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Simple Summary: The accelerating merger of information technology and cancer research heralds
the advent of novel methods and models for clinical decision making in oncology. Reinforcement
learning—as one of the major subspecialties in machine learning—holds the potential for the devel-
opment of high-performance decision support tools. However, many recent studies of reinforcement
learning in oncology suffer from common shortcomings and pitfalls that need to be addressed for the
development of safe, interpretable and reliable algorithms for future clinical practice.

Abstract: Precision oncology is grounded in the increasing understanding of genetic and molecular
mechanisms that underly malignant disease and offer different treatment pathways for the indi-
vidual patient. The growing complexity of medical data has led to the implementation of machine
learning techniques that are vastly applied for risk assessment and outcome prediction using either
supervised or unsupervised learning. Still largely overlooked is reinforcement learning (RL) that
addresses sequential tasks by exploring the underlying dynamics of an environment and shaping it
by taking actions in order to maximize cumulative rewards over time, thereby achieving optimal
long-term outcomes. Recent breakthroughs in RL demonstrated remarkable results in gameplay and
autonomous driving, often achieving human-like or even superhuman performance. While this type
of machine learning holds the potential to become a helpful decision support tool, it comes with a set
of distinctive challenges that need to be addressed to ensure applicability, validity and safety. In this
review, we highlight recent advances of RL focusing on studies in oncology and point out current
challenges and pitfalls that need to be accounted for in future studies in order to successfully develop
RL-based decision support systems for precision oncology.

Keywords: precision oncology; reinforcement learning; artificial intelligence; machine learning; dose
adjustment; chemotherapy; radiotherapy

1. Introduction

Recent advances both in terms of generating an ever-growing body of medical data and
the increasing computational capacity to organize such data herald an accelerating merger
of information technology and the medical domain. At the intersection of increasingly
more complex medical data and computational analysis, machine learning (ML) gains
a foothold driven by recent developments both in hardware components and accessible
software technologies [1,2]. In general, machine learning encompasses three fundamental
methodologies (Figure 1): supervised learning (SL), unsupervised learning (UL) and
reinforcement learning (RL) [3].
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Figure 1. Main differences between machine learning techniques. 

In supervised learning, an algorithm is trained on a set of previously labeled data 
and learns features to map labels to unlabeled data of a test set. Ideally, it can then recog-
nize and label real-world data, for example, for class prediction in histology, where it may 
distinguish between benign and malignant tissue. Another example is the detection of 
breast cancer in radiology, where pre-labeled images (benign/malignant based on histol-
ogy) can be used to train an algorithm to spot malignancies and guide subsequent treat-
ment planning [4–9]. In unsupervised learning, the data are unlabeled and clustered based 
on similarities and differences. This can, for example, be used to identify groups of pa-
tients at risk using genomics where different genetic clusters of a disease may have either 
favorable or unfavorable outcomes [10,11]. Both these methods are broadly applied to (of-
ten retrospectively) medical datasets and are utilized for diagnosis, risk stratification, ge-
nomic clustering, outcome prediction, relapse monitoring and treatment response predic-
tion [12]. However, clinical practice is dynamic, and the question of how well algorithms 
that are exclusively trained on retrospective data perform in a prospective real-world set-
ting remains unanswered in most cases. To address the challenge of a non-stationary clin-
ical environment with changing conditions and stimuli, RL bears the potential to develop 
novel methods for data-driven computer-guided decision support systems. RL learns to 
select different actions according to different environmental states in order to maximize 
long-term rewards. This may be used for dynamic treatment regimens where doses are 
selected according to tumor and patient biology, treatment response and adverse events 
to tailor a treatment strategy that fits the individual patient. 

In recent years, RL has rapidly evolved, demonstrating unprecedented success and 
often achieving human-level or superhuman-level performance in, for example, gameplay 
of complex board games such as chess, Shogi and Go [13–15], video games [16–19] and 
the field of autonomous driving [20]. 

