consultant dermatologists. The British Association of Dermatologists
(BAD) [14] found that there are 813 dermatology specialists in the UK Compared to the
RCP’s recommendations, the BAD show a shortfall in the region of 250 consultants [12].
Hence, melanoma patients may not be aware of the severity of their disease if they do not
undergo inspection by skilled specialists during an early stage of the disease and, thus,
miss the ideal time to treat their conditions.

These obstacles encourage and inspire researchers to create automated melanoma
diagnosis methods, using computer-aided diagnosis (CAD) systems. For non-experienced
dermatologists, the CAD tool could provide a user-friendly environment, used as a second
opinion in melanoma cancer diagnosis [15,16]. A large volume of skin images were col-
lected in recent years, and sophisticated deep learning-based models [17] were successfully
trained to perform automatic analysis of these skin images due to the industrial advance-
ment of both computer hardware represented by graphics card capabilities and software
technologies. These breakthroughs prompted expectations that automated diagnostic tools
which will be available in the near future to examine and diagnose all types of skin lesions
without the requirement of human experience [18].

Many automated melanoma diagnosis systems based on deep learning techniques,
especially deep convolutional neural networks (CNNs), were recently developed. The
new methods have significantly advanced the state of the art in skin lesion analysis. The
CNN can automatically extract and learn high-level features, increasing the robustness
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of melanoma images’ inter- and intra-class variability [19,20]. With the rapid increase in
the number of automatic recognition of melanoma from dermoscopy images using CNNs,
comparing results among pieces of works and evaluation has become an awkward task.
This limitation is due to methodological constraints and the absence of some of the standard
metrics used to evaluate the performance of the models in terms of sensitivity, specificity,
specificity, etc. To overcome these limitations, we assess and benchmark the deep learning
models applied for melanoma diagnosis by considering similar methodological constraints,
similar experimental settings and parameter setups, and similar evaluation criteria for all
the deep learning models used in this study. Due to the existence of trade-offs and conflict
among performance evaluation criteria during the evaluation process, the benchmarking
of DL models is dealt with as a multiple criteria problem [21]. Accordingly, multi-criteria
decision-making schemes (MCDM) can be exploited to benchmark the convolutional neural
network models used for melanoma diagnosis.

Multi-criteria decision-making methods (MCDM) are an application of decision theory
that handles multi-objective choice. It is a strategy for assessing and comparing multiple
solutions (alternatives) considering competing criteria. It is a widely used decision-making
approach in the field of operational research that deals with several criteria to find an
optimal solution for decision makers. MCDM techniques find the optimal selection by
ranking the performance of the alternatives, where the highest rank is assigned the best
feasible alternative (solution) [21–23]. Two key problems could arise during the evaluation
and benchmarking of deep convolutional neural network models for melanoma detection.
First, what are the suitable criteria for the evaluation? Second, what is the proper bench-
marking approach for selecting the optimal model considering the provided criteria?. Thus,
the motivation of this work is to present a framework for evaluating and benchmarking
multiple deep learning models for melanoma detection, using various evaluation criteria.

In light of the concerns mentioned above and given the rapid development of deep
learning algorithms for melanoma diagnosis, it is crucial to validate and benchmark
these models, which is the main challenge of this work. This research direction aims to
conduct a comprehensive evaluation and benchmark of convolutional neural networks for
melanoma diagnosis. The benchmarking is accomplished by prioritizing convolutional
network architectures and then selecting the optimal architecture, given specific criteria.
The contribution of our work can be represented in four-fold as follows:

• The proposed study provides an appropriate and powerful linkage between the multi-
criteria decision-making techniques and the objective performance evaluation criteria,
which are typically used to evaluate the deep learning models. This integration
with decision-making schemes helps to rank the learning models based on multiple
conflicting criteria and select the optimal model in our case study.

• This is the first study that introduces the application of a multi-criteria decision-
making approach based on merging entropy and PROMETHEE methods to help
prioritize the deep convolutional neural networks used for melanoma diagnosis and
select the optimal model considering various criteria.

• This study presents a comprehensive evaluation of 19 convolutional neural network
models with a two-class classifier. The models are trained and evaluated on a dataset
of 991 dermoscopic images considering 10 performance evaluation metrics.

• The findings of our investigations would aid and expedite the timely deployment of
artificial intelligence (AI)–assisted CAD systems to clinics and hospitals with regard
to easing model selection under different criteria.

The remainder of this paper is presented as follows: in Section 2, the materials
and proposed methods are described and explained; the experiments and results of the
proposed system are designed, reported and discussed in Section 3; and finally, the work is
concluded in Section 4.
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2. Materials and Methods
2.1. Materials

To carry out our experiments, dermoscopic images were collected from the openly
available International Skin Imaging Collaboration (ISIC 2017) dataset [18]. Melanoma,
seborrheic keratosis, and nevus, shown in Figure 1, are the three types of lesions repre-
sented in the dataset. Melanoma is a cancerous skin tumor with a high mortality rate.
Seborrheic keratosis and nevus, the other two types of lesions, are benign skin tumors
formed from different cells. Although the ISIC Challenge 2017 included three subtasks with
annotations for three classes (nevus, seborrheic keratosis, and melanoma), we only consider
the melanoma subtask versus the remaining classes, producing a two-class classification
task. The ISIC (2017) dataset comprises 2000 training images and 600 test images. In the
training set, there are 374 melanoma images and 1626 non-melanoma images. The test set
contains 117 melanoma images and 483 non-melanoma images. In total, both training and
test data comprise 491 melanoma images and 2109 non-melanoma images. The percentage
of melanoma images in the dataset is 19%. This ratio shows a highly imbalanced data
distribution between the two classes. Our study does not target to develop a new method
for melanoma diagnosis competing with other methods in which particular strategies
are designed to remedy and alleviate the effect of imbalanced data. Instead, this study
aims to evaluate and benchmark the existing CNNs architectures considering multiple
conflicting criteria. The condition of benchmarking in this study is set for balanced data.
Thus, to maintain the balance of classes distribution, all the melanoma images (491) in
the dataset are collected, whereas only the first 500 non-melanoma images are gathered,
producing 991 dermoscopic images in total. The data are split into five folds for training
and testing. In each of the five training cycles, four folds are used for training, and the
hold-out set is used for testing the network performance. Thus, in each training process,
this generates 393 images (melanoma) and 400 images (non-melanoma) for training, and
98 images (melanoma) and 100 images (non-melanoma) for testing.

Figure 1. Example of images used to conduct this study. Both nevus and seborrhoeic keratosis are classified as non-
melanoma in our experiments.

