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Simple Summary: Oral cancer is characterized by high morbidity and mortality, since the disease
is typically in an advanced locoregional stage at the time of diagnosis. The application of artificial
intelligence (AI) techniques to oral cancer screening has recently been proposed. This scoping review
analyzed the information about different machine learning tools in support of non-invasive diagnostic
techniques including telemedicine, medical images, fluorescence images, exfoliative cytology and
predictor variables at risk of developing oral cancer. The results suggest that such tools can make
a noninvasive contribution to the early diagnosis of oral cancer and we express the gaps of the
proposed questions to be improved in new investigations.

Abstract: The early diagnosis of cancer can facilitate subsequent clinical patient management. Artifi-
cial intelligence (AI) has been found to be promising for improving the diagnostic process. The aim
of the present study is to increase the evidence on the application of AI to the early diagnosis of oral
cancer through a scoping review. A search was performed in the PubMed, Web of Science, Embase
and Google Scholar databases during the period from January 2000 to December 2020, referring to the
early non-invasive diagnosis of oral cancer based on AI applied to screening. Only accessible full-text
articles were considered. Thirty-six studies were included on the early detection of oral cancer based
on images (photographs (optical imaging and enhancement technology) and cytology) with the
application of AI models. These studies were characterized by their heterogeneous nature. Each
publication involved a different algorithm with potential training data bias and few comparative data
for AI interpretation. Artificial intelligence may play an important role in precisely predicting the
development of oral cancer, though several methodological issues need to be addressed in parallel to
the advances in AI techniques, in order to allow large-scale transfer of the latter to population-based
detection protocols.

Keywords: oral cancer; artificial intelligence; screening; early diagnosis; machine learning; deep learning

1. Introduction

Oral cancer is characterized by one of the poorest cancer survival rates worldwide—a
situation has not improved despite the recent therapeutic advances made. According to
GLOBOCAN, lip and oral cancer had an incidence of newly diagnosed cases in the year 2020
of 377,713 cases; 264,211 male and 113,502 female, with mortality 177,757—125,022 male
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and 52,735 female [1]. Many cases of oral and oropharyngeal cancer are detected in
advanced stages of the disease, resulting in needless morbidity and mortality [2,3]. The
key factor in this regard is detection of the lesions as soon as possible, while they are still in
an early stage, in order to improve the chances for successful treatment. Cancers that are
detected late or which prove less accessible are associated with poorer survival, greater
treatment-related problems, and increased medical care costs [4–7].

Improved knowledge of the disease and of its risk factors and symptoms would
have a positive influence upon the diagnosis, facilitating the identification of potential
symptoms of malignancy which otherwise might be undetected or not be adequately
evaluated [2–8]. Due control in turn is required for established risk factors such as smoking
and alcohol abuse, together with the detection of human papillomavirus (HPV) in relation
to oropharyngeal cancers [5].

OPMD have been defined as “any oral mucosal abnormality that is associated with
a statistically increased risk of developing oral cancer”. The following pathologies are
considered OPMD: oral leukoplakia, proliferative verrucous leuokolakia, erythroplakia,
oral submucous fibrosis, oral lichen planus, actinic keratosis, palatal lesions in reverse
smokers, oral lupus erythematosus, dyskeratosis congenital, epidermolysis bullosa, oral
lichenoid lesion and oral chronic graft vs. host disease [9].

It is important to identify lesions that may undergo malignant transformation. In
this regard, visual screening of the oral cavity has been widely recognized as a viable,
safe and precise strategy for detecting such lesions with a view to reducing oral cancer
mortality [5–7]. At present, the diagnosis is based on a thorough clinical exploration—the
latter forming part of any routine medical consultation, affording high discriminating
capacity and taking little time to complete in the clinic [2–5]. Several recent studies have
evaluated the use of autofluorescence in the context of population screening interventions,
and recommend it as an adjunct to conventional oral examination for the assessment of
oral potentially malignant disorders (OPMDs), with oral biopsy remaining the diagnostic
gold standard in all cases [10–14].

A late diagnosis of oral cancer occurs as a result of a complex interaction of multiple
interrelated factors. In this respect, different authors have defined four problems that
should be targeted for corrective actions: (a) late detection of the symptoms; (b) scant
knowledge of oral cancer; (c) delays in seeking medical care; and (d) the focusing of
interventions upon concrete risk groups [7,8].

The field of healthcare is experiencing unprecedented changes thanks to the techno-
logical advances of recent years. The introduction of digital medicine is expected to modify
the practices of healthcare professionals as a result of increased interaction with the new
information and communication technologies [15–17]. Thanks to artificial intelligence (AI),
we will have tools allowing us in a matter of seconds to analyze and interpret a great vol-
ume of data, helping us in the decision-making process. Innovations in digital technologies
offer clear benefits for healthcare professionals, healthcare systems, and patients [18].

Artificial intelligence is beginning to have a considerable impact, improving diagnostic
precision in certain medical fields, and may be of great help in all aspects related to the
oncological workflow–from screening to patient treatment [18–20].

Artificial intelligence may be defined as the capacity of software to imitate the cogni-
tive abilities of humans. Machine learning (ML) is a part of AI that is centered on the use
of algorithms to solve different problems, including data classification or regression, and is
an emerging area of interest for investigators seeking to transform large bodies of data into
knowledge that may be of use in clinical decision making. In ML, the algorithms require
no prior explicit programming to operate. Machine learning can be classified according to
the type of learning as follows [18]:

1. Supervised learning: the training process in this case is based on labeled data using a
known external standard known as the “ground truth”.
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2. Unsupervised learning: the algorithm analyzes unlabeled data to identify hidden
structures. In this case, the algorithm itself seeks to detect patterns in the data for
learning, since the system lacks prior labeled data or expectable results.

3. Reinforcement learning: in this case, the software actions receive positive and/or
negative reinforcement within a dynamic environment.

In medicine, supervised learning is the most widely used form of ML. Unsupervised
learning generally requires a large body of data, and the results may be complex to interpret.
Reinforcement learning requires a trial-and-error process that is difficult to implement in
the health sciences; at present it is mainly applied in robotics, telecommunications and
game theory [18–20].

The use of ML has grown in recent years thanks to technological advances that have
allowed increased patient data digitalization through electronic case histories and image
files, as in the fields of Radiology and Pathology. A recent tendency has been the growing
use of radiomics—a computational tool of help in establishing the diagnosis, and which
fundamentally involves imaging data conversion to detect differential features not apparent
to the human eye. Such new imaging characteristics may be of diagnostic, prognostic, and
therapeutic usefulness [15–21].

Deep learning (DL) is the most recent evolution of ML, and is more appropriately
described as a sub-discipline of ML. Its functioning is more complex, and it is able to afford
decision-making capacity and process extremely large data sets [18,19].

A body of ML algorithms of particular interest in the recent literature is referred to
neural networks (NNs). These are complex models composed of nodes (called neurons)
that model deep networks characterized by several layers. The use of NNs with this
architecture is commonly known as deep learning. This technology allows high-level
abstraction of the input data, with great performance in different tasks ranging from the
analysis of images to personalized drug design [18].

