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Simple Summary: Artificial intelligence (AI) is the branch of computer science that enables machines
to learn, reason, and problem solve. In recent decades, AI has been developed with the aim of
improving the management of patients with brain tumours. This review article explores the role AI
currently plays in managing patients undergoing brain tumour surgery, and explores how AI may
impact this field in the future.

Abstract: Artificial intelligence (AI) platforms have the potential to cause a paradigm shift in brain
tumour surgery. Brain tumour surgery augmented with AI can result in safer and more effective
treatment. In this review article, we explore the current and future role of AI in patients undergoing
brain tumour surgery, including aiding diagnosis, optimising the surgical plan, providing support
during the operation, and better predicting the prognosis. Finally, we discuss barriers to the successful
clinical implementation, the ethical concerns, and we provide our perspective on how the field could
be advanced.

Keywords: artificial intelligence; AI; neurosurgery; brain tumour; machine learning; deep learning;
surgery; oncology

1. Introduction

Artificial intelligence (AI) is the branch of computer science attempting to equip
machines with human-like intelligence, enabling their ability to learn, reason, and problem
solve when presented with numerous different forms of data. Neurosurgery has often
been at the forefront of innovative and disruptive technologies, which have transformed
disease course for acute and chronic disease alike [1]. Complex and intricate neurosurgical
procedures make the field of brain tumour surgery an ideal candidate for greater integration
of AI.

The term “AI” encompasses numerous components (Figure 1). Machine learning
(ML) is the process through which algorithms analyse data and are trained to recognise
specific patterns, perform tasks, or predict outcomes. ML may be “supervised”, in which
the programmer provides the machine with clearly labelled inputs and outcomes, such that
the algorithm may identify trends in predicting these defined outcomes [2]. This requires
training data to be labelled prior to its presentation to the algorithms [3,4]. Such an example
is by providing an algorithm with numerous features about glioblastoma (GBM) patients,
such as age, ethnicity, co-morbidities, stage at diagnosis, and imaging, as well as providing
the algorithm with their length of survival employed as an outcome measure. Subsequently,
the algorithm will learn and identify the patterns and trends that impact the length of
survival, and this can subsequently be used to predict the length of survival in newly
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presenting patients. This differs from traditional programming, in which a set of rules are
ascribed to an algorithm, which then provides an output based on those rules. In ML, only
the input and output are provided, while the algorithm “learns” the relevant patterns and
trends [3,5]. Alternatively, ML may be “unsupervised”, in which the program analyses data
without pre-defined labels, resulting in the ML program identifying similarities between
datasets and clustering the data to identify the trends and patterns [2,6,7]. A worked
example is the field of radiomics, in which AI programs analyse unlabelled scan images to
identify clusters and patterns associated with certain grades of glioma, or by clustering
GBM patients who have particularly good outcomes and then identifying the common
patterns between these patients [6]. Finally, reinforcement ML is the process through which
algorithms are honed based on reward and punishment, whereby actions that increase the
likelihood of achieving an end goal are rewarded, and actions distancing the program from
the desired goal are punished [6]. The machine subsequently learns the optimal strategy
for a given task [8]. With all forms of ML, large volumes of data can be processed leading
to the detection of patterns and subtleties indiscernible to clinicians [6].

Figure 1. Artificial intelligence and five key subdomains. Each subdomain of AI has numerous potential clinical applications
for brain tumour surgery patients. Schematic derived and modified from Panesar et al. [6] and Hashimoto et al. [9].
Numerous other subfields of AI exist, and this schematic is not exhaustive. Please add copyright if necessary.

Numerous algorithms are used in ML, including support vector machines, decision
trees, and K-nearest neighbour, though these are beyond the scope of this review [2].
Deep learning algorithms have received particular attention. Deep learning algorithms are
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multi-layered artificial neural networks made up of numerous computational units that
communicate with one another, analogous to a neurons within the human brain, so as to
identify highly complex and subtle patterns [9].

Natural language processing is the process of enabling machines to understand means
of human communication [9]. In a neurosurgical context, examples include algorithms
understanding, contextualising, and withdrawing important themes from clinical notation,
written reports, and patient histories. This allows large bodies of medical records to
be processed rapidly and be incorporated into ML [6,9]. The ability for machines to
“understand” human language and subsequently analyse such data is key in integrating
human language into predictive models.

A further branch of AI is computer vision, which can broadly be defined as computer
programs interpreting images and videos [9]. Initially confined to image interpretation,
the field of computer vision has advanced rapidly through integration with ML neural
networks. Novel applications include operative planning and guidance [10–12], and
real-time “operative workflow analysis” in which steps and phases of procedures are
recognised, which may enable the automation of the operative note generation, and provide
forewarning regarding high risk stages of the operation [12–14]. ML programs capable of
image and video analysis have been integrated with surgical robotics, capable of performing
tasks with a high degree of precision [15]. This represents a significant paradigm shift,
from AI being used as an adjunct to decision making, to AI being used for partially or fully
automated interventional procedures [6].

AI has the potential to significantly impact the management of brain tumours, with
ML, natural language processing, computer vision, and robotics subfields all contributing
to novel AI applications that may advance neurosurgical practice. In this review, we present
the current advances and potential clinical applications of AI in the pre-operative, intra-
operative, and post-operative phases of brain tumour surgery, with a particular focus on
intrinsic brain tumours. We also examine specific barriers to further development, as well
as current problems with AI in this field. Finally, we consider the medicolegal and ethical
standpoints regarding the greater integration of AI in the field of brain tumour surgery.

2. Pre-Operative Phase

The impact of AI on brain tumour patient outcomes is likely to occur far before the
patient reaches the operating table (Figure 2). Research has shown how AI can positively
impact various pre-operative stages, such as diagnosis, assessment, and planning [3,6,8,9].

