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Simple Summary: Over 12% of women in the United States will be diagnosed with breast cancer in
their lifetime. The overall 5-year survival rate for breast cancer is 90%, but the 5-year survival rate
for women diagnosed with metastatic breast cancer is 28.1%. This study aims to characterize the
cancerous cells that have left the primary tumor site and entered the blood, known as circulating
tumor cells (CTCs). These cells could adhere to a site distant from the tumor and initiate metastasis.
CTCs in breast cancer patients’ blood samples were enumerated and imaged. Cells from the blood
were collected, RNA extracted, and the gene expression patterns of CTCs and other cell populations
in the blood were investigated at the population and single cell level. This is a crucial step in
characterizing CTCs as seeds of metastasis in breast cancer and for developing methods of detection
to intercept metastasis before it localizes to distant regions of the body.

Abstract: Fatal metastasis occurs when circulating tumor cells (CTCs) disperse through the blood
to initiate a new tumor at specific sites distant from the primary tumor. CTCs have been classically
defined as nucleated cells positive for epithelial cell adhesion molecule and select cytokeratins
(EpCAM/CK/DAPI), while negative for the common lymphocyte marker CD45. The enumeration of
CTCs allows an estimation of the overall metastatic burden in breast cancer patients, but challenges
regarding CTC heterogeneity and metastatic propensities persist, and their decryption could improve
therapies. CTCs from metastatic breast cancer (mBC) patients were captured using the RareCyteTM

Cytefinder II platform. The Lin− and Lin+ (CD45+) cell populations isolated from the blood of
three of these mBC patients were analyzed by single-cell transcriptomic methods, which identified a
variety of immune cell populations and a cluster of cells with a distinct gene expression signature,
which includes both cells expressing EpCAM/CK (“classic” CTCs) and cells possessing an array of
genes not previously associated with CTCs. This study put forward notions that the identification
of these genes and their interactions will promote novel areas of analysis by dissecting properties
underlying CTC survival, proliferation, and interaction with circulatory immune cells. It improves
upon capabilities to measure and interfere with CTCs for impactful therapeutic interventions.

Keywords: circulating tumor cells (CTCs); metastatic breast cancer (mBC); lineage negative/lineage-positive
(Lin−/Lin+) cell populations; CTC plasticity; epithelial cell adhesion molecule/cytokeratins (EpCAM/CKs);
RareCyte; single-cell transcriptomics; 10x Genomics Chromium

1. Introduction

Breast cancer is the most common cancer in women, accounting for 15% of all new
cancer cases in the US. The 5-year survival rate for patients with localized breast cancer
is 90%; however, this survival rate drops to 28.1% in patients diagnosed with metastatic
breast cancer (mBC) [1]. Primary breast tumors are typed according to hormonal receptor
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status (estrogen receptor (ER), progesterone receptor (PR), and Erb-B2 receptor tyrosine
kinase 2 (ERBB2 or HER2) amplification); and in some cases, the presence of specific
mutations or changes in gene copy number also help to determine treatment. However,
endocrine therapy fails to induce a response in up to 30% of patients with hormone
receptor-positive mBC, and essentially all patients will eventually become refractory to
endocrine therapy.

As the primary tumor grows, heterogeneous cell subpopulations with distinct gene
expression signatures and biological characteristics arise. Some of these characteristics may
modulate cellular adhesion and migration away from the tumor, as either a single cell or a
cluster of cells. By intravasating into the bloodstream, cancer cells disperse throughout the
body and can initiate a cascade of events, leading to fatal metastasis [2–7]. Extensive data
obtained from clinical and preclinical models and cancer types have demonstrated the
relevance of blood-borne cancer dissemination, and asserted that cell dissemination occurs
early during tumor development [8,9]. Notably, circulating tumor cells (CTCs) directly
captured from the peripheral blood of patients have emerged as a powerful biomarker for
monitoring cancer progression [7,10–12]. Because CTCs express distinct and specific tran-
scriptional profiles compared to primary or metastatic tumors, they offer the unique oppor-
tunity to analyze transcriptional information, which can be therapeutically useful [7,13–15].
Historically, CTCs have been defined as cells positive for epithelial-cell adhesion molecule
(EpCAM), select cytokeratins (CK 8/18/19), and DAPI, while negative for the common
lymphocytic marker CD45, which we term “classic” CTCs [13]. This definition has been
applied by the US Food and Drug Administration (FDA)-cleared CellSearchTM platform
for the capture and enumeration of CTCs in clinical settings [16–18]. Quantification of
CTCs has proven to be an independent prognostic indicator of progression-free/overall
survival of metastatic cancer patients, including mBC [6,10,12]. Importantly, recent studies
have identified new populations of breast cancer CTCs, which display phenotypic and
gene expression profiles, which are distinct from “classic” CTCs [19,20]. However, pop-
ulations of dedifferentiated CTCs, which are EpCAM-negative, CK-negative, or “stem
like“ CTCs identified as CD44high/CD24low cells, are excluded from CTC capturing by the
CellSearch platform, but are considered to be intimately involved in metastatic [13,21,22]
or tumor dormancy processes [23]. These concepts can be particularly relevant because
transcriptional profiling performed on a CTC population does not recapitulate CTC tran-
scriptional heterogeneity and plasticity [13]. This CTC plasticity can promote the abilities
of some CTCs to survive in the circulation and to escape immune surveillance, causing
chemo/radiotherapy resistance. Moreover, these characteristics can account for CTC adap-
tation to new microenvironments that CTCs encounter during the metastatic process and
for minimal residual disease.

While advances in CTC transcriptomic profiling have been significant, challenges remain.
Most studies have been limited to the use of “classic” CTCs, with little attention directed
towards the other CTC subsets. It is therefore critical to determine the continuum of
circulating neoplastic cell subpopulations to better understand how these states may
contribute to cancer progression and metastasis. We addressed these issues by devising
an experimental strategy for capturing all CTCs, then performing not only standard RNA
Sequencing (RNA-Seq), but also, notably, comprehensive and unbiased single-cell RNA
sequencing analyses (scRNA-Seq; 10x Genomics Chromium) on blood samples collected
from mBC patients. We report the complete interrogation of Lineage− and Lineage+
(Lin−/Lin+) cells [13] isolated from the blood of mBC patients by transcriptomic analyses at
the single-cell level, revealing the presence of distinct circulating neoplastic cell populations.
Moreover, we report the detection and classification of discrete circulatory Lin− cell
subtypes whose gene expression patterns revise the classical model of CTCs, suggesting
that the neoplastic cell capacity and metastatic competence ought to be ascertained across
the entire spectrum of cell profile heterogeneity.
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2. Materials and Methods
2.1. Patients’ Blood Collection and Analyses

Patients diagnosed with metastatic breast cancer (mBC) undergoing active cancer
treatment signed an informed consent to provide blood samples, per IRB-approved pro-
tocols (HRRC#15-507 and HRRC#19-513). The clinical parameters of each patient are
shown in Table S1. Under strict aseptic conditions, peripheral blood samples (12–18 mL)
were collected in sodium-EDTA tubes from mBC patients as part of their visits for routine
monitoring appointments. Patients’ blood was collected at the times shown in Table S1.
After collection, 7.5 mL of blood was transferred to an AccuCyte collection tube (RareCyte,
Cat 24-1208-000, Seattle, WA, USA) for Cytefinder IITM analyses, while the remainder of
blood was processed to isolate peripheral blood mononuclear cells (PMBCs) for fluores-
cence activated cell sorting (FACS). RareCyte Cytefinder II analyses were performed on
all patients and at indicated time points, allowing for longitudinal monitoring of CTC
burden (detailed for each patient in Table S1). Patient samples 1, 2, and 3 were subjected to
scRNA-Seq, while remaining patient samples were subjected to RNA-Seq.