AI has led to significant advances and developments in oncology [17–19]. Differ-
ent narrative reviews have been published in relation to their usefulness for facilitating
the early diagnosis of OPMD and oral cancer [22], and for the support they provide
for the same purpose, as well as radiological, endoscopic, spectrometric or histological
images [23–25]. In this regard, the present study was carried out to provide a scoping
review of the application of AI to the early diagnosis of oral cancer using non-invasive
techniques as well as the proposal for future investigations.

2. Materials and Methods
2.1. Protocol and Registration

This scoping review was registered as a protocol with the PROSPERO (International
Prospective Register of Systematic Reviews) platform (registration number: CRD42020218675).
No ethics committee approval was required for the present systematic review.

The question proposed was as follows: What are the applications and performance of
artificial intelligence in the early diagnosis of oral cancer?

2.2. Search Strategy

The review was based on the PRISMA ScR (Preferred Reporting Items for Systematic
reviews and Meta-Analyses extension for Scoping Reviews) statement [26]. The litera-
ture search was performed in the PubMed, Web of Science, Embase and Google Scholar
databases. The following terms were combined to identify relevant publications: “oral
cancer”, “oral precancer”, “oral potentially malignant disorder”, “oral leukoplakia”, “artifi-
cial intelligence”, “deep learning”, “machine learning”, “convolutional neural network”,
“artificial neural network”, “diagnosis”, “screening”, “telemedicine”, and “mobile”. All the
identified studies were evaluated by two blinded reviewers (PLJ, EPFL) on an independent
basis. In case of disagreement, a third reviewer (MGP) was consulted. Reference lists were
also screened for additional studies.
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2.3. Eligibility Criteria. Inclusion Criteria

We included papers focused on the use of AI in the early noninvasive diagnosis
of oral cancer, in which the measurement of effectiveness was included in the results,
covering the period from January 2000 to December 2020. There were no language or study
design limitations.

2.4. Exclusion Criteria

We excluded articles related to AI but based on radiological imaging (computed
axial tomography (CAT), magnetic resonance imaging (MRI)), biomarkers, metastasis,
recurrences and survival, or the planning of treatment; articles unrelated to AI; articles not
published; and articles based on animal experimentation.

2.5. Data Items

Data were extracted from original articles using a set of predetermined parameters.
The following data were compiled: year of publication, country, research objective concern-
ing the diagnosis of OPMDs or oral cancer, sample size, AI tool used for oral cancer and
precancer diagnosis and classification methods, as well as the quantitative results obtained
from their evaluation.

2.6. Critical Analysis and Evidence Synthesis

The analysis was divided into sections addressing oral cancer screening, optical imag-
ing and enhancement technology, and oral cytology. The review focused on summarizing
the evidence on the application of AI for the detection of OPMDs and the early diagnosis
of oral cancer. The formulation of the questions performed for each oral cancer diagnostic
tool selected in this review, were the following:

Q1. In relation to telemedicine (teledentistry or telehealth)
Q1a. Is there agreement in the diagnosis of oral lesions between the practitioner and experts
in Oral Medicine or Oral Cancer?
Q1b. Would the images received by mobile (telemedicine), and classified through the
neural network, corroborate the diagnosis of OPMD and oral cancer?
Q2. Would the classification of photographic images submitted to AI allow the discrimina-
tion of OPMD and oral cancer?
Q3. Does the application of light-based detection on the lesion improve the AI classification
of lesions for decision-making in the diagnosis of OPMD and oral cancer?
Q4. Does exfoliative cytology offer information for the screening of patients at risk of
oral cancer?
Q5. Do the demographic variables of the patients, the toxic habits, and the clinical
parameters, introduced in the IA classification models provide predictive values for
oral cancer?

3. Results
3.1. Selection of Resources/Search Results

The first step resulted in the preliminary identification of 1551 articles. A total of
384 publications were found to be duplicates and were discarded, thus leaving 1167 articles
of which 1110 were excluded after evaluation of the title and abstract. In the second step,
and after full-text reading of the 62 selected articles, a total of 36 were included in the
review [27–62], with a description of the relevant findings (Figure 1).
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Figure 1. Flow diagram of the scoping review.

3.2. Description of Studies

Only five of the selected articles were published before 2015 [33,38,44,58,59]. The
field work of 12 studies was carried out in India [29,30,34,39,44,49,51,52,54–57], while
five studies were carried out in Malaysia [37,42,47,48,61] and in China [28,35,43,59,60],
four in the United States [36,38,45,46], two in The Netherlands [33,58] and Poland [40,41],
and one in Taiwan [32], Saudi Arabia [50], Morocco [31], Germany [27], Greece [53] and
Sweden [62].

The study subjects and aims were classified as follows: (1) identification of the most
appropriate biopsy site [28]; (2) selection of patients through clinical screening and the
referral of suspicious cases to a specialist in oral medicine or oral cancer [30,37,52,57,61];
(3) screening in smokers [34,49]; (4) oral cancer screening through smart telecytology [54];
(5) the diagnosis of OPMDs such as solar cheilosis [53], oral lichen planus [41,46], leuko-
plakia [29,40,58], with a prediction of their course [43]; (6) aids to differential diagno-
sis by classifying the lesions as benign or precancerous [50]; normal mucosa or oral
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cancer [27,32,35,36,39,42,62]; or as different benign, premalignant and malignant
lesions [31,33,39,46,59]; (7) classification of oral cancer [56]; and (8) development of oral
cancer risk predictive models [42,47,48,51,55,60].

The most frequent evaluative metrics were: concordance [30]; precision [31],
sensitivity, specificity [29,40,41,43,44,53,58,60]; concordance, sensitivity, specificity [37];
accuracy [47,56]; accuracy—area under the curve (AUC) [45,46,55], accuracy, sensitiv-
ity, specificity [28,34,36,38,39,42,49,52,54]; receiver operating characteristics curve (ROC-
AUC) [33]; accuracy, sensitivity (recall), specificity, F-measure, ROC-AUC, precision [51];
precision, recall and F1-score [61]; sensitivity, specificity and ROC-AUC [45,57]; sensitiv-
ity, specificity and IOU (intersection over union evaluating accuracy of the ROI (region
of interest)) [32]; accuracy, sensitivity, specificity and ROC-AUC [27,35,48,50]; accuracy,
precision, recall and F-score [62]; sensitivity, specificity and positive predictive value [59].
The definitions of the terms employed are provided in Table 1.

Table 1. Common terminology used in artificial intelligence.

Term Interpretation

Artificial intelligence (AI)
A field of science and engineering concerned to develop

machines that can learn through data so that they can solve
the problems.

Machine learning (ML)
A subfield of AI in which algorithms are trained to perform

tasks by learning patterns from data so they can resolve issues
without human input.

Deep learning (DL)

A subset of machine learning. The purpose of DL is to construct
a neural network that automatically identifies patterns to

improve feature detection, collecting features from the
abstracted layer of filters.

Neural Network
A set of algorithms of solutions to a problem that compute
signals via artificial neurons, to create neural networks that

function like the human brain

Probabilistic systems
Incorporate rates of diseases or problems in a population and
the likelihood of various clinical findings in order to calculate

the most likely explanation for a particular clinical case

Supervised learning
Based on labeled data using a known external standard called
as the “ground truth”. A model is built by learning common

features from a non-labeled set of training data

Unsupervised learning

The algorithm itself seeks to detect patterns in the data for
learning, since the system lacks prior labeled data or expectable

results. Model is built by learning common features from a
non-labeled set of training data.