2.2. Methods

Our developed evaluation and the benchmarking system illustrated in Figure 2 com-
prises five main stages, including data preparation, designing of CNN models, training of
CNN models, evaluation criteria establishment, and benchmarking of CNN models using
MCDM. In the first and second phases of the proposed framework, depicted as red and
orange blocks in Figure 2, the data are prepared, and deep convolutional neural networks
are implemented (different versions of a specific CNN architecture are considered; for
instance; VGG16, VGg19). In the third phase, depicted as a grey block, the CNN models are
trained. The key evaluation criteria are identified and measured by evaluating the trained
models on test data. In the final phases, shown as blue and green blocks, MCDM methods
are employed to prioritize the alternatives (i.e., CNN models). The blue block shows the
construction of the decision matrix (models as rows and criteria as columns); then, the
entropy method is applied to calculate and generate the weights of criteria. Finally, the
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MCDM methods (PROMETHEE and VIKOR) are exploited to rank CNN models and report
the optimal CNN architecture considering the provided decision matrix and the weights of
criteria. Although PROMETHEE and VIKOR are different statistical methods, the input
data of these methods are the same, which are the weights of criteria and the decision
matrix. These methods are independent; therefore, they are applied to the given input data
separately. In this section, each phase of the proposed framework is described as follows:

Figure 2. The block diagram of the proposed framework used to benchmark CNN models for melanoma diagnosis. M
refers to malignant (melanoma) and B refers to benign (non-melanoma).

2.2.1. Pre-Trained Convolutional Neural Network Models (CNNs)

The key CNN baseline architectures that have been applied in this study are summa-
rized below:

• AlexNet: In 2012, AlexNet [24] substantially surpassed all previous classification
methods, winning the ImageNet Large Scale Visual Recognition Competition (ILSVRC)
by reducing top-5 error from 26% to 15.33%. The network’s design was similar to the
LeNet network developed by Yann LeCun et al. [25], but it was deeper, with more
filters per layer and layered convolutional layers. 11 × 11, 5 × 5, 3 × 3 convolutions
filters, max pooling, dropout, data augmentation, ReLU activations, and SGD with
momentum were all included. After each convolutional layer, added ReLU activations
were added. AlexNet was trained using two Nvidia Geforce GTX 580 GPUs for six
days, which is why their network is divided into two pipelines.

• VGG16,19: Simonyan and Zisserman presented the VGG architecture in 2014 [26].
It is a straightforward design, with only blocks made up of an incremental number
of convolution layers and 3 × 3 filters. Furthermore, max-pooling blocks follow
convolution blocks to reduce the size of the activation maps obtained. Finally, a
classification block is employed, consisting of two dense layers and a final output
layer. The numbers 16 and 19 refer to how many weighted layers each network
includes. On the other hand, this network has a couple of drawbacks: it takes too long
to learn and has a lot of parameters.

• InceptionV1,V3: Google implemented inception building blocks in GoogLeNet (Incep-
tionv1) [27]. These blocks function well together and result in a model that is easy to
generalize. GoogLeNet is made up of nine Inception modules that are stacked one on
top of the other. There are a total of 27 layers, 5 of which are pooling layers. The total
number of layers used in the network design is about 100. New revisions of the model
appeared as the model was updated regularly. Inception-v2 and Inception-v3 [28]
were released within a short time gap in 2015. Except for a few features, Inception-
v2 integrates all of GoogLeNet’s features. Filter banks were increased in width in
Inception-v2 to eliminate the “representational bottleneck”. All of the changes from
Inception-v2 were included in Inception-v3. Furthermore, Inception-v3 underwent
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additional changes, such as the use of a higher resolution input and the use of the
RMSProp optimiser, which significantly reduced the cost function.

• InceptionResNetV2: Inception V4 was launched in 2016 by Google researchers in con-
junction with Inception-ResNet. By implementing Inception-V4, the main goal of this
network architecture was to reduce the complexity of the Inception V3 model, which
provided state-of-the-art accuracy on the ILSVRC2015 challenge. This architecture
also investigates the use of residual networks on the Inception model [29].

• ResNet18,50,101: The ResNet architecture, founded by He et al. in 2015 [30], was
a major turning point in the introduction of an extraordinary form of architecture
focused on “modules” or “networks within networks”. The principle of residual
connections was first implemented in these networks. ResNet comes in various sizes
and numbers of layers—such as ResNet18, RerNet50, and RerNet101—but the most
common is ResNet50, which has 50 layers with weights. Despite having many more
layers than the VGG, ResNet50 needs nearly five times less memory. This is because,
instead of dense layers, this network uses a layer called GlobalAveragePooling in
the classification stage, which transforms the 2D feature maps of the last layer in the
feature extraction stage into an n-classes vector that is used to measure the likelihood
of belonging to each class.

• DenseNet201: DenseNet [31] is very similar to ResNet, but there are a few key differ-
ences. DenseNet concatenates the output of the previous layer with the output of the
next layer. At the same time, ResNet follows an additive approach that combines the
previous layer (identity) with the next layer. DenseNet model was founded mainly to
address the vanishing gradient’s impact on high-level neural networks’ layers. Using
the composite function operation, the previous layer’s output becomes the second
layer’s input. Convolution, pooling, batch normalization, and non-linear activation
layers form this composite process. DenseNet comes in a variety of types, including
DenseNet-121, DenseNet-169, and DenseNet-201. The numbers represent the number
of the neural network’s layer.

• Xception: Xception [32] is an extension of the Inception architecture that uses depth-
wise separable convolutions to replace the regular Inception modules. The mapping
of cross-channel and spatial correlations in the feature maps of convolutional neural
networks can be fully decoupled in this network. The authors called their proposed
architecture Xception, which stands for “Extreme Inception,” since this hypothesis
is a stronger version of the hypothesis that underlies the Inception architecture. In
a nutshell, the Xception architecture is a depthwise separable convolution layers
stack with residual connections. This makes it very simple to establish and change
the architecture.

• MobileNet: MobileNet [33] is a convolutional neural network designed for mobile
and embedded vision uses. They are based on a streamlined architecture that builds
lightweight deep neural networks with low latency for mobile and embedded de-
vices, using depthwise separable convolutions. The width multiplier and resolution
multiplier parameters are added to make it easier to tune MobileNet. The depthwise
convolution in MobileNets applies a single filter to each input channel. After that, the
pointwise convolution applies a 1 × 1 convolution to combine the depthwise convolu-
tion’s outputs. A separate layer for filtering and a separate layer for combining are
used in depthwise separable convolution. This factorization has the effect of reducing
the computation and model size drastically.