Precision medicine aims at tailoring therapy and dosing to the individual patient 
based on individual intrinsic factors such as patient and disease biology that may affect 
the response to therapy, risk of treatment failure or relapse and prognosis [21]. Conse-
quently, interventions can be adjusted to the individual patient or patient groups that may 
respond more favorably while, at the same time, reducing the risk of adverse events in 
patients who are unlikely to benefit. Both SL and UL currently receive the most attention 
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In supervised learning, an algorithm is trained on a set of previously labeled data and
learns features to map labels to unlabeled data of a test set. Ideally, it can then recognize
and label real-world data, for example, for class prediction in histology, where it may dis-
tinguish between benign and malignant tissue. Another example is the detection of breast
cancer in radiology, where pre-labeled images (benign/malignant based on histology)
can be used to train an algorithm to spot malignancies and guide subsequent treatment
planning [4–9]. In unsupervised learning, the data are unlabeled and clustered based on
similarities and differences. This can, for example, be used to identify groups of patients at
risk using genomics where different genetic clusters of a disease may have either favor-
able or unfavorable outcomes [10,11]. Both these methods are broadly applied to (often
retrospectively) medical datasets and are utilized for diagnosis, risk stratification, genomic
clustering, outcome prediction, relapse monitoring and treatment response prediction [12].
However, clinical practice is dynamic, and the question of how well algorithms that are
exclusively trained on retrospective data perform in a prospective real-world setting re-
mains unanswered in most cases. To address the challenge of a non-stationary clinical
environment with changing conditions and stimuli, RL bears the potential to develop
novel methods for data-driven computer-guided decision support systems. RL learns to
select different actions according to different environmental states in order to maximize
long-term rewards. This may be used for dynamic treatment regimens where doses are
selected according to tumor and patient biology, treatment response and adverse events to
tailor a treatment strategy that fits the individual patient.

In recent years, RL has rapidly evolved, demonstrating unprecedented success and
often achieving human-level or superhuman-level performance in, for example, gameplay
of complex board games such as chess, Shogi and Go [13–15], video games [16–19] and the
field of autonomous driving [20].

Precision medicine aims at tailoring therapy and dosing to the individual patient
based on individual intrinsic factors such as patient and disease biology that may affect the
response to therapy, risk of treatment failure or relapse and prognosis [21]. Consequently,
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interventions can be adjusted to the individual patient or patient groups that may respond
more favorably while, at the same time, reducing the risk of adverse events in patients who
are unlikely to benefit. Both SL and UL currently receive the most attention as they offer
insight into disease prognostication as well as treatment response using retrospective data.
However, the dynamic situation both the individual patient and clinician find themselves
in during oncologic treatment is not well captured by both SL and UL. The sequential
foundation of RL provides a more suitable approach to capture the dynamics of onco-
logic therapy in a real-world (prospective) setting where both patient and environmental
variables may change over the course of treatment.

In this review, we aim to provide a general understanding of the foundations of RL for
the clinical oncologist, highlight previous studies of RL in oncology and outline potential
pitfalls and considerations for future studies in this novel subfield at the intersection
between healthcare and ML.

2. Overview of Reinforcement Learning

In this subsection, we provide a general overview of the concepts of reinforcement
learning. We aim to inform the reader of the fundamental assumptions of RL, important
terminology (Table 1) and different variations of RL methodologies (Table 2). For a more
in-depth outline, we refer the interested reader to the detailed explanations provided by
Sutton and Barto [22].

In RL, an agent interacts with its environment over time by selecting actions depending
on the observed states of the environment while following a policy in order to maximize
a cumulative reward (Figure 2) [22]. At each time point t, the agent observes a state st
out of a pool of possible states S and selects an action from a pool of possible actions A
following its policy π(at|st). For its choice of action according to the observed states of
the environment, the agent receives a reward rt according to a reward function R and
subsequently transitions to the next state st + 1 according to a transition function T. Finally,
the return the agent receives is the accumulated reward discounted by the discount factor
γ ∈ (0, 1] [23].

Table 1. Terminology of reinforcement learning.

Term Symbol Description

Reinforcement Learning RL operates in a simulated environment with
distinct behavior to receive rewards

Environment E
consumes actions to produce rewards for an

agent; based on a
model/simulation/observations/data

Agent RL decision instance, performing actions to
change states

Action a performed by an agent to change to another
state, i.e., interact with the environment

State s
abstract relation of the agent to the

environment, starting and end point of an
action

Reward r gain for an action of the access of a state

Reward Function R entirety of all rewards for actions/states

Cumulative Reward CR
aggregated rewards of subsequent

actions/states; should be maximized as the
learning/optimization objective

Policy π
defines an action for each state; result of

learning/optimization process
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Table 2. Variants and methodologies of reinforcement learning.