True positive An abnormal lesion is categorized correctly as abnormal.

True negative A normal is categorized correctly as normal

False positive A normal is categorized wrongly as abnormal

False negative An abnormal is categorized wrongly as normal.

Accuracy
The proportion of correctly predicted results among all samples,

the proportional precision in a classification system. Test
accuracy 0.90, the model correctly classified 90%.

Sensitivity (recall)
The ratio of true positives to total positive predictions or the
proportion of the true cases that are identified by the model.

Percentage predicted positive among all truly positive
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Table 1. Cont.

Term Interpretation

Specificity The ratio of true negatives to total positive prediction
Percentage predicted negative among all truly negative

Precision (positive predictive value)

The proportion of cases selected by the model that has the true
value. The proportion of the patients with the disease, who are

correctly predicted to have the disease. The number of true
positives divided by the number that was predicted as positive

F1 Score The harmonic mean of the precision and recall

Receiver operating characteristics (ROC) A curve for a model and is used for estimating the prediction
ability of a model.

Training Used for generating or created a model

Validation Used to estimate the model effectivity or prediction error

The number of risk factors or attributes used to construct the predictive models
employed as criteria for the referral of suspicious cases ranged from 5 [63] to 25 [47].
The most frequent were: demographic data (age and gender) [43,47,48,51,55,61]; a
cut-off age of under 40 years [30,42]; toxic habits (smoking, alcohol and tobacco chew-
ing) [30,42,43,47,48,55,61]; and clinical parameters (location [43], three-week red or white
lesions [30], and ulcerations with pain for over 14 days [47]). Other considered factors were
ethnic group [42,47], limited oral opening [30], neck adenopathies [30,51], comorbidity [51],
and the diagnostic technique employed, among others [60].

3.2.1. Mobile Phone Technologies

Mobile phone technologies were used in six studies as instruments for the screening
and diagnosis of suspicious oral lesions (Table 2) [30,37,52,54,57,61]. Birur et al. [30] estab-
lished interactive remote consultation between frontline health care workers (FHWs) and
primary care dental practitioners and specialists in oral cancer. This strategy resulted in
concordance in the imaging diagnosis of suspicious lesions in 45.1% of the FHWs, and
concordance was confirmed in 100% of the cases with the primary care dental practition-
ers [30]. Such concordance was maintained in the study published by Haron et al. [37],
with a specificity of 100% between dentists and specialists in oral medicine in relation to
the analyzed parameters (presence of lesion, category of lesion and referral decision) [37].

Song et al. [52] and Uthoff et al. [57] equipped smartphones with an external light-
emitting diode (LED) system and a combined autofluorescence imaging (AFI) and white
light imaging (WLI) application. Using this strategy with transfer learning (VGG-CNN-
M), the authors achieved superior validation of the images for distinguishing between
suspicious lesions (malignant and premalignant) and non-suspicious lesions (normal and
variants of normal) compared with the separate use of the applications [52]. With this
same methodology, on comparing the interpretation of the remote specialist and different
transfer learning CNN (convolutional neural network) strategies, greater sensitivity was
recorded with the remote specialist (92% vs. 85%, respectively), though specificity proved
greater with the CNN strategy (85% vs. 88%) [57]. However, in a recent study [61], al-
though classification and detection with ResNet and Faster R-CNN yielded high specificity
(93.8%) in determining whether the lesion in the image requires referral to specialized care,
evaluation of the discrimination between low risk OPMDs and high-risk lesions or cancer
found the specificity to be lower (43.9% vs. 56.0%).
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Table 2. Mobile technologies. 1 Country of field work. AFI: Autofluorescence imaging. CNN: convolutional neural network. FHW: frontline health care workers. OPM: oral potentially
malignant. OPMD: oral potentially malignant desorders. WLI: white light imaging. 2 Suspicious: leukoplakia, lichen planus, oral submucous fibrosis. 3 Suspicious: OSCC, lichen planus,
homogeneous leukoplakia, speckled leukoplakia, tobacco pouch keratosis, verruccous leukoplakia, oral submucous fibrosis.

Authors, Year, Country, 1

Reference
Aim Method. Classifier Sample Outcomes: Diagnostic

Performance (%)

Birur et al., 2015,
India [30]

To determine the effectiveness of a
mobile phone–based for a

surveillance program (Oncogrid)
connecting primary care dental

practitioners and frontline health
workers (FHW) with oral cancer

specialists for screening oral cancer.

The specialist reviewed the image
and judged it as interpretable or not

interpretable. The interpretable
images were clinically stratified as

nonneoplastic, potentially
malignant, or malignant. Oncogrid

Network of mobile phone. Sana
platform (Computer & AI)

Oral Cancer Specialist
Target screening:

FHW (n = 4): 2000 patients,
Opportunist screening
Dentist: 1440 patients

Concordance with dentist:100
Positive predictive value:100

Concordance with FWH:
Positive predictive value:45

Haron et al., 2017,
Malaysia [37]

To examine the concordance in
clinical diagnosis of OPMD and

referral decisions between dentists
and oral medicine specialist (OMS)

Mobile: 3 types of phones with
different cameras
Dentists (n = 3);

Oral Medicine Specialists (OMS)
(n = 2)

OPMD: 8
Non OPMD or Normal: 8

Concordance between OMS:
Presence of lesion

Sensitivity: 70
Specificity: 100

Category of lesion
Sensitivity: 75
Specificity: 100

Referral decision
Sensitivity: 81
Specificity: 100

Song et al., 2018,
India [52]

To screen high-risk populations for
oral cancer using smartphone-based

intraoral dual-modality
immunofluorescence imaging
platform and classification of

images obtained. In addition, to
compare the performance of

different CNN and transfer learning

Android Smartphone Luxeon LED
to enable the autofluorescence

imaging (AFI) and a white light
imaging (WLI)

CNN toolbox Luxeon UV:
Transfer learning

VGG-CNN-M
VGG-CNN-S
VGG-CNN-16

Training/validation
Normal: 66/20

Suspicious 2: 64/20

Best performance with AFI-WLI:
VGG-CNN-M
Accuracy:86.9
Sensitivity:85.0
Specificity: 88.7
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Table 2. Cont.

Authors, Year, Country, 1

Reference
Aim Method. Classifier Sample Outcomes: Diagnostic

Performance (%)

Uthoff et al., 2018, India [57]

To use the smartphone’s data
transmission capabilities, and

uploaded to a cloud server, where a
remote specialist can access the
images and make a diagnosis.

Furthermore to classify images in
suspicious and non suspicious

Android Smartphone Luxeon LED
with AFI and a WLI
CNN: VGG-CNN-M

Suspicious 3 vs. non-suspicious
Normal: 33; Suspicious: 60

OSCC:6
CNN, normal:86/suspicious: 84

Remote specialist/CNN
Sensitivity: 92.59/85.00
Specificity:86.67/88.75

Welikala, et al., United Kingdom.
2020 [61]

To detect and classify oral lesions in
low risk and high risk, first in a

phase of collection with bonding
box annotations from clinicians and
after classifying by deep learning.

Mobile Mouth Screening Anywhere
(MeMoSA)

Classification: ResNet-101: CNN
Detection: Faster R-CNN

2155 images captured by MeMoSA
App

(normal, benign, OPMD, malignant)
Clinician: 3–7 experts
Training:1744 (Back

propagation/stochastic gradient)
Validation: 207

Testing: 204

Identification image that containing
lesion (test):

Precision:84.77
Recall: 89.51

F1Score: 87.07
Identification imaging that required

referral (test):
Precision:67.1

Recall: 93.8
F1Score: 78.3

Refer-low risk OPMD/cancer or
high OPMD (test):
Precision:26.4/14.7

Recall: 43.9/56.0
F1Score: 33/23.3
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3.2.2. Medical Imaging Techniques

The analysis of medical images for the early detection of oral cancer was performed
in nine studies (Table 3) [31,32,35,39–41,50,53,56]. The use of Speed Up Robust Features
(SURF) in Support Vector Machine (SVM) allows the differentiation between normal and
pathological mucosa with a precision of 82% [31]. Shamin et al. [50] found that in classifying
benign and precancerous lesions of the tongue, pre-processing with the VGG19 model
afforded greater accuracy (98%). Spyrodonos et al. [53], using the Relevance Vector Machine,
recorded a specificity of 96% for the identification of solar cheilosis vs. non-solar cheilosis.

Application of the Probabilistic Neural Network allowed the differentiation between
oral lichen planus, leukoplakia and normal tissue, with a specificity of 81%, 74% and 88%,
respectively [41]. The specificity with respect to leukoplakia improved to 97% by applying
textural features such as wavelet energy for segmentation of the constituent layers [40].

The distinction between normal tissue and oral squamous cell carcinoma (OSCC)
using the CNN strategy yielded an accuracy of 92.3% [35], and of 94.5% with partitioned
deep CNN [39]. Likewise, following analysis and the use of textural filters, distinction
between normal tissue and OSCC was achieved with a specificity of 0.9475 in identifying
ROI [32], with further improvement being obtained by selecting 11 gray-level co-occurrence
matrixes (GLCMs) (accuracy 97.9%) [56].

3.2.3. Fluorescence Imaging

In addition to the two articles mentioned above [52,57], another nine studies incorpo-
rated luminescence to AI as a noninvasive method for the diagnosis of oral precancer and
cancer (Table 4) [27,28,33,36,38,44,58–60]. For the diagnosis of OSCC, Aubreville et al. [27]
used confocal laser endomicroscopy, which affords high magnification of the mucosal
surface, yielding a specificity of 90% and an accuracy of 88.3%. Majunder et al. in turn
used N2 laser with a specificity of over 92% [44].

Illumination based on fluorescence emission with the VELscope enhanced oral as-
sessment system was used to identify the most appropriate biopsy site in dysplastic areas
(accuracy 83%) [28] and to determine the risk factors for OPMD transformation [60]. This
latter study made use of a customized model (model P) considering different factors that
could concur in progression towards oral cancer—the most closely related being use of the
VELscope and blue toluidine staining, and patient age [60].

Xenon white-light illumination was used in five studies [33,36,38,58,59]. It has been
suggested to be useful in diagnosing leukoplakia [58] and for facilitating identification and
differentiation between oral submucosal fibrosis (OSF) [59], other OPMDs [38] and oral
cancer, as well as between healthy tissue and carcinoma [27], and for intraoperative cancer
detection [36].

Wang et al. classified premalignant and malignant lesions vs. benign lesions, with a
sensitivity of 81% and a specificity of 96% [59]. The results showed improved identification
of OSF (accuracy 97%) [59] in comparison with differentiation between homogeneous and
non-homogeneous leukoplakia (sensitivity 73% vs. 64%, and specificity 82% vs. 94%) [58],
while de Veld et al. were unable to discriminate between benign and premalignant le-
sions [33].
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Table 3. Medical imaging technique. CNN: convolutional neural network. DL: deep learning. NN: neural network. OC: oral cancer. OSCC: oral squamous cell carcinoma.
PNN: probabilistic neural network. ROI: region of interest. SVM: support vector machine. 1 Contrast, correlation, energy; homogeneity; entropy; sum of squares variance; inverse
difference moment; sum average; sum variance; sum entropy; difference entropy. 2 Short-run emphasis; long-run emphasis; low gray-level run emphasis; high gray-level run emphasis;
short-run low gray-level emphasis; short-run high gray-level emphasis; long-run low gray-level emphasis; long-run high gray-level emphasis; gray-level non-uniformity: run length
non-uniformity; run percentage.

Authors, Year, Country, Reference Aims of Study Method. Classifier’s Sample Outcomes: Diagnostic
Performance (%)

Bourass et al., 2015. Morocco [31]

To develop computer-aided
diagnostics systems that aims at

providing a classification of
suspicious regions content-based

image retrieval (CBIR).

SURF: Speed Up Robust Features
Hierarchical-SVM vs.

RGB-Histogram

Facial & Oral cancer database:
4160 images.

Hierarchical model SVM feedback,
Precision: 82

Chan, et al., 2019,
Taiwan [32]

To develop the texture map based
on branch-collaborative network

model to allow detection cancerous
regions and marking the ROI

SMOTE
texture-map-based branch Network

Wavelet transformation
Gabor filtering

Fully Convolutional Network (FCN)
Feature Pyramidal Network (FPN)

(Training/Validity)/Testing
Cancer: 25/5
Normal: 45/5

Branch Network/Gabor filter
(ROI)

Sensitivity: 0.9687/0.9314
Specificity: 0.7129/0.9475

Fu, et al., 2020
China [35]

To develop a rapid, non-invasive
and easy-to-use DL approach to

identifying OSCC using
photograms.

CNN

Training / Internal
validation/external validation
n = 1469 images from hospital
n = 420 (images from journal)
external validation (n = 666)

Algorithm/OC expert/medical
student/non-medical student
Accuracy: 92.3/92.4/87.0/77.2
Sensitivity: 91.0/91.7/83.1/76.6
Specificity: 93.5/93.1/90.7/77.8

Jeyaraj & Nadar, 2019. India [39]

To develop a DL algorithm for
automated, computer-aided oral

cancer detecting system by
investigating patient hyperspectral

images

Partitioned Deep CNN
SVM

Deep belief Network

OC vs. Benign
Partitioned CNN vs. expert

oncologist
(n = 100 images)
OC vs. Normal

Partitioned CNN vs. expert
oncologist

(n = 500 images)

Accuracy: 91.4
Sensitivity: 94
Specificity: 91
Accuracy: 94.5
Sensitivity: 94
Specificity: 98
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Table 3. Cont.