2.2. Fluorescence Activated Cell Sorting (FACS)

FACS was performed to isolate Lineage-negative (Lin−) and Lineage-positive (Lin+)
cell populations, as reported [13,23,24]. Briefly, red blood cells (RBCs) were lysed using RBC
lysis buffer (BioLegend, Cat# 420302, San Diego, CA, USA), and washed twice using 1XPBS
(VWR, Cat# E703-1L, Radnor, PA, USA), containing 5 mM EDTA (USB, Cat# 15694, Cleveland,
OH, USA). The remaining peripheral blood mononuclear cells (PBMCs) were then counted
using a Countess II automated cell counter (Thermo Fisher, Waltham, MA, USA). Cells were
then blocked with Fc Block (BioLegend, Cat# 422302, San Diego, CA, USA), and labelled
with FITC-conjugated human CD45, CD34, CD73, CD90, and CD105 (BioLegend, San Diego,
CA, USA, Cat# 304038, 343504, 344016, 328108, and 323204, respectively) and Pacific Blue
conjugated CD235 (BioLegend, San Diego, CA, USA, Cat# 306612). CD34 recognizes
endothelial and human stem/pluripotent stem cells, CD73 and CD105 recognize endothe-
lial cells, the CD73/CD90/CD105 triplet is the pathologically established biomarker for
mesenchymal stem cells (CD90 also recognizes primitive stem cells). CD235 recognizes
erythrocytes. Labelled cells were subsequently run on a Sony iCyt SY3200 cell sorter
(San Jose, CA, USA). FITC-positive/DAPI-negative cells were collected into the Lin+ cell
population, while FITC-negative/DAPI-negative cells were collected into the Lin− cell pop-
ulation. Cells labeled with CD235 (RBCs) or stained with DAPI (Thermo Fisher, Cat# D3571,
Waltham, MA, USA) were sorted to waste. Accordingly, the FACS-selected Lin− cell pop-
ulation contained cells negative for above biomarkers, while the Lin+ fraction contained
cells positive for these biomarkers [13,23,24].

2.3. RareCyte Cytefinder II™ Analysis

RareCyte CTC analyses were performed using protocols established by the manu-
facturer (RareCyte Inc., Seattle, WA, USA). This platform allows for the identification of
CTCs and generates slides (8 per sample of 7.5 mL blood) to be used for CTC enumeration.
Briefly, blood was centrifuged using AccuCyte sorting tubes to separate RBCs from nucle-
ated cells. Further centrifugation collected the nucleated cell layer in a microcentrifuge
tube containing cell isolation fluid (RareCyte, Seattle, WA, USA, 24-1090-002). Cells were
suspended in AccuCyte CyteSpreader Transfer Fluid (RareCyte, Seattle, WA, USA, 42-1010-002),
spread and dried on 8 slides, and the slides stored at −20 ◦C. Slides were then fixed,
permeabilized, and stained using the Breast Cancer identification kit (RareCyte, Seattle,
WA, USA, 0700-MA) which contains DAPI, which contains antibodies to human CD45
for the visualization of normal immune cells, and antibodies to human EpCAM and Pan-
Cytokeratin for the detection of classical CTCs (EpCAM+/CK+/DAPI+ but CD45- cells).
Slides were then imaged and analyzed using Cytefinder II software (RareCyte, Seattle,
WA, USA). CTCs were visualized and enumerated by CyteMapperTM software. Nuclei of CTCs
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are often larger than the nuclei of immune cells leading to a less intense DAPI staining.
The number of CTCs is reported as CTCs/mL of blood.

2.4. RNA Isolation and Sequencing

RNA was isolated from 25–50 × 103 cells from the Lin− and Lin+ fractions after FACS
using a MicroRNA kit (Qiagen, Cat# 74004, Germantown, MD, USA). RNAs from matching
Lin− and Lin+ patient samples were also compared with RNA from PBMC samples of
normal healthy donors (negative controls). Synthesis of cDNA and library preparation were
performed using the SMARTer Universal Low Input RNA kit for sequencing (Clontech,
Cat# 634946, San Jose, CA, USA), and the Ion Plus Fragment Library kit (Thermo Fisher,
Waltham, MA, USA, Cat# 4471252), as previously described [25–27]. Sequencing was
performed using the Ion Proton S5/XL system (Thermo Fisher, Waltham, MA, USA) in the
Analytical and Translational Genomics Shared Resource at the University of New Mexico
Comprehensive Cancer Center.

2.5. RNA-Seq Analyses

Sequences were aligned using tmap (v5.10.11) to a BED file containing non-overlapping
exons from UCSC genome hg38. Exon counts were calculated using HTSeq (v0.11.1) [28],
and gene counts were generated by summing counts across exons. Samples were then
normalized for library size using edgeR35 [29], and low expressing genes were excluded
from the final analysis using a filtering threshold for at least 50 reads in a minimum of
3 samples. EdgeR and DESeq were used for principal component analysis [30]. EdgeR was
also used for the differential expression (crosswise comparison of the three groups) us-
ing the glm method with an adjusted p-value of cutoff of 0.05 and requiring a minimum
fold-change of 2. Differentially expressed genes were further analyzed using various R
packages including clusterProfiler [31], topGO [32], GAGE [33], and pathview [34].

2.6. 10x Genomics Chromium Single-Cell RNA Sequencing

Following FACS, cell concentrations and viability were determined on the Cell Count-
ess II and cell suspensions (Lin−/Lin+) were loaded into the Next GEM Chip G and
Chromium Controller (10x Genomics, Pleasanton, CA, USA), per manufacturer’s protocol
standardized for GEM formation and barcoding. The Chromium Next GEM Single Cell
3′ Reagent Kit v3.1 was used per the manufacturer’s protocol to complete first-strand
and second strand cDNA synthesis. The same protocol was used to complete the 3′ Gene
Expression Library. Library quality was assessed following cDNA synthesis and after com-
pletion of the 3′ Gene Expression Libraries on the Agilent Bioanalyzer employing a DNA
High Sensitivity Chip (Agilent, Santa Clara, CA, USA). The KAPA Library Quantification
Kit was used to determine final library concentrations. The 3′ libraries were sequenced by
Illumina NovaSeq 6000 instrument on S4 Flow cells at the University of Colorado Anschutz
Medical Campus’s Genomics Shared Resource Cancer Center.

