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Simple Summary: Cancer is a deadly disease that needs to be diagnose at early stage to increase pa-
tient survival rate. Multi-organ (such as breast, brain, lung, and skin) cancer detection, segmentation
and classification manually using medical imaging is time consuming and required high expertise.
In this study, we summarize existing deep learning segmentation and classification methods for
multi-organ cancer diagnosis and provide future challenges with possible solutions. This review may
benefit researchers to design new robust approaches that could be useful for the medical specialists
as a second view.

Abstract: Thus far, the most common cause of death in the world is cancer. It consists of abnormally
expanding areas that are threatening to human survival. Hence, the timely detection of cancer is
important to expanding the survival rate of patients. In this survey, we analyze the state-of-the-art
approaches for multi-organ cancer detection, segmentation, and classification. This article promptly
reviews the present-day works in the breast, brain, lung, and skin cancer domain. Afterwards,
we analytically compared the existing approaches to provide insight into the ongoing trends and
future challenges. This review also provides an objective description of widely employed imaging
techniques, imaging modality, gold standard database, and related literature on each cancer in
2016–2021. The main goal is to systematically examine the cancer diagnosis systems for multi-organs
of the human body as mentioned. Our critical survey analysis reveals that greater than 70% of deep
learning researchers attain promising results with CNN-based approaches for the early diagnosis of
multi-organ cancer. This survey includes the extensive discussion part along with current research
challenges, possible solutions, and prospects. This research will endow novice researchers with
valuable information to deepen their knowledge and also provide the room to develop new robust
computer-aid diagnosis systems, which assist health professionals in bridging the gap between rapid
diagnosis and treatment planning for cancer patients.

Keywords: cancer diagnosis; machine learning; deep learning; medical imaging; automated computer-
aid diagnosis systems

1. Introduction

Cancer diagnosis using different medical images plays a significant role in detecting
various abnormalities, for instance, skin cancer [1], breast cancer [2], lung cancer [3], brain
tumors [4,5], blood cancer [6], and so forth. Tumor-induced abnormalities are the leading
source of universal demise [7]. The GLOBOCAN 2020 report illustrates that lung cancer
(18%) is the leading cause of death; other cancers are also life-threatening for humans
with different mortality rates, for example, breast cancer (6.9%) and brain cancer (2.5%) [8].
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Many image modalities are utilized to analyze irregularities in different organs, such
as Magnetic Resonance Imaging (MRI) [9], Positron Emission Tomography (PET) [10],
Computed Tomography (CT) [11], and mammography [12].

The human brain is the most complex part of our body. The functioning of brain
cells is highly influenced by the irregular mitosis mechanism. As a result, cancer cells are
produced with distinct morphological properties, such as size, shape, boundaries, and
so forth. Low-grade gliomas (grades I and II) and high-grade glioma (grades III and IV)
are two major categories of brain tumors. Low-grade tumors grow slowly [13], while
the high-grade are the most malignant primary brain tumors, which are more aggressive
and disrupt the blood–brain supply [14]. Glioblastoma (GBM) [15], a grade IV glioma, is
the most common, invasive, and lethal type of primary brain tumor. Cancerous cells are
less contrasted than the nearby cells, making perfect brain tumor recognition challenging.
Thus far, examining MR scans is one of the most effective techniques for detecting brain
tumors owing to its non-invasive nature, painless test procedure and for manipulating the
tumorous region from various angles [16].

A leading cause of death among women is breast cancer. Abnormal cells can be
benign or malignant. Malignant breast cancer is more aggressive and threatening because
it spreads to multiple body organs via the lymphatic system [17]. A benign tumor, a
noncancerous tumor, is well recognized in type and has a large size, but malignant tumors
are diffused and small. Due to narrow size and fatty tissue problems, the early detection
of malignant tumors is challenging. The timely detection of breast cancer can help with
the diagnosis procedure, which can alleviate the disease severity with more excellent
recovery [18,19]. Therefore, state-of-the-art, fully automatic methods are needed for early
breast tumor detection.