2.1. Screening and Diagnosis

Intracranial tumours may present with a variety of different symptoms, and at differ-
ing stages of disease. Some become symptomatic very early in their development, while
others exert relatively little clinical effect despite their growth [16]. The heterogenous
degree of presentation may, in part, explain why 30% of brain tumour patients in the UK
experience delays in diagnosis [17,18]. Advancements in AI may improve early detec-
tion. Developments in recent years have led to the inception of an ML algorithm able to
assimilate blood test results to predict and diagnose the presence of brain tumours [19].
The term “brain tumour” encompasses many individual pathologies, yet all exhibit a
specific fingerprint on routine blood tests owing to the secretion of various tumour-specific
molecules within the neoplastic microenvironment that pervade the blood−brain barrier
and enter the wider circulation [20–22]. These changes in routine blood tests are subtle,
and therefore an ideal candidate for ML analysis. Indeed, ML models have been noted to
outperform clinicians in the diagnosis haematological disorders [23]. Podnar et al. used an
ML algorithm to detect subtle changes in routine blood tests to detect the presence of brain
tumours at the time of symptomatic presentation [19]. Elevated neutrophil count, serum
glucose, and decreased eosinophil and basophil counts were among the more significant
trends identified by the ML algorithm in the tumour group [19]. Their model showed a
sensitivity of 96% and a specificity of 74%, data akin to sensitivity rates for CT and MRI
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neuroimaging [19,24]. The model was not able to accurately distinguish between primary
brain tumours, but was hypothesised by the authors to be a potential screening tool for
intracranial malignancy [19]. More recently, Tsvetkov et al. published data regarding an
AI-powered detection tool, which uses differential scanning fluorometry of blood samples
to detect glioblastoma in patients with a 92% accuracy [25]. As such technology advances,
blood markers may feasibly be used to risk stratify brain tumour patients and guide man-
agement. This may prove invaluable, in a field in which serum biomarkers to detect and
monitor brain tumours have been elusive due to high intratumoural heterogeneity [26].

Figure 2. Potential clinical impacts of AI in the neurosurgical management of brain tumours, in the pre-operative, intra-
operative, and post-operative phase.

The gold standard of brain tumour diagnosis remains neuroimaging such as MRI. The
impact of AI may occur even before radiological images are generated—Brown et al. devel-
oped a natural language processing ML algorithm that interpreted MRI brain requests, and
subsequently chose the most appropriate MRI brain imaging sequence to generate the most
clinically useful images [27]. The ML algorithms significantly outperformed the radiologist
sequence choice [27]. Radiological sequences are typically selected by a radiologist, yet
protocoling workflow is liable to errors [27,28]. Furthermore, sequence queries for radiog-
raphers during working days have been shown to impact radiologists’ time [29] and cause
interruptions in image interpretation [30]. ML-based sequence-determining algorithms
may play a role in standardising the MRI sequence protocol, thereby maximising the clinical
applicability of the scans generated [27,31]. Furthermore, researchers noted that radiolo-
gist sequence-selection often struggles with rare conditions, noting that the ML approach
performed particularly well in these cases, such as in glioblastoma multiforme [27].

Increasingly, radiological images are being recognised as three-dimensional data-sets
amenable to algorithmic analysis, deeper than the images seen by individual clinicians [32].
So-called “radiomics” are able to compute swathes of image-based data, down to individ-
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ual three-dimensional pixels known as “voxels”, to detect and identify patterns that are
typically subtle [33]. Thus far, radiomics has been shown to be effective in detecting and
characterising a wide range of tumours throughout the human body [32,34–37]. Specific
to brain tumour diagnosis, ML algorithms have been used to characterise the molecular
expression of brain tumours [33,38–42], aid in the detection of central nervous system (CNS)
metastases [43–53], discriminate between primary and metastatic CNS lesions [54], predict
the brain tumour grade [55–62], and predict the presence of genetic mutations [38,63–66]
among other applications [67]. These findings have been demonstrated in a range of
CNS tumours, including meningiomas, glioblastoma, and CNS metastases. Further, ML
programs have been shown to be superior to the human ability to detect and diagnose
brain tumours [67].

Specific to intracranial tumours, ML-based imaging interpretation has made great
leaps forward in the past decade. The molecular characteristics of gliomas, such as the
presence of IDH mutation or 1p/19q mutations, are closely linked to the natural history of
the disease, and are known to impact the efficacy of various treatments [68]. The ability to
predict these features from imaging data, potentially circumventing the need for invasive
biopsies, has been a focus of ML radiomic research for the past decade. Work published
by Yu et al. developed an ML algorithm that could predict IDH1 expression status of low-
grade gliomas using MRI brain sequences to a high degree of accuracy within 18 min [69].
Molecular diagnosis prior to invasive testing may guide management and predict outcomes
for patients, as has been seen to be the case with IDH1 positive gliomas [40]. Chromosomal
codeletion of 1p/19q, MGMT promotor methylation status, and IDH1 mutation were
collectively detected through a convolutional neural network run by Chang et al. [65].
Many other publications have demonstrated the ability of AI-based radiomic programs to
predict tumour marker expression and genetic mutation [39,41,70]. These advances may
enable neurosurgeons to offer tailored treatments based on predicted mutations [71].

In recent years, there has been a marked transition away from conventional ML
programs to deep learning programs, which integrate numerous layers of neural networks
akin to human cortical processing, resulting in powerful systems capable of more complex
and subtle pattern recognition [72]. Comparisons in the accuracy of brain metastases
detection showed that the deep learning group had a statistically significantly lower rate
of false-positives per person when compared with conventional ML, suggesting an ever
growing accuracy [72].

2.2. Planning

Prognosticating and risk stratifying is a vital component of managing patients with
brain tumours. Exposing patients with advanced disease to invasive interventions that do
little to prolong their survival or quality of life is deleterious to patient wellbeing. As such,
due consideration should be given for deciding in which patients surgery is appropriate.
Predicting survival for patients with CNS tumours is difficult, yet it is often the most
important question for patients and relatives [73]. At present, numerous scoring systems
such as performance status exist to predict survival, yet these often fail to individualise
their predictions [74]. ML has been shown to accurately predict survival for CNS tumour
patients in a range of settings [39,70,75–82]. Oermann et al. used an artificial neural
network to integrate data including patient age, the presence of systemic disease, primary
tumour type, and number of metastases to predict the one-year survival in patients with
brain metastases treated with radiosurgery. Their model outperformed traditional means
of predicting survival [74]. In 2021, Ko et al. demonstrated the ability of an ML platform
to accurately predict the progression and recurrence of meningiomas from radiological
data alone [81]. Evidently, AI multivariate programs have the potential to individualise
predictions, thus supporting the delivery of patient-centred care [73].

Key advances have also been made in radiomics with regards to operative planning.
Surgical management, particularly in high grade glioma, remains controversial, and the
decision as to whether to biopsy versus resect is not guided by high quality evidence.
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Invariably, cases are judged on an individual basis, balancing the benefits of resection with
the risk of neurological impairment, as is seen in approximately 10% of GBM resections [83].
The risks must not outweigh the benefits, and AI may help delineate this fine balance. Lack
of consensus in this field has been demonstrated by Orringer et al., who reported that two
neurosurgeons were more likely to disagree with one another than to agree as to whether a
GBM would be resectable [84]. Judging brain tumour resectability is challenging. High
grade gliomas infiltrate beyond their radiologically evident boundaries, making decisions
regarding resection margins high risk [85]. Research has been conducted identifying the
five most important anatomical features on T1-weighted MRI sequences in predicting
tumour resectability, which has enabled the generation of a validated grading system for
predicting tumour resectability [86]. This system has subsequently been integrated into an
AI platform, which has been demonstrated to accurately predict the surgical resectability
of GBM [87]. In the future, AI platforms such as this may become a vital adjunctive tool to
support complex decision-making for surgical selection.

If a decision is made to operate, a key step is pre-operative trajectory planning.
Brain tumours invariably abut surrounding structures, which are vulnerable to damage
intraoperatively. These areas may be eloquent, epileptogenic, or at high risk of bleeding;
the phrase “the decision is more important than the incision” is never more true than with
neurosurgical tumour resection [88]. Traditionally, the identification of these high-risk
stages of the operation would be performed through a human interpretation of imaging, as
well as intraoperatively. This is time consuming, and research has demonstrated variability
between different experts [89]. AI programs have been shown to be effective in accurately
segmenting tumours and local structures [90,91]. Notably, in patients with CNS tumours,
the cerebral architecture may be significantly distorted, making interpretation by traditional
segmentation programs difficult [92]. ML-based algorithms have been shown to be effective
in trajectory planning. Work by Dolz et al. investigated the use of deep learning algorithms
on MRI to accurately detect local organs at risk for patients undergoing radiosurgery—
they found that their automated system was able to accurately segment the brainstem
in patients with CNS tumours, and was significantly more time efficient than traditional
means [92]. Havaei et al. demonstrated the use of a convolutional neural network that
was 30 times faster, as well as being more accurate than state-of-the-art segmentation
platforms [93]. Several other publications have also shown success at employing deep
learning models to accurately segment cerebral tumours and local at-risk structures [94–97],
as well as intraoperatively model tissue deformation in neurosurgery [98]. Indeed, ML
systems have been used to accurately orientate beams in stereotactic radiosurgery [99].
When coupled with radiomic programs, AI could feasibly develop a step-by-step guide
for how to approach brain tumours, as demonstrated by the ROBOCAST project [12].
Such trajectory planning has already been shown to be feasible for stereotactic brain
biopsies [100].

3. Intra-Operative Phase

Advancements in AI technology, particularly computer vision, have led to the propen-
sity for ML programs to positively impact brain tumour patients in the intraoperative
phase (Figure 2). The main areas of impact include intraoperative tumour identification
and workflow analysis.

3.1. Tissue

Intraoperative delineation of the tumour from normal tissue represents a significant
challenge to neurosurgeons, and is one with significant consequences. Research has shown
that residual peripheral tumour tissue that was not identified and removed intraopera-
tively is the single most common cause of tumour recurrence [101]. It is unsurprising,
therefore, that in glioma and GBM, more extensive tumour resection has been shown
to be associated with longer survival [102]. Image guidance has helped to identify tu-
mour location, although accuracy falls during the operation due to the displacement of
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cortical landmarks [103,104]. Fluorescent tumour markers have been used to intraopera-
tively discern the tumour from the normal tissue with some success, yet this method is
limited to high-grade tumours, and has been shown to result in incomplete tumour resec-
tion [105]. Stummer et al. compared the use of the fluorescent marker 5-Aminolevulinic
acid (5-ALA) for glioma resection with white light, and noted that with 5-ALA use, 35% of
patients have a residual tumour after resection; with white light alone this number rises to
64% [106]. Evidently, even with modern fluorescent techniques, complete tumour resection
remains challenging.

Deep learning platforms integrated with hyperspectral imaging (HSI) offer a solution
to the intraoperative identification of brain tumours. HSI combines spectroscopy and
intraoperative imaging to provide both spatial and molecular information regarding the
surrounding structures [107,108]. The process uses a high-resolution camera directly above
the surgical field, which detects visible and near infra-red light to produce hyperspectral
digital images [101]. The image pixels then represent microscopic areas of the surgical field.
The digital images are then integrated with a deep learning platform, which attempts to
delineate the tumour from the normal tissue by detecting microscopic differences in the
spectral bands of tissues—the so called “spectral signature”. This technique is non-invasive,
and has shown promising results for many different tumour types [109–112]. Fabelo et al.
used this technique on six patients with GBM and employed a deep learning platform
comprised of a neural network with three convolutional layers to interpret the HSIs [101].
This method correctly identified the background with 98% accuracy, although the tumour
tissue was identified with 42% accuracy [101]. The authors noted that the ability of the
technology to binarily classify normal and tumour tissues showed a sensitivity and speci-
ficity of 88% and 100%, respectively, suggesting that the technology performed well on
correctly classifying the images as being tumour-free [107]. More recently, further research
has shown advances in HSI technology [113,114]. Ji et al. demonstrated the use of intraop-
erative Raman scattering microscopy to identify the tumour from the normal tissue [115].
Their program detects changes in tissue characteristics, such as cellularity, protein:lipid
ratio, and axonal density, to assist in detecting neoplastic tissue with a sensitivity and
specificity of 97.5% and 98.5%, respectively [115]. Similar AI-based techniques have been
demonstrated to provide intraoperative brain tumour histological diagnosis [116].

3.2. Workflow

Intraoperative workflow analysis is an exciting area of AI. Such systems use computer
vision integrated with ML platforms to track the steps, phases, instruments, gestures,
anatomy, and pathology of operations. AI-based workflow analysis has several proposed
benefits including intraoperative optimisation of the surgical plan and trajectory, accurate
anatomic identification, early warning regarding high risk phases of the operation, stan-
dardisation of phases and steps, operative note generation, and contribution to simulation
and training programs [117–121]. With the ever-increasing computational power, surgeons
may benefit from real-time intraoperative guidance—“avoid this area” and “high risk tra-
jectory”. This technology may, in time, reduce surgical errors, complications, and operating
times [117,122].

Workflow analysis technology has been demonstrated in the field of brain tumour—
after deriving a consensus for the operative steps and phases in pituitary tumour resec-
tion [123], Khan et al. demonstrated the ability of a convolutional neural network to detect
and analyse operative videos of endoscopic transsphenoidal pituitary adenoma resection
videos [124]. The platform was able to detect specific phases with 91% accuracy, and steps
with 75% accuracy [124]. As AI continues to develop, it is feasible that intraoperative video
analysis and the benefits that this may bring may significantly disrupt existing surgical
practise in future [117]. As phase and step recognition platforms become more advanced,
natural extensions of AI in this field may develop, such as real-time decision support
systems, and partially or fully automated steps of procedures. Surgical robotics integrated
with AI have the potential to significantly impact the way brain tumours are managed.
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While this field remains embryonic, AI-robotics have numerous proposed advantages over
existing surgical practise, such as resistance to fatigue, reduction in tremors, and increased
precision [6]. In recent decades, a range of neurosurgical robotics have been introduced—
the individual analysis of which are beyond the scope of this review [6,15,125–130]. Much
excitement and promise has been generated around the Da Vinci surgical robot. The
Da Vinci robot is the most widely used surgical robot worldwide, and functions as a
“master−slave” program in which the operator can remotely control the robot’s many arms
to perform minimally invasive procedures [131]. A cadaveric study, however, identified the
difficulty in performing minimally invasive cranial microsurgery, citing issues such as poor
haptic feedback, limited instrument selection, and cumbersome arms [131]. Pandya et al.
showcased the robotic system NeuroArm, a surgical robot capable of image-guided mi-
crosurgery, which represents a highly promising AI-robotic platform [15]. At present,
there remains a plethora of barriers, such as cost, workflow integration, and additional
training [132]. The inception and integration of an autonomous surgical robot capable of
human surgical performance for CNS tumours remains unlikely in the near future [6,133].

4. Post-Operative Phase

The unique ability of AI programs to assimilate large volumes of data make it well
placed to positively impact the post-operative phase, with numerous potential areas of
impact (Figure 2). The main areas of impact include inpatient and acute care, and outpatient
and oncological care.

4.1. Inpatient and Acute Care

The post-operative phase for brain tumour patients is high risk, and is frequently ham-
pered by complications. The development of post-operative complications is dependent
upon numerous fixed and dynamic variables, of which ML techniques are uniquely placed
to analyse [134].

Numerous examples of AI integration in the post-operative phase have been demon-
strated in fields other than brain tumour surgery [135–137]. Campillo-Gimenez et al.
developed an ML program which used natural language processing to analyse patient
medical records, and subsequently develop models for predicting the incidence of surgical
site infection (SSI) [138]. Artificial neural networks were used to predict complications
such as venous thromboembolism and SSI in patients undergoing anterior lumbar fusion,
exhibiting an accuracy of 95%, significantly outperforming traditional logistic regression
statistical means (62%) [134]. Hopkins et al. were able to predict the development of SSI in
patients undergoing posterior spinal fusion, with a positive predictive value of 92.3% [139].
The authors found that such complications reduce patient satisfaction, incur cost, and
worsen outcomes for patients [139,140]. Brain tumour surgery may also benefit from
greater AI integration by helping to predict and mitigate the development of numerous
other typical post-operative complications, including adverse drug events [141], venous
thromboembolism [142], development of pressure ulcers [143,144], falls [145], and hypo-
glycaemia [146,147]. These complications are all-too-often preventable, and significantly
affect patient outcomes. AI has the propensity to reduce the occurrence of these common
post-operative issues.

There is also increasing interest in the field of ML in intensive care units (ICU) [148].
Given the large proportion of patients with brain tumours who require admission to ICU in
the recovery phase, these advancements may provide support to intensivists by processing
the wide range of physiological data present in ICUs. These systems may theoretically
detect the deteriorating patient earlier than with traditional methods [148].

4.2. Outpatient and Oncological Care

Histological analysis of tumour specimens occurs during the post-operative phase, and
is a prerequisite to ongoing oncological care. AI has made significant advances in the field
of histology. Traditional approaches to histopathological analysis rely on specimen prepa-
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ration, staining, assays, and examinations [149]. This process requires human resources
and time, which contribute to the delay between tissue sampling and the commencement
of rationalised therapeutics. Additionally, existing methods of histopathological diagnosis
rely on human visual pattern recognition and analysis of cellular morphological features;
despite means of standardisation, this inherently introduces bias due to the subjective
nature and differences in judgement between different histopathologists [150,151]. AI
stands to disrupt this process, and promises to result in faster, more accurate diagnoses,
with more uniform standardization [152]. ML for histological analysis has made significant
progress over the last decade [153]. ML programs analyse digitised histopathological slides,
and are able to detect both macro and micro patterns, including region texture, shape,
and cellular morphology, and process these features to make accurate histopathological
conclusions [153,154].

AI-based integration into the histological diagnosis of brain tumours has the potential
to significantly disrupt traditional pathways. Firstly, AI may alleviate the need for biopsy
in the first place, as we have seen the impact of radiomics on predicting the grade and
molecular expression as a potential alternative diagnostic modality; secondly, AI has the
potential to speed up specimen analysis and to increase the accuracy of grading; thirdly,
deep learning models may help us to categorise patients in ways previously unknown to us,
which may aid therapeutics and survival; finally, the ability of AI-based programs to predict
molecular and cellular markers in tumours may pave the way for highly tailored therapy for
brain tumours, thus enhancing the effects of treatment, while reducing unnecessary harm
through side effects to patients [150,155–163]. An AI-assisted approach to histopathology
has been compared against traditional microscopy methods in several studies [150,164–166],
all of which showed non-inferiority compared with traditional means. With regards to
brain tumours, Barker et al. demonstrated the ability of a computer-analysis system to
analyse digital histopathology slides and correctly to diagnose GBM and low-grade glioma
with accuracy [167]. Ortega et al. used a novel approach of HSI to detect high grade glioma
on histopathology slides [168]. Ker et al. used a convolutional neural network to grade
brain histology specimens into low grade glioma or high-grade glioma, with 100% and 98%
accuracy, respectively [149]. Perhaps most interesting, however, was the use of transfer
learning employed in this study. Additional training dataset slides of breast tumours were
fed into the AI program, which improved the overall performance of glioma classification.
As noted by the authors, this may prove extremely useful when trying to establish ML
programs for rare tumours, in which the training dataset is limited [149]. Numerous other
studies have shown equally promising results [169–173].

The impact of AI in neurosurgical oncology may continue to benefit patients even
after discharge during their post-operative recovery. Gvozdanovic et al. developed a
ML integrated mobile phone app, Vinehealth, which uses patient inputted data to track
symptoms, provide reminders regarding medication and upcoming appointments, and
provide tailored educational content [174]. By enabling the patient to regularly input data
regarding their own condition, ML-based platforms may gain a far more accurate, real-time
understanding of patient wellbeing. In contrast, clinic appointments spaced several months
apart often leave room for patient deterioration to go unnoticed. AI-based medication
management systems have also been pioneered, aiming to increase adherence [175]. In
a similar vein, biometric monitoring systems have become increasingly common in the
literature. Such systems use data such as dynamic monitoring of step count and vital signs,
allowing for a real-time objective analysis of the patient functional state. These systems
have been demonstrated to predict adverse events, hospitalisation, and even changes in
depression scores [176–180]. In an era of increasing technological advancement, patients’
phones and Fitbits may soon be vital features of post-operative care. ML programs have also
been shown to predict readmission in patients. Such ML algorithms have demonstrated
high degrees of accuracy following spinal surgery [181–183] and in other settings [184],
and may be used in the future to predict which brain tumour patients are at high risk of
complication at discharge.
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Adjuvant therapy in the post-operative phase may be fine-tuned by AI programs to
achieve maximal efficacy. The choice of modality, dose, timing, and duration of adjuvant
therapy has the potential to become highly tailored as AI becomes more integrated with
brain tumour therapy. Recently, Yauney et al. described a reinforcement ML program that
could iteratively optimise chemotherapeutic dose in a simulated trial of GBM patients [185].
While no explicit evidence regarding brain tumour AI-based chemotherapeutic regimens
yet exists, research has emerged in which AI optimises chemotherapeutic regimens at other
primary tumour sites [71,186–188]. Indeed, the CURATE.AI platform demonstrated the
ability of an AI program to optimise the dose and timings of chemotherapeutics in prostate
cancer patients, adhering to a narrow therapeutic range [189]. AI models have also been
shown to predict the sensitivity of solid organ tumours to chemotherapy [188]. Adjuvant
radiotherapy stands to be significantly benefited by more accurate tumour segmentation, as
described previously [48,66,89,90,97]. Immunotherapy in CNS tumours remain in the early
stages of trials, yet AI platforms may in the future predict response to immunotherapy,
as well as optimise the dose and treatment regimen [190]. Furthermore, AI may enable a
whole new range of therapeutics to be discovered [188]. ML algorithms can be utilised for
high-throughput screening to calculate the probability of a tumour cell line responding to
new chemotherapeutics [191]. This reverse engineering of drugs stands to streamline the
typically lengthy process of drug discovery, and result in ever-more targeted therapies for
brain tumours [188].

Evaluating the response to treatment is key in tailoring therapy for patients. In
neuro-oncology, a wide range of parameters are used to monitor the response to treatment,
although increasingly, in clinical and experimental practise, response to treatment is as-
sessed using the Response Assessment in Neuro-oncology (RANO) criteria [192]. This
criterion relies on post-intervention MRI scanning of brain tumours, and subsequent two-
dimensional volumetric analysis of scans. However, such treatment response methods
may fail to accurately monitor tumours that exhibit an anisotropic growth pattern, and as
such, research has proposed the use of artificial neural networks that monitor volumetric
response to treatment [193]. Kickingereder et al. demonstrated the feasibility of such a
program and noted superiority in reliability and performance when compared to existing
RANO-based methods of response assessment [193]. In the future, therefore, AI may more
accurately track response to treatment in brain tumour patients.

5. Barriers, Evaluation, and Ethics

While AI has the potential to be transformative in the management of brain tumours,
several barriers to widespread introduction exist (Table 1). Furthermore, as the field of AI
in neurosurgery expands, a key focus will be the evaluation of novel programs. Evaluation
must focus on patient and clinician acceptability, clinical efficacy, and ethical concerns.
Barriers to widespread introduction, evaluation of developing AI technologies, and ethical
concerns regarding AI in brain tumour neurosurgery are examined below.

5.1. Barriers

Firstly, ML models require large volumes of accurate data to be trained. The accuracy
and acuity of the data is imperative for devising effective algorithms that represent the
clinical setting. Even with effective coding, the use of routine administrative or hospital data
in research has its limitations. Furthermore, for supervised ML programs, this data may
need to be appropriately labelled and analysed, which is time and labour intensive. The
analytic accuracy of a supervised ML algorithm is only as good as the data provided, and
therefore access to large volumes of accurately labelled data may prove to be a significant
barrier in the introduction of AI to neurosurgery. Indeed, poor labelling of data has already
been shown to lead to diagnostic errors in the field of AI [194]. The need for large training
datasets is particularly true in the field of brain tumours, many of which are extremely rare.
If AI is to be successfully integrated into neurosurgical oncology, collaboration between
institutions, both nationally and internationally, is essential. This has already been the case
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in the field of radiology, in which the pace of radiomic advancement has been aided by
archives of scans of certain pathologies, such as the Visually Accessible Rembrandt Images
(VASARI) database of gliomas, and the cancer imaging archive (TCIA) [195]. Through
collaboration, video databases of complex operations could be used to train intraoperative
risk detection algorithms and aid in the training of robotics [196]. Fundamentally, high
quality data must inform algorithms so as to ensure the data represents the problem being
addressed. This will require appropriate design, maintenance, and training for managing
data. A self-serving solution could indeed be provided by automated data collection
systems driven by AI.

Table 1. Barriers and solutions for integration of AI into brain tumour surgery.

Barrier Proposed solution

Requirement of large datasets to train existing
ML programs

• Creation of international databases as repositories for training data
for brain tumours.

• Collaboration between neurosurgical oncology units.
• Synthetic multi-parametric MRI image generation.

Selection bias of training data • Ensure a wide range of demographics used to train ML programs.
• Use of international databases as repositories for training data.

Patient confidentiality concerns when sharing patient
data between units to train ML platforms

• Robust scrutiny of data governance for existing databases.
• Development of technologies in accordance with existing ethical

and legal frameworks.
• Synthetic multi-parametric MRI image generation.

Slow progress in advancing ML programming
• International collaboration between ML programming teams.
• Publishing code for all newly developed ML platforms, making

code widely available for further development and scrutiny.

“Black box” conundrum • Ensure that human users can understand and trace all predictions
and decisions made by future ML platforms.

Poor contextualisation of uncertainty by ML programs
• Ensure that ML platforms developed for use in brain tumour

management are used in tandem with clinicians, who are better able
to contextualise and explain uncertainty.

A novel solution to the problem of large amounts of training data being required lies
in the generation of synthetic image generation to train deep learning models [197,198]. In
essence, sufficiently large databases of rare pathology are, inherently, difficult to build, and
therefore the generation of synthetic MRI images to mimic their pathology may hasten this
process. Shin et al. used a generative adversarial network to augment existing MRI scans,
resulting in the generation of synthetic MRI scans demonstrating a specific pathology [197].
This process results in a non-costly diverse dataset, and mitigates concerns regarding the
security of patient data that the generation of large, multi-centre repositories results in [197].
However, we must be cautious with regards to use of synthetic data to train AI models,
such that ground truth datasets remain rooted in an in vivo pathology. IBM’s Watson for
Oncology was trained primarily using synthetic data, and resultantly made numerous
erroneous recommendations, several of which posed legitimate harm to patients, such as
advising the prescription of bevacizumab in a patient at severe risk of bleeding [199].

Importantly, wide collaboration both nationally and internationally would be neces-
sary to generate databases applicable to this diverse group of patients. If algorithms were
trained using data from just several institutions confined to one area, the ML program may
develop inherent biases [6]. Ever larger databases would help to reduce “framing errors”,
in which algorithms are met with situations that are fundamentally different to the dataset
with which they are been trained, and subsequently misinterpret the data. The generation
of large datasets for training ML algorithms, however, raises concerns regarding patient
data security, which would need to be met with rigid safeguards [8].

Collaboration between scientific disciplines should also be a focus for driving the
progress of AI in brain tumour surgery. Hashimoto et al. discuss how surgeons should
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openly collaborate with computer scientists and engineers to steer the development of
AI in ways that are both feasible and clinically applicable [9]. Along this line, several
publications have drawn upon the importance of sharing promising ML models between
institutions [2]. Through open-source coding, promising models may be validated and
tested earlier, allowing for bugs and defects to be detected sooner [2].

As ML algorithms and neural networks become more advanced, their decision making
and predictive abilities become more difficult to unpick. As mentioned previously, neural
networks consist of a varying number of layers of computational units. Data are inputted,
followed by a series of “hidden layers” in which neurons are able to interact with one
another, followed by an output (Figure 3). The “black box” conundrum refers to the fact
that, through design, AI neural networks detect patterns and interactions in a wide range
of variables undetectable to humans, and therefore humans may be left with an inability
to evaluate how and why a conclusion was reached [9]. Without a proper understanding
of how predictions are made, the following question has been posed: “why should I trust
you?” [200]. This is a legitimate concern, as clinicians may find themselves blindly trusting
an algorithm, with disastrous consequences. As we have seen, despite the vast potential
for AI to improve outcomes in patients, it is not without faults, and as such there should be
a drive to improve interpretability of AI algorithms in future, enabling us to peer inside
the “black box” [8].

Understanding specific neural networks will be crucial as AI becomes more widespread
in the management of brain tumours. As Panesar et al. note, at present, surgical errors
involve one patient at a time; with a greater integration of AI into systematic decision
making and prediction systems, the potential for systematic errors and mistakes to be made
on a population wide level is concerning [6]. This has occurred in practise, when IBM
Watson Health’s algorithm for cancer management advised erroneous treatment strategies
for patients [199].

Finally, the inability of AI to deal with uncertainty remains an issue. Cabitza et al.
explain that ML-based systems use categorical or numerical data as their input and cannot
process the notion of uncertainty. It is common for two clinicians to disagree with one
another regarding the diagnosis or management strategy for a patient, and this is not
necessarily due to clinician error, but instead due to the intrinsic uncertain nature of modern
neurosurgery [201]. This clinical uncertainty can guide management plans (perhaps a
clinician takes a cautious treatment approach or refers the patient for a repeat scan) in ways
that AI platforms cannot.

Further to these issues, the implementation of AI in neurosurgery faces other more
immediate practical challenges, such as the technological infrastructure required to accom-
modate such technology, and financing the introduction of AI technology in healthcare. As
discussed, AI is an umbrella term that encompasses numerous different programs with
numerous different applications. Each practical application of AI may require differing
infrastructure needs. For example, radiomic analysis of brain tumour MRI sequences may
require the installation of software capable of performing this analysis. This may seem
like an achievable step, however ensuring that healthcare providers have the hardware
to operate these algorithms is another issue, and one which may be highly costly. Indeed,
such is the computational power required to run many AI platforms, and widespread use
may require an overhaul of healthcare IT systems. Moreover, the development of an AI-
enhanced, semi-automated robotic operating device clearly represents several challenging
steps in terms of both hardware and software infrastructure development.

A greater integration of AI will evidently require large injections of both human capital
and funding. The source of this funding remains another potential barrier. Costs must be
carefully balanced against the projected gains of AI implementation. While reports have
suggested that AI stands to result in significant economic savings [202], there have been
no economic studies regarding AI in brain tumour surgery. It is imperative that future AI
applications are regularly assessed for their cost-effectiveness.
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suggested that AI stands to result in significant economic savings [202], there have been
no economic studies regarding AI in brain tumour surgery. It is imperative that future AI
applications are regularly assessed for their cost-effectiveness.

The widespread introduction of AI in brain tumour surgery will require the addition
of AI to the neurosurgical and oncological teaching curriculum. At present, neurosurgical
teaching curricula has little focus on AI as a teaching subject, with research demonstrating
that one third have no prior knowledge of the subject [203]. As clinicians, we must be
expected to understand the mechanisms of the technology we operate, such that black-box
systems are not perpetuated. Therefore, education of the next neurosurgical generation in
the applications of AI must be seen as a key goal toward implementation.

Despite their promise, the role of AI in brain tumour surgery evidently faces many
challenges. Critical evaluation of the developing technologies needs to be thorough to
ensure that AI remains a transformative force for good in neurosurgery.

5.2. Evaluation

All developing AI technologies should be fully understood, such that their outcomes
and predictions can be traced and understood, thus avoiding the “black box” conundrum
(Figure 3). Subsequently, all new technologies should be rigorously reviewed both mecha-
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The widespread introduction of AI in brain tumour surgery will require the addition
of AI to the neurosurgical and oncological teaching curriculum. At present, neurosurgical
teaching curricula has little focus on AI as a teaching subject, with research demonstrating
that one third have no prior knowledge of the subject [203]. As clinicians, we must be
expected to understand the mechanisms of the technology we operate, such that black-box
systems are not perpetuated. Therefore, education of the next neurosurgical generation in
the applications of AI must be seen as a key goal toward implementation.

Despite their promise, the role of AI in brain tumour surgery evidently faces many
challenges. Critical evaluation of the developing technologies needs to be thorough to
ensure that AI remains a transformative force for good in neurosurgery.

5.2. Evaluation

All developing AI technologies should be fully understood, such that their outcomes
and predictions can be traced and understood, thus avoiding the “black box” conundrum
(Figure 3). Subsequently, all new technologies should be rigorously reviewed both mecha-
nistically and ethically. Existing approval procedures for medical devices (such as FDA
approval) are often slow, and fail to appreciate the nuanced risk−benefit considerations
when dealing with a disruptive technology [204,205]. As such, we advocate for frame-
works such as IDEAL to be employed by researchers, which enable a graduated degree of
integration of innovative devices or technologies [206]. Such frameworks are necessary to
promote the development of innovative surgical devices, as research has shown that just
9.8% of novel surgical devices make it to a first-in-human study by 10 years [207].

The DECIDE-AI Steering Group have called for close evaluation of AI-based platforms
as they journey towards clinical applicability. Importantly, they highlight how humans
use and interact with AI platforms, stating that ultimately, the most important facet is
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how clinicians and users follow AI recommendations [208]. They state that the clinical
impact of AI technology must be ascertained, before large scale funding of such technology
occurs. DECIDE-AI also call for due consideration to be given to new AI platform target
populations, rather than just their development populations, and whether significant
differences could result between the two [208]. Large-scale clinical trials will help to
identify these discrepancies, as well as ascertain the clinical impact of AI, and should
be the gold-standard in the future assessment of new AI technologies in the field of
neurosurgical malignancy.

The increasing use of AI in research has prompted the development of AI specific
international standards for AI-based clinical trials. The SPIRIT-AI and CONSORT-AI
reporting guidelines provide a model to ensure that clinical trials involving AI are both
robust and, most importantly, accurately evaluate patient outcomes [209,210]. Furthermore,
these guidelines aim to address biases that are specific to AI [209].

The ability of AI to process vast amounts of data may not only be applicable to
individual cases undergoing surgery for CNS tumours. It is feasible that AI be used to
further research and even generate national guidance for certain tumours. In their paper
regarding AI in spinal surgery, Rasouli et al. comment on how AI may surpass the current
means of guideline generation, which are dependent on the interpretation of large amounts
of data combined with clinical expertise by expert panels [127]. Rasouli et al. highlight that
the guidance generated is influenced by the quality of data that are presented to the panels,
as well as the ability for the panels to accurately pick up on all of the salient points [127,211].
It is easy to see how an analysis of the national archives of data by AI may drive national
guideline production in the future.

5.3. Ethics

The majority of AI applications thus far have been with complex data analysis, diag-
nosis, and risk assessment pre-operatively and intra-operatively. Neurosurgical AI-based
robotics are an emerging field, although one that is likely to rapidly develop in line with
technological advances in the coming decade. With the advent of such pervasive disruptive
technologies comes complex ethical questions.

In the field of robotics, the nomenclature for the degree of robotic autonomy follows
the same classification as for the automotive industry, in a six-part scale ranging from
level 0, no automation, to level 5, full automation. Level 1 describes some assistance,
where AI-based automation is used as an adjunct—a human performs a neurosurgical
resection of a cranial tumour, but uses stereotactic systems to help guide the operation.
Level 2 describes partial automation, such as the aforementioned “master−slave” surgical
robots, in which humans perform the operation, but using surgical robotics. Importantly,
a human is still monitoring the procedure throughout and is making decisions. Level 3
describes conditional automation, in which some stages of the neurosurgical procedure are
automated, but the procedure is still reliant on the surgeon to perform the remainder of the
operation—an example may be the use of an AI platform to position and screw in pedicle
screws in spinal surgery. Level 4 describes high automation systems, in which human input
is only necessary for troubleshooting or emergencies; the surgical robot is able to evaluate
and assess the surgical field and conduct the operation. While a soft-tissue level 4 surgical
robot does not exist yet, CyberKnife is an example of this in radiosurgery. Level 5 is full
automation, in which a human is not required at any point during the procedure [6,133].

Comparisons between autonomous surgical robots and the “driverless car” field do
not end at nomenclature, and indeed progress in the two fields is often mirrored. Public
opinion has been varied with regards to driverless cars, with concerns raised regarding the
issue of liability [212]. Should a semi-autonomous car crash, there is significant debate as
to who should be accountable. If humans were to have some control, would they be liable
for all the damage? This has been dubbed the “moral crumple zone”, describing humans
being disproportionally penalised for complex human−AI interactions over which they
have limited control [213]. The “Moral Machine” experiment, published in 2018 by Awad
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et al., tried to elucidate the public perception of autonomous cars in a worldwide survey in
which participants were walked through a series of ethical dilemmas, such as who should
autonomous cars prioritise in the event of emergency [214]. The study found considerable
variation in ethical standpoints between cultures and geographical location, highlighting
the complexity of the discussion [214].

Autonomous surgical robotics (level 3 or above) are very much in their infancy,
although they are rapidly advancing. Ethical concerns have arisen regarding mistakes,
errant robotic behaviour, and poor outcomes. Where does the culpability lie in these
instances? Are neurosurgeons and, more importantly, the public, comfortable handing
over autonomy to our machine counterparts? Several studies have explored these themes,
including the iRobotSurgeon survey [213], among others [215–217]. While patients have
generally positive attitudes to AI being used in an assistive or diagnostic role, concerns
arise when discussing fully autonomous robotics [215]. Fears regarding systems losing
control, accurately detecting risk, and humans being replaced by superior technologies
are all recurring themes in the literature [215,218–220]. Conversely, patients are generally
supportive of the use of robotics and AI being used in an assistive role in neurosurgery [215].
This rapid development also leads to questions regarding legal culpability, of which there
is little precedent [213]. An intraoperative error by an autonomous or semi-autonomous
robot that causes significant harm to a patient is legally a grey area, with culpability feasibly
falling upon the surgeon, the software developer, or the hardware manufacturer [216].
Recently, the EU introduced policy regarding AI and robotics, a key tenet of which is
algorithmic transparency [221].

While the term “artificial intelligence” has increasingly crept into the layperson lexicon
in the past decades, research has shown that one quarter of the public are entirely unaware
of what AI is, while just over half (55%) are able to give a reasonable definition of the
field [215]. Public awareness and perception will be shaped by media portrayal [222], and
it is important that accurate portrayals of AI are presented to the public. With such a
disruptive technology, headlines touting “killer robots” [223] may lead to resistance to its
wider introduction and skew public opinion away from the legitimate benefits that AI
poses [222]. Delicate discussions need to be had with the public, engaging their wider
concerns, while also presenting the plethora of benefits AI poses. Indeed, numerous
studies have commented on the need for the public to build trust with AI robotics [218,224].
Palmisciano et al. [215] cited the following three key recommendations for improved public
engagement with AI:

(1) New AI systems must be introduced in gradual phases to the public, with emphasis
placed on their role in assisting rather than performing autonomously.

(2) The scientific community should engage in a clear and transparent discussion with
the wider public, highlighting the benefits and specific functions of AI.

(3) Statistical data from prior testing should be provided to the public to support the case
for the safety of AI [215].

Public opinion may be shaped by media portrayal, but for the most part carries legiti-
mate concerns. These concerns should be used to guide development of AI in neurosurgery,
and should ensure that the field continues to question how far can we go versus how far
should we go. One such concern is the notion “uniqueness neglect”—the inability of AI
to accurately contextualise data and weigh up the current psychosocial status and unique
circumstance of patients [225]. This may serve as a reminder to the scientific field of the
importance of the doctor−patient relationship, and technological advances that pose a
threat to this must be met with significant scrutiny.

Widespread integration of AI into the management of CNS tumours may result in
deskilling of neurosurgeons [6]. While this is certainly unlikely to happen soon, we may
see a gradual increase in the proportion of cases performed by robotic or computer-assisted
means. Lessons may be learned from fields in which AI has been transformative, such
as in aviation. Several incidents have occurred in recent years in which pilots’ over
reliance on computer-based flight systems have been highlighted. Panesar et al. note
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that, paradoxically, while AI has significantly increased safety within the aviation industry,
this over-reliance has produced a significant de-skilling of operators, which only becomes
apparent in times of emergency and ML failure [6]. Neurosurgeons must endeavour to
use ML as an adjunct and continue to maintain their surgical skills to a high degree, to
avoid de-skilling.

Concerns regarding clinician displacement and replacement by AI robotics —the
“human-vs.-machine” paradigm—are unlikely to bear truthful in the near future, and
indeed, research has identified that neurosurgeons are generally comfortable with greater
integration of AI [8,203]. Humans and ML models are likely to work in tandem with
one another, rather than be fully replaced. Importantly, the neurosurgical field should
ensure that trainees are given adequate training with newly introduced AI, such that they
understand it fully in times of emergency. In doing so, neurosurgery can protect from
mishaps and learn lessons from the integration of AI in the aviation industry [6].

Overall, it is likely that AI will positively impact the field of neurosurgery for brain
tumours in the coming years, with clinical applications already being realised. However,
we should be cautious of unintended consequences. The litmus test for AI platforms in
our field should not only be metrics regarding their accuracy and clinical performance, but
should also be clinician and patient satisfaction with the technology [201]. This is because
firstly, clinicians must buy-in to the technology to support its adoption and diffusion among
the neurosurgical community. Secondly, patients must be willing to consent and engage
in treatments supported by AI technology. Regular and stringent analysis of patient and
clinician acceptability should be employed to mitigate the risk of unintended consequences.

6. Conclusions

AI has the potential to revolutionise the way in which patients with brain tumours are
managed. This will be at all phases of the patient pathway: (1) pre-operative screening,
diagnosis, and treatment planning; (2) intraoperative tissue analysis and intraoperative
workflow analysis; and (3) post-operative acute phase, and outpatient and oncological care.
Furthermore, AI may alter the way in which national guidelines are generated, as well as
aiding research into brain tumours and therapeutics. In doing so, AI will improve clinical
outcomes for patients in years to come.

Numerous barriers to the development of AI in the field of brain tumour surgery exist.
As the field rapidly expands, collaboration will be key in developing clinically applicable
AI. Such collaboration should focus on the development of databases and repositories that
may be used to train further AI. As ML algorithms become more advanced, open access to
such algorithms should be mandatory to encourage wider technological advancement. As
AI platforms relating to brain tumour surgery develop, clinical trials should conform to
reporting guidelines to ensure robust evidence and reduce biases.

While AI promises to improve patient management, there remain valid concerns
regarding the increased integration of machines in modern neurosurgery. Improvements
in patient outcomes may be countered by physician deskilling, job replacement, and
uniqueness neglect. Stringent patient and clinician acceptability should be sought in the
coming years, to ensure that the double-edged sword of AI does not precipitate unin-
tended consequences.
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