• NASNetMobile and NASNetLarge: Google Brain built Neural Architecture Search
(NASNet) [34]. The authors suggested that an architectural building block be detected
on a small dataset and then transferred to a larger dataset. They generally look for the
best convolutional layer or cell on a small dataset first, then stack together more copies
of this cell to extend to the larger dataset. A new regularization technique called
ScheduledDropPath was proposed, which significantly enhances the generalization of
the NASNet models. With a smaller model size and lower complexity, the NASNet
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method achieves state-of-the-art results. While the overall architecture of NASNet is
predefined, the blocks or cells are not. Alternatively, a reinforcement learning search
technique is used to find them. The authors developed different versions of NASNets
with different computational requirements. The larger model, NASNetlarge, is a
convolutional neural network trained on over onen million images from the ImageNet
database, while the smaller model, NASNetMobile, is optimized for mobile devices.

• ShuffleNet: ShuffleNet [35] is a convolutional neural network optimized for mobile
devices with minimal processing capacity developed by Megvii Inc. (Face++). The
network architecture design considers two new operations to lower computation
costs while retaining accuracy: pointwise group convolution and channel shuffle. It
specializes in common mobile platforms, such as drones, robots, and smartphones,
and aims for the best accuracy in minimal computational resources.

• DarkNet19,53: The backbone of YOLOv2 is a convolutional neural network called
Darknet-19 [36]. It generally employs 3 × 3 filters and twice the number of channels
after each pooling phase, similar to VGG models. It leverages global average pool-
ing to produce predictions and 1 × 1 filters to compress the feature representation
among 3 × 3 convolutions, identical to the work on Network in Network (NIN). Batch
normalization is a technique for stabilizing training and accelerating convergence.
Darknet-53 [37], on the other hand, is a convolutional neural network that serves as
the backbone for the YOLOv3 object detection method. The utilization of residual
connections and more layers are an enhancement over its predecessor, Darknet-19.

• EfficientNetB0: EfficientNetB0 [38] is a convolutional neural network that scales depth,
width, and resolution dimensions, using a compound coefficient. Unlike the tradi-
tional methodology, which arbitrarily scales network dimensions, the EfficientNetB0
scaling strategy scales network dimensions with a set of predetermined scaling co-
efficients. According to the compound scaling approach, if the input image is larger,
the network needs more layers and channels to widen the receptive field and catch
more fine-grained patterns on the larger image. In addition to squeeze-and-excitation
blocks [39], the base of EfficientNet is built on MobileNetV2’s inverted bottleneck
residual blocks [33].

• SqueezeNet: DeepScale, UC Berkeley, and Stanford University collaborated to develop
SqueezeNet [40]. With 50× fewer parameters, SqueezeNet reaches AlexNet-level
accuracy on ImageNet. Additionally, the authors were able to compress SqueezeNet
to less than 0.5 MB, using model compression approaches (510× smaller than AlexNet).
Smaller convolutional neural networks (CNNs) require less communication across
servers during distributed training and less bandwidth. They are also more feasible
to be deployed on FPGAs and hardware with restricted computational resources and
limited memory.

2.2.2. Benchmarking Criteria

This section presents elaboration for the criteria taken into consideration in this study.
The choice of criteria in MCDM methods is highly dependent on the decision-making
context, and the problem handled. As we deal with a classification problem, our study has
established the most popular measurements typically used for classifiers’ evaluation as
criteria. The performance of each CNN model was evaluated in this stage, using 10 eval-
uation metrics. We utilized the test accuracy, F1-score, sensitivity, specificity, precision,
false-positive rate and false-negative rate, Matthews correlation coefficient (MCC), clas-
sification error, network complexity to evaluate each of the model targeted for study in
this research.

• Accuracy: this metric measures how close the predicted value is to the actual data
values. It can be defined using the following formula:

Accuracy (Acc) =
tp + tn

tp + tn + f p + f n
(1)
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tp: True Positive, tn: True Negative, f p: False Positive, f n: False Negative
• Classification error: This refers to the number of samples incorrectly classified (false

positives and false negatives). It can be defined as follows:

Classi f ication Error (Err) = 1 − Acc (2)

• Precision: The precision metric tests the ability of the classifier to reject irrelevant
samples. The formula of this metric can be defined as follows:

Precision (Pre) =
tp

tp + f p
(3)

• Sensitivity: The sensitivity metric measures the proportion of the correctly detected
relevant samples. It can be represented as follows:

Sensitivity (Sn) =
tp

tp + f n
(4)

• F1-Score: The F1-score can be obtained by the weighted average of sensitivity (recall)
and precision, where the relative contribution of both recall and precision to the
F1-score are equal. The F1-score can be defined as follows:

F1 Score =
2(Precision × Recall)

Precision + Recall
(5)

where Recall = Sensitivity
• Specificity: It describes the ability of the classifier to detect the true negative rate. The

formula of specificity can be defined using the following equation:

Speci f icity (Sp) =
tn

tn + f p
(6)

• False-Positive Rate (FPR): This is the proportion of negative examples wrongly cat-
egorized as positive. This metric is also known as the miss rate and is represented
as follows:

False − Positive Rate (FPR) =
f p

f p + tn
(7)

• False-Negative rate (FNR): This is the proportion of negative examples wrongly
categorized as positive. This metric is also known as the fall-out rate. This evaluation
criterion is introduced as follows:

False − Negative Rate (FNR) =
f n

f n + tp
(8)

• Matthews Correlation Coefficient (MCC): The MCC is a correlation coefficient that
yields a value between −1 and +1 for actual and estimated binary classifications. A
coefficient of +1 shows ideal prediction, 0 shows random prediction, and −1 indicates
complete disagreement between predictions and the ground truth. The MCC can be
defined as follows:

MCC =

(
tp × tn − fp × fn

)√(
tp + fp

)(
tp + fn

)(
tn + fp

)
(tn + fn)

(9)

• CNN Complexity: This refers to the number of parameters existing in the pre-
trained CNN.
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2.2.3. Multi-Criteria Decision Making (MCDM)

Multi-criteria decision making typically involves six phases: (i) problem formulation,
(ii) identification of requirements, (iii) goal setting, (iv) identification of alternatives, (v)
development of criteria, and (vi) the identification and application of decision-making
techniques. This process can be carried out using various mathematical procedures chosen
based on the problem at hand, and the level of complexity ascribed to the decision-making
process [41,42]. This study has formulated the CNN models benchmarking as the research
goal, considering 19 CNNs as alternatives and 10 criteria. For decision making, preference
ranking organization method for enrichment evaluation (PROMETHEE) [43], an MCDM
method, is adopted to generate the ranking list and to produce the optimal model selection,
using the criteria’s weights computed by the entropy method. For validating the optimal
model selection, another MCDM method called VlseKriterijumska Optimizacija I Kom-
promisno Resenje (VIKOR) in Serbian [44], which means multi-criteria optimization and
compromise solution, is also applied. This section describes the MCDM methods exploited
to rank the CNN models and selects the optimal model, given the criteria mentioned earlier,
using the data in our case study.

• Entropy: This method computes relative weights by objectively interpreting the rela-
tive intensities of the criteria significance based on data discrimination [45]. MDCM’s
generated decision matrix DM is defined by m alternatives (19 CNN models) and k
criteria (10 criteria), which are represented as follows:

DM =
[
xij
]

m×k (10)

From the constructed decision matrix DM, the procedure of entropy weighting
method described in [45] is followed to measure the weights wj. xij refers to each
entry in the DM, where i = 1, . . . , m, j = 1, . . . , k. The steps of the entropy weighting
method [45] are described as follows:

Step1: Normalizing the decision matrix using the following equation:

pij =
xij

∑m
i=1 xij

, (1 ≤ i ≤ m, 1 ≤ j ≤ k) (11)

Step2: Measuring the entropy value for each criterion as follows:

ej = −g
k

∑
j=1

pij ln pij, (g = 1/ ln m, 1 ≤ i ≤ m, 1 ≤ j ≤ k). (12)

Step3: Determining the inherent contrast intensity of each criterion as follows:

di = 1 − ej, (1 ≤ j ≤ k) (13)

Step4: The entropy weights of criteria are then defined as follows:

wj = dj/
k

∑
j=1

dj, (1 ≤ j ≤ k) (14)

• PROMETHEE: The PROMETHEE is an outranking approach for ranking and selecting
a finite collection of alternatives based on often competing criteria. Compared to
other multi-criteria analysis methods, PROMETHEE II is an uncomplicated complete
(not partial) ranking method in terms of conception and application. The stepwise
procedure of PROMETHEE II can be defined as follows, giving the provided decision
matrix and the weights of criteria:

Step 1: Determining of deviations based on pairwise comparisons as follows:
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dj(a, b) = gj(a)− gj(b) (15)

where dj(a, b) refers to the difference between the evaluations of a and b on each
criterion.

Step 2: Preference function application:

Pj(a, b) = Fj
[
dj(a, b)

]
j = 1, . . . , k (16)

where Pj(a, b) denotes the preference of alternative a with regard to alternative b on
each criterion, as a function of dj(a, b).

Step 3: Calculating an overall or global preference index using the following formula:

π(a, b) =
k

∑
j=1

Pj(a, b)wj (17)

where π(a, b) of a over b represents the weighted sum p(a, b) for each criterion, and
wj is the weight wj related to the j th criterion.

Step 4: Calculating the partial ranking PROMETHEE I (outranking flows) using the
following equations:

φ+(a) =
1

m − 1

m

∑
b=1

π(a, b) (18)

φ−(a) =
1

m − 1

m

∑
b=1

π(b, a) (19)

where φ+(a) and φ−(a) represent the positive outranking flow and negative outrank-
ing flow for each alternative, respectively.

Step 5: Calculating the complete ranking PROMETHEE II (outranking flows) using
the following equations:

φ(a) = φ+(a)− φ−(a) (20)

where φ(a) represents the outranking flow for each alternative.

• VIKOR: The VIKOR approach [44] was initially developed to optimize complex sys-
tems that involve various parameters. Using the predefined weights, the VIKOR
provides a compromise ranking list and suggests a compromise solution. VIKOR
creates a multi-criteria rating index based on a specific “closeness” metric to the “ideal”
solutions [44]. The VIKOR methodology’s compromise ranking algorithm can be
described as follows, giving the provided decision matrix and the weights of criteria.

Step1: Determining the best value as xj
∗ and the worst value as xj

− of the criteria as
j = 1, 2, . . . , k. This also leads to configure the criteria as beneficial and non-beneficial
values. The beneficial attributes require being maximized, while the non-beneficial
ones need to be minimized, which are identified as follows:

Rule1: Best value for beneficial criteria is xj
∗ = maxxij, and for non-beneficial is

xj
∗ = minxij,

Rule2: Worst value for beneficial criteria is xj
− = minxij, and for non-beneficial is

xj
− = maxxij.
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Step2: Determining the values of Si and Ri, where i = 1, 2, . . . , m using the following
equations:

Si =
k

∑
j=1

wj

(
x∗j − xij

)
/
(

x∗j − x−j
)

,

Ri = max
j

wj

(
x∗j − xij

)
/
(

x∗j − x−j
)

,

(21)

where wj are the weights of criteria computed using the entropy method.

Step3: Determining the values of S∗ and R∗ as follows:

S∗ = min
i

Si, R∗ = min
i

Ri,

S− = max
i

Si, R− = max
i

Ri
(22)

Step4: Determining the values of Qi; where i = 1, 2, . . . , m and v is defined as the
weight of the scheme of “the majority of criteria” using the following equation:

Qi = v(Si − S∗)/
(
S− − S∗)+ (1 − v)(Ri − R∗)/

(
R− − R∗) (23)

Step5: Ranking the alternatives by sorting the values of Qi in ascending order.

3. Experimental Results and Discussion
3.1. Experimental Setup and Training

During the experimental process, 19 CNN models pre-trained on ImageNet dataset [46]
were modified and re-trained using transfer learning and fine-tuning strategies to classify
the skin lesion into two classes: cancerous (melanoma) or non-cancerous (non-melanoma).
The characteristics of the CNN architectures in terms of number of total layers, number
of learnable layers, size of CNN, size of the input image, and number of parameters in
each network architecture are described in Table 1. In the training of models, binary
cross-entropy was preferred as a cost function, and the stochastic gradient descent with
momentum (SGDM) optimizer to minimize the cost function. The softmax activation
function was used in the output layer of the models. Each model was trained through
six epochs, and the training was repeated for a total of five times. The batch size is set to
10, providing 79 iterations per epoch and 474 iterations for six epochs. The learning rate
value was set to 0.0003 and momentum of 0.9. The learning curves of 19 CNN models are
presented in Figure A1.

To provide fair performance evaluation and benchmarking among the nineteen mod-
els, we opted to use a fixed number of epochs for all models. Figure A1 shows that all the
models stopped training at the same endpoint, and the trained models were deployed from
this endpoint to conduct the testing phase. We aimed to compare the performance of the
networks under the same constraints and conditions. So, choosing the optimal number of
epochs to train a particular model was not considered. Considering learning the models
under the same conditions, if one model encounters overfitting and subsequently fails to
achieve good accuracy on the unseen test set, whereas another model has not undergone
overfitting, the later model is preferred over the former model. However, in Figure A1, it
can be noticed that the training and validation curves show a steady learning behavior,
and there is no indication of overfitting. In order to prevent potential overfitting during the
training, the online data augmentation is applied by using various image transformation
methods, such as vertical and horizontal flipping, random translation in the range of
[−30, 30], and random scaling in the range of [0.9, 1.1].

In most of the CNN models, the last layer is the learnable weights of fully connected
layers. Thus, to apply the transfer learning and fine-tune the network, using our data, these
completely connected layers are replaced with a new, fully-connected layer, comprising
two neurons adhering to the two classes in our study. Instead of fully connected layers, the
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last learnable layer in some networks, such as SqueezeNet, is a 1 × 1 convolutional layer.
In this scenario, the old convolutional layer is replaced by a new convolutional layer with
the same number of filters as classes.

Table 1. Characteristics of the pre-trained CNN architectures adopted in our study.

Network #Layers #Learnable Layers Network Size (MB) Input Image Size #Para (Millions)

AlexNet [24] 25 8 227 227 × 227 61

Vgg16 [26] 41 16 515 224 × 224 138

Vgg19 [26] 47 19 535 224 × 224 144

GoogleNet (Inceptionv1) [27] 144 22 27 224 × 224 7

Inceptionv3 [28] 315 48 89 299 × 299 23.9

ResNet18 [30] 71 18 44 224 × 224 11.7

ResNet50 [30] 177 50 96 224 × 224 25.6

ResNet101 [30] 347 101 167 224 × 224 44.6

InceptionResv2 [29] 824 164 209 299 × 299 55.9

Xception [32] 170 71 85 299 × 299 22.9

DenseNet201 [31] 708 201 77 224 × 224 20

MobileNetv2 [33] 154 53 13 224 × 224 3.5

ShuffleNet [35] 172 50 5.4 224 × 224 1.4

NasnetMobile [34] 913 * 20 224 × 224 5.3

NasnetLarge [34] 1243 * 332 331 × 331 88.9

DarkNet19 [36] 64 19 78 256 × 256 20.8

DarkNet53 [37] 184 53 155 256 × 256 41.6

EfficientNetB0 [38] 290 82 20 224 × 224 5.3

SqueezeNet [40] 68 18 5.2 227 × 227 1.24

3.2. Results of the Experiments and Discussion

To examine the classification performance of the models, nine evaluation metrics
widely used in classification tasks are used, including accuracy, classification error, preci-
sion, sensitivity, specificity, F1-score, false-positive rate, false-negative rate, and Matthews
correlation coefficient. Table 2 depicts the evaluation performance of the 19 CNN models
describing the average value and the standard deviation of a specific criterion over the
five folds. This study reveals the high evaluation performance of the CNN models for
melanoma diagnosis, employing a balanced number of dermoscopic images through a
thorough analysis of 19 pre-trained CNNs using a specific parameter configuration and
learning technique for the networks.
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Table 2. The evaluation performance of the 19 CNN models describing the mean value (m) ± standard deviation (s) of a specific criterion over the five folds.

Network mACC ± sACC mSen ± sSen mSpe ± sSpe mF1 ± sF1 mFNR ± sFNR mFPR ± sFPR mPre ± sPre mMathew ± sMathew mErr ± sErr

AlexNet [24] 87.07 ± 5.11 84.9 ± 10.95 89.2 ± 3.7 86.39 ± 6.28 15.1 ± 10.95 10.8 ± 3.7 88.57 ± 3.49 74.6 ± 9.87 12.93 ± 5.11
Vgg16 [26] 89.7 ± 6.23 86.94 ± 9.34 92.4 ± 6.5 89.18 ± 6.9 13.06 ± 9.34 7.6 ± 6.5 91.98 ± 6.4 79.76 ± 12.1 10.3 ± 6.23
Vgg19 [26] 87.37 ± 7.01 83.27 ± 11 91.4 ± 10.33 86.58 ± 7.76 16.73 ± 11 8.6 ± 10.33 91.29 ± 9.02 75.64 ± 13.38 12.63 ± 7.01

GoogleNet (Inceptionv1) [27] 87.78 ± 5.87 87.55 ± 8.88 88 ± 11 87.65 ± 5.92 12.45 ± 8.88 12 ± 11 88.71 ± 9.11 76.3 ± 11.22 12.22 ± 5.87
Inceptionv3 [28] 92.93 ± 8.01 88.98 ± 11.82 96.8 ± 4.32 92.29 ± 9.05 11.02 ± 11.82 3.2 ± 4.32 96.11 ± 5.49 86.18 ± 15.55 7.07 ± 8.01

ResNet18 [30] 90 ± 5.68 89.18 ± 4.71 90.8 ± 10.13 89.97 ± 5.38 10.82 ± 4.71 9.2 ± 10.13 91.23 ± 9.32 80.41 ± 11.34 10 ± 5.68
ResNet50 [30] 92.42 ± 7.07 90.2 ± 11.24 94.6 ± 5.22 91.95 ± 7.81 9.8 ± 11.24 5.4 ± 5.22 94.2 ± 5.69 85.21 ± 13.85 7.58 ± 7.07
ResNet101 [30] 94.34 ± 7.28 92.86 ± 12.14 95.8 ± 3.19 93.89 ± 8.26 7.14 ± 12.14 4.2 ± 3.19 95.36 ± 3.94 88.96 ± 14.02 5.66 ± 7.28

InceptionResv2 [29] 90.3 ± 7.96 88.57 ± 10.54 92 ± 5.79 89.87 ± 8.63 11.43 ± 10.54 8 ± 5.79 91.34 ± 6.77 80.71 ± 15.82 9.7 ± 7.96
Xception [32] 88.99 ± 6.79 90 ± 7.85 88 ± 8.8 89.02 ± 6.68 10 ± 7.85 12 ± 8.8 88.39 ± 8.06 78.3 ± 13.59 11.01 ± 6.79

DenseNet201 [31] 93.94 ± 4.97 93.47 ± 3.86 94.4 ± 8.73 93.96 ± 4.7 6.53 ± 3.86 5.6 ± 8.73 94.75 ± 7.64 88.15 ± 9.6 6.06 ± 4.97
MobileNetv2 [33] 90.81 ± 7.24 85.51 ± 11.95 96 ± 3.39 89.9 ± 8.14 14.49 ± 11.95 4 ± 3.39 95.23 ± 4.32 82.25 ± 13.98 9.19 ± 7.24

ShuffleNet [35] 86.06 ± 6.84 80.61 ± 9.16 91.4 ± 14.33 85.24 ± 6.46 19.39 ± 9.16 8.6 ± 14.33 91.99 ± 11.52 73.6 ± 13.19 13.94 ± 6.84
NasnetMobile [34] 86.57 ± 6.47 80.82 ± 12.71 92.2 ± 5.97 85.25 ± 7.87 19.18 ± 12.71 7.8 ± 5.97 91.28 ± 5.36 74.09 ± 12.12 13.43 ± 6.47
NasnetLarge [34] 91.31 ± 7.08 88.16 ± 7.24 94.4 ± 7.7 90.96 ± 7.22 11.84 ± 7.24 5.6 ± 7.7 94.04 ± 7.9 82.84 ± 14.17 8.69 ± 7.08
DarkNet19 [36] 86.77 ± 4.14 81.02 ± 5.43 92.4 ± 3.36 85.79 ± 4.65 18.98 ± 5.43 7.6 ± 3.36 91.22 ± 3.95 73.98 ± 8.15 13.23 ± 4.14
DarkNet53 [37] 89.19 ± 6.15 83.88 ± 9.88 94.4 ± 2.97 88.26 ± 7.22 16.12 ± 9.88 5.6 ± 2.97 93.42 ± 4 78.87 ± 11.79 10.81 ± 6.15

EfficientNetB0 [38] 86.87 ± 3.44 85.31 ± 3.86 88.4 ± 4.88 86.56 ± 3.51 14.69 ± 3.86 11.6 ± 4.88 87.96 ± 4.91 73.86 ± 7.03 13.13 ± 3.44
SqueezeNet [40] 84.65 ± 2.38 86.73 ± 4.95 82.6 ± 6.19 84.83 ± 2.31 13.27 ± 4.95 17.4 ± 6.19 83.34 ± 4.8 69.66 ± 4.75 15.35 ± 2.38
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As shown in Table 2, the ResNet101 model reported the best average test accuracy and
MCC with 94.34% and 88.96%, respectively, compared to other CNN models. The highest
F1-score with a value of 93.96% was attained by Densenet201, followed by ResNet101 with
a value of 93.89%. Furthermore, Inceptionv3 achieved the highest specificity and precision
values with 96.8% and 96.11%, followed by 96% specificity achieved by MobileNetv2 and
95.36% precision achieved by ResNet101. DenseNet201 produced the highest sensitivity of
93.47%, followed by 92.86% reported in ResNet101. It can also be noticed that Inceptionv3
attained the lowest FPR of 3.2%, while DenseNet201 revealed the lowest FNR of 6.53%, and
the smallest error, 5.66%, was reported by ResNet101. According to the minimum number
of parameters, SqueezeNet has 1.24 million parameters, which is the optimal number,
compared to other CNN models. Table 2 also explores the deviation among the accuracies
reported from the five folds and exposes the difficulty in recognizing the best model based
on the variation of the accuracies in the five folds. Likely, Table 3 and Figure 3 show that
there is no superior CNN model over others, due to the lack of a CNN model that achieves
the best accuracies through the five folds. This would lead to difficulty in selecting the best
model, while considering other criteria.

Table 3. The obtained accuracies over five folds in the 19 CNN models.

Model Fold1 Fold2 Fold3 Fold4 Fold5

AlexNet 78.28 89.9 86.87 90.4 89.9
Vgg16 82.32 86.87 86.87 95.96 96.46
Vgg19 79.8 80.81 90.4 89.39 96.46

Inceptionv1 82.32 84.85 83.84 91.92 95.96
Inceptionv3 79.8 90.91 96.97 99.49 97.47

ResNet18 82.83 85.35 92.93 92.42 96.46
ResNet50 81.31 90.91 92.93 97.98 98.99

ResNet101 81.82 94.44 96.97 98.99 99.49
InceptionResv2 77.27 88.89 93.43 93.94 97.98

Xception 78.28 86.87 90.91 93.43 95.45
DenseNet201 86.36 91.94 96.46 97.98 97.47
MobileNetv2 81.31 86.87 89.9 97.47 98.48

ShuffleNet 77.27 83.84 84.85 88.38 95.96
NasnetMobile 78.28 86.36 85.86 85.86 96.46
NasnetLarge 80.3 88.89 92.93 96.46 97.98
DarkNet19 81.31 85.86 84.85 90.91 90.91
DarkNet53 79.29 87.37 91.41 93.94 93.94

EfficientNetB0 84.34 83.84 85.35 88.89 91.92
SqueezeNet 82.32 84.85 82.32 85.86 87.88

Figure 4 exhibits the trade-off and conflict among the evaluation criteria of the 19 CNN
models. For instance, a trade-off between sensitivity (true positive rate) and specificity (true
negative rate) should be considered, where DenseNet201 reports the highest sensitivity,
whereas Inceptionv3 attains the highest specificity. Precision is also independent and has a
trade-off with accuracy. Accuracy is the degree of veracity, while precision is the degree
of reproducibility. That means that it is possible to be very precise but not very accurate,
and it is also possible to be accurate without being precise. The best quality detection is
both accurate and precise. Inceptionv3 achieves the highest precision, whereas Resnet101
reveals the best accuracy. It should also produce a trade-off between FNR and FPR, where
Inceptionv3 reports the lowest FPR, while DenseNet201 reports the lowest FNR. Thus, it is
crucial to make a trade-off between the models that could achieve the optimal diagnosis
by reducing the number of negative cases falsely diagnosed as positive and the models
that could reach the optimal diagnosis by reducing the number of positive instances falsely
diagnosed as negative. The F1-score is also needed to achieve a balance between precision
and sensitivity, where Densenet201 provides the best F1-Score followed by Resnet101. For
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the number of parameters required to determine the network complexity, SqueezeNet
has the lighter network architecture, compared to VGG19, which has the largest network
architecture. Although SqueezeNet is optimal in terms of network complexity, it still shows
moderate-low accuracy performance through the five folds shown in Figure 3. Additionally,
there is a conflict between the criteria that are required to be minimized (such as FNR, FPR,
Err, and the number of parameters) and the criteria targeted to be maximized (such as Acc,
Sen, Spe, Pre, F1-score, and Mathew).

Figure 3. The obtained accuracies over five folds in the nineteen CNN models. It shows that there is no superior CNN
model over others due to the lack of a CNN model that achieves the best accuracies through the five folds. This would lead
to difficulty selecting the best model while considering another conflicting criterion, such as the network complexity.

From Figure 4, it can also be noticed that there is no superior CNN model, due to the
conflict among evaluation criteria and the difficulty to optimize all criteria simultaneously.
Hence, selecting the best deep learning model for automated melanoma diagnosis con-
sidering multiple conflicted criteria is a difficult task, due to the variance of the criteria
significance, the conflict among these criteria, and the trade-off among them. Therefore,
benchmarking CNN architectures for melanoma detection is crucial for selecting the op-
timal model, achieving a trade-off among the 10 pre-defined evaluation criteria. The
multiple criteria decision-making method (MCDM) [43,44] is targeted to apply and rank
the 19 models according to their performance, considering the trade-off among the criteria.
Thus, the best-selected networks could be easily adopted to construct an ensemble learning
system for melanoma diagnosis or even use the optimal network to construct a system
using a single model.
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Figure 4. The mean value over the five folds for specific evaluation criteria, along with the number of parameters (the
network complexity). No single model achieves the best performance in all evaluation criteria. If a CNN model achieves the
best evaluation performance in some evaluation criteria, it may fail to gain superior performance in the remaining criteria.

To achieve the goal of our study by generating a ranking list for CNN models and
selecting the optimal solution, the PROMETHEE method [43] is applied considering the
19 alternatives (CNN models) and 10 criteria. To further validate the decision made by
PROMETHEE, we also applied the VIKOR approach [44] using the same data setting and
configuration. First, the decision matrix DM is constructed using m alternatives, in our
case 19, and the k criteria, in our case 10, producing DM of size 19 × 10. The criteria are
then classified into two categories according to the required optimization strategy. The
first category includes the criteria that require minimization, including classification error,
false-positive rate, false-negative rate and number of parameters, known as non-beneficial
criteria. Unlikely, the second category includes the criteria that require maximization,
including accuracy, sensitivity, specificity, precision, F1-score and MCC, known as beneficial
criteria. The Equations (24) and (25) defined below are used for normalizing the non-
beneficial and beneficial criteria, respectively. The normalized criteria are shown in Table 4.

x̄ij =
xmin

j

xij
(24)

x̄ij =
xij

xmax
j

(25)

xij refers to the entries of the decision matrix DM, where i = 1, . . . , m, j = 1, . . . , k, k
represents the number of alternatives (19 CNN models), and m defines the number of
criteria (10 criteria).

To measure the weights of criteria, the entropy method [45] is exploited and applied on
the normalized DM producing the weight values of 0.964825438, 0.804398756, 0.985470611,
0.951881312, −1.420375792, −1.473036988, 1.02152041, 0.49110277, −1.294287661, −0.031498856
for accuracy, sensitivity, specificity, F1-score, FNR, FPR, precision, MCC, classification error
and number of parameters, respectively. The obtained weights, along with the normalized
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DM, are used to make the optimal selection, using the PROMETHEE method [43]. The
equations used to measure the ranking list are described earlier in Section 2.2.3. We have
used the threshold function as the preference function (0 if d ≤ 0 and 1 if d ≥ 0) required
in Step 2 in the stepwise procedure of PROMETHEE. To calculate the complete ranking list,
φ(a) represents the outranking flow for each alternative as shown in Table 5. The highest
φ(a) value indicates the compromised solution, which could be chosen as the optimal
model. PROMETHEE reports a value of 150.84, the highest φ(a) for the ResNet101 CNN
model and 133.24 as the second-best value for the DenseNet201 model.

To validate the model selection made by PROMETHEE, the VIKOR [44] method is
also applied, considering the same weights and the same DM. Unlike PROMETHEE, the
lowest Q value in VIKOR indicates the compromised solution, which could be chosen
as the optimal model, shown in Table 5. VIKOR reports a value of 0, the lowest Q for
the ResNet101 CNN model, and 0.079 as the second-lowest value for the DenseNet201
model. Thus, the mathematical consistency of the judgements coming out of PROMETHEE
II was tested and proven. Hence, the effectiveness of the model ranking produced by
PROMETHEE II was validated by demonstrating the agreement between two different
statistical methods, considering the same conflicting criteria.

To provide a direct and explicit comparison between the two decision-making meth-
ods, PROMETHEE and VIKOR, Table 6 elaborates the optimal CNN model selection in
both approaches. It can be noticed that until the seventh rank, the two methods have a
similar decision for the optimal CNN model selection. Likewise, the ranks 10, 11, 12, 13,
15, 18 and 19 provide the exact model recommendation by both approaches. On the other
hand, the decision made by methods has slightly different priorities for the 8, 9, 14, 16 and
17 levels. The suggested framework’s findings show that the best model selection decision
based on numerous conflict factors is robust and reliable.

Table 4. Normalized decision matrix. Alter.—alternative; Cr.—criterion.

Alter./ Cr. ACC Sen Spe F1-Score FNR FPR Pre MCC Err Para

AlexNet 0.9229 0.9083 0.9215 0.9194 0.4325 0.2963 0.9215 0.8386 0.4377 0.0203
Vgg16 0.9508 0.9301 0.9545 0.9491 0.5000 0.4211 0.9570 0.8966 0.5495 0.0090
Vgg19 0.9261 0.8909 0.9442 0.9215 0.3903 0.3721 0.9498 0.8503 0.4481 0.0086

Inceptionv1 0.9305 0.9367 0.9091 0.9328 0.5245 0.2667 0.9230 0.8577 0.4632 0.1771
Inceptionv3 0.9851 0.9520 1.0000 0.9822 0.5926 1.0000 1.0000 0.9688 0.8006 0.0519

ResNet18 0.9540 0.9541 0.9380 0.9575 0.6035 0.3478 0.9492 0.9039 0.5660 0.1060
ResNet50 0.9796 0.9650 0.9773 0.9786 0.6663 0.5926 0.9801 0.9578 0.7467 0.0484

ResNet101 1.0000 0.9935 0.9897 0.9993 0.9146 0.7619 0.9922 1.0000 1.0000 0.0278
InceptionResv2 0.9572 0.9476 0.9504 0.9565 0.5713 0.4000 0.9504 0.9073 0.5835 0.0222