The formation of a certain nodule in the lungs is an indication of lung cancer. A round-
shaped nodule in the lungs can be benign or malignant [20]. The malignant nodules
develop swiftly, and their rapid progression might affect the other body parts. CT images
are a commonly employed diagnostic technique for lung cancer detection [21].

In addition to the above-mentioned types of cancer, skin cancer is a fast dominant
disease worldwide [22]. It has two categories, melanoma, and non-melanoma cancer.
Melanoma cancer is considered aggressive than non-melanoma, a critical type of cancer
that arises as a dark spot on the skin. Occasionally, these spots grow as a mole to progress
in shape, uneven edges, and different skin colours. In the last year (2020), the death count
for non-melanoma and melanoma skin cancer is 63,731 and 57,043, respectively [23,24]. To
summarize, to cope with a fatal disease like cancer, early diagnosis is highly needed to
guard the patients’ life, which could be done only by developing advanced CAD systems.
Computer-aided procedures currently play an important role in medical image analysis.
The CAD-aided segmentation and classification facilitate target separation, diagnosis,
quantitative measurements, and treatment planning. Figure 1 depicts the commonly
employed CAD approaches in the domain of medical image analysis. So far, many methods
have been developed for various types of detection, segmentation, and classification.
However, research in this area is still in its infancy. This study critically highlights the
room for improvement in four major cancer types viz. lung, breast, brain, and skin in
theoretical and technological ways. Moreover, this article covers cutting-edge methods
for multi-organ cancer detection and diagnosis using medical images, which would be
highly beneficial for novice researchers to propose the CAD system in a specific domain.
Additionally, a comprehensive analysis of the most commonly used standard databases for
the brain, breast, lung, and skin cancers is also elaborated. Majorly this review includes the
brief discussion part where open research challenges and future directions are extensively
discussed, which can assist physicians and radiologists in treatment planning.

The rest of the study is structured in several sections: Section 2 presents material and
methods that include a brief explanation of the standard datasets available for multi-organ
images and performance evaluation metrics. Section 3 contains the brain tumor detection
methods. Section 4 is about breast cancer detection methods; Section 5 represents the lung
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cancer detection methods; Section 6 describes the skin lesion cancer detection methods.
Section 7 is about the discussion and open research challenges along with the state-of-
the-art solutions and prospects. In Section 8, the whole study is summarized under the
conclusion heading.

The key motivation behind this conducted research is to look for the answer to these queries:

1. What is the commonly employed imaging modality in each of the four cancers?
2. What kind of databases is utilized for medical image analysis?
3. Which kind of AI technology is in trend for the early diagnosis of these cancers?
4. Why is CNN architecture is a trend in breast, brain, lung, and skin cancer diagnosis?
5. What performance evaluation metrics are employed to evaluate the models’ efficiency?

Figure 1. A flowchart of a standard CAD system for diagnosing multi-organ of human body cancer.
This flowchart illustrates all steps of a CAD system.

2. Material and Methods

In this section, we have briefly discussed search strategy and selection criteria. More-
over, some standard datasets are described, which are implemented extensively for cancer
segmentation, and classification approaches followed by performance measures are also
briefly explained.

2.1. Search Strategy and Selection Criteria

In this review, we have utilized openly available search databases such as Google
Scholar and PubMed to find most related articles using different queries. We have lim-
ited our search to manuscripts published between the years 2016–2021. We have used
the following queries in different combinations: “brain cancer diagnosis”, “Brats dataset
segmentation”, “breast cancer diagnosis”, “lung cancer diagnosis”, “skin cancer diagno-
sis”, “LIDC/IDRI database segmentation and classification”, “skin lesions”, “brain tumor
segmentation and classification”, “breast cancer segmentation and classification”, “WBCD
dataset segmentation”, “lung cancer segmentation and classification”, "skin cancer seg-
mentation and classification”, “PH2 dataset segmentation”, “brain tumor detection using
machine learning and deep learning classifiers”, “breast tumor diagnosis using machine
learning and deep learning classifiers”, “lung cancer detection using machine learning
and deep learning classifiers”, “skin cancer diagnosis using machine learning and deep
learning classifiers”, “brain tumor MRI and deep learning”, “DDSM classification”, “arti-
ficial intelligence and breast cancer”, “artificial intelligence and brain tumor”, “artificial
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intelligence and lung cancer”, and so forth. More than 300 related papers are reviewed,
among them 156 papers are selected for the current study, and 111 manuscripts out of 156
were most relevant to brain, breast, lung, and skin cancer diseases.

2.2. Most Popular Publicly Available Datasets
2.2.1. Multimodal Brain Tumor Image Segmentation Benchmark(BraTS) Database

BraTS dataset consisted of multi-institutional routine clinically acquired pre-operative
multimodal MRI scans of High-Grade Glioma, that is, Glioblastoma (GBM/HGG) and
Lower Grade Glioma (LGG), with a pathologically confirmed diagnosis and available
overall survival (OS), are provided as the training, validation and testing data. In the MRI
study, BraTS focuses on evaluating advanced techniques of brain tumors segmentation
and classification. MRT multi-institutional pre-operative images are utilized to segment
brain tumors, specifically gliomas that vary in appearance, shape, size, and histology. The
patients’ OS is also brought into focus by integrative radiometric features analysis. It
has eight popular dataset collections from 2012 to 2020. The datasets used in the BraTS
challenge are acquired from 3T multi-modal scanners with ground truth annotated and
confirmed expert board-certified neuroradiologists [25].

2.2.2. Lung Image Database Consortium image collection(LIDC/IDRI) Database

The dataset, named LIDC and IDRI, are commonly employed datasets for implement-
ing recognition about the lung nodule. LIDC-IDRI is a freely available databank of CT lung
images. It contains scans of nodule outlines and subjective nodule properties rankings. It
is established to help lung nodules study and comprises 1018 cases with 244,617 CT scans
and XML report files generated by experienced thoracic radiologists [26].

2.2.3. Digital Database for Screening Mammography(DDSM) Database

It is a standard reference of mammographic scans generated in Massachusetts General
Hospital. Digital database for screening mammography contains 2620 cases, 1935 images
composed of tumors. Each case has four-view mammography screenings images of breast
and subject information. Suspicious areas and relevant pixel-level ground truth information
annotated by the radiologist (normal, benign, and malignant image) are included in
images [27].

2.2.4. Wisconsin Breast Cancer Database(WBCD) Database

A commonly employed multivariate Wisconsin Breast Cancer Database contains
683 patients’ information from the biopsy test of female breast cancer. There are 11 at-
tributes on each record. The first ten columns comprise the attributes column, and the
11th column holds class attributes. WBCD has 444 benign examples and 239 malignant
examples for training and testing tasks [28].

2.2.5. International Skin Imaging Collaboration(ISIC) Database

ISIC has a baseline dataset of 25,331 JPEG dermoscopic images for training and 8238
for testing skin lesions that are openly accessible. It describes outstanding problems in the
segmentation and classification of skin lesions, incorporated with a high-resolution image
validated by experienced experts. The dimensions of the scans are unbalanced because
they use various types of visual sensors [29].

2.2.6. PH2 Database

PH2 has been developed for the detection of skin lesion cancer. It is a dermoscopic im-
age database acquired at the Dermatology Service of Hospital Pedro Hispano, Matosinhos,
Portugal. The database contains 200 melanocytic skin lesion images for research purposes,
in which 80 images are benign cancer, 40 images belong to malignant, and the remaining
80 images are associated with the suspicious lesion. These are 8-bit RGB color images with
having dimensions of 768 × 560 pixels [30].
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The summary of the above-mentioned and other related datasets for various cancer
diseases for the example database name, modality, number of images or patients, link to
the source, is presented in Table 1.

Table 1. Commonly utilized publicly available databases with different modalities for brain, breast, lung and skin cancer detection.

Database Modality Images/Patients Link to the Source

BRATS2012 MRI-scans 45 Patients https://www.smir.ch/BRATS/Start2012 accessed on 30 June 2021

BRATS2015 MRI-scans 274 Patients https://www.smir.ch/BRATS/Start2015 accessed on 30 June 2021

BRATS2017 MRI-scans 285 Patients https://www.med.upenn.edu/sbia/brats2017/registration.html accessed on
30 June 2021

BrainWeb MRI-scans 20 http://www.bic.mni.mcgill.ca/brainweb/ accessed on 30 June 2021

Harvard MRI-scans 13,000 brain MRIs http://www.med.harvard.edu/aanlib/ accessed on 30 June 2021

Mini-MIAS Mammograms 322 http://peipa.essex.ac.uk/info/mias.html accessed on 30 June 2021

DDSM Mammograms 2620 cases http://www.eng.usf.edu/cvprg/Mammography/Database.html accessed
on 30 June 2021

WBCD Biopsy 683 Patients https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+
(Diagnostic) accessed on 30 June 2021

LIDC/IDRI CT-scans 1018 cases https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI
accessed on 30 June 2021

ISIC-2016 Dermoscopic 1279 https://challenge.isic-archive.com/data accessed on 30 June 2021

ISIC-2017 Dermoscopic 2750 https://challenge.isic-archive.com/data accessed on 30 June 2021

HAM10000 Dermoscopic 10,015 https://challenge.isic-archive.com/data accessed on 30 June 2021

PH2 Dermoscopic 200 https://www.fc.up.pt/addi/ph2%20database.html accessed on 30 June 2021

SD-198 Clinical 6584 http://xiaopingwu.cn/assets/projects/sd-198/ accessed on 30 June 2021

SD-260 Clinical 20,660 http://xiaopingwu.cn/assets/projects/sd-198/ accessed on 30 June 2021

2.3. Performance Evaluation Metrics

The major evaluation measures to check the performance of segmentation and classifi-
cation tasks of DL models such as Accuracy (Acc), Specificity (SP), Sensitivity (SN), area
under the curve (AUC), and true positive (TP) are reviewed in this research. SN, also enti-
tled as a recall, is a probability of recognizing the segmented image’s true pixels. SP depict
the ability to recognize negative pixel. Acc is defined as the ratio among the correctly identified
pixels (TP + TN) and the total pixel in an image (TP + FP + TN + FN). The mathematical
formulas to compute these performance measures are given in Equations (1)–(4).

SN =
TP

TP + FN
(1)

SP =
TN

TN + FP
(2)

Acc =
TB + TN

TP + FP + TN + FN
(3)

AUC =
1
2
(

TP
TP + FN

+
TN

TN + FP
) (4)

3. Brain Tumor

A major contributing factor towards the universal death rate is a brain tumor. The
World Health Organization (WHO) broadly categorized brain tumors as benign and malig-
nant tumors as from Grades I–IV (lowest–extreme aggressive) [31]. Grades I and II belong
to the Low-grade (LG) tumors category and are also termed benign tumors. Grade III and
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IV belong to the High-grade (HG) tumors category and are also termed as malignant tu-
mors [32]. LG and HG tumors also differ in terms of their growth and the number of years
of life anticipation. Therefore, timely diagnosis of brain tumor is necessary to minimize the
universal death rate. However, distinguishing healthy tissue from tumor is not an easy task,
owing to varying shapes and sizes, poor contrast and variable locations [31]. These factors
influence the complexity of tumor growth and predict the extent of resection at the time of
surgical planning, this has repercussions in terms of patient management [33]. Therefore,
reliable tumor classification and segmentation are important tasks for the determination
of tumor size, exact position, and type. For that purpose, computed tomography (CT),
biopsy, cerebral angiography, positron emission tomography (PET) and MRI are significant
medical imaging modalities [34]. Among them, MRI scans have attracted greater attention
owing to their non-invasive nature and their in-depth as well as objective analysis. MRI
is a potent and sensitive modality for detecting brain tumors and their boundary delin-
eation [35]. Initially, the precise analysis and comprehensive monitoring of brain tumors
were dependent on the radiologist experts. However, the radiologist’s dependent process
is tedious and time-consuming. Therefore, the development of advanced CAD systems
truly helps radiologists for the improved and timely diagnosis of brain tumor. Many
articles have been published on brain tumor detection, classification, and segmentation to
date. Some researchers apply conventional ML-based feature extraction methods for brain
tumor detection.

Nilesh Bhaskarrao et al. [36] proposed a brain tumor segmentation technique by ap-
plying Berkeley wavelet transform (BWT) with support vector machine SVM. BWT was
used for the feature extraction task, followed by the SVM classifier to perform the classi-
fication task. The authors reveal that the results obtained 96.51%, 94.2%, and 97.72% for
accuracy, specificity, and sensitivity. Alfonse et al. [37] used the SVM method for automated
brain tumor segmentation and classification using MR images. Firstly, brain images are
segmented, employing adaptive thresholding. Secondly, features are extracted using Fast
Fourier Transform (FFT), then Minimal Redundancy Maximal Relevance methods are used
for feature selection. This technique achieved 98.9% classification accuracy. In SVM, the
classification of different points based on proximity accompanied by splitting hyper-plane
required more execution time to calculate linear or quadratic complications. Wu et al. [38]
introduced a multi-level Gabor wavelet method to reduce the linear or quadratic calcula-
tions by using image superpixels instead of image voxels for the segmentation of GBM.
Extracted features are fused to SVM for classification purposes. Recently, an effort reducing
the classification error using SVM is presented by Soltaninejad et al. [39] proposed to
classify tumor grades (for example, II, III, and IV) using statistical features extraction. ROI
was segmented manually or by a superpixel-based method. The better version of brain
tumor grading for MRI image analysis is developed in [40].

Tianbao Ren et al. [41] developed an automated brain tumor segmentation approach.
Initially, the authors used histogram equalization to acquire the related information. Then
they implemented an improved Kernel-based Fuzzy C mean (KFCOM) with Weighted
fuzzy kernel clustering (WKFCOM) model that enhances brain image segmentation perfor-
mance. The results illustrate that the proposed combined algorithm achieves an improved
misclassification rate which was less than 2.36%. In comparison to FCM methods, a state-
of-the-art technique [42] is introduced that categorized White Matter, Grey Matter, and
cerebrospinal fluid spaces using Adaptive Fuzzy K-mean (AFKM) Clustering. Researchers
declare that the implemented AFKM algorithm obtains superior results in contrast to FCM
both qualitatively and quantitatively.

Li et al. [43] suggested a multi-modality deep learning network for brain tumor
segmentation that extracts multi-scale features of brain tissue from the MR scans. A data
mining system via the combination of FCM and SVM was presented for the MR image
segmentation in [44]. A combined technique with k-mean and FCM was introduced [45].
This technique implemented a median filter for MR brain images denoising and a brain
surface extractor for features extraction. Then, clustering is done through the proposed
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method. Anitha Vishnuvarthanan et al. [46] suggested a hybrid algorithm that involves
Bacteria Foraging Optimization (BFO) and a Modified FKM clustering approach for the
segmentation and classification of brain MR images.

Deep learning is an emerging approach and extensively applied in many object
detection applications to automatically perform feature extraction for complex patterns.
The most well-known method is a convolutional neural network (CNN); an example of
a 3D architecture for brain tumor detection is presented in Figure 2. Multiple hidden
layers of CNN with batch normalization architecture was implemented for brain tumor
classification [47].

The developed classification model was evaluated on BRATS 2013 and achieved
0.99% accuracy. Recently transfer learning approach is implemented in several medical
domains. It employs pre-trained networks that are previously trained on massive datasets
like ImageNet. Resent 50, GoogleNet, and VGG 19, are examples of pre-trained learning
networks broadly used to resolve classification issues [48]. S. Deepak and P.M. Ameer [49]
developed a CNN-based GoogleNet transfer learning classification model to classify brain
tumors, including glioma, meningioma, and pituitary. The proposed algorithm attained
better accuracy 92.3%, which was more enhanced to 97.8% by applying multiclass SVM. To
improve the CNN-based model performance in terms of accuracy, researchers suggested
a combined framework using Stationary Wavelet Transform (SWT) and Growing Con-
volution Neural Network (GCNN) for brain tumor segmentation [50]. SWT technique
was applied for feature extraction rather than Fourier transform that provides improved
results for discontinuous data followed by the Random Forest method for the classification
task. The suggested technique contributes a 2% improvement compared with traditional
CNN. The in-depth features are learned by applying transfer learning models like AlexNet
and computing the scores of each feature matrix. The obtained feature vector scores are
merged to generate a final feature vector. The combined features vector is given to the
classifier to examine the performance of the proposed method [51]. The hand-crafted and
machine-learned-based features fusion like semantic segmentation network (SegNet) is
also used to segment brain tumors [52]. A summary of brain tumor cancer diagnosis CAD
systems is illustrated in Table 2.

The systematic literature analysis showed that deep learning technology resulted
in great realistic performances in brain tumor image analysis. It has been observed that
the most commonly employed ML method is SVM. However, deep learning algorithms
are the top performers, especially DCNN. However, the main limitation of DCNN is a
dependency on massive training data with expert radiologists’ annotations from different
institutions. It is a pretty tricky task. We believe the hybrid intelligent systems designed by
integrating machine learning approaches with other methodologies like deeply learned
approaches offer a highly proficient, accurate classification system. It appears to give
higher classification accuracy in the range of 95–100%. Moreover, CNN can be known as an
archetypical classifier owing to immense usage in the prognosis of various diseases such
as brain tumor classification, segmentation, and detection. Most of the publications were
exploited BRATS data sets for tumor diagnosis tasks.
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Figure 2. Overview of 3D CNN architecture for brain tumor prediction.

Table 2. Methodologies of brain tumor cancer diagnosis.

Methods Task Performed User
Intervention Dataset Evaluation Matrix (%) Year Ref.

PCA+DNN Segmentation Fully-automatic Harvard SN = 0.97, Acc = 96.9,
AUC = 0.98 2017 [4]

GLCM + Logistic regression
(LR) Segmentation Fully-automatic Brats15 SN = 0.88, SP = 0.90, Acc = 0.89,

AUC = 0.88 2017 [14]

DWT + Genetic algorithms Detection Semi-automatic Private Acc = 95.6 2016 [53]

BWT + SVM Detection Fully-automatic BrainWeb SN = 97.7, SP = 94.2, Acc = 96.5 2017 [36]

GLCM + Gabor + DWT +
K-means Detection Fully-automatic Brats15 SN = 89.7, SP = 99.9, Acc = 99.8 2017 [54]

CNN Segmentation Fully-automatic Brats13 WT = 0.78, TC = 0.65, ET = 0.75 2016 [55]

DeepMedic Segmentation Fully-automatic Public WT = 0.86, ET = 0.78, TC = 0.62 2018 [56]

Integration of FCNNs and
CRFs Segmentation Fully-automatic Brats15 WT = 0.84, TC = 0.67, ET = 0.62 2018 [57]

SOM + FKM Segmentation Fully-automatic Harvard Acc = 96.1, SN = 87.1 2016 [58]

CNN Segmentation Fully-automatic TCGA-GBM Acc = 90.9 2019 [16]

KNN Segmentation Fully-automatic Brats15 SN = 100, SP = 87.7, Acc = 96.6,
AUC = 0.98 2020 [59]

Random forest Segmentation Fully-automatic Brats15 SN = 0.84, SP = 0.71, Acc = 0.87 2019 [60]

Watershed, Gamma
Contrast stretching Classification - Harvard Acc = 0.98 2019 [61]

Multi-Scale 3D U-Nets Segmentation Fully-automatic Brats15 SN = 0.86, SP = 0.86, Acc = 0.85 2020 [62]

TumorGAN Segmentation Fully-automatic Brats17 WT = 0.85, TC = 0.79 2020 [63]

SegNet Segmentation Fully-automatic Brats17 WT = 0.85, TC = 0.81, ET = 0.79 2019 [64]

Two-Channel DNN Classification Fully-automatic Brats18 Acc = 93.69 2021 [65]

DCNN Classification Fully-automatic Private Acc = 99.25 2021 [66]

Convolutional LSTM XNet Segmentation Fully-automatic Brats19 SN = 0.91, SP = 0.98, Acc = 0.99 2021 [67]

BrainSeg-Net Segmentation Fully-automatic Brats18 WT = 0.89, TC = 0.82, ET = 0.77 2021 [52]

4. Breast Cancer

Several image processing-based architectures in collaboration with artificial intelli-
gence and ML are reported for the performance enhancement of medical detection and
diagnostics processes. CAD systems are considered as a robust approach in the mod-
ern diagnosis and detection of breast cancers using medical imaging [68]. Robust CAD
systems increase the characteristic of images and improve the diagnostic capability of
healthcare professionals. The researchers apply five imaging modalities such as ultrasound,
MRI, mammography, thermography, histology, and so forth, for breast cancer diagnosis.
Generally, the human breast is observed as a supersensitive organ of the body; thus, few of
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these discussed medical modalities are suggested. Across all modalities, mammography is
recommended because it is a reliable way to detect breast cancer in the early stages. Eight bench-
mark imaging databases of the breast exist and are freely available on the internet for breast
cancer diagnosis, termed INbreast, Mammographic Image Analysis Society (MIAS), Wisconsin
Breast Cancer Dataset (WBCD), Image Retrieval in Medical Applications (IRMA), Database for
Screening Mammography (DDSM), Wisconsin Diagnosis Breast Cancer (WDBC), breast cancer
data repository (BCDR), and Breast Cancer Histopathological Image (BreakHis) [69]. During
pre-processing some necessary operations are applied to better image quality, like contrast
improvement, noise reduction, and artifact removal.

After the preprocessing, breast mass segmentation is the next crucial stage for in-
creasing the accuracy of detection systems with decreasing false results about existence
of abnormality [70]. Segmentation of breast tumor scans is challenging due to numerous
obstacles like rough or lobulated corners, breast lumps or tissues, pectoral muscle, and
mutual values of mass intensities. These problems complicate the procedure of diagnosis
systems in facilitating the health care experts. Usually, segmentation provides localization
of breast tumors or lesions and detection within two-dimensional or three-dimensional
images. A prominent feature of breast cancer is silhouette and contour, as they provide
essential information about the metastatic nature of the breast mass.

From the literature survey, segmentation methods of breast mass are classified into
color-based [71], contour-based, morphological-based, threshold-oriented-based [72], region-
oriented, DL-based network [73,74], and hybrid segmentation methods [75]. At present,
DL-based applications developed via CNN are gaining more attention for breast cancer
detection and segmentation through CAD systems [74,76], as presented in Figure 3.

Breast cancer prognosis is highly dependent on the classification results of morphologi-
cal samples and cell surface receptors including hormone receptor status [77]. Breast cancer
classification is generally done by three methods: supervised classification, unsupervised
classification, and semi-supervised classification. The perfect classification performance
of morphological data depends on extracting important features such as statistical, shape,
and textural [78]. These extracted features are forwarded to different ML/DL classifica-
tion algorithms for training, validation, and testing model. Neural networks (NN) [79],
Support vector machines (SVM) [80], and k-nearest-neighbor (KNN) [81] are few robust
and powerful computational algorithms that are helpful for complex classification chal-
lenges.The use of AI systems is an additional development in the medical imaging domain.
In particular, the practice of CNN-based classification algorithms and hybrid frameworks
are adopted that have produced encouraging outcomes in breast cancer detection. The
complete summary of current approaches is illustrated in Table 3.

The following observations are made from the aforementioned literature analysis:
(1) most popular utilized classifiers are deep learning, SVM, CNN, and KNN; (2) Mammo-
gram is the widely employed modality for breast cancer diagnosis; (3) For the forthcoming
robust design of CAD schemes, the development of 3D mammogram-based CAD schemes
could be the new trend; (4) For the effective and in-time diagnosis of breast cancer instead
of sole mammogram, other modalities like CT, ultrasound, thermal and histological images
must be considered. Boundary images should be labeled for the classification of multi-class
breast cancer because they allow researchers to analyze the usefulness of the recently
established multiple classes breast cancer model.



Cancers 2021, 13, 5546 10 of 23

Table 3. State-of-the-art CAD systems of breast cancer diagnosis.

Methods Task Performed User
Intervention Dataset Evaluation Matrix (%) Year Ref.

Morphological threshold Mass detection Automatic Mini-MIAS Acc = 94.54 2016 [72]

SSL scheme using CNN Mass detection Automatic Private Acc = 0.82 2017 [82]

DL Classification Automatic Private Acc = 93.4, SN = 88.6, SP = 97.1 2016 [83]

CNN Classification Automatic DDSM Acc = 98.90 2018 [84]

DCNN Lesions
classification Automatic - Acc = 90, SN = 90, SP = 96 2017 [85]

Attention Dense-U-Net Segmentation Automatic DDSM Acc = 78.3, SN = 77.8, SP = 84.6 2019 [73]

SegNet and U-Net Tumor
Segmentation Sami-automatic Private

institute Acc = 68.88, 76.14 2019 [80]

DCNN-SVM-AlexNet Cancer detection Sami-automatic CBIS-DDSM Acc = 87.2 2019 [81]

CNN based selective kernel
U-Net Segmentation Automatic Medical

centers Dice score = 0.826 2020 [79]

OPTICS clustering Lesion
classification Automatic DCE-MRI Acc = 71.4 2020 [71]

Hybrid transfer learning Cancer detection Automatic DDSM MVGG + ImageNet = 94.3,
MVGG = 89.8 2021 [86]

Hybrid VGG-16 and series
network, GDDT Classification Automatic - VGG-16 = 96.45, GDDT = 95.15 2021 [87]

GNRBA Breast
classification Automatic WDBC Acc = 0.98 2017 [88]

Figure 3. DL-based framework for breast tumor classification and segmentation.

5. Lung Cancer

Advanced CAD systems help in timely lung cancer diagnosis and/or prognosis by
working on the CT images using AI approaches. These CAD-based decision support
systems examine the input CT scans, employing various methods to segment and classify
medical images as presented in Figure 4. Various databases have been employed so far for
lung cancer diagnosis for instance Automated Nodule Detection Database (ANODE09),
the Early Lung Cancer Action Program (ELCAP) database, The LUNA16 dataset, the
Lung Image Database Consortium, and Image Database Resource Initiative (LIDC-IDRI),
and so forth. Among them, LIDC-IDRI is used as the gold standard database for the
evaluation of lung cancer detection techniques [89]. The polygon approximation technique
is proposed to detect nodule shape properties [90]. The intensity and geometric features
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vector then fused to the SVM classifier to identify actual nodules. The proposed algorithm
evaluated on the LIDC dataset achieved promising results of 98.8%, 97.7%, 96.2% in terms
of accuracy, sensitivity, and specificity. Currently, 3D-based segmentation is a robust
method to accurately detect nodules from lung images. Many approaches have integrated
these characteristics. Paing et al. [91] developed a fully automated and optimized random
forest approach to classifying pulmonary nodules using tomography scans. A 3D chain
code algorithm is applied to improve the borders. The public dataset contains 888 images
evaluated on the proposed algorithm that obtained satisfactory results of 93.11%, 94.86%,
and 91.37% accuracy, specificity, and sensitivity. The false positives per scan were only 0.086.

Deep learning makes breakthroughs owing to the latest developments in image pro-
cessing, particularly medical image examination. The attention of CAD systems has shifted
from traditional hand-craft features to automated deep-learned features. Its performance
is superior in terms of segmentation and classification of nodular items through CT scan
images. Perez, G., and Arbelaez, P. proposed a 3D CNN approach for the diagnosis of
lung cancer automatically and obtained effective results for recall of 99.6% and AUC of
0.913% [92]. The model was trained on the LIDC-IDRI standard dataset to evaluate the
performance. In DL, autoencoder and softmax are well-known and suitable methods for
feature selection and classification. Apart from this, a different variant of the 3D CNN
method is also producing superior results for extracting features automatically [93]. CNN
architecture contains several hidden layers such as convolution, max-pooling, and a fully
connected layer with a softmax function for image classification [94,95]. In recent years,
DL-based CAD algorithms are developed, for example, 3D U-Net [96], patch-based 3D
U-Net [97], and hybrid CNN algorithm [98]. Moreover, integrating ML and DL techniques
also enhance the performance for segmentation as well as classification [99]. Table 4 shows
existing literature on different method’s performance for lung nodules detection.

Table 4. State-of-the-art CAD systems for lung cancer diagnosis.

Methods Task Performed Dataset Evