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Simple Summary: Although immune checkpoint inhibitors have a potential role in thyroid-related
complications, no study has investigated factors associated with such adverse events. This study
aims to explore the factors associated with thyroid-related adverse events in patients with anti-PD-
1/PD-L1 agents by training predictive models utilizing various machine learning approaches. The
results of this study could be used to develop individually tailored intervention strategies to prevent
immune checkpoint inhibitor-induced thyroid-related outcomes.

Abstract: Targets of immune checkpoint inhibitors (ICIs) regulate immune homeostasis and prevent
autoimmunity by downregulating immune responses and by inhibiting T cell activation. Although
ICIs are widely used in immunotherapy because of their good clinical efficacy, they can also induce
autoimmune-related adverse events. Thyroid-related adverse events are frequently associated
with anti-programmed cell death 1 (PD-1) or anti-programmed cell death-ligand 1 (PD-L1) agents.
The present study aims to investigate the factors associated with thyroid dysfunction in patients
receiving PD-1 or PD-L1 inhibitors and to develop various machine learning approaches to predict
complications. A total of 187 patients were enrolled in this study. Logistic regression analysis
was conducted to investigate the association between such factors and adverse events. Various
machine learning methods were used to predict thyroid-related complications. After adjusting for
covariates, we found that smoking history and hypertension increase the risk of thyroid dysfunction
by approximately 3.7 and 4.1 times, respectively (95% confidence intervals (CIs) 1.338–10.496 and
1.478–11.332, p = 0.012 and 0.007). In contrast, patients taking opioids showed an approximately
4.0-fold lower risk of thyroid-related complications than those not taking them (95% CI 1.464–11.111,
p = 0.007). Among the machine learning models, random forest showed the best prediction, with an
area under the receiver operating characteristic of 0.770 (95% CI 0.648–0.883) and an area under the
precision-recall of 0.510 (95%CI 0.357–0.666). Hence, this study utilized various machine learning
models for prediction and showed that factors such as smoking history, hypertension, and opioids are
associated with thyroid-related adverse events in cancer patients receiving PD-1/PD-L1 inhibitors.

Keywords: immune checkpoint inhibitors; risk factors; hyperthyroidism; hypothyroidism; ma-
chine learning

1. Introduction

Cancer has become a global health problem and a leading cause of death worldwide.
In 2020, there were approximately 19.3 million new cancer cases and 10 million cancer
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deaths globally. The top three cancer types in terms of the estimated number of patients
are breast, lung, and prostate cancers. Lung cancer is the leading cause of cancer death [1].
Therefore, the identification of molecular mechanisms through which cancer develops
and metastasizes is actively pursued; in particular, T lymphocytes, especially for antigen-
directed cytotoxicity, have attracted increasing interest in developing immunotherapy for
cancer treatment [2]. Various negative regulators of T cell activation act as checkpoint
molecules, such as cytotoxic T lymphocyte-associated protein 4 (CTLA-4) inhibitors, anti-
programmed cell death 1 (PD-1) agents, and anti-programmed cell death-ligand 1 (PD-
L1) agents.

Immune checkpoint inhibitors (ICIs) have been widely used as they are highly ef-
fective against various tumors. Nivolumab, the first human IgG4 monoclonal antibody
against PD-1, was approved by the FDA for various indications, including metastatic
melanoma, non-small-cell lung cancer, and Hodgkin’s lymphoma [3–6]. Pembrolizumab is
a human IgG4k monoclonal antibody against PD-1 that received first approval through an
accelerated process as it showed a response rate of 24% in metastatic melanoma patients [7].
This agent is also approved for many other indications and has been shown to be superior
to chemotherapy regimens [8]. Atezolizumab is the first PD-L1-targeted humanized IgG4
monoclonal antibody that was initially approved for the treatment of urothelial carci-
noma [9]. Its usage is currently indicated for various cancers such as non-small-cell lung
cancer and breast cancer [10,11].

Despite the clinical advantages of ICIs, they can induce autoimmune-related adverse
events. As ICIs can activate T cells, they can give rise to various immune-related adverse
events affecting various organs. Among them, thyroid-related complications have become
one of the most common adverse events associated with ICIs. A meta-analysis showed
that, among the patients receiving PD-1 inhibitors, 3.2% developed hyperthyroidism and
7.0% developed hypothyroidism [12]. Another case report showed that a patient with
metastatic mucosal melanoma treated with ipilimumab and nivolumab developed several
immune-related complications, including hypothyroidism [13]. Among the three types
of ICIs (PD-1, PD-L1, and CTLA4), PD-1/PD-L1 are known to be associated with thyroid
dysfunction [12,14], more frequently than CTLA4. Moreover, the incidence of thyroid-
related adverse events was not affected by tumor types and ICIs used [12]. This result was
also confirmed by a systematic review that showed that, regardless of the type of cancer
and ICI drug used, the overall survival was similar as there is no association between
the tumor type and the incidence of thyroid-related complications in patients receiving
ICIs [15]. In addition, Maughan et al. showed that the frequency of most immune-related
adverse events with ICIs appears to be similar across tumor types [16]. Although ICIs
possibly have a role in thyroid-related complications, the factors associated with such
adverse events have not been investigated yet.