Xception 0.9433 0.9629 0.9091 0.9474 0.6530 0.2667 0.9197 0.8802 0.5141 0.0541
DenseNet201 0.9958 1.0000 0.9752 1.0000 1.0000 0.5714 0.9858 0.9909 0.9340 0.0620
MobileNetv2 0.9626 0.9148 0.9917 0.9568 0.4507 0.8000 0.9908 0.9246 0.6159 0.3543

ShuffleNet 0.9122 0.8624 0.9442 0.9072 0.3368 0.3721 0.9571 0.8273 0.4060 0.8857
NasnetMobile 0.9176 0.8647 0.9525 0.9073 0.3405 0.4103 0.9497 0.8328 0.4214 0.2340
NasnetLarge 0.9679 0.9432 0.9752 0.9681 0.5515 0.5714 0.9785 0.9312 0.6513 0.0139
DarkNet19 0.9198 0.8668 0.9545 0.9130 0.3440 0.4211 0.9491 0.8316 0.4278 0.0596
DarkNet53 0.9454 0.8974 0.9752 0.9393 0.4051 0.5714 0.9720 0.8866 0.5236 0.0298

EfficientNetB0 0.9208 0.9127 0.9132 0.9212 0.4445 0.2759 0.9152 0.8303 0.4311 0.2340
SqueezeNet 0.8973 0.9279 0.8533 0.9028 0.4921 0.1839 0.8671 0.7830 0.3687 1.0000
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Table 5. Ranking for decision making represented by the values of φ in PROMETHEE and Q in VIKOR. The highest φ value
is the best, whereas the lowest Q is the best.

Model φ: PROMETHEE Q: VIKOR PROMETHEE VIKOR

AlexNet −86.54004365 0.78423285 15 15
Vgg16 16.31877628 0.51048488 8 9
Vgg19 −63.8124359 0.74766659 13 13

Inceptionv1 −57.19966687 0.68096691 12 12
Inceptionv3 132.2050634 0.18466346 3 3

ResNet18 15.25546934 0.4614654 9 8
ResNet50 115.1633097 0.21251132 4 4
ResNet101 150.8418215 0 1 1

InceptionResv2 28.425464 0.4496109 7 7
Xception −29.98203689 0.60787425 11 11

DenseNet201 133.2355605 0.07998389 2 2
MobileNetv2 72.89230795 0.42167181 6 6

ShuffleNet −106.9819714 0.8594925 18 18
NasnetMobile −89.20093646 0.84854 16 17
NasnetLarge 73.3193101 0.33461685 5 5
DarkNet19 −76.30565263 0.81073772 14 16
DarkNet53 1.456682009 0.56957337 10 10

EfficientNetB0 −95.9301979 0.78239429 17 14
SqueezeNet −133.1608231 1 19 19

Table 6. Optimal CNN model selection in PROMETHEE versus VIKOR approach.

Model Rank PROPMETHEE VIKOR

1 ResNet101 ResNet101
2 DenseNet201 DenseNet201
3 Inceptionv3 Inceptionv3
4 ResNet50 ResNet50
5 NasnetLarge NasnetLarge
6 MobileNetv2 MobileNetv2
7 InceptionResv2 InceptionResv2
8 Vgg16 ResNet18
9 ResNet18 Vgg16

10 DarkNet53 DarkNet53
11 Xception Xception
12 Inceptionv1 Inceptionv1
13 Vgg19 Vgg19
14 DarkNet19 EfficientNetB0
15 AlexNet AlexNet
16 NasnetMobile DarkNet19
17 EfficientNetB0 NasnetMobile
18 ShuffleNet ShuffleNet
19 SqueezeNet SqueezeNet

This work developed a new multi-criteria decision-making methodology that aids in
assessing the criteria that influence the decision to choose a specific CNN model, priori-
tizing the models and selecting the best model. When software developers need to find
an effective CNN model that meets specified requirements for constructing a robust CAD
system, the proposed approach of revealing the CNN models’ priorities would be beneficial
and valuable. Finally, our study may provide and draw a new line in the evaluation and
benchmark of the deep learning models for various diseases. Although the proposed bench-
marking framework has made progress in benchmarking the models used for melanoma
diagnosis from dermoscopy images, there is still space for improvement in research work.
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In future work, we aim to study the effect of the model selection, considering different
criteria. The criteria that are to be considered include (i) training the models under several
transfer learning scenarios and data augmentation strategies, (ii) exploring the impact
of several optimization schemes, and (iii) testing various class balancing and weighting
techniques. We also consider training the models on several datasets, targeting the effect
of variation among datasets. These reported limitations and suggested improvements are
currently part of the authors’ ongoing research.

4. Conclusions

Medical diagnostics tools based on deep learning of medical images are becoming
more widely recognized as clinically relevant AI-based solutions. However, developing ap-
propriate deep neural network models and training strategies for clinical uses is a research
area that needs to be investigated. The inaccurate selection of melanoma diagnosis model
could be costly to medical organizations, especially when more accurate and efficient
diagnosis models are urgently needed. This study investigated the performance of some of
these networks for melanoma diagnosis, utilizing dermoscopic images after a thorough
evaluation of 19 pre-trained CNNs, using particular evaluation criteria, parameter set-
tings and training strategies. An MCDM-based methodology is presented for evaluating,
benchmarking, and ranking melanoma diagnostic models and selecting the most optimal
model. The study findings would help in the model selection, designing quick and reliable
diagnostic tools based on image data, and contributing to the development of more accu-
rate and efficient point-of-care diagnostic and detection systems. Other image modalities,
such as non-dermoscopic (clinical) images, can also be used to train and test the network
architecture of the pre-trained models. Therefore, we aim to adapt our proposed network
designs in the future to include not only dermoscopic but also clinical images. We would
also like to expand the number of training samples and investigate other deep learning
training methodologies.
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Appendix A

(a). AlexNet model. (b). DarkNet19 model

(c). Darknet53 model. (d). DenseNet201 model.

(e). EfficientNetb0 model. (f). Inceptionv1 model.

(g). Inceptionv3 model. (h). InceptionResv2 model.
Figure A1. Cont.
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(i). MobileNetv2 model.
(j). NasnetLarge model.

(k). NasnetMobile model. (l). ResNet18 model.

(m). ResNet50 model. (n). ResNet101 model.

(o). ShuffleNet model. (p). SqueezeNet model.
Figure A1. Cont.
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(q). Vgg16 model. (r). Vgg19 model.

(s). Xception model.
(t). Legend of figures.

Figure A1. The performance of the CNN models visualizing training, validation and loss curves.
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