Aspect Variant Description Pro Contra

Environment

Model-Based
distinct rule-

based/simulation-based
feedback for the agent

covers corner cases,
potentially high
feedback quality

complex to set up

Model-Free

data-based
(observation/retro-

perspective)
feedback

easy to set up, no
abstraction

no corner cases,
potentially low

feedback quality

Reward

V (State-Based) rewards when accessing a
state (relation to E)

fewer states, easy to
model

more abstraction, static
(less intuitive) view

Q (Action-Based) rewards when executing an
action (changing E)

more actions, fewer
abstraction, extensive

to model

more actions, dynamic
(intuitive) view

Concluding Learning rewards when finalizing a
sequence of decisions

long term-oriented,
aims for global

objectives

provides no local
guidance, complex

evaluation

Temporal Difference
Learning rewards after each decision

provides no local
guidance, easy

evaluation

short term-oriented,
aims for local objectives

Access

Online
access of the agent to the E

in a (restricted)
stream-based way

less information to
process for the agent,

smaller solution space

potentially non-optimal
solutions (policy)

Batch-Based access of the agent to the
entire environment E

globally optimized
solutions (policy)

more information to
process, large solution

space

Dynamics

Static Reward Function

each piece of feedback
from the E is encoded in

states, resulting in constant
rewards

easier E, smaller
solution space

potentially
coarse-grained deci-
sions/optimization

Dynamic Reward
Function

feedback from E is encoded
in attributes, resulting in

variable rewards

potentially fine-grained
deci-

sions/optimization

complex E, large
solution space

Markov Assumption no influence from previous
decisions smaller solution space

potentially insufficient
decision impact

modeling

No Markov
Assumption

decision history has
influence on rewards

complex decision
modeling large solution space

Representation

Table-/Map-Based simple state
transition/action modeling

easy to create,
transparent

complex to maintain
and show, grows

exponentially with
number of states

Graph-Based intuitive state machine
modeling

easy to maintain,
transparent, scales with

number of states

complex to create and
show

Deep Neural Net DL-based modeling easy to create, scales
with number of states

low transparency,
complex to show

For example, an RL agent could be presented with multimodal patient data, e.g.,
demographics, laboratory values, tumor burden and therapy-associated toxicities, that
represent the environment. For every iteration, the agent then selects an action, for example,
a dose adjustment on a linear scale from 0 to 100%, given the state of the environment. This
action will result in an alteration of the environment, i.e., of the patient’s condition and the
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data associated with it, resulting in a reward or a penalty for the agent based on whether or
not the chosen action led to a favorable outcome for the patient. In that sense, the agent can
abstract a policy either from rewards or state–action pairs that drives action selection, for
example, the agent may learn that increasing doses of chemotherapy are associated with
an increased anti-tumor effect, but also increased toxicity.
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Figure 2. Concept of reinforcement learning. An agent receives current state observations from an environment (1) and, in
response, selects an action according to its policy (2). For this action, the agent receives a reward based on a reward function
and the state of the environment changes (3). The agent’s goal is to maximize long-term rewards and achieve the optimum
possible return.

Hence, the agent ultimately aims at maximizing the long-term return from each
state–action pair instead of short-term rewards by selecting the appropriate actions at
each given state. If the problem setup enables an underlying model to be determined
or learned from experience, for example, in a game setting with clearly defined rules
and transitions, learning is referred to as model-based. If the model for state transition
and reward is unknown, the agent learns directly from experience using a trial-and-error
approach, and learning is referred to as model-free. Regarding nomenclature, if the
underlying model is simulated while the data stem from a real-world cohort, the setup
of the experiment is referred to as in virtuo [24]. However, if the data are simulated as
well as the model, the experiment is referred to as in silico. In virtuo experiments are
frequently performed when a retrospective patient cohort is available as a data source,
while in silico experiments often require modeling of plausible real-world-like data, for
example, the behavior of simulated cancer cells under the influence of chemotherapy.
When the agent trains on data presented in a sequential manner, learning is referred to
as online, while if all data are presented at the same time (i.e., in retrospective setups),
learning is referred to as offline or batch mode [23]. If the entirety of the available action
and observation space is known, a future state only depends on the current state and
action (Markov criterion). This problem can be described as a Markov decision process
(MDP) by a tuple of (S, A, R, T, γ) [22]. Receiving the maximum possible return in an
MDP environment is achieved by optimizing the agent’s policy. For each policy π, a
value function Vπ can be determined which predicts the expected reward the agent will
accumulate when acting according to policy π in a state s [22]. As an alternative to the
state value function, an action value function Qπ(s|a) can be determined that predicts the
reward based on the agent taking a specific action a in a state s [22]. Both Vπ and Qπ can
be expressed with the Bellman equation [25]. While both the value and policy iteration
update all value states for each iteration, the temporal difference updates single state
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values for a given transition [22]. For example, in Q-learning, an estimate of the optimal
action value function is updated at every state transition [26]. In most RL algorithms,
approximations are usually presented in tabular form which may become problematic
with high-dimensional data. The implementation of deep neural networks [27] to RL
(deep reinforcement learning, DRL) does not require tabular representations for policies,
value functions or Q. Recently, Mnih et al. [17] introduced deep Q-learning (DQL) that
utilizes neural networks to directly learn policies from high-dimensional data and thereby
overcomes the previous shortcomings of RL with neural nets by stabilizing the training of
the action value function in an end-to-end RL approach while providing an algorithm that
adapts to a variety of tasks (Atari games). More recently, Schrittwieser et al. [19] introduced
MuZero that outperforms previous DRL algorithms in gameplay. In contrast to previous
DRL algorithms, MuZero does not aim at modeling the entire environment but only models
what is needed for the agent’s decision-making value, policy and reward—using a deep
neural network and tree-based search.