As of late, machine learning methods have been increasingly used for making clinical
predictions. Machine learning approaches are more suitable for developing novel predic-
tion models than traditional statistical models that utilize variables for calculation. This
study explores the factors associated with the development of thyroid-related adverse
events in patients administered anti-PD-1/PD-L1 agents using training predictive models
through various machine learning approaches.

2. Methods
2.1. Study Patients and Data Collection

This retrospective follow-up study included 209 patients who were prescribed ICIs
between July 2015 and February 2021. Patients who had been diagnosed with hypo- or hy-
perthyroidism and were already prescribed thyroid-related medications or had incomplete
data were excluded. Baseline values of the patient characteristics were obtained on the
initial prescription date of ICIs. Data were collected using electronic medical records. Data
on sex, age, height, weight, smoking history, alcohol history, comorbidities, concurrent
medication, cancer type, cancer stage, and Eastern Cooperative Oncology Group perfor-
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mance scale (ECOGPS) were collected. Thyroid-related adverse events were defined as
grade 2 or higher according to the Common Terminology Criteria for Adverse Events
(CTCAE), version 5.0 [17]. The CTCAE defines grade 2 hyperthyroidism as symptomatic,
thyroid suppression therapy indicated, and limiting instrumental activities of daily living.
It defines hypothyroidism as symptomatic, thyroid replacement indicated, and limiting
instrumental activities of daily living.

This study was approved by the Institutional Review Board of the Gyeongsang Na-
tional University Hospital (approval number: GNUH 2019-11-041). All procedures per-
formed in studies involving human participants were in accordance with the Declaration
of Helsinki.

2.2. Statistical Analysis and Machine Learning Methods

Chi-square test or Fisher’s exact test was used to compare categorical variables be-
tween patients with thyroid-related complications and those without complications. Mul-
tivariable logistic regression analysis was used to examine independent risk factors for
thyroid-related complications. Factors having a p-value less than 0.05 in univariate analysis
along with clinically relevant confounders (age, sex, and body mass index (BMI)) were
included in multivariable analysis. Odds ratios and adjusted odds ratios were calculated
through univariate and multivariable analyses, respectively. To test the model’s goodness
of fit, we performed a Hosmer–Lemeshow test.

This study used a random forest-based classification approach to analyze the impor-
tance of different variables for factors that are associated with thyroid-related adverse
events. We focused on clinically relevant predictors and included 52 variables in the ma-
chine learning model. Seven features that are most important and clinically relevant were
selected to prevent over-fitting. Machine learning methods including multivariate logistic
regression, elastic net, random forest, and support vector machine (SVM) were employed
for the prediction of factors affecting thyroid-related complications. All of the methods
were implemented with the caret R package. To assess the ability of the associated factor
to predict complication, the area under the receiver-operating curve (AUROC), the area
under the precision-recall curve (AUPRC), and its 95% confidence interval (CI) of each
machine learning prediction model were stated in this study. A p-value of less than 0.05
was considered statistically significant. A univariate statistical analysis was conducted
using IBM SPSS statistics, version 20 software (International Business Machines Corp.,
New York, NY, USA). All other analyses were performed using R software version 3.6.0 (R
Foundation for Statistical Computing, Vienna, Austria).

Internal validation was performed to measure the performance of each machine
learning model. The whole dataset was randomly divided for model development and
evaluation in the prediction process. After randomly partitioning one data sample into five
subsets, one subset was selected for model validation while the remaining subsets were
used to establish machine learning models. This five-fold cross-validation iteration was
repeated 100 times to evaluate the prediction power of the machine learning models.

3. Results

Among the patients enrolled in this study (n = 209), 22 patients were excluded due to
comorbidities of hyper- or hypothyroidism, prescription of thyroid-related medications,
or incomplete data. Consequently, data on 187 patients who received ICIs were used for
the analysis. The median age of the included patients was 67 years (range, 37–88 years),
and there were 40 (19.1%) females. Among the ICIs, pembrolizumab was utilized the most
(38.0%), followed by nivolumab (31.6%) and atezolizumab (30.5%). Twenty-three patients
(12.3%) experienced thyroid-related adverse events after taking ICIs. Among them, 13, 1,
and 9 patients experienced hypothyroidism, hyperthyroidism, and both, respectively.

As shown in Table 1, patients with a smoking history had more thyroid-related
complications than those who did not have the history (p = 0.025). Additionally, patients
with hypertension and heart disease had more adverse effects than those who did not
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have these comorbidities (p = 0.013 and p = 0.044, respectively). Patients taking P2Y12
inhibitors revealed more associations with thyroid-related complications compared with
those without medications (p = 0.032) while opioids showed less complications than those
without medications (p = 0.038).

Table 1. Factors associated with thyroid-related adverse events in patients receiving immune checkpoint inhibitors.

Characteristics Complication
(n = 23)

No Complication
(n = 164) p-Value

Sex 1.000
Male 18 (78.3) 129 (78.7)

Female 5 (21.7) 35 (21.3)
Age 0.420

<65 11 (47.8) 64 (39)
≥65 12 (52.2) 100 (61)

BMI 0.921
<23 13 (61.9) 93 (60.8)
≥23 8 (38.1) 60 (39.2)

Smoking history 0.025
Yes 9 (39.1) 29 (17.7)
No 14 (60.9) 135 (82.3)

Alcohol history 0.115
Yes 4 (17.4) 12 (7.3)
No 19 (82.6) 152 (92.7)

Comorbidities
Hypertension 0.013

Yes 14 (60.9) 56 (34.1)
No 9 (39.1) 108 (65.9)

Hyperlipidemia 0.052
Yes 5 (21.7) 13 (7.9)
No 18 (78.3) 151 (92.1)

COPD 0.477
Yes 1 (4.3) 18 (11)
No 22 (95.7) 146 (89)

Diabetes mellitus 0.689
Yes 5 (21.7) 42 (25.6)
No 18 (78.3) 122 (74.4)

Gout 1.000
Yes 0 (0) 4 (2.4)
No 23 (100) 160 (97.6)

BPH 0.136
Yes 0 (0) 19 (11.6)
No 23 (100) 145 (88.4)

Parkinson’s disease 1.000
Yes 0 (0) 1 (0.6)
No 23 (100) 163 (99.4)

Osteoporosis 1.000
Yes 0 (0) 2 (1.2)
No 23 (100) 162 (98.8)

MI 0.075
Yes 2 (8.7) 2 (1.2)
No 21 (91.3) 162 (98.8)

Heart disease 0.044
Yes 4 (17.4) 8 (4.9)
No 19 (82.6) 156 (95.1)

Asthma 1.000
Yes 0 (0) 3 (1.8)
No 23 (100) 161 (98.2)
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Table 1. Cont.

Characteristics Complication
(n = 23)

No Complication
(n = 164) p-Value

Buger’s disease 1.000
Yes 0 (0) 1 (0.6)
No 23 (100) 163 (99.4)

Angina 0.123
Yes 1 (4.3) 0 (0)
No 22 (95.7) 164 (100)

Crohn’s disease 1.000
Yes 0 (0) 1 (0.6)
No 23 (100) 163 (99.4)

HIV 1.000
Yes 0 (0) 2 (1.2)
No 23 (100) 162 (98.8)

Hepatitis B 1.000
Yes 0 (0) 3 (1.8)
No 23 (100) 161 (98.2)

Concomitant drug
Statins 0.771

Yes 3 (13) 29 (17.7)
No 20 (87) 135 (82.3)

PPIs 0.952
Yes 8 (34.8) 56 (34.1)
No 15 (65.2) 108 (65.9)

5-HT3 Antagonists 0.625
Yes 3 (13) 16 (9.8)
No 20 (87) 148 (90.2)

D2 antagonists 0.231
Yes 1 (4.3) 1 (0.6)
No 22 (95.7) 163 (99.4)

Corticosteroids 1.000
Yes 1 (4.3) 7 (4.3)
No 22 (95.7) 157 (95.7)

Antihistamines 0.204
Yes 3 (13) 10 (6.1)
No 20 (87) 154 (93.9)

Diuretics 1.000
Yes 1 (4.3) 12 (7.3)
No 22 (95.7) 152 (92.7)

β-blockers 0.061
Yes 3 (13) 5 (3)
No 20 (87) 159 (97)

P2Y12 inhibitors 0.032
Yes 4 (17.4) 7 (4.3)
No 19 (82.6) 157 (95.7)

5HT4 agonists 0.327
No 22 (95.7) 162 (98.8)
Yes 1 (4.3) 2 (1.2)

Antiepileptics 1.000
Yes 0 (0) 1 (0.6)
No 23 (100) 163 (99.4)

Antibiotics 0.744
Yes 2 (8.7) 21 (12.8)
No 21 (91.3) 143 (87.2)

Alpha-blockers 0.476
Yes 1 (4.3) 19 (11.6)
No 22 (95.7) 145 (88.4)
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Table 1. Cont.

Characteristics Complication
(n = 23)

No Complication
(n = 164) p-Value

5α-Reductase inhibitors 1.000
Yes 1 (4.3) 12 (7.3)
No 22 (95.7) 152 (92.7)

NSAIDs 0.261
Yes 2 (8.7) 32 (19.5)
No 21 (91.3) 132 (80.5)

Metformin 0.185
Yes 5 (21.7) 19 (11.6)
No 18 (78.3) 145 (88.4)

Antipsychotics 0.327
Yes 1 (4.3) 2 (1.2)
No 22 (95.7) 162 (98.8)

Anticoagulants 0.350
Yes 5 (21.7) 23 (14)
No 18 (78.3) 141 (86)

ACE inhibitors/ARBs 0.684
Yes 2 (8.7) 12 (7.3)
No 21 (91.3) 152 (92.7)

Zolpidem 0.327
Yes 1 (4.3) 2 (1.2)
No 22 (95.7) 162 (98.8)

TCAs 1.000
Yes 0 (0) 1 (0.6)
No 23 (100) 163 (99.4)

Opioids 0.038
Yes 12 (52.2) 120 (73.2)
No 11 (47.8) 44 (26.8)

Aspirin 1.000
Yes 0 (0) 5 (3)
No 23 (100) 159 (97)

Dopamine 0.327
Yes 1 (4.3) 2 (1.2)
No 22 (95.7) 162 (98.8)

Benzodiazepines 0.738
Yes 3 (13) 19 (11.6)
No 20 (87) 145 (88.4)

Antivirals 1.000
Yes 0 (0) 3 (1.8)
No 23 (100) 161 (98.2)

SSRIs, SNRIs 0.600
Yes 0 (0) 7 (4.3)
No 23 (100) 157 (95.7)

Cancer stage 0.428
1 0 (0.0) 1 (0.6)
2 0 (0.0) 3 (1.8)
3 3 (13.0) 9 (5.5)
4 20 (87.0) 150 (92.0)

Diagnosis 0.223
Bladder cancer 0 (0) 15 (9.1)
Colon cancer 0 (0) 3 (1.8)
Gastric cancer 0 (0) 8 (4.9)

Hepatocellular cancer 1 (4.3) 12 (7.3)
Lung cancer 19 (82.6) 75 (45.7)

Pancreatic cancer 0 (0) 2 (1.2)
Rectal cancer 0 (0) 3 (1.8)
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Table 1. Cont.

Characteristics Complication
(n = 23)

No Complication
(n = 164) p-Value

Renal cancer 0 (0) 3 (1.8)
Stomach cancer 0 (0) 3 (1.8)

Other 2 (8.7) 38 (23.2)
ECOGPS 0.464

0 0 (0) 1 (0.6)
1 21 (91.3) 129 (79.6)
2 2 (8.7) 18 (11.1)
3 0 (0) 14 (8.6)

BMI: body mass index: COPD: chronic obstructive pulmonary disease; BPH: benign prostatic hyperplasia; MI: myocardial infarction; HIV:
human immunodeficiency viruses; PPIs: proton pump inhibitors; NSAIDs: non-steroidal anti-inflammatory drugs; ACE: angiotensin-
converting enzyme; ARBs: angiotensin receptor blockers; TCAs: tricyclic antidepressants; SSRIs: selective serotonin reuptake inhibitors;
SNRIs: serotonin and norepinephrine reuptake inhibitors; ECOGPS: Eastern Cooperative Oncology Group performance status.

The multivariable analysis (Table 2) included sex, age, BMI, and factors with p < 0.05
in univariate analysis (heart disease, P2Y12 inhibitors, smoking history, hypertension, and
opioids). After adjusting for related covariates, patients with smoking history and hy-
pertension showed approximately 3.7- and 4.1-fold higher incidence of thyroid-related
adverse events than patients without smoking history and hypertension, respectively. Pa-
tients taking opioids revealed about 4.0-fold fewer thyroid-related complications compared
with those not taking opioids. The Hosmer–Lemeshow test showed that the fitness of the
multivariable analysis model was satisfactory (χ2 = 0.764, 4 degrees of freedom, p = 0.943).

Table 2. Multivariable analysis to identify predictors for thyroid-related adverse events in patients receiving immune
checkpoint inhibitors.

Characteristics Crude OR (95% CI) p-Value Adjusted OR (95% CI) p-Value

Sex 1.024 (0.355–2.952) 0.965
Age < 65 0.698 (0.291–1.677) 0.422

BMI 0.954 (0.373–2.438) 0.921
Heart disease 4.105 (1.129–14.932) 0.032

P2Y12 inhibitors 4.722 (1.265–17.631) 0.021
Smoking history 2.993 (1.183–7.574) 0.021 3.748 (1.338–10.496) 0.012

Hypertension 3.000 (1.223–7.360) 0.016 4.093 (1.478–11.332) 0.007
Opioids 0.400 (0.165–0.972) 0.043 0.248 (0.090–0.683) 0.007

Crude OR: the result from fitting the univariate logistic regression model. Adjusted OR: adjusted for sex, age, BMI, heart disease, P2Y12
inhibitors, smoking history, hypertension, and opioids. BMI: body mass index; OR: odds ratio; CI: confidence interval.

As shown in Figure 1, after feature selection by performing a five-fold cross-validated
random forest approach, seven important variables (heart disease, smoking history, opioids,
hypertension, sex, age, and BMI) were included in machine learning models. The average
AUROC values and AUPRC values after performing five-fold cross-validated multivariate
logistic regression, elastic net, random forest, and SVM models across 100 random iterations
are shown in Table 3. The AUROC values for multivariate logistic regression, elastic net,
and random forest indicated acceptable performances of the models: 0.71, 0.71, and 0.77,
respectively (95% CI 0.587–0.827, 0.588–0.829, and 0.648–0.883, respectively). Radial kernel
SVM revealed sub-optimal performances of the models and an AUROC value of 0.69 (95%
CI 0.539–0.838). The AUPRC values of multivariate logistic regression, elastic net, random
forest, linear kernel SVM, and radial kernel SVM were 0.47, 0.47, 0.51, 0.36, and 0.45,
respectively (95% CI 0.312–0.622, 0.314–0.625, 0.357–0.666, 0.216–0.497, and 0.310–0.600,
respectively). For the random forest model, which showed the best prediction, the cut-
off point that maximizes the accuracy was 0.05. While the prevalence of thyroid-related
adverse events was 0.12, the prediction model showed an approximately 3.5-fold higher
positive predictive value. Figure 2 showed the AUROC curves of the four models that
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exhibited acceptable or sub-optimal interpretability and prediction rates. The details for
the parameters used for training models are provided in Table 4.

Table 3. Comparisons of AUC for the logistic regression, elastic net, random forest, and SVM models.

Machine Learning Model AUROC (95% CI) AUPRC (95% CI)

Logistic regression 0.71 (0.587–0.827) 0.47 (0.312–0.622)
Elastic net 0.71 (0.588–0.829) 0.47 (0.314–0.625)

Random Forest 0.77 (0.648–0.883) 0.51 (0.357–0.666)
SVM (Linear) 0.57 (0.394–0.752) 0.36 (0.216–0.497)
SVM (Radial) 0.69 (0.539–0.838) 0.45 (0.310–0.600)

AUROC: area under the receiver-operating curve; AUPR: area under the precision-recall curve; CI: confidence
interval; and SVM: support vector machine.
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logistic regression (LR), random forest (RF), and support vector machine radial (SVM_R) models.

Table 4. Machine learning model specifics.

Method
Hyperparameter

Model Specification and Search Grids Selected Values

Elastic net
λ: 100 equally spaced values in logarithmic scale between 10−4 and 0 λ: 0.01261857

α: 0, 0.2, 0.4, 0.6, 0.8, 1 α: 0.6
Random forests mtry: 1, 2, 3, 4, 5, 6, 7 mtry: 1

SVM with linear kernel C: 0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 5 C: 1

SVM with radial kernel
Sigma: 2−15, 2−13, 2−11, 2−9, 2−7, 2−5, 2−3, 2−1, 2, 23 Sigma: 0.125

C: 2−5, 2−3, 2−1, 2, 23, 25, 27, 29, 211, 213, 215 C: 128

SVM: support vector machine.

4. Discussion

The main finding of this study is that smoking history, hypertension, and opioids
were associated with thyroid-related adverse events in patients taking anti-PD-1 or PD-L1.
Patients with a smoking history and hypertension had an approximately 4.0-fold increased
risk of thyroid-related complications compared with those without these conditions. Pa-
tients taking opioids showed an approximately 4.0-fold decreased risk of thyroid-related
adverse events compared with those not taking them. Random forest was proven to be
the most favorable method for predicting thyroid-related complications, with an AUROC
value of 0.77 (95% CI 0.648–0.883) and an AUPRC value of 0.510 (95% CI 0.357–0.666).

Tumor antigens are known to be presented to T cells by antigen-presenting-cells, which
trigger the interaction between T cell receptors and the major histocompatibility complex.
Several receptors act as negative regulators of the immune response at different molecular
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checkpoints. For instance, the PD-1/PD-L1 pathway regulates inflammatory responses
by effector T cells. Once T cells are activated, they upregulate PD-1 and inflammatory
signals in the tissue. This action further induces the expression of PD-L1, resulting in the
downregulation of T cell activity and protecting tissues from destruction [2]. ICIs block the
PD-1/PD-L1 pathway and increase T cell activation and proliferation, which causes both
anti-tumor activity and immune-related complications.

Thyroid-related adverse events are one of the most common immune-related com-
plications in patients taking ICIs. These adverse events can present as hyperthyroidism
or hypothyroidism. A randomized controlled phase 3 study showed the occurrence of
both hypothyroidism (10.1% in the 2-week group and 8.7% in the 3-week group) and
hyperthyroidism (6.5% and 3.2%, respectively) in patients receiving pembrolizumab [18].
Another randomized controlled trial also showed hypothyroidism and hyperthyroidism to
be the most common adverse events of pembrolizumab [19]. In the group administered 2
mg/kg of pembrolizumab, 8% of the patients developed hypothyroidism while 4% devel-
oped hyperthyroidism [19]. In addition, a randomized, open-label, phase 3 trial reported
several endocrine complications, including thyroid dysfunction, caused by nivolumab [20].
They showed that approximately more than 11% of patients receiving nivolumab had
endocrine adverse events, most of which were observed during the initial seven months
of the treatment [20]. As patients with ICI-induced thyroid dysfunction did not show
clinical symptoms, it becomes crucial to carefully detect any adverse event during hor-
mone monitoring. Therefore, immune-mediated adverse events, especially thyroid-related
complications, play important roles in safety when facing the management of ICIs.

Our study results revealed that current or ex-smokers receiving anti-PD-1/PD-L1
therapy are at a higher risk of thyroid dysfunction. Cigarette smoking is a known risk
factor for thyroid-related complications. A previous study has shown an association
between smoking and the development of Graves’ hyperthyroidism [21]. Fukata et al.
revealed that smoking increased the risk of subsequent hypothyroidism, possibly because
of the antithyroid effect of thiocyanate [22]. Meanwhile, smoking is known to increase
the efficacy of ICIs. A meta-analysis showed that both monotherapy and combination
therapy are superior to chemotherapy in smokers; however, they were less effective than
chemotherapy in never-smokers [23]. A possible explanation of this phenomenon is PD-L1
upregulation caused by smoking [24,25]. It has been shown that elevated levels of PD-L1
expression increased the efficiency of anti-PD-1/PD-L1 treatment [26,27]. As a result,
increased activities of ICIs may trigger thyroid abnormalities because of the high T cell
activity.

This study showed that hypertension is a risk factor for thyroid-related adverse events.
The renin–angiotensin system plays a vital role in the regulation of hypertension. Increased
renin–angiotensin system activity is known to increase blood pressure and to induce
immunosuppression in the tumor environment [28]. Coelho et al. showed that oncogenic
renin–angiotensin system signaling can increase PD-L1 expression [28]. As shown in the
smoking case, it can be speculated that the anti-PD-1/PD-L1 treatment may have a higher
efficacy because of upregulation.

This study showed that opioid use was negatively associated with thyroid-related
complications in patients treated with PD-1/PD-L1 inhibitors. Opioids play a crucial role
in increasing the resistance to immunotherapy [29]. Morphine and buprenorphine reduce
the levels of interleukin-4 mRNA and protein in T cells [30]. A retrospective study on
102 cancer patients administered opioids and ICIs showed poor outcomes [31], possibly
because of the presence of opioid receptors on immune cells [29]. As opioid receptors are
expressed in immune cells, opioids could alter immune responses [32]. Given that the use
of opioids can dysregulate the immune response, opioid usage during ICI treatment could
affect its efficacy and can cause autoimmune complications, including thyroid dysfunction.

The utilization of machine learning approaches to predict thyroid-related adverse
events in patients receiving PD-1/PD-L1 inhibitors is a novel concept in clinical research.
Machine learning algorithms are integrated into the clinical decision-making process to
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guide clinicians to diagnose, screen, prevent, and treat cancer patients. Machine learning
methods use a training dataset to train computational models and to generate the most
optimal prediction models, which can further be validated in the test dataset to ensure
accuracy. In clinical settings, these models can help predict and manage thyroid-related
complications in patients receiving ICIs. In a binary model such as this study, the out-
come prediction performance of a model is evaluated by the ROC curve. In this study,
we performed feature selection using random forest, an ensemble method of bootstrap
aggregated binary classification trees [33], to overcome overfitting. We also trained various
machine learning models and concluded that the random forest model outperformed the
other models with the highest AUROC and AUPRC values. Hence, this model can be used
for predicting thyroid-related complications in patients on ICIs.

The limitations of our study are its small sample size and the lack of a detailed
mechanism. Although it has been reported that cancer types did not affect thyroid-related
adverse events, 10 types of cancer and 3 ICIs could influence other clinical outcomes,
thereby complicating the study outcome. Therefore, cautious interpretation is needed
when applying the results of this study to real clinical settings. Moreover, because of the
lack of independent data, we did not perform the external validation that is needed to
examine the trained model’s performance. Further research is needed to externally validate
current results to ensure accuracy for application in clinical settings. Nevertheless, to the
best of our knowledge, this is the first study to investigate factors responsible for thyroid
dysfunction in patients taking anti-PD-1/PD-L1 agents. In addition, this study provides
important features and prediction models based on machine learning algorithms, which
included logistic regression, elastic net, random forest, and SVM. Given that our study
developed prediction models using the factors associated with thyroid-related adverse
events in patients receiving ICIs, our findings provide additional insight to manage thyroid-
related complications. Moreover, the results of this study could be utilized to design and
develop individually tailored PD-1/PD-L1 inhibitor treatments for various cancer types.
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10. Horn, L.; Mansfield, A.S.; Szczęsna, A.; Havel, L.; Krzakowski, M.; Hochmair, M.J.; Huemer, F.; Losonczy, G.; Johnson, M.L.;
Nishio, M.; et al. First-Line Atezolizumab plus Chemotherapy in Extensive-Stage Small-Cell Lung Cancer. N. Engl. J. Med. 2018,
379, 2220–2229. [CrossRef]

11. Schmid, P.; Adams, S.; Rugo, H.S.; Schneeweiss, A.; Barrios, C.H.; Iwata, H.; Diéras, V.; Hegg, R.; Im, S.A.; Shaw Wright, G.; et al.
Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer. N. Engl. J. Med. 2018, 379, 2108–2121. [CrossRef]

12. Barroso-Sousa, R.; Barry, W.T.; Garrido-Castro, A.C.; Hodi, F.S.; Min, L.; Krop, I.E.; Tolaney, S.M. Incidence of Endocrine
Dysfunction Following the Use of Different Immune Checkpoint Inhibitor Regimens: A Systematic Review and Meta-analysis.
JAMA Oncol. 2018, 4, 173–182. [CrossRef] [PubMed]

13. Cao, Y.; Afzal, M.Z.; Shirai, K. Ipilimumab and nivolumab induced immune-related adverse events in metastatic mucosal
melanoma. BMJ Case Rep. 2021, 14, e243713. [CrossRef] [PubMed]

14. González-Rodríguez, E.; Rodríguez-Abreu, D. Spanish Group for Cancer Immuno-Biotherapy (GETICA). Immune Checkpoint
Inhibitors: Review and Management of Endocrine Adverse Events. Oncologist 2016, 21, 804–816. [CrossRef]

15. Huang, X.Z.; Gao, P.; Song, Y.X.; Sun, J.X.; Chen, X.W.; Zhao, J.H.; Wang, Z.N. Efficacy of immune checkpoint inhibitors and age
in cancer patients. Immunotherapy 2020, 12, 587–603. [CrossRef]

16. Maughan, B.L.; Bailey, E.; Gill, D.M.; Agarwal, N. Incidence of Immune-Related Adverse Events with Program Death Receptor-1-
and Program Death Receptor-1 Ligand-Directed Therapies in Genitourinary Cancers. Front. Oncol. 2017, 7, 56. [CrossRef]

17. National Institutes of Health, National Cancer Institute. Common Terminology Criteria for Adverse Events (CTCAE), Version 5.0.
November 2017. Available online: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/CTCAE_v5
_Quick_Reference_8.5x11.pdf (accessed on 13 August 2021).

18. Robert, C.; Schachter, J.; Long, G.V.; Arance, A.; Grob, J.J.; Mortier, L.; Daud, A.; Carlino, M.S.; McNeil, C.; Lotem, M.; et al.
Pembrolizumab versus Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2015, 372, 2521–2532. [CrossRef]

19. Herbst, R.S.; Baas, P.; Kim, D.W.; Felip, E.; Pérez-Gracia, J.L.; Han, J.Y.; Molina, J.; Kim, J.H.; Arvis, C.D.; Ahn, M.J.; et al.
Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010):
A randomised controlled trial. Lancet 2016, 387, 1540–1550. [CrossRef]

20. Motzer, R.J.; Escudier, B.; George, S.; Hammers, H.J.; Srinivas, S.; Tykodi, S.S.; Sosman, J.A.; Plimack, E.R.; Procopio, G.;
McDermott, D.F.; et al. Nivolumab versus everolimus in patients with advanced renal cell carcinoma: Updated results with
long-term follow-up of the randomized, open-label, phase 3 CheckMate 025 trial. Cancer 2020, 126, 4156–4167. [CrossRef]

21. Bertelsen, J.B.; Hegedüs, L. Cigarette smoking and the thyroid. Thyroid 1994, 4, 327–331. [CrossRef] [PubMed]
22. Fukata, S.; Kuma, K.; Sugawara, M. Relationship between cigarette smoking and hypothyroidism in patients with Hashimoto’s

thyroiditis. J. Endocrinol. Investig. 1996, 19, 607–612. [CrossRef] [PubMed]
23. Dai, L.; Jin, B.; Liu, T.; Chen, J.; Li, G.; Dang, J. The effect of smoking status on efficacy of immune checkpoint inhibitors in

metastatic non-small cell lung cancer: A systematic review and meta-analysis. EClinicalMedicine 2021, 38, 100990. [CrossRef]
24. Calles, A.; Liao, X.; Sholl, L.M.; Rodig, S.J.; Freeman, G.J.; Butaney, M.; Lydon, C.; Dahlberg, S.E.; Hodi, F.S.; Oxnard, G.R.; et al.

Expression of PD-1 and Its Ligands, PD-L1 and PD-L2, in Smokers and Never Smokers with KRAS-Mutant Lung Cancer. J. Thorac.
Oncol. 2015, 10, 1726–1735. [CrossRef]

25. Garon, E.; Gandhi, L.; Rizvi, N.; Hui, R.; Balmanoukian, A.S.; Patnaik, A.; Eder, J.P.; Blumenshein, G.R.; Aggarwal, C.; Soria,
J.C.; et al. Antitumor Activity of Pembrolizumab (Pembro; Mk-3475) and Correlation with Programmed Death Ligand 1 (Pd-L1)
Expression in a Pooled Analysis of Patients (Pts) with Advanced Non–Small Cell Lung Carcinoma (Nsclc). Ann. Oncol. 2014, 25,
v1. [CrossRef]

http://doi.org/10.1056/NEJMoa1003466
http://www.ncbi.nlm.nih.gov/pubmed/20525992
http://doi.org/10.1016/S1470-2045(16)30098-5
http://doi.org/10.1056/NEJMoa1411087
http://doi.org/10.1016/S0140-6736(14)60958-2
http://doi.org/10.1016/S1470-2045(15)00083-2
http://doi.org/10.1016/S0140-6736(16)00561-4
http://doi.org/10.1056/NEJMoa1809064
http://doi.org/10.1056/NEJMoa1809615
http://doi.org/10.1001/jamaoncol.2017.3064
http://www.ncbi.nlm.nih.gov/pubmed/28973656
http://doi.org/10.1136/bcr-2021-243713
http://www.ncbi.nlm.nih.gov/pubmed/34417242
http://doi.org/10.1634/theoncologist.2015-0509
http://doi.org/10.2217/imt-2019-0124
http://doi.org/10.3389/fonc.2017.00056
https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/CTCAE_v5_Quick_Reference_8.5x11.pdf
https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/CTCAE_v5_Quick_Reference_8.5x11.pdf
http://doi.org/10.1056/NEJMoa1503093
http://doi.org/10.1016/S0140-6736(15)01281-7
http://doi.org/10.1002/cncr.33033
http://doi.org/10.1089/thy.1994.4.327
http://www.ncbi.nlm.nih.gov/pubmed/7833671
http://doi.org/10.1007/BF03349026
http://www.ncbi.nlm.nih.gov/pubmed/8957745
http://doi.org/10.1016/j.eclinm.2021.100990
http://doi.org/10.1097/JTO.0000000000000687
http://doi.org/10.1093/annonc/mdu438.51


Cancers 2021, 13, 5465 13 of 13

26. Garon, E.B.; Hellmann, M.D.; Rizvi, N.A.; Carcereny, E.; Leighl, N.B.; Ahn, M.J.; Eder, J.P.; Balmanoukian, A.S.; Aggarwal, C.;
Horn, L.; et al. Five-Year Overall Survival for Patients With Advanced Non-Small-Cell Lung Cancer Treated With Pembrolizumab:
Results From the Phase I KEYNOTE-001 Study. J. Clin. Oncol. 2019, 37, 2518–2527. [CrossRef]

27. Middleton, G.; Brock, K.; Savage, J.; Mant, R.; Summers, Y.; Connibear, J.; Shah, R.; Ottensmeier, C.; Shaw, P.; Lee, S.M.; et al.
Pembrolizumab in patients with non-small-cell lung cancer of performance status 2 (PePS2): A single arm, phase 2 trial. Lancet
Respir. Med. 2020, 8, 895–904. [CrossRef]

28. Coelho, M.A.; de Carné Trécesson, S.; Rana, S.; Zecchin, D.; Moore, C.; Molina-Arcas, M.; East, P.; Spencer-Dene, B.; Nye, E.;
Barnouin, K.; et al. Oncogenic RAS Signaling Promotes Tumor Immunoresistance by Stabilizing PD-L1 mRNA. Immunity 2017,
47, 1083–1099. [CrossRef]

29. Botticelli, A.; Cirillo, A.; Pomati, G.; Cerbelli, B.; Scagnoli, S.; Roberto, M.; Gelibter, A.; Mammone, G.; Calandrella, M.L.; Cerbelli,
E.; et al. The role of opioids in cancer response to immunotherapy. J. Transl. Med. 2021, 19, 119. [CrossRef] [PubMed]

30. Okuyama, K.; Ide, S.; Sakurada, S.; Sasaki, K.; Sora, I.; Tamura, G.; Ohkawara, Y.; Takayanagi, M.; Ohno, I. µ-opioid receptor-
mediated alterations of allergen-induced immune responses of bronchial lymph node cells in a murine model of stress asthma.
Allergol. Int. 2012, 61, 245–258. [CrossRef]

31. Iglesias-Santamaría, A. Impact of antibiotic use and other concomitant medications on the efficacy of immune checkpoint
inhibitors in patients with advanced cancer. Clin. Transl. Oncol. 2020, 22, 1481–1490. [CrossRef] [PubMed]

32. Meng, J.; Yu, H.; Ma, J.; Wang, J.; Banerjee, S.; Charboneau, R.; Barke, R.A.; Roy, S. Morphine induces bacterial translocation in
mice by compromising intestinal barrier function in a TLR-dependent manner. PLoS ONE 2013, 8, e54040. [CrossRef] [PubMed]

33. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]

http://doi.org/10.1200/JCO.19.00934
http://doi.org/10.1016/S2213-2600(20)30033-3
http://doi.org/10.1016/j.immuni.2017.11.016
http://doi.org/10.1186/s12967-021-02784-8
http://www.ncbi.nlm.nih.gov/pubmed/33757546
http://doi.org/10.2332/allergolint.11-OA-0304
http://doi.org/10.1007/s12094-019-02282-w
http://www.ncbi.nlm.nih.gov/pubmed/31919759
http://doi.org/10.1371/journal.pone.0054040
http://www.ncbi.nlm.nih.gov/pubmed/23349783
http://doi.org/10.1023/A:1010933404324

	Introduction 
	Methods 
	Study Patients and Data Collection 
	Statistical Analysis and Machine Learning Methods 

	Results 
	Discussion 
	References