2.7. Single-Cell RNA Transcriptome Analyses

Sequence data was demultiplexed and fastq files were generated using bcl2fastq (v2.20.0.422,
Illumina, San Diego, CA, USA) with 37 parameter “–barcode-mismatches” set to 1. Fastq files were
aligned and genes/cells were counted with Cell Ranger (v3.1.1, 10x Genomics) against the human
reference genome (GRCh38) provided with CellRanger41 [35]. Cell Ranger-generated
filtered files and Seurat (v3.2.3), an R package (v4.0.3), were both used for downstream
analysis [36–38]. Cells expressing fewer than 200 genes, or more than 5000 genes and with
mitochondrial gene expression content greater than 5%, were removed. Genes expressed
in less than 10 cells were also removed. DoubletFinder was used to identify and remove
doublet cells [39]. Data were transformed using SCTransform implemented in Seurat [40]
with mitochondrial genes, number of features (nFeature_RNA), and differences between
G2M and S cell cycle phase scores were regressed out. Data from all samples were inte-
grated using Seurat’s standard integration workflow. Principle component (PC) analysis



Cancers 2021, 13, 4885 5 of 21

and an elbow plot were used to visualize the variance and select PCs encompassing ~80%
of the variance prior to unsupervised clustering. Clusters were then determined using the
FindNeighbors and FindClusters function with default parameters and a sufficiently high-
resolution parameter to capture biological variability. Cell type prediction was performed
using singleR (v1.4.0) against the human primary cell atlas database [41,42]. Differential
gene expression was determined using the R package MAST [43] as implemented in Seurat.
Significant genes were defined by average log fold-change ≥0.25, adjusted p-value ≤ 0.05,
and expressed in >10% of the cells in the cluster. An additional “biomarker” level of
stringency was defined as genes either having an average log fold-change ≥1.0 and in
≥30% of the cells and an adjusted p-value ≤ 0.01, or genes expressed in ≥90% of the cells
in the cluster and ≤30% outside of the cluster. ClusterProfiler37 (v3.18.0) was used for
pathway analysis, as previously reported [44].

3. Results
3.1. Isolation and Characterization of CTCs from mBC Patients by RareCyte Analyses

The detection of CTCs as defined by the EpCAM+/CK+/DAPI+/CD45− expression
pattern has been observed in the blood of metastatic cancer patients, including mBC,
and their relevance affecting metastatic competence has been established [16,21,45–48].
However, the comprehensive and thorough portraits of CTC subsets detailing their distinct
gene expression patterns at the single-cell transcriptomic level have not been reported to
date. We have addressed this gap by devising a novel four-pronged workflow (Figure 1),
which consists of: (1) using the RareCyte Cytefinder II platform to detect classically defined
CTCs in blood of mBC patients; (2) isolating Lin−/Lin+ cell populations from blood of these
patients by multi-parametric flow sorting; (3) evaluating populations of Lin−/Lin+ cells
by RNA-Seq; and (4) comprehensively interrogating patient Lin−/Lin+ cell populations at
the single-cell level using scRNA-Seq (10x Genomics Chromium). Thus, each blood sample
had CTCs analyzed by two unique methods.

Figure 1. Flowchart depicting the strategy for selection and interrogation of Lin−/Lin+ cell populations from mBC patients.
Patient blood samples were collected into sodium-EDTA tubes, and each sample was sub-divided. (a) One portion of
the blood sample was processed for isolating Lin−/Lin+ cell populations via FACs, followed by RNA Sequencing or
scRNA-Sequencing. See “Section 2” for details. (b) A 7.5 mL portion of the blood sample was transferred to an AccuCyte
collection tube for RareCyte analysis.

We implemented this strategy on a cohort of 21 mBC patients whose clinical parame-
ters are listed in Table S1. The patients had various lengths of time as metastatic patients,
including three who had surgery in the year preceding sample collection. The presence of
classical CTCs was confirmed by the RareCyte Cytefinder II platform (Figure 1).
The RareCyte platform uses blood from patients, removes most erythrocytes and platelets
through centrifugation in the AccuCyte tube, spreads the remaining cells on eight slides,
then identifies CTCs based on CD45−/EpCAM+/PanCK+/DAPI+ staining. This gentle,
automated, and unbiased analysis of patient samples allows for the detection of single
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CTCs as well as clusters containing homogenous and/or heterogenous cell aggregates.
Any immune cells within these clusters are labeled by CD45; however, associated platelet
cells would not be labeled and have no DAPI signal. All patients involved in this study had
detectable CTCs in one blood collection, at minimum (Table S1). Further, we performed
multiple longitudinal blood collections from these patients to allow for the precise moni-
toring of patient overall tumor burden in relation to CTC numbers and CTC characteris-
tics. Consistent with previous knowledge asserting that many factors can influence the
number of CTCs in a liquid biopsy [17], we found variability in CTC numbers among
patients and between each patient’s periodic collections (Table S1). CTCs were detected
as single cells (Figure 2, patient 2), CTC clusters (Figure 2, patient 1), or as clusters with
other cells (Figure 2, patients 3, 4, 12, 14). In many patients, we captured cells in which
the expression of Pan-Cytokeratin (PanCK) (Figure 2, patient 12), or EpCAM (Figure 2,
patient 14) was not detected. In rare cases, cells that were positive for all three antibodies
(CD45+/EpCAM+/PanCK+/DAPI+ patient 1, red arrow), or CD45+/EpCAM-/PanCK+/DAPI+
(patient 1, red arrow), or CD45+/EpCAM+/PanCK-/DAPI+ (patient 1, red arrow) were
identified. Total CTCs per patient analyzed are presented as number of cells/mL blood [18]
(Table S1; the patient samples used for RNA-Seq and scRNA-Seq are italicized). The presence of
CD45−/PanCK+/EpCAM− or CD45−/PanCK−/EpCAM+ is noted after the number of CTCs.

Figure 2. Immunofluorescence identification of CTCs from patients using the Cytefinder II platform.
Cells were isolated from mBC blood samples as detailed in the methods. CTCs identified by EpCAM
(magenta) and pan-cytokeratin (green) positive staining were visualized as single cells (patient 2),
as associated with CD45+ cells (yellow) (patient 3, 4, 12, 14), or as multiple CTCs clustered together
(patient 1, white arrow). CTCs marked with a yellow arrow are either CTCs that EpCAM+/CK−
(patient 12) or EpCAM−/CK+ (patient 14). The CTCs marked with a red arrow are cells that are
either EpCAM+/CK+/CD45+ (patient 1) or CK+/CD45+ (patient 2). Each CTC in a cluster was
enumerated separately, and given a distinct cell identification number.
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3.2. FACS Isolation of Patient Lin− and Lin+ Cell Populations and RNA-Seq Analyses

Next, to detect gene expression differences between the immune cell population and
the Lin− population containing the entirety of the CTCs, we performed FACS analyses of
PBMCs to obtain Lin− and Lin+ cell populations, which were subsequently interrogated
by RNA-Seq. Gene expression analysis detected 188 differentially expressed genes (DEGs)
(log2FC > 1, p value ≤ 0.05) between PBMCs and Lin+ cells isolated from BC patients
(Figure 3a). While overall similar, there was variability in gene expression levels between
the Lin+ populations from patient samples analyzed as shown on the heat map (Figure 3b).
Supplement File 1 (File S1) shows what genes are significant with large logFC, and a GSEA
analysis of this data is shown on sheet 2 of File S1. Analyses of gene expression between
Lin− and Lin+ cell populations demonstrates that the Lin− fraction had a number of
genes with significantly increased expression levels (Figure 3c, green dots). These analyses
demonstrated that there were a similar number of genes upregulated (1881) in the Lin+ cell
populations as compared to those enhanced (1867) in the Lin− cell fraction. Furthermore,
heat maps of gene expression showed differences between the Lin− and Lin+ populations,
with a greater range of diversity between Lin− samples (Figure 3d; genes are listed in
File S1, sheet 3). Some of the most significant differentially expressed genes in the Lin− cell
population included CAVIN2, ITGB3, LY6G6F, TUBB1, LTBP1, and TRIM58. Some genes
associated with epithelial cells such as EPCAM, TACSTD2, MUC2, KRT7, KRT8, KRT18,
and KRT19 were detected in the Lin− DEG, while genes such as LTF and CTTN are specific
to mammary tissue. Analysis of these genes showed enrichment of several pathways,
including epithelial mesenchymal transition (EMT), apical junctions, estrogen response,
and angiogenesis, as well as the KEGG pathways, ECM receptors interactions, and focal
adhesion (File S1, sheet 4). Furthermore, GSEA analysis against the hallmark gene sets
collection has a number of breast cancer associated gene sets being significantly enhanced
(File S1, sheet 4). The Lin+ cell population was enriched in a wide variety of genes including
PTPRC (CD45), CD3, CD4, CD8, CD27, and HEY1 indicative of an immune cell population.

It may be that the Lin− fractions from patients with the same hormone receptor
subtype have greater similarities than the entire compilation of Lin− fractions. Patients
were grouped by hormone receptor subtypes (ER/PR/Her2), and heat maps were pro-
duced for those receptor subtypes for which there were more than three patient samples
(Figure 3e–h). Even within a specific receptor subtype, significant differences between pa-
tients were detected. For example, some genes such as CAVIN2, CLU, ITGA2B, ITGB3, LTF,
PTGS1, PTPRJ, LTBP1, TGFB1, and VNCL had enhanced expression in comparison to the
Lin+ cell populations from the same patients in all groups, with many of these genes being
involved in cell communication, adhesion, and migration. Thus, FACS separation into Lin+
and Lin− fractions, enriched for the epithelial/ mammary cells in the Lin− fraction.
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Figure 3. RNA-Seq of FACS Lin−/Lin+ cell populations. Blood was collected from normal human donors and 19 mBC
patients. PBMCs were isolated and sorted as described, followed by RNA-Seq of collected cells. (a) A volcano graph
showing genes with significant log2 fold change and −log10 (p value) for the normal PBMCs (green dots) in comparison
with the Lin+ population from 15 mBC patients (red dots). (b) Heat maps of gene expression showing significant differences
between normal human PBMCs (left/ blue) and Lin+ cells (right/ yellow) from patients. Patient 8 provided two samples
3 months apart. (c) A volcano graph showing genes with significant log2 fold change and −log10 (p value) for the Lin−
populations (green dots) in comparison with the Lin+ population (red dots). (d) Heat maps of gene expression, indicating
differences between the Lin+ (yellow) and Lin− (blue) populations from mBC patients. (e–h) Heat maps for patients grouped
by hormone receptor status (shown above the map) (e) ER+/PR+/Her2+ (f) ER+/PR+/Her2− (g) ER+/PR−/Her2−,
and (h) ER−/PR−/Her2+. Other subtypes had less than three patients in the overall set. All heat maps were done with
unsupervised clustering.
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3.3. Interrogation of the Lin− and Lin+ Populations by Single-Cell RNA Sequencing (scRNA-Seq)

The RNA-Seq data did not allow further characterization of changes of CTC gene
expression within the Lin− cell population. Therefore, scRNA-Seq investigations were
performed on Lin− and Lin+ cell populations from three mBC patients that had differing
hormone receptor status and organ sites metastasis (Table S1). Immediately after sorting,
cells from each Lin−/Lin+ fraction were loaded into the 10x Genomics Chromium system.
After filtering for signal quality (between 200 and 5000 genes, less than 5% mitochondrial
gene reads), a total of 5801 cells remained, ranging from 500 to 2115 cells per sample.
Moreover, 10x Genomics Chromium clustering identified 16 distinct cell clusters in the
integrated data (Figure 4).

Each cluster contained cells from every patient and fraction, although the percentage
of cells in a particular cluster could vary between fractions (Figure 4b). For example,
clusters 3, 8, 10, and 14 had a higher percentage of cells from Lin− than Lin+ cell popula-
tions while clusters 5 and 6 each contained a higher percentage of cells from Lin+ fractions.
Distinct differences in percentages among patients were most striking for clusters 0, 1, 2, 4, 5
(Figure 4b). In particular, the Pt1 Lin+ sample contributed a high percentage of cells to
cluster 0. Each cluster was compared to all other clusters to determine significantly different
gene expression (p value ≤ 0.05), and this information was used to determine the cell type
of each cluster. Biomarker status for any gene with an adjusted p value ≤ 0.01 in a cluster
was based on one of two criteria: the first related to the extent of expression which required
for the gene to be expressed in greater than 90% of the cells in that cluster, but in less than
30% of cells in all the other clusters. The second criteria centered on large fold-change
(FC) in which the gene was expressed in more than 30% of the cells in that cluster with an
average log2 fold change ≥1 for upregulated genes. Figure 5a shows the expression of the
top 50 genes in all clusters and thus the uniqueness of each cluster. Figure 5b shows the
violin plots of single genes across all clusters demonstrating that some genes are expressed
to different extents in several clusters (e.g., PTPRC (CD45), CD3D, IL32, and CLK1), while some
genes were highly expressed in one or two clusters (e.g., MNDA, CD79A, and IGHM).

Note that some genes such as IGHM and CD79A were primarily expressed in cluster
7 (Figure 5b). Conversely, other genes, such as CD3D, PTPRC, and TMA7, were expressed
in a number of clusters (Figure 5b), but varied in both the percent of cells expressing that
particular gene, and the level of expression in those cells. Notably, PTPRC, also known as
CD45, and the primary determinant of FACS fractionation, was detectable in multiple clus-
ters while genes corresponding to the other FACS antibodies were not detected (Figure 5b).
PTPRC had varied levels of expression in the 16 clusters with highest levels in clusters 5,
9, and 12. Conversely, few cells expressed PTPRC in clusters 3, 8, 10, and 14 (Figure 5b).
CD3D, a marker for T cells, was expressed in a high percentage of cells in clusters 1, 2, 4, 6,
and 15, and in some cells of cluster 9 (Figure 5b). CD3E and CD3G were also expressed in
similar patterns. LEF1, a transcription factor, and CD27, required for T cell maintenance,
were expressed in clusters 1, 2, 4, and 6 with minimal expression of LEF1 in cluster 15
(Figure 5b). CD27 was also detected in cluster 9 while the cytokine CCL5 was expressed
at high levels in clusters 0, 1, 3, 8, 9, 11, and in all cells of cluster 14, but it was not widely
present in clusters 2, 4, 6, and 15. Clusters 0 and 6 were marked by high-expression levels
of IL32 cytokine, with lower levels in clusters 1, 2, and 4, as well as in clusters 9 and 15.
CD4 expression was most widely expressed in clusters 4, 5, 6, although not at very high
levels. Activated T cells characterized by CD69 expression were primarily found in clusters
4 and 6, while cluster 14 was marked by the expression of SUB1. Altogether, 5 clusters,
1, 2, 4, 6, and 15 were considered T cell clusters, although some T cell gene markers were
detectable in subsets of other scRNA-Seq clusters.
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Figure 4. ScRNA-Seq analysis identified distinct cell populations in Lin− and Lin+ fractions. PBMCs from the three
patients were sorted into Lin− and Lin+ fractions, and analyzed using Chromium single-cell transcriptomics platform
(10x Genomics Chromium) (see “Materials and Methods” for details). (a) Cluster analysis of gene expression data of
Lin− and Lin+ fractions from three mBC patients identified 16 distinct cell populations, which are displayed as UMAP
plot. Cell type predictions are shown with clusters being identified as immune cells and cluster 10 (red box) identified as
CTC/CSC cells (epithelial cells). (b) Stacked percentage bar graph showing the percentage of cell type per cluster and per
sample analyzed with cluster identification being the same color as in (a).
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Figure 5. Gene expression of biomarkers in individual cells within each cluster for identification of genes of interest.
(a) Heat map of gene expression in the 16 clusters determined by scRNA-Seq. Genes that were significantly expressed across
samples and denoted as biomarkers were used for cluster identification. (b) Violin plots of some of the biomarker genes
used for the identification of cell clusters.

By decoding scRNA-Seq clusters beyond T cell subsets, we found that clusters 0 and
9 contained NK cells with high expression of NK genes such as CCL5 (Figure 5b), along with
NKG7 and CTSW transcript detection in a high percent of cells in these clusters. Cluster 9
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also expressed the NK marker GZMK in a high percentage of cells, with a subset of cells
expressing CD8 (Figure 5b). Conversely, cluster 0 was more homogenous and unique in
its expression of genes such as CD247 (also known as PDL1), NCAM, KLRC2, KLRD1 (all
markers of NK cells), and TBX21 (a marker of T helper cells) (Figure 5b). Lastly, cluster 11
expressed CD68, CCL5, and several other transcripts found expressed extensively across
multiple clusters. Cluster 5 was identified as a monocyte cell cluster with some T cells.
Critical transcripts for its identification included CD4 (Figure 5b), and TYROBP (also in
clusters 0 and 12), while MS4A7, CDKN1C, DEK, and MTDH transcripts were present
uniquely in cluster 5. Clusters 12 and 13 were classified as neutrophils by CLK1 biomarker
(Figure 5b), with CCNL1 and NAMPT significantly detected in all 3 clusters, while the
presence of AIF1 and MNDA (Figure 5b), S100A8, and S100A9 was signifthat areicant in
clusters 5 and 12, but not in cluster 13. However, cluster 13 included cell subsets expressing
RUNX1 and TP53INP1, while cluster 12 possessed subsets of cells expressing FCGR3B and
PTEN transcripts. Cluster 11 was considered a monocyte or dendritic cell cluster.

Further interrogation found that the B cell population comprised cluster 7, with many cells
expressing various HLA-D genes as well as the CD19, CD37, and CD74 genes. Transcripts with a
significant FC increase in cluster 7 included CD79A, CD79B, IGHM (Figure 5b), IGKC, and IGLC2.
Cluster 1 expressed CD3D, CD3G, and IL7R suggesting a type of T cell. Over 50% of the
cells in this cluster were from the Lin+ fraction (Pt3_LinP). Altogether, these data show
that PTPRC-dominated clusters could be identified, although none of them was found
to be homogeneous. Clusters 3, 8, 10, and 14 had few cells expressing PTPRC, and these
clusters contained a higher-percentage of cells from Lin− samples. Cluster 3 had extensive
expression of a number of “housekeeping genes” such as β-actin and HLA isoforms,
but also ITG2B, TAGLN, CALM3, CCL5, TGFB1, and ITM2B, while less than 20% of the
cells expressed PTPRC. We found that CDC37 gene expression was unique to cluster 3,
while a subset of cells in this cluster expressed ARG2. Clusters 8 and 14 also expressed
ITGA2B, although at a slightly lower levels in cluster 8 (Figure 5b). This cluster was marked
by the extensive expression of ACRBP (Figure 5b) and NRGN, and high-level increases in
MDM, ARG2, PTCRA, and NF2E gene levels, plus the uniquely expressed genes EGLN3,
MEIS, and CTNNAL1, suggesting that cluster 8 is a monocyte/macrophage cluster. Further,
all cells in cluster 14 expressed CCL5 (Figure 5b), along with high levels of ITGA2B, ACRBP,
and CD68 (Figure 5b), suggesting a monocyte/macrophage identity. The expression of
TGFβ1 in all 3 clusters, and the expression of ARG2 in cluster 8 and a subset of cluster 3
provided evidence that some of these macrophages belong to the M1 phenotype. Platelet
specific genes were found in clusters 3, 5, 7, 9, and 12 suggesting there is a heterogeneity of
platelet transcriptomes in response to the physiological conditions. GSEA analysis of the
transcriptomic clusters shows a uniqueness in the molecular functions (GOMF), biological
processes (GOBP), reactome pathways, oncogenic processes, immunological processes,
and the TF regulatory processes that are enhanced in the various clusters (File S2).

Cluster 10 then appears as a cluster of cells whose transcriptomic profiles are not
associated with immune cells. Cluster 10 consisted of 201 cells from both the Lin− and
Lin+ cell populations from each patient, with over 1800 genes that were highly significant
(p value ≤ 0.01) (File S3). Genes known to be associated with breast tissue [15,19,22],
such as ESR, AR, and ERBB2 (Figure 6a) were detected at low levels in clusters 10 as well as
in other clusters. Genes associated with epithelial cells such as KRT8, 18, 19, and 7; as well
as TBX3, TACSTD2, EPCAM, CLDN4, CLDN7, CEACAM6, and MGP (Figure 6b) were
highly specific to cluster 10. Many of these genes were expressed in less than 75% of the
cells in the cluster; however, those genes expressed in a subset of cells in cluster 10 were
either undetected or expressed in fewer than 5% of cells in the other clusters, suggesting
the presence of a significant phenotypic spectrum of cells in cluster 10. Most surprisingly,
the cells from the Lin+ population in cluster 10 expressed PTPRC and some of these cells
also expressed EPCAM, TACSTD2, or some of the CKs.



Cancers 2021, 13, 4885 13 of 21Cancers 2021, 13, x FOR PEER REVIEW 16 of 24 
 

 

 
Figure 6. Significant gene expression within 10x Chromium cluster 10. (a) UMAPs displaying a differential gene expres-
sion of ER/PR/HER2 (ERBB2) and EpCAM identifying cluster 10 as non-immune cells. Few cells expressing these hor-
mone-receptor genes were detected in cluster 10, however they were also expressed in other clusters. The scale of expres-
sion levels is shown for each gene. (b) Violin plots displaying genes of interest, which were significantly upregulated in 
cluster 10 when compared to other clusters. Claudin 4 (CLDN4) and Claudin 7 (CLDN7) while (TACSTD2), TBX3, and 
CEACAM6 were significantly expressed in cluster 10 (CTCs) with a minimal expression in the other clusters. Matrix Gla 
protein (MGP) and cellular retinoic acid binding protein 2 (CRABP2) were highly upregulated in cluster 10, with low-level 
expression in remaining clusters. 

Keratins (KRTs, gene code for CKs) are intermediate filament proteins commonly 
found in epithelial cells, and the presence of CK 7, 8, 18, and 19 are often used in breast 
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8, and 19 were expressed in 70% or more in cells of cluster 10, and in less than 3% of all 
other cells (File S3). The biomarker KRT18 was expressed in 79% of cells in cluster 10, and 
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3. Moreover, EPCAM, a key biomarker defining classical CTCs [17], was also found to be 
unique to cluster 10, and expressed in 54% of cells, while its paralog, TACSTD2, was de-
tected in 70% of these cells. EPCAM is known to interact with claudins 3, 4, and 7 (Figure 
6), and tetraspanins, such as TSPAN1; genes that were extensively expressed in cluster 10 
and known to be involved in cell adhesion events [2,3]. Other significant genes encoding 

Figure 6. Significant gene expression within 10x Chromium cluster 10. (a) UMAPs displaying a differential gene expression
of ER/PR/HER2 (ERBB2) and EpCAM identifying cluster 10 as non-immune cells. Few cells expressing these hormone-
receptor genes were detected in cluster 10, however they were also expressed in other clusters. The scale of expression levels
is shown for each gene. (b) Violin plots displaying genes of interest, which were significantly upregulated in cluster 10
when compared to other clusters. Claudin 4 (CLDN4) and Claudin 7 (CLDN7) while (TACSTD2), TBX3, and CEACAM6
were significantly expressed in cluster 10 (CTCs) with a minimal expression in the other clusters. Matrix Gla protein (MGP)
and cellular retinoic acid binding protein 2 (CRABP2) were highly upregulated in cluster 10, with low-level expression in
remaining clusters.

Keratins (KRTs, gene code for CKs) are intermediate filament proteins commonly found in
epithelial cells, and the presence of CK 7, 8, 18, and 19 are often used in breast cancer diagnosis as
well as key biomarkers in the detection of CTCs [17]. Notably, KRT7, 8, and 19 were expressed in
70% or more in cells of cluster 10, and in less than 3% of all other cells (File S3). The biomarker
KRT18 was expressed in 79% of cells in cluster 10, and was detected in less than 20%
of cells in cluster 8. Another keratin, KRT10, was found to be present in some of the
cells of clusters 0, 10, and 12, and in a few cells of clusters 8 and 3. Moreover, EPCAM,
a key biomarker defining classical CTCs [17], was also found to be unique to cluster 10,
and expressed in 54% of cells, while its paralog, TACSTD2, was detected in 70% of these
cells. EPCAM is known to interact with claudins 3, 4, and 7 (Figure 6), and tetraspanins,
such as TSPAN1; genes that were extensively expressed in cluster 10 and known to be
involved in cell adhesion events [2,3]. Other significant genes encoding proteins involved
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in cell adhesion were expressed in cluster 10, and included MGP, PERP, RAB25, DSP, EMP2,
PHLDA2, ERBB2, CEACAM6, and CTNND1 (File S3). However, cadherins and integrins
were not expressed in a significant percentage of cells of cluster 10, setting forward the
notion that only a subset of cells of this important cluster has the ability to fully adhere to
distant organ sites as disseminated cancer cells. Several genes encoded proteins implicated
in the response to calcium levels (TACSTD2, SRI, S100A16, S100A14, and CRACR2B).
The most significant signaling proteins were encoded by genes such as CRABP2 (Figure 6b),
CAMK2N1, PLK2, RHOV, SPINT1, RALA, and RERG (File S3). Additionally, some genes
coding for proteins known to be responsive to estrogen were detected, including CITED1,
CITED4, GATA3, KRT19, CCND1, and IGFBP2, however ESR1 and ESR2 were each only
detected once in cluster 10. Critical cell proliferation genes, e.g., CCND1, ANAPC11,
and CDKN1A were found in cluster 10, along with other genes with proliferative roles,
e.g., TGFB1, ILK, BRK1, CIB1, AREG, and HES1.

We conducted an extensive interrogation of genes for transcription factors (TF) [49],
oncogenes [50], EMT [51,52], or cancer stem cells (CSC) [53–56], detected in individual cells
of cluster 10 (see heat maps on individual sheets in File S3); individual cells of cluster 10
from each patient are shown on the top of the chart, each gene is indicated along the left
side, and the level of expression of each gene is scaled for that gene). A high-level perusal
of the data showed that cells from Lin+ cell populations of each patient were more similar
in their expression patterns than the Lin− cells. For example, ETS1 was only found in
Lin+ cells while ARID4B and IKZF1 were extensively expressed in the Lin+ fraction of
patients 1 and 3; and ELF1, KLF13, ARRB2, REL, and ZEB2 were most striking in patient
1 with patchy expression in Lin+ fractions of the other patients. Second, the expression
of transcription modulators was more patient specific in Lin− fractions of cluster 10.
Patient 3 expressed none of the widely expressed TF with the exception of TSC22D1,
while patient 1 expressed many TF extensively, however only few TFs were detected in all
cells of the Lin− fraction. Expression of TSC22D1, MAX, and LYL1, coincident with a lower
level of expression of the more ubiquitous TFs may mark a subset of CTCs in patient 1.
TF expression in patient 2 was even more patchwork, and at a lower level for some of the
ubiquitous genes such as JUN, JUNB, KLF2, and ELF (File S3, sheet 1). These differing
TF patterns could set-up differential responses and cellular behaviors, although it is not
clear which TF are critical to modulate cell survival, organotropism, proliferation or other
responses to the microenvironment.

A number of TF are known oncogenes, e.g., ELF3, ERBB2, ERBB3, GATA3, SOX2,
SOX9, FOXA1, CCND1, while others act as tumor suppressors, e.g., ATM, ARID1A, CBL,
CDKN2A, TBX3, and EGR1 [50]. The level of expression of oncogenes and tumor sup-
pressors in the individual cells of cluster 10 are shown in File S3 sheet 2. Similar to TF
expression, there were several oncogenes expressed at high levels in nearly all of cluster
10 cells. There was also a greater similarity of expression patterns of these genes between
the Lin+ fractions while a greater heterogeneity was observed in Lin− fractions: patient 1
was marked by extensive expression of EPCAM, ELF3, ID3, GATA3, TPM3, DDX5, PLK2,
YWHAE, EZR, LMNA, CCND1, KIF5B, and TPM4, patient 2 by a decreased level of expres-
sion overall with fewer genes having extensive expression (ELF3, ID3, PLK2, and EPCAM),
and patient 3 was characterized by expression of TPM3, TPM4, CCND1, and NCOA4.
Some of the genes in Lin+ fractions with the most striking differential expression included
PTPRC, LTB, CXCR4, SAMHD1, CD74, RNF213, and LCK, while additional genes were
extensively expressed only in Lin+ cells from patient 1 (File S3, sheet 2).

The comparison of genes expressed in cluster 10 cells with an extensive listing of genes
involved in EMT [51,52,54,56] showed intriguing patterns of expression (File S3 sheet 3).
The Lin+ fractions from each patient had enhanced gene expression at the mesenchymal
end of the spectrum. Conversely, a variable level of gene expression at the epithelial end of
the spectrum was detected, from almost none (patient 3) to higher levels in patient 2 as
compared to patient 1. In Lin− cell populations, cluster 10 cells from patient 3 expressed
primarily mesenchymal genes, patient 2 had low but extensive expression of epithelial
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genes, and patient 1 possessed high levels of expression of some epithelial genes with low
levels of expression for only a few mesenchymal genes. Epithelial genes included KRT7, 8, 18,
and 19 as well as CLDN 4 and 7, EPCAM, TACSTD2, ERBB3, ERBB2, JUP, CD24, while CDH1
was not detected. The mesenchymal genes included PTPRC, VIM, EMP3, SRGN, TUBA1A,
CXCR4, GIMAP4, while GNG11, SPARC, and MYL9 marked a subset of cells from the Lin+
fractions of patients 1 and 3, suggesting a more mesenchymal attribution.

Cancer stem cells (CSCs) are often proposed to be quiescent but capable of responding
to changes in the cell’s microenvironment. This quiescence property allows these cells to
often avoid the effects of chemotherapeutic agents, and then later be capable to initiate
proliferation and the establishment of a metastatic tumor. The debate about which genes
are indicative of CSCs is still vigorous, therefore we aggregated gene lists from several
sources [53,55]. As with the other gene panels, cells from Lin+ cell populations possessed a
greater similarity than ones from Lin− fractions (File S3, sheet 4). One of the most striking
differences in Lin+ cells was the lack of expression of MGP, the gene with the largest
log2FC in cluster 10 (File S2), in any of the 10x cluster cells from patient 3 (File S3, sheet 4).
There were also genes (SNRPB2, ATRX, STK17A, TAX1BP1, VCAN, OXLD1, BRD7, HMGB2,
and APLP2) with roles in chromatin remodeling or signaling which were extensively
expressed in Lin+ cells (patient 1), but not in the other two patients. In Lin− fractions,
there was a lower level of expression of genes in patient 3, while patient 2 expressed
more extensively many of these genes, however still at lower levels. The Lin− cells from
patient 1 fell into two subpopulations: a population expressing high levels of these CSC
genes in both Lin+/Lin− fractions, and a population with lower levels of expression
and fewer genes expressed, appearing similar to the Lin− cells from patient 2. Further
examination showed that these cells are also ones with lower levels of expression of many
TF, except for TSC22D1, MAX, and LYL1. They are also ones with low epithelial gene
expression, except for F13A1, SRGN, SPARC, and GNG11.

Collectively, cells of cluster 10 expressed a variety of genes promoting essential biolog-
ical processes: these cells can thus have potential adhesive, proliferative, and migratory
properties, which are fundamental for metastatic competence.

4. Discussion

Breast cancer is the most common non-cutaneous cancer in women and the second
leading cause of cancer-related death in the U.S. As such, improved understandings of
progression from early stage to metastatic disease is critical. While the genotype and pheno-
type of breast cancer have been well studied, the extensive characterization of CTC subsets
and their properties as a transitional circulatory state between primary and metastatic
tumors is less well understood. Here, we report for the first time the comprehensive
interrogation of Lin− and Lin+ cell populations isolated directly from the blood of mBC
patients [13]; this experimental strategy results in the transcriptomic analysis and molecular
classification of Lin− cell populations at single-cell level.

In this study, we employed a strategy using cutting-edge technologies to discriminate
CTC subsets and differentiate them from normal PBMC cells. Patients enrolled in this
study were diagnosed with distinct breast cancer subtypes, and at various stages of relapse
and treatment (Table S1); however, CTCs were consistently detected from these patient
samples using the RareCyte system. The number of classically annotated CTCs usually
varied between 3 and 136 cells in approximately 1 mL of blood, although one patient did
have one blood sample with greater than 15,000 CTC/ mL. This is in line with previous
reports using CellSearch or other CTC platforms, where the variability in CTC number over
time is known to be induced by a number of factors and biological conditions [17,21,37,57].
Baseline blood collections examined by Cytefinder II identified patients 1–3 as candidates
for scRNA-Seq, as they had high numbers of CTCs (Table S1) as well as differing hormone
receptor status and metastatic sites. At the latest collection (month 6), patient 1 had an
unexpectedly high CTC count (>10E4/mL), which was confirmed after staining a second
RareCyte slide. This high CTC count was in agreement with clinical parameters since
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this patient experienced significant systemic disease progression between collection 1 and
2 (baseline and month 3, respectfully), including the development of brain metastasis,
which could explain the rapid rise of CTCs [13].

Considering established notions of the prognostic relevance of classically defined
CTCs in mBC [10,11], we sought to interrogate gene expression profiles of circulatory neo-
plastic cells, including but also extending this definition. We employed FACS to separate
hematopoietic Lin+ from Lin− cells [13]. RNA-Seq was performed to elucidate gene ex-
pression differences between patient-derived Lin+/Li− cell populations. The comparison
of Lin+ cells to normal PBMCs from healthy donors indicated an altered gene expression
profile in Lin+ cells from mBC patients. This gene expression pattern did not significantly
differ among patient samples, and possibly indicates the activation of Lin+ cells, either as
a direct response to mBC onset, or as result of chemo/radiotherapy regimens applied to
these patients. Conversely, comparisons between patient Lin− and Lin+ cell populations
resulted in a number of genes indicative of human mammary tissue, as well as genes linked
to cell adhesion, cell junctions, and response to various stimuli pathways. Even grouping
the patients by hormone receptor status shows variations in gene expression in the Lin−
populations. These data show that we have been successful isolating mBC CTCs within the
Lin− fraction. However, the percentage of CTCs in the Lin− population is still not high
enough to definitively examine the transcriptional patterns in the CTCs.

Although RNA-Seq is a useful tool for assessing changes in gene expression at the
population level, this technology does not fully explore individual differences between cells,
which may contribute to cell survival, adhesion, migration, and proliferation, leading to
metastasis. Accordingly, we performed single-cell RNA sequencing using feature barcoding
technology (scRNA-Seq; 10x Genomics Chromium) to further classify all cells within the
Lin− and Lin+ cell populations on a cell-by-cell basis. Our scRNA-Seq identified 16
distinct clusters from the Lin− and Lin+ cell populations from the three patients analyzed.
Of critical relevance to the objective of these investigations, we identified cluster 10 as
CTCs based on epithelial/mammary tissue gene expression and in synergy with the
classification of the 15 other clusters identified as T cells, NK cells, B cells, neutrophils,
and monocytes (Figure 5 andFigure 6). Many cell types, such as platelets, were detected in
multiple clusters. This heterogeneity in platelet transcriptomes has been reported in other
cancers and could be indicative of the role of platelets in the dissemination of CTCs [58].
It should be noted that we detected a number of genes which are known to be related
to immune cell activation and inflammatory response (CCL5, IL32, GZMK), signifying a
snapshot of active immune response at the time of these analyses. Notably, many genes
implicated in cell adhesion (EPCAM, CEACAM6), survival (VEGFB, IGFBP2, TGF, CCND1),
and cell-cell communication (TACSTD2, CRABP2), were significantly present in cluster 10
vs. the other clusters. These findings expand the classical definition of CTCs, and provide
valuable insights on how some CTCs survive while in the circulation: these genes not only
allow for the activation of survival signals, but also may improve CTC communications
with immune cells, allowing CTC immune evasion until implantation at secondary target
sites. Unexpectedly, we discovered Lin+ cells from patients 1 and 2, which expressed
EpCAM and/or TACSTD2, as well as several KRTs in addition to CD45 expression. CD45+ cells
expressing EpCAM and some KRTs have been detailed in work from other labs [20].
The finding of such cells in the scRNA-Seq data led us to reexamine the RareCyte slides
from these patients and we verified that such cells were also detected by this antibody-
based technology. Further examination of the scRNA-Seq data for the cells in Cluster 10
details the transcription factors and oncogenes whose expression is enhanced in these cells.
TFs such as ETS1, ELF1, ARRB2, REL, and ZEB2 mark CD45+ cells while LYL1, MAX,
and TSC22D may mark a subset of CTCs. The oncogenes, such as CCND3, PNRC1, LTB,
JAK1, RAC2, and CXCR4 mark the CD45+ cells and KIF5BTPM4, and NCOA4 may mark
subsets of CD45− CTCs. These changes in gene expression lead to further changes in
gene expression in those genes involved in EMT processes and in modulating behaviors
of CSCs. Further work could address the differences between patients, and whether the
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subpopulation seen with the Pt1 Lin− population is indicative of changes in the cell’s
ability to proliferate, or adhere to specific anatomical sites. These findings substantiate
concepts of CTC biomarker heterogeneity and are either evidence of or the result of cancer
cell/immune-cell interactions, and/or gene regulation crosstalk, leading to a similar gene
expression between the two cell types. A significant number of CTCs are also possibly
quiescent [13], thus evading chemo/radiotherapies. CTC quiescence and its reversibility
can be a larger contributing factor to metastasis than previously thought, and an important
area to evaluate for therapeutic targeting.

This represents the first report, which examined single-cell transcriptomes of all indi-
vidual circulating neoplastic cells isolated from patients with mBC. Although of significance
as the basis for future advances in this area, there are some limitations to this study. A small
cohort of patients was analyzed, which is not representative of the entire mBC spectrum
and certainly not representative of CTCs shed from primary BC tumors over its lifetime.
Second, there was significant heterogeneity with regard to ER/PR/HER2 status and line of
therapy. Either factor alone could contribute to gene expression differences among Lin− or
Lin+ cells. Further, gene expression differences in CTCs may not translate to differences in
protein levels and protein functionalities. It is also not clear whether adherence to other
cells in a cluster in the blood modulates gene and/ protein activity. Third, the sort efficiency
of the Lin− cell population varied between 30–70%, with some contamination of Lin+ cells
as a technical artifact caused by the scarcity of Lin− cells, compared to the high number
of total cells, which were sorted as the Lin+ cell population. This drastic difference may
have skewed the Lin−/Lin+ ratio of cells being sequenced, especially in the RNA-Seq
experiments, which can mask other significant differences in gene expression. However,
this technical issue would not affect the scRNA-Seq, as in this technique, the assignment of
a cell to a specific cluster is based on its entire transcriptomic profile and not its source.

5. Conclusions

These studies provide first-time evidence of a comprehensive analysis for distinct circu-
latory cell populations in blood from patients with mBC at the single-cell level, identifying
distinct immune cell clusters, and describing their gene characteristics, and identifying
cluster 10 as containing cells of epithelial origin, that is, CTCs. These cell populations
possessed significant differences in gene expression at the single-cell level. This is espe-
cially evident in cluster 10 where analysis shows subpopulations that express a variety
of TFs, oncogenes and genes critical to EMT and stem cell populations. Of relevance,
by describing these differences, conclusions of this study revise the classical notion of
what a CTC is, suggesting that the neoplastic cell capacity is distributed across heteroge-
neous cell profiles in circulation. It will be highly instrumental to replace rigid definitions
(presence/absence of EpCAM, presence/absence of EMT or CSC markers, etc.) with more
flexible, solid, if experimentally challenging, notions on how a CTC functions. We foresee
that the extension of these findings, and/or their application in pre-clinical models to
interrogate the precise functionality and metastatic potency of circulatory neoplastic states
will significantly aid towards the formulation of more efficacious therapies in breast cancer.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13194885/s1, Table S1: Clinical Parameters of Patients used in this study. File S1.
Differentially expressed genes between populations by RNA-Seq. The first sheet lists the DEG
between Lin+ and normal PBMCs and sheet 2 shows the most significant pathways as done by
GSEA analysis. Sheet 3 shows differentially expressed genes from the Lin− and Lin+ fractions.
The fourth sheet shows the results of GSEA analysis for the DEG from sheet 3 using the cell markers,
KEGG pathways, and GO Ontologies databases. File S2. Pathway analysis of all scRNA-Seq clusters.
Sheets showing analysis of significant Gene ontology MF, GO BP, oncogenic, immunologic, Regulatory
Targets and reactome databases to show the differences between the clusters. File S3. Cluster 10
Analysis. A listing of the most significant genes of cluster 10 cells, which is, these genes have an
adjusted p value ≤ 0.01. Genes were sorted by pct.1, which is the percent of cells in cluster 10
expressing the gene (first sheet). The expression level of that gene in all other clusters combined is
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listed under pct.2 and the dDR in the difference between these two values. The second sheet shows
the sorting of genes by average logFC, e.g., a positive number indicates expression upregulation of
that gene in cluster 10. The mean in cluster column shows the average level of expression of the
specific gene across all cluster 10 cells, while the mean out of cluster is the average level of expression
across all cells outside of that cluster. The DiffMean column indicates the differences in those averages.
The analysis sheets show Gene Ontology Biological Processes (BP) and KEGG Pathways found to be significantly
enhanced using these genes on the DAVID analysis website (https://david.ncifcrf.gov/home.jsp) (accessed
on 26 May 2021) [59]. Figure S1. Profiles of selected gene expression in each cell of cluster 10. (a) Expression
of transcription factors from http://humantfs.ccbr.utoronto.ca/ (accessed 13 April 2021) in each cell from
cluster 10 [36]. Patient number and Lin−/ Lin+ fractions are listed at top; gene name is listed on
left. Genes are sorted by the number of cells in cluster 10 in which the expression of the specific
gene is detected and genes expressed in less than 5 cells are not listed. (b) Expression of oncogenes
from https://www.oncokb.org/cancerGenes [50] (accessed 13 April 2021) in each cell of cluster
10. (c) Gene expression from a more extensive list of tumor-specific genes involved in EMT [51,52].
Epithelial-associated genes are shown in teal while mesenchymal-related genes are indicated in pink.
Genes detected in less than 20 cells were removed from the list. PTGIS and WWTR1 were the only
mesenchymal genes solely detected in cluster 10. Most of epithelial genes were only detected in
cluster 10; however, SPINT2 and RAB11FIP1 genes were expressed extensively, and several other
genes were expressed in multiple clusters. (d) Expression of cluster 10 genes implicated in cancer cell
stemness [53–56]. Genes were sorted by the number of cells in cluster 10 expressing that gene.
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