These recent advances, especially in DRL, that are adaptive to an increasing range
of settings without the need to fully disclose the underlying dynamics of an environ-
ment, i.e., the rules of the game, provide a vast potential for applications in oncology
where an abundance of high-dimensional data and rapid environmental changes limited
previous efforts.

3. Recent Studies of Reinforcement Learning in Malignant Disease

Treatment regimens in oncology are usually longitudinal decision-making processes
where patient variables as well as response to treatment and toxicities influence the oncolo-
gist’s choice in order to optimize patient safety and outcome in the long run. This clinical
framework can be translated into a set of sequential actions in an environment that result in
iterative state alterations. In that sense, dynamic treatment regimens (DTRs) [28] can be set
up as an RL problem due to its sequential nature, and dose adjustments can be performed
by a digital agent that receives rewards for favorable events such as tumor response or
curation and penalties for unfavorable events such as toxicities (Figure 3) [29]. Due to obvi-
ous ethical concerns in a trial-and-error learning method, RL in DTRs is usually applied, at
present, in a retrospective setting or with simulated data based on historical cohorts.

Several recent studies have applied this approach for optimizing chemotherapy
dosages, most commonly using Q-learning in simulated environments (Table 3). Padman-
abhan et al. [30] employed Q-learning for chemotherapy dosing in an in silico approach
in simulated patients in a closed loop to maximize on-target drug effects and minimize
off-target toxicities. Additionally, utilizing Q-learning, Zade et al. [31] proposed a simu-
lation framework where an RL agent optimizes the dosage of temozolomide in order to
minimize glioblastoma tumor size. Yazdjerdi et al. [32] applied Q-learning to optimize anti-
angiogenic therapy in a simulated tumor environment. RL-based drug sensitivity screening
regarding different tumor cell lines with Q-rank was proposed by Daoud et al. [33]. Their
method ranks drug sensitivity prediction algorithms and recommends the optimal algo-
rithms for a given drug–cell line pair in order to achieve optimal responses. To account
for chemotherapy-associated toxicity, Maier et al. [34] proposed an RL-based framework
that is guided by absolute neutrophil counts for adjusting subsequent drug doses. Using
simulated reinforcement trials [35], Zhao et al. [36] applied Q-learning to stage IIIB/IV
non-small cell lung cancer and reported optimized first and second treatment lines as well
as optimal selection for initiating second-line therapy. Similarly, Yauney et al. [37] aimed to
minimize mean tumor diameters in a simulated trial of patients receiving chemo- and/or
radiotherapy using action-derived rewards as approximations of patient outcome. Both
Liu et al. [38] and Krakow et al. [39] used registry data from patients with hematologic
malignancies who underwent allogeneic stem cell transplantation that were listed in the
Center for International Blood and Marrow Transplant Research registry and applied DRL
and Q-learning, respectively, in order to prevent and treat graft-versus-host disease.
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Figure 3. Iterative workflow of a reinforcement learning approach to precision oncology. For the individual patient,
multimodal data (1), e.g., from genetic assays, laboratory tests, radiographic images and electronic health records, serve as
an input for a reinforcement learning (RL) framework (2)—here, depicted as a deep neural net—which selects an action
such as a treatment decision (3) according to its policy. This treatment decision will affect tumor response and toxicity
(4) simultaneously and thus, ultimately, affect long-term patient outcome (5). This is translated into a reward signal for
the RL agent which results in a policy update (6). At the same time, the state of the patient changes. For example, tumor
response could be measured with radiographic imaging, and/or toxicity could be monitored by laboratory values and
documentation in the electronic health record. This update of the state initiates a new cycle where updated inputs to the RL
framework lead to a new treatment decision according to the updated policy, and the loop is closed.

Table 3. Recent studies of reinforcement learning (RL) for adaptive dosing of antineoplastic drugs in cancer.

Reference Main Goal Environment/
Cohort

Model-
Based

Model-
Free

V
(State-
Based)

Q
(Action-
Based)

Markov
Assump-

tion

No
Markov
Assump-

tion

Table-
/Map-
Based

Deep
Learn-

ing

Code
Avail-
ability

[30]

Evaluation of an
RL-based drug

controller to enhance
therapeutic effect on

simulated tumors while
sparing normal tissue

without the necessity to
disclose underlying

system dynamics to the
RL agent

15
simulated

cancer
patients

X X X X

[31]

Comparison of an
RL-guided

temozolomide treatment
schedule to conventional

clinical regimen

simulated
glioblas-

toma
tumor
growth
model

X X X X

[32]

RL-based optimization
of anti-angiogenic

therapy with endostatin
in a simulated tumor
growth model with

dynamic patient
parameters

simulated
tumor
growth
model,

simulated
patient

X X X X X

[33]

Prediction of
chemotherapy

sensitivity in breast
cancer cell lines with
available multi-omics

data by ranking suitable
prediction algorithms

using Q-rank

drug
sensitivity
data of 53

breast
cancer cell

lines

X X X X X
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Table 3. Cont.

Reference Main Goal Environment/
Cohort

Model-
Based

Model-
Free

V
(State-
Based)

Q
(Action-
Based)

Markov
Assump-

tion

No
Markov
Assump-

tion

Table-
/Map-
Based

Deep
Learn-

ing

Code
Avail-
ability

[34]

Evaluation of data
assimilation techniques
in combination with RL
for dose adjustments of

chemotherapy in
simulated patients using

absolute neutrophile
count as a surrogate

endpoint

simulated
patients X X X X X

[36]

RL-based dose
adjustments for

chemotherapy and
initiation of second-line

therapy while
accounting for patient

censoring

simulated
clinical trial

of stage
IIIB/IV

non-small
cell lung
cancer

patients

X X X X

[37]

Deep RL-guided dosing
regimens with

temozolomide or
procarbazine, CCNU
and vincristine using

action-derived rewards

simulated
clinical trial

using a
glioblas-

toma
tumor
growth
model

X X X X

[38]

Evaluation of RL-guided
prevention and

treatment of acute and
chronic

graft-versus-host disease

registry
data from
6021 AML
patients

who
underwent
allogeneic
stem cell

transplanta-
tion

X X X X

[39]

Evaluation of RL-guided
prevention and

treatment of acute and
chronic

graft-versus-host disease

registry
data from

11,141
patients

who
underwent
allogeneic
stem cell

transplanta-
tion

X X X X

In parallel to chemotherapy regimens, RL can be applied to optimize radiotherapy to
maximize on-target effects and minimize off-target toxicities (Table 4). Treatment planning
and manual target segmentation still require an excessive amount of manual labor and
time [40]. Deep learning has been investigated in order to aid the radiotherapist in treat-
ment planning and reduce inter-observer variability. For example, different variations of
convolutional neural nets have been developed for fast and accurate segmentation of brain
metastases [41,42], thoracic cancer manifestations [43] or rectal cancer [44]. Accordingly,
RL can be used for radiation dose adjustments for the individual patient. Kim et al. [45]
defined the radiotherapeutic fractionation schedule as an MDP and proposed adaptive
fractions according to individual patient response. Tseng et al. [46] used deep Q-learning
to develop adaptive radiation protocols for patients with non-small cell lung cancer, bal-
ancing rewards for the agent between on-target efficiency and off-target toxicity. They
accommodated for the initially small sample size with simulated patient data generated
by a generative adversarial net (GAN). Jalalimanesh et al. [47] used an agent-based model
and Q-learning to adapt fraction sizes to tumor response in a simulated environment.
Similarly, adjustment of dose fractionation performed by a DRL agent in a simulated model
of tumor growth was also demonstrated by Moreau et al. [48], who reported an improved
performance compared to the baseline treatment plans. Using historic data from prostate
cancer patients, Hrinivich et al. [49] applied deep Q-learning for volumetric modulated
arc therapy and reported on-target and off-target doses comparable to clinical plans. Cor-
respondingly, Shen et al. [50] used DRL in a virtual environment to generate treatment
plans by training on 10 and validating on 64 cases of patients with prostate cancer. In a
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similar approach, Zhang et al. [51] trained an RL agent on augmented treatment plans of
16 previously treated patients that received pancreas stereotactic body radiation therapy
which was validated on 24 treatment plans, achieving a treatment quality comparable to
clinical plans. It is to be noted that while the majority of the presented studies describe
their algorithms in great mathematical detail, the information about the general problem
setup and algorithm architecture has to be easily accessible to both software engineers
and clinicians. In order to transparently report the used methodologies, authors of future
studies of RL in medicine can refer to the proposed items in Table 2 for preparation of their
paper’s method section. This framework can help both the authors in clearly structuring
their reports and the readers in effortlessly picking out the main components of a novel
algorithm architecture for a given use case. Using such a standardized approach can help
facilitate the reproducibility of RL research in medicine and may aid in transferring RL
algorithms from one application in oncology to another.

Table 4. Recent studies of reinforcement learning (RL) for adaptive dosing and fractionation of radiotherapy in cancer.

Reference Main Goal Environment/
Cohort

Model-
Based

Model-
Free

V
(State-
Based)

Q
(Action-
Based)

Markov
Assump-

tion

No
Markov
Assump-

tion

Table-
/Map-
Based

Deep
Learn-

ing

Code
Avail-
ability

[45]

Development of
adaptive fractionation

schemes based on
mathematical modeling
with a Markov decision

process

Simulated
environ-
ment of
target

volumes
and organs

at risk

X X X X

[46]

Evaluation of a
multi-step deep

learning model for
radiation dose

adjustments in a
retrospective and

augmented patient
cohort compared to

clinical treatment plans

Retrospective
data of 114
non-small
cell lung
cancer

patients
and

augmented
data from a
generative
adversarial

net

X X X X

[47]

Proof of concept of an
RL agent for adaptive
irradiation dosing and
fractionation schemes

Simulated
tumor
growth
model

X X X X

[48]

Comparison of adaptive
dose fractionation
schemes to clinical
treatment regimens

Simulated
tumor
growth
model

X X X X X

[49]

RL to guide volumetric
modulated arc therapy

with machine
parameter optimization

and comparison
between on-target and

off-target doses

Retrospective
data of 40
patients

with
prostate
cancer

X X X X

[50]

Training and evaluation
of a RL-based deep
virtual treatment

planner

Retrospective
data of 74
patients

with
prostate
cancer

X X X X

[51]

Optimization of
on-target and off-target
dosing for stereotactic

body irradiation in
pancreatic cancer

Retrospective
data of 16
patients

with
pancreatic

cancer

X X X X

4. Discussion

The presented studies underline the feasibility of RL-guided precision oncology both
regarding irradiation and drug therapy. However, the majority of previous studies suffer
from common obstacles. In this section, we aim to highlight frequent challenges in RL
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design for clinical use cases and discuss possible strategies to overcome these hurdles.
Accurately mapping the environment and assessing the complexity of available data as
well as the sequential nature of a clinical problem are the key first steps in setting up an RL
support system. Biological systems and their behavior under environmental influences
represent a highly complex system with a myriad of unknown variables in the context
of disease and treatment. Hence, a detailed model of a clinical problem can often not
be obtained. Several studies address this issue by using simplified simulations of tumor
behavior [30–32,36,37,46,47]; however, the majority of these studies worked with relatively
small samples which can limit the agent’s capability of abstracting an efficient policy
given few examples to train on [52]. This leads to the question of to what extent such
algorithms are generalizable to more complex environments or real-life applications. Sparse
and missing data are all too common in medical datasets. If the agent cannot access all
information that is critical for decision making, a concluding model may misrepresent
the actual environment. In that sense, most scenarios in clinical oncology behave in
a non-Markovian way as not all relevant information is disclosed to the agent (or the
clinician) [53]. Adding to the complexity, medical data may be biased or noisy due to inter-
rater variability depending on the data source which may add to the variance of estimates
of the value function and therefore affect policy determination [29]. While many cases of
missing data in RL in general may be tackled with a partially observable Markov decision
process design [54], the high dimensionality and complexity of medical data demand more
sophisticated methods, such as multiple imputation models [55] or advanced Q-learning
techniques for patients lost to follow-up [56]. Small sample sizes can be accounted for by
pooling multicenter datasets which may, in turn, add variability to the dataset. Hence,
standardization of data collection across institutions and even countries seems warranted
to generate large high-quality datasets for future ML applications. To maintain high quality
in such multicenter and multinational datasets, standardization of reporting as well as
public access is essential. Internationally acclaimed frameworks for tumor response such
as RECIST [57] or the reporting of adverse events such as CTCAE [58] as well as data from
electronic health records [59] can be utilized to store clinical information in such datasets in
a universally accessible way without the need for excessive pre-processing before pooling
data from different sources. Data sharing between institutions and countries is crucial to
create larger datasets, even for rare entities, and provide RL agents (and ML in general) with
bigger sample sizes to train on. A frequent shortcoming of the studies cited above (with a
few exceptions) is the lack of publicly available datasets and code. Often, only mathematical
modeling or pseudocode is reported. However, to ensure reproducibility, public availability
of both data and code is key. This will allow for independent model improvement, pooling
of similar datasets and, overall, a faster pace and higher generalizability of RL models in
oncology. Publishers should acknowledge this shortcoming and incentivize authors to
share their code upon publication. However, informed patient consent about the processing
of data and safety measures to protect patient identity need to be implemented. As this
process naturally requires collaborative efforts and time, alternative approaches are needed
for small data. GANs [60] can be implemented to augment small datasets. Their feasibility
to add data to RL has recently been demonstrated in a dataset of patients with non-small
cell lung cancer [46]. However, a study evaluating RL performance in a comparison
between real-world and simulated data is lacking. Such a comparison could be made
between a dataset generated by GANs and retrospective patient data in order to show
discrepancies based on the data structure. This would allow for an in-depth look at
the quality of simulated data which, in turn, could be improved to allow for a more
robust simulation in future models. Another possibility is to first train the RL agent
by expert demonstration, inverse learning, transfer learning or a combination thereof.
Formulating a reward function a priori and then letting the agent derive an optimal policy
may not be ubiquitously possible in a clinical setting with many unknown variables, and
hence retrospective data of (near-)optimal treatment histories can be utilized to estimate
a reward function based on previous expert decisions [29]. This can be achieved by
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behavioral cloning, where pairs of environmental states and expert actions are mapped
directly by the agent [61,62] (in a way similar to supervised learning), or by inverse RL,
where a reward function is determined based on observing ideal decisions [63,64]. Still, it
needs to be considered that in this scenario, the reward is based on a match between the
agent’s and the expert’s decision, which may, again, result in bias as different experts may
disagree over different decisions, and therefore misrepresentative rewards can result in
poor performance and safety issues [65]. This leads to a fundamental issue at the heart
of RL: credit assignment. The main incentive to reinforce an agent’s behavior is encoded
in the reward function, and henceforth, the reward signal determines whether or not a
certain behavior is reinforced given a certain state of the environment. While this may be
straightforward in gameplay where all underlying dynamics are known and the reward
is often a direct consequence of an agent’s action, rewards in a healthcare domain may
be sparse, and the time between an action and its result may be considerably longer. In
oncology, treatment effects evidently do not manifest themselves immediately, and linking
an agent’s action, e.g., a dose modification, to a certain outcome, e.g., prolonged relapse-free
survival, remains challenging. Consequently, long-term rewards should be favored over
short-term rewards, and oversimplifying reward functions can lead to unwanted behaviors,
resulting in an agent doing more harm than good [52]. Furthermore, in comparison
to gameplay where there usually is one single goal (win the game), oncologic practice
demands a variety of treatment goals to be met such as improving survival, reducing
morbidity, reducing toxicity and improving quality of life, among others. A possible way
to deal with sparse rewards in the light of multiple goals is hindsight experience replay,
where different learning episodes are replayed with different goals and the agent can
derive reward signals regarding different outcomes [66]. In most applications of RL in
healthcare, rewards are coded quantitatively rather than qualitatively, which can be useful
for certain use cases where the outcome, in fact, is a metric variable (such as absolute
neutrophile count [34]); however, it remains challenging when the outcome first has to be
transformed or a priori model building has to be performed manually [29]. Alternatively,
preference models can be used as a representation of qualitative feedback to rank the
agent’s behavioral trajectories [67,68]. However, a critical question is whether the reward
an agent receives for an action is actually the optimal possible reward. This leads to another
fundamental issue in RL, the trade-off between exploitation and exploration. Essentially,
an agent has two options: either exploit current knowledge in order to achieve rewards or
explore for previously unknown information which potentially leads to improved policies
to gain higher rewards [22]. In the healthcare domain, especially in oncology, this dualism
is crucial since exploration methods with insufficient safety measures can lead to potentially
devastating outcomes, while insufficient exploration may lead to suboptimal policies and
thus to unsatisfactory treatment decisions. Penalizing an agent for an unfavorable action
may be insufficient when it comes to safety concerns in a healthcare setting, especially when
the action leads to unrecoverable damage. This becomes especially relevant when dealing
with drugs that have narrow therapeutic ranges and information on dose adaptation is
limited [69]. Adding to the aforementioned challenge of multiple objectives in a healthcare
setting is the fact that some objectives may be contradictory. For example, a full dose of
chemotherapy may result in improved tumor response but, at the same time, will inevitably
increase toxicity. A method to account for such contradictions is multi-objective RL that
aims to evaluate polar objectives by obtaining a policy that represents Pareto optimal
solutions [70]. While a lost game can simply be reset and started anew, an overdose in a
clinical setting can potentially cost a patient’s life. Hence, safe exploration strategies [71],
especially in online learning, are crucial for RL in oncology. This raises the question of what
the optimal benchmark should be when it comes to evaluating an RL agent’s performance.
Frequently, RL decisions are compared to clinical treatment plans; however, it remains
questionable whether this is the optimal strategy since, conceivably, RL performance in
a narrow domain could, at some point, exceed human performance in terms of decision
making as it already has done, for example, in chess. When it comes to decision support
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systems, safety goes hand in hand with trust. Let us assume that your RL algorithm
suggests a dose alteration for a given patient. Do you trust that decision? If so, why?
If not, why not? A major drawback of many current ML applications in such delicate
environments as healthcare is interpretability, and DL in particular is often referred to as
a ‘black box’ when it comes to exactly how an algorithm arrives at a conclusion [72,73].
This becomes especially challenging when the oncologic expert and the RL algorithm
arrive at different solutions for the same problem [74,75]. Often, the signals an algorithm
uses for decision making and the policies that are learnt can neither be accessed easily nor
interpreted comprehensively by the human investigator [76]. Yet, the path to the conclusion
is equally as important as the conclusion itself, especially in healthcare, where not only
scientific knowledge gains are expected but patients also have an inherent right to be
well-informed with respect to the background of a treatment decision. The interpretability
of such RL algorithms should refrain from unnecessary abstraction and highlight causal
pathways [77] that are meaningful to both the clinician and the patient. In that sense,
understanding the exact model may be unnecessary in practice (to the clinician and patient)
when causal pathways can be well interpreted. However, this is still an ongoing endeavor
in ML in general [78,79], and satisfactory solutions tailored for healthcare applications
are lacking [80], which bears the risk of reintroducing a paternalistic system in patient
care [81]. Still, this remains controversial as it can be argued that the input from ‘black box’
systems is already happening to some extent in clinical oncology and is widely accepted in
daily practice: hardly anyone seriously questions the results of molecular analysis or the
assessment of biomarkers when it comes to clinical decision support, and confidence in
these techniques has been built over recent years by reliable performance [82]. It is therefore
conceivable that RL-based decision support systems, once they have been broadly tested
and validated, may gain a similar level of trust as advanced biomedical techniques. In that
regard, the frequent notion that ML systems could threaten the clinician’s autonomy can
be set aside as it is far more likely that these systems will be integrated as decision support
in the same way that molecular and genetic data are implemented now, guiding precision
oncology and further individualizing patient care, while the final responsibility for any
taken decision undoubtedly lies with the oncologist. Previous studies focused on either
conventional chemotherapy regimens or radiotherapy. However, the implementation of
targeted therapy or immunotherapy in the treatment guidelines of many tumor entities
calls for studies that account for these therapeutics as well and evaluate combinations of
chemo-, radio- and targeted therapy in the respective tumor entities. These studies and
algorithms have to be designed with diligence to both accurately map a clinically relevant
problem setup in oncology and, at the same time, account for multiple different objectives
and potential adverse effects in the context of multimodal contemporary therapy regimens.

5. Conclusions

RL in oncology is still in its infancy, and as we pointed out, a multitude of issues
have to be properly addressed in future studies for these techniques to mature and find
acceptance in clinical oncology. The sequential nature of RL and its capability for long-
term outcome optimization make it a suitable candidate to be implemented in precision
oncology, harnessing the growing body of available biomedical data for the individual
patient. To progress in this potentially practice-changing field, an interdisciplinary effort
to iteratively refine these systems for specific use cases as well as institutional guidelines
is needed in order to achieve meaningful representations of clinically relevant tasks for
optimal patient care.
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