Authors, Year, Country, Reference Aims of Study Method. Classifier’s Sample Outcomes: Diagnostic
Performance (%)

Jurczyszyn & Kozakiewicz, 2019.
Poland [40]

To formulate a differential diagnosis
for leukoplakia vs. lichen planus in

the oral mucosa based on digital
texture analysis in intraoral

macrophotography

Neural Network Bayesian (PNN)
Run/short length emphasis matrix

Co-occurrence matrix

Oral leukoplakia: 21
Oral lichen planus: 21

Normal: 21

Sensitivity: 57 Specificity: 74
Sensitivity: 38 Specificity: 81
Sensitivity: 94 Specificity: 88

Jurczyszyn et al., 2020. Poland [41]
To propose an effective texture

analysis algorithm for oral
leukoplakia diagnosis

PNN
Run length matrix

(short/long)
Co-occurrence matrix

(entropy/difference entropy)
Haar wavelet transformation

(Energy 5.6)

Oral leukoplakia:35 Sensitivity: 100
Specificity: 97

Shamim et al., 2019
Saudi Arabia [50]

To apply and evaluate the efficacy of
six model for identifying

pre-cancerous tongue lesions
directly using photographic images

to diagnose

Deep CNN
Transfer learning: AlexNet;

GooLeNet; Vgg19; Inceptionv3;
ResNet50; Squeeze

Training (160 images, 80%)
Validation (40 images, 20%)

Tongue diseases (Internet images)
Physician with more than 15 years

of clinical practice

Best (benign or precancerous:
VGG19)/4 benign and 1
precancerous: ResNet)

Accuracy: 98/97
Sensitivity:89
Specificity:97

Spyrodonos et al., 2015. Greece. [53]

To determine robust
macro-morphological descriptors of

the vermillion border from
non-standardized digital

photographs and to exploit a
probabilistic model for solar

cheilosis recognition

Relevance vector machine Solar cheilosis: 75
Non-solar cheilosis:75

Sensitivity: 94.6
Specificity: 96

Thomas et al., 2017 India [56]

To distinguish between different
groups of carcinoma of different
areas of oral cavity by different
selected features of Grey Level.

Backpropagation Artificial NN (to
validate):

Grey Level Co-occurrence Matrix
(GLCM) 1

Grey Level Run-Length Matrix
(GLRL) 2

Boxplot analysis

Oral cancer vs. normal
Training: n = 12

Validation: 4
Sections of images:192

Accuracy
Selected 11features: 97.9

All 61 features: 91.6
GLCM: 89.5
GLRL: 85.4
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Table 4. Fluorescence imaging. ANN: artificial neural network. AUC: area under the curve. CI: clinical impression. CNN: convolutional neural networks. DTC: decision tree classifier.
ED: Epithelial dysplasia. EH: epithelial hyperkeratosis. FlS: fluorescence spectroscopy. GLCM: gray-level co-occurrence matrices. KLCC: Karhunen–Loeve linear classifier. kNN:
k-nearest-neighbors. LBP: local binary pattern. LDA: linear discriminant analysis. LDA: linear discriminant analysis. LR: logistic regression, NN: neural network. OML: oral mucosal
lesion. OPMD: oral potentially malignant disorders. OSCC: oral squamous cell carcinoma. OSF: oral submucous fibrosis. PCA: principal components analysis. PLS-ANN: partial least
squares and artificial neural network. RF: random forest. ROI: region of interest. RVM: relevance vector machine. RBF: radial basis function. SCC: squamous cell carcinoma. SVM: support
vector machine. TB: toluidine blue. Yr: year.

Authors, Year, Country, Reference Aim/no. of Predictor Variables Method. Classifier Sample Outcomes: Diagnostic
Performance (%)

Aubreville, et al., 2017 Germany [27]
To diagnose OSCC using deep

learning on Confocal laser
endomicroscopy (CLE) images

CLE
Patch-extraction of images CNN

RF-LBP; RF-GLCM
OSCC:12

AUC: Patch-extraction (validation)
Accuracy: 88.3
Sensitivity: 86.6
Specificity: 90′

Awais et al., 2020. China [28]

To propose a method for the
classification of OML and OPMDs
based on a GLCM texture to take a

biopsy

Velscope (ROI)
GLCM
LDA

K-NN

n = 22
OML, OPMD

Accuracy: 83
Sensitivity: 85
Specificity: 84

de Veld et al., 2004. Netherlands [33]

To develop and compare algorithms
for lesion classification and to

examine the potential for detecting
invisible tissue alterations.

Xe-lamp
PCA
ANN
KLLC

Receiver-operator characteristic
areas under the curve (ROC-AUCs)

Patients = 155
Health: 96

PCA/ANN
Accuracy: 96.5/98.3
Sensitivity: 92.9/96.5
Specificity: 100/100

Not distinguish benign vs.
premalignant

Halicek et al., 2017. United States
[36]

To compare automatic labeling of
cancer and normal tissue applying

hyperspectral images for using
intraoperative cancer detection.

Xenon White light
CNN

SVM, k-NN, LR, DTC, LDA
37 OSCC

External validation training CNN
Accuracy: 77 ± 21/96.8
Sensitivity: 77 ± 19/96.1
Specificity: 78 ± 16/96.4

Heintzelman et al., 2000. United
States [38]

To determine optimal
excitation–emission wavelength

combinations to discriminate
normal and

precancerous/cancerous tissue, and
estimate the performance of

algorithms based on fluorescence.

Xenon (
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Table 4. Cont.

Authors, Year, Country, Reference Aim/no. of Predictor Variables Method. Classifier Sample Outcomes: Diagnostic
Performance (%)

Majumder et al., 2005. India [44]

To compare evaluation of the
diagnostic efficacy of the Relevance
vector machine (RVM) and Support

vector machine (SVM)

N2 laser
(
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3.2.4. Exfoliative Cytology

Cytological diagnosis was used in nine articles, based on exfoliative liquid [29,49],
scraped [34] and brush biopsies (Table 5) [43,45,46,52,62]. Banerjee et al. [29], using linear
SVM, classified oral leukoplakia and OSCC cells with a sensitivity and specificity of 100%
when only using the cellular descriptors, vs. a sensitivity of 89.9% using the nuclear
descriptors. However, Sunny et al. [54], using smart cytology with remote diagnosis
for distinguishing between OSCC and HGD (high grade dysplasia) vs. LGD (low grade
dysplasia), recorded an accuracy of 60% with manual assessment by the professional, vs.
90% using an artificial neural network (ANN)-based risk stratification model. The authors
underscored that the number of images needed to diagnose OSCC may be less than 20,
while over 100 images might prove necessary in the case of dysplasia [54].

Liu et al. [43], using the peak detection–random forest model, were able to predict
the malignant transformation of leukoplakia with a sensitivity of 100% and a specificity of
99.2%, thereby improving upon the previously used model with SVM.

Cellular classification with SVM allowed distinction between the cells of healthy
smokers and those of individuals with oral leukoplakia and OSCC, recording an accuracy
of 85.71% [34] and a positive correlation coefficient of 0.86 between smoking duration
among patients with OPMD and early cancer risk [49].

McRae et al. [39] applied logistic regression analysis based on CellProfiler software,
with an AUC of between 0.81 and 0.97, the former value corresponding to the dichotomic
model of benign lesion vs. dysplasia, and the latter to no lesion vs. malignant lesion.
The authors also found nuclear F-actin staining to be associated with early disease (lower
proportion in benign lesions), with oral lichen planus being associated with lesser staining.
Late disease models proved more accurate (AUC 0.88–0.97) than early disease models
(AUC 0.77–0.87) [46].

Wieslander et al. [62], on comparing two different network architectures for discrimi-
nating between normal mucosa and cancer, recorded an accuracy of 80.66% and 78.34%
with VGG and ResNet, respectively, observing that VGG classifies more tumor cells and
more healthy cells as being malignant than ResNet.

3.2.5. Predictor Variables of Datasets

Five studies constructed algorithm patterns involving attributes or variables compiled
from databases of oral cancer patients to select cancer risk predictors (Table 6) [42,47,48,51,55].
The accuracy values differed depending mainly on the number of attributes and the type
of algorithm selected. Thus, in the comparative study published by Tetarbe et al., the best
algorithms for detecting oral cancer were the REPTree and the J48Tree (78.7% vs. 77.6%) [55],
while Mohd et al. recorded the best performance for the Multilayer Perceptron (MLP)
(94.7%) [47], with 18 and 14 attributes, respectively. In other studies, the distinction between
benign and malignant lesions based on Fuzzy regression or logistic regression analysis
yielded accuracy values of between 78.9% (8 attributes) [42] and 99.3% (12 attributes) using
Probabilistic NN and General Regression NN [51].

On contrasting the results obtained based on classification by the oral cancer clini-
cian and the fuzzy neural network and fuzzy regression analysis predictive models, no
statistically significant differences were recorded in the analysis of one or two risk factors,
though significant differences were observed between the clinician and the fuzzy models
in relation to three and four factors [48].
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Table 5. Exfoliative cytology. 1 Liquid-based exfoliative cytology (LBEC). 2 Scraped; 3 Brush. 4 Morphological features: solidity, roundness, circularity, convex area, major axis, minor
axis, eccentricity, ratio. 5 Early disease: benign vs. more severe lesion. 6 Late disease: lesser severity vs. more severe lesions. ANN: artificial neural network. CF: peaks-closed forest.
DI: DNA index. DIC: differential interference contrast. GLCM: gray-level co-occurrence Matrix.KNN: k-neural neighbor algorithm. LR: regulated logistic regression. LASSO: least absolute
shrinkage and selection operator: OCRIP: oral cancer risk index. OLK: oral leukoplakia. OSCC: oral squamous cell carcinoma. PLR: penalized logistic regression. PMOL: potentially
malignant oral lesion. POCOCT: point of care oral cytology. RF: random forest. SVM: support vector machine.

Authors, Year, Country, Reference Aim Method. Classifier Sample Outcomes: Diagnostic
Performance (%)

Banerjee et al., 2016. India [29]
To classify cells and nucleus for

diagnosis oral leukoplakia
and cancer 1

SVM
MATLAB

OLK:16
OSCC:23

Cell/nucleus
Sensitivity: 100/89.9
Specificity: 100/100

Dey et al., 2016, India. [34]
To classify cellular abnormalities

smokers vs. non-smokers
and precancer 2

SVM
Texture Features: GLCM (energy,

homogeneity, correlation,
contrast DIC)

Morphological features 4

Gradient Vector flow Snake model
k-means clustering

No smoking: 30
Smokers: 63

Pre-cancer: 26

Accuracy: 85.71
Sensitivity: 80.0
Specificity: 88.89

Liu et al., 2017. China. [43]

To improve the performance of the
risk index of preexisting model for

assessment for oral cancer risk
in OLK 3

SVM
Peals—Random Forest

SVM full
KNN, CF; RF

OCRI

Training/Validation
Normal: 18/102

OLK: 28/82
OSCC: 41/93

Follow up: 23 ± 20 months

Peaks RF
Sensitivity: 100
Specificity: 100

McRae et al., 2020 (a). USA. [45]

To describe cytopathology tools,
including machine learning

algorithms, clinical algorithms, and
test reports developed to assist
pathologists and clinicians with
PMOL evaluation and using a

POCOCT platform. 3

SVM
Lasso logistic regression

Training: PCA
Validation: K-NN

Benign
OPMD

Oral epithelial dysplasia
OSCC

Accuracy: 99.3
Clinical algorithm. AUC

Benign vs. mild dysplasia: 0.81
No lesion vs. malignancy: 0.97
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Table 5. Cont.

Authors, Year, Country, Reference Aim Method. Classifier Sample Outcomes: Diagnostic
Performance (%)

McRae et al., 2020 (b). USA. [46]

To classify the spectrum of oral
epithelial dysplasia and OSCC and

to determine the utility of
cytological signatures, including
nuclear F-actin cell phenotypes. 3

Lasso logistic regression
Training: PCA

Validation: K-NN

OPMD
OSCC
health

AUC
Early disease 5:0.82
Late disease 6:0.93

Sarkar et al., 2016. India. [49]
To develop a novel non invasive
method for early cancer trend in

habitual smoking 1

DIC
Fluorescence microscopy Fuzzy

trend (Mamdani): Risk of OPMD
in smokers

OPMD smokers: 40
Non-smokers: 40

Control: 40

Positive correlation of smoking
duration with early cancer risk:

Correlation co-efficient: 0.86
Accuracy: 96
Sensitivity: 96
Specificity: 96

Sunny et al., 2019. India. [52]
To evaluate the efficacy of

telecytology system in comparison
with conventional cytology 3

Manual (telecytology 2 vs. ANN
Inception V3, Implemented

in Python
RF, LR, Linear discriminant

analysis, KNN

Training/Validation
OPML: 3
OSCC: 3

SVM (best accuracy)
Sensitivity: 88

malignant lesion: 93%,
high grade OPML: 73%

Specificity: 93

Wieslander et al., 2017, Suecia. [62]

To presents a pilot study on
applying the PAP-based screening
method for early detection of oral

cancer and to compare 2
network architectures 3

Classifier: CNN
Evaluation:

ResNet
VGG net

Herlev dataset
Normal: 3
OSCC: 3

ResNet/VGGNet
OSCC vs. normal

Accuracy:78.3/80.6 vs. 82.3/80.8
Precision;72.4/75.0 vs. 82.4/82.4

Recall: 79.0/80.6 vs. 82.5/79.8
F score: 75.5/77.6 vs. 82.5/81.0
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Table 6. Predictor (attributes) variable. FNN: fuzzy neural network. FR: fuzzy regression. KNN: K-nearest neighbors. MLP: multilayer perceptron. NN: neural network. OCC: oral cancer
clinicians. SVM: support vector machine. NB: naïve Bayes. WEKA: Waikato Environment for Knowledge Analysis.

Authors, Year, Country, Reference Aim Method. Classifier Sample
(Prediction Factors)

Outcomes: Diagnostic
Performance (%)

Karem et al., 2017, Malaysia. [42]
To guide oral cancer diagnosis using
a real-world medical dataset with

prediction model.

Training (PS-Merge)
Fuzzy NN

Fuzzy Regression
Fuzzy Logic

Logistic Regression

Oral Cancer: 171
(n = 8):

Best 7 factors
Accuracy:78.95
Sensitivity: 100

Specificity: 58.62

Mohd et al., 2015, Malaysia. [47]
To predict more accurately the

presence of oral cancer with reduced
number of attributes.

SMOTE
Features selection algorithm

SVM
Updatable Naïve Bayes
Multilayer Perceptron
K-Nearest Neighbors

Re-sample Oral cancer: 201
(n = 25):

Accuracy
N◦ of features:

NB/MLP/SVM/KNN
25: 91.9/94.2/93.3/86.1
14: 94.7/94.7/92.3/90.9

Rosma et al., 2010, Malaysia. [48]

To evaluate the ability of a fuzzy
neural network (FNN) model and

fuzzy regression (FR) model to
predict the likelihood of an

individual in developing OC based
on knowledge of their risk habits

and demographic profiles.

Prediction Model:
FNN
FR

Oral cancer: 84
Non-cancer: 87

(n = 5)

P value (Factors: 1 or 2/3 or 4)
FR vs FNN: 1/1

FR vs. OCC: 1/0.043
FNN vs. OCC: 1/0.02

Sharma & Om, 2015, India. [51]

To design a data mining model
using probabilistic and general

regression neural network for early
detection and prevention of

oral malignancy.

Probabilistic NN/
General Regression NN

Oral cancer: 1025
(n = 12)

Benign vs malignant
Accuracy: 99.0
Sensitivity: 99.3
Specificity: 98.0

Tetarbe et al., 2017, India. [55]
To analyze and classify data from an

oral cancer dataset for accurate
prognosis model from it.

WEKA
Naïve Bayes

J48Tree
SMO algorithm

REPTree
Random Tree

Oral cancer:48
(n = 18)

Explorer/Experimenter
Accuracy

Naïve Bayes: 60.4/64.9
J48Tree: 75.0/77.6

SMO algorithm: 70.8/NA
REPTree: 79.1/78.72

Random Tree: 72.8/68.3
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3.3. Artificial Intelligence (AI) Methods Used in Selected Studies

Most of the studies combined different supervised learning methods, with a lesser use
of unsupervised learning methods—the latter being the most commonly used strategy for
the measurement of cellular and nuclear size indices in cytological studies.

On comparing supervised with unsupervised learning methods, principal component
analysis (PCA) with ANN, Veld et al. [33], separating the red/green intensity ratio, found
ANN to yield a slightly greater ROC-AUC of 0.90–0.97 in differentiating cancer from
healthy tissue, though the AUCs in distinguishing between premalignant lesions or other
benign lesions were very small.

Among the studies that used predictive variables for early diagnosis based on the in-
formation contained in the databases, only one article used k-nearest neighbor (KNN) [47].
Mohd et al. [47] adopted the synthetic minority oversampling technique (SMOTE) algo-
rithm and found SVM to outperform other machine learning algorithms such as Bayes
(NB), KNN and multilayer perceptron (MLP). To achieve greater accuracy, the authors
recommend reducing the number of attributes or patterns included in the algorithm–the
best outcomes being observed with seven attributes [47].

Textural analysis of the images showed classification based on patch-probability fusion
CNN to be better than textural classification using Random Forest or SVM with local binary
patterns (LBPs) and gray-level co-occurrence matrixes (GLCMs) [27].

With regard to the textural filters used to improve the classifications, and apart from
GLCMs and gray-level run-length (GLRL) for the classification of oral cancer [56] and
discrimination between cancer and normal mucosa, Chan et al. [32] found that on applying
the texture-map-based branch-collaborative network, the Gabor filter afforded greater
information for the detection of cancer and greater sensitivity and specificity than analysis
based on the wavelet transform. Awais et al. [28], using the KNN (k-nearest neighbors)
classification, found the highest accuracy (83 ± 5%) to be obtained with a combined
pattern of variance, correlation, inverse different moment, sum average, sum variance,
sum entropy, entropy and difference entropy. It had previously been reported that in
application to photographic images, specificity for leukoplakia improved with wavelet
energy analysis [40,41].

Shamim et al. [50] found pre-processing with VGG19 to afford greater accuracy,
sensitivity and specificity in distinguishing between benign and precancerous lesions when
compared with AlexNet, GoogLeNet, ResNet50, Inceptionv3 and Squeeze Net. However,
ResNet yielded better results in distinguishing between different tongue lesions. Improved
performance was also observed when this strategy was used in exfoliative cytology [62].

In analyzing behavior with xenon light, Halicek et al. [36] used an image implementing
system with Tensor Flow, prior to classification, recording the best accuracy in differenti-
ating between health tissue and cancer with the CNN classification (96.4%), followed by
SVM, KNN, LR, DTC and LDA (67.4%).

Rosma et al. [48], on comparing the prediction of oral cancer, found Fuzzy Neural
Network models to be more specific, and Fuzzy regression prediction analysis yielded
greater accuracy and sensitivity, but lesser specificity, than interpretation by clinicians.
Sharma et al. [51], using probabilistic neural network (PNN) and general regression network
(GRNN) programs, documented higher percentage performance in differentiating between
benign and malignant lesions according to the diagnostic attributes used, and in validation
compared with linear regression, decision tree forest, tree boost, MLP and CCNN. In
contrast, Tetarbe et al. reported the best accuracy performance with random tree [55].

Another contribution has been the observation that the use of a low-resolution
camera in recording the images with a mobile phone results in more false negative re-
sults, thus justifying the use of mobile phone cameras with a resolution of 720 × 1280 or
1080 × 1920 pixels [37].
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4. Discussion

The present review analyzed 36 studies using different machine learning techniques as
an adjunct to the noninvasive diagnosis of oral precancer and cancer. The methodological
heterogeneity of the studies, with diverse definitions, sample selections and sizes, different
CNN classification protocols, and differences in assessing their validity, precluded the
conduction of a meta-analysis.

Most of the studies were published after 2014 and they were concentrated in Asia
(28/36 articles), a region characterized by the highest lip and oral cancer incidences in the
world [63]. The tools derived from deep learning constitute a noninvasive adjunct to the
early diagnosis of oral precancer and cancer, not only for dentists, but also for primary
healthcare practitioners. On the other hand, the use of databases to identify those attributes
most closely related to oral cancer could represent an advance in the selection of individuals
for screening purposes.

Teledentistry based on the use of mobile phones was addressed by six of the stud-
ies [30,37,52,54,57,61], affording a connection between primary health care professionals or
dentists and specialists in oral medicine or oral cancer. Recently, Ilhan et al. highlighted the
role that AI could play in reducing in oral cancer diagnosis delay, especially telemedicine
in low-resource settings. [22]. To the question raised in this review about the concordance
between oral disease explorers and specialists at the cancer center, to recognize OPMD
lesions, the answer is that this agreement exists in 100% when the explorers are dentists but
has a predictive value of 45% when they are frontline health workers [30]. The sensitivity
is lower among dentists than among experts in oral cancer in specifying the presence of
the lesion, the category of the lesion, or the decision to refer patients, at 70% and 81%,
respectively [37]. The incorporation of fluorescence techniques or the use of cameras that
improve the quality of the images and facilitate their subsequent processing constitutes
an improvement in the design of databases linked to mobile phones. Using this type
of light, and in relation to the question of the classification of the images captured by
mobile and classified by a specialist oral oncologist and subsequent classification with the
VSG-CNN-M model, this is comparatively better than the VGG-CNN -S and VSG-CNN,
16 [52], achieving a sensitivity of 85% [52,57]. Sensitivity is lower when annotations of
demographic and risk factors are incorporated into the classification regarding the need
to refer both low-risk OPMD and high-risk OPMD or cancer (43% and 56%) [61]. These
resources could be a great advantage in first screening in those settings where not only is the
incidence of oral cancer high, but the available healthcare resources are limited, reducing
unnecessary referrals [64] and shortening distances between patients who need specialized
diagnoses and the specialist [65]. Furthermore, the use of artificial neural networks (ANNs)
has also been described as a measure of support for the remote cytological diagnosis of
malignant lesions and high-grade OPMDs [64], contributing to lessening the difficulties
posed by photographic images [61].

Different studies have used clinical photographs to demonstrate that lesions suspected
to correspond to OSCC can be easily and automatically differentiated by applying an
algorithm [31,32,35,40,41,50,53,56]. Thus, practitioners have a practical, noninvasive and
profitable tool open to non-specialists for the detection of OSCC, and thus for improving
the prognosis of oral cancer. In the field of dermatology, AI is helping with the diagnosis
of precancerous lesions, and carcinomas such as basal cell carcinoma and melanoma [66],
obtaining through methods to extract the texture features an accuracy for the diagnosis
of melanomas of 98.35% [67], and an AUC of 0.81 [68]. However, the variability of the
photographic images poses a problem for the identification of oral cancer or OPMDs, and
this scenario is much more complicated than the classification of skin lesions, since the
assessment of lesions within the oral cavity is often conditioned by interference from teeth,
the oral mucosa, tongue, lips and palate.

With respect to the question of the discrimination by classifying OPMD and oral cancer
images, photographic images offer a high distinction between OSCC and benign lesions
(accuracy 94%), and also between OSCC and normal tissue, with internal validation of
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88.7% [35]. Regarding OPMD, the specificity is higher for solar cheilosis (96%) [53] than for
oral lichen planus (81%) [41]. It should be noted that Jurczyszyn et al. achieved better results
for the diagnosis of leukoplakia applying a greater number of textures features, both in
sensitivity (57% vs. 100%) and in specificity (74% vs. 97%). [40,41]. Despite recent advances
in deep learning techniques for medical imaging interpretation purposes, large volumes
of data are needed in order to secure the required diagnostic performance. In contrast
to computed tomography (CT) or magnetic resonance imaging (MRI), oral photographs
are not mandatory before treatment [10,20]. In practice, this means that it is extremely
difficult to compile large amounts of photographs, but it would allow comparative studies.
The indicators in the improvement of the results of the analyzed studies are based on the
combination of deep CNN and texture filters such as Gabor, sunlight matrix, co-occurrence
matrix, or different grey level matrixes.

Regarding the question of the use of luminescence (e.g., xenon light) to improve the
registries, more favorable results were yielded in the dichotomous discrimination between
normal and pathological images, or between normal tissue and cancer, than in establishing
differences between benign and premalignant lesions [33], where accuracy has been found
to be poorer. This method is also useful for predicting the progression of precancerous
lesions towards cancer [54], for diagnosing oral submucosal fibrosis (OSF) [32] and for
leukoplakia [58].

A recent systematic review showed that the vascular changes suffered in the chorion
and submucosa capillary loop microvascular architecture, observed through narrow-band
imaging (NBI), provide greater reliably for the diagnosis of premalignant oral lesions and
oral cancer than using white-light imaging [69]. Segmentation of NBI videos by AI has
been used for the diagnosis of oropharyngeal cancer [70,71] and for oral precancer and
cancer [72]. Paderno et al., in a publication this year, stated that by applying the fully
convoluted neural network for the segmentation of video-endoscopic images, values of
0.6559 could be obtained for the dice similarity coefficient [72], so despite not having been
included in the present study, the NBI also seems a promising tool for the diagnosis of
oral cancer.

However, in answer to this third question, it must be taken into account that while
fluorescence may be an adjunct or complement to oral examination in the diagnosis of
oral precancer and cancer [73], it cannot be postulated as a substitute for biopsy [74]. This
affirmation was ratified in the last Cochrane review, in which it was stated that none of the
complementary tests, such as vital staining, oral cytology, light-based detection, and oral
spectroscopy, replace biopsy for the diagnosis of oral cancer [75].

Another question analyzed was focused on whether exfoliative cytology provides
information for the screening of patients at risk of oral cancer. Support vector machine
(SVM)-based classification can be used in decision making as a noninvasive technique
using exfoliative cytology or LBEC (liquid-based exfoliative cytology) samples to establish
oral leukoplakia and OSCC with high sensitivity and specificity. Exfoliative cytology also
affords relevant information for early diagnosis in smokers [34], and for monitoring lesion
progression towards malignancy [49]. Therefore, this must also be considered for a first
screening in smokers.

The last question that has been raised is focused on the attributes or variables that
could be considered to carry out the screening of patients at risk of developing oral cancer.
This aspect has been approached from the point of view of the number of attributes and
from the qualitative variable. It has been highlighted that in order to generate better
accuracy, it is important to reduce the number of variables of the algorithm [47]. Regarding
the type of variable, Rosma et al. described for drinkers an AUC of 0.724 determined by
clinicians and 0.713 in the fuzzy classification, and when drinking and chewing tobacco are
associated it is 0.78 and 0.76, respectively [48]. Mohd et al. presented an accuracy of 94.76%
in the analysis of 14 attributes, including, besides other histopathological parameters, the
clinical ones of gender, ethnicity, site, size, painful and painless ulceration > 14 days [47].
Due to the reduced number of published articles, new studies must be carried out to assess
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demographic parameters and toxic habits of great relevance for the selection of patients to
be screened.

The confusion matrix delimits the evaluation of a supervised deep learning algorithm.
Most of the studies in the present review based their evaluation on sensitivity, specificity
and accuracy, though other metrics are available that afforded validity to the CNN process.
It is advisable for future studies to take into account the TRIPOD (Transparent Reporting of
a Multivariable Prediction Model for Individual Prognosis or Diagnosis) criteria [76], with
standardized clinical trial protocols for interventions involving artificial intelligence as
referenced in the SPIRIT-AI (Standard Protocol Items: Recommendations for Interventional
Trials—Artificial Intelligence) guide, in order to adequately interpret methodologically
homogeneous results [77].

The analyzed articles have several limitations: (1) six studies involved small sample
sizes (fewer than 30 patients) [27,36,37,56,58,62], in the context of deep learning; (2) in the
study carried out by Shamim et al. [50], the images were retrieved from the Internet, while
Fu et al. [35] based external validation on images from six representative journals in the
field of oral and maxillofacial surgery and dentistry; (3) images of the side contralateral to
the side of the lesion were regarded as representing healthy tissue [27], or healthy tissue
was considered to correspond to individuals who in principle were healthy but had toxic
habits (e.g., the chewing of areca nuts), and thus could already present mucosal alterations;
(4) not all the studies corroborated the clinical diagnosis with the biopsy findings [44,46],
and (5) since it is an emerging topic, there is a limitation due to the time limit of the search
for publications.

We must also point out as knowledge gaps that the available evidence is not enough
to validate any of the diagnostic tools analyzed or deep learning in the diagnosis of certain
precancerous lesions. Specific data were provided in five papers on the analysis of oral
leukoplakia [29,40,41,43,58], one on actinic cheilosis [53], one on oral lichen planus [41],
and another on oral submucous fibrosis [32].

5. Conclusions

Artificial intelligence will greatly remodel studies on the early detection of oral cancer,
and consequently will improve clinical practice in general. Artificial intelligence offers
excellent opportunities for the automation of tasks through the detection of complex
patterns. In this respect, research is crucial to facilitate the interdisciplinary incorporation
of such techniques, and improvements in this field may open the door to further studies in
the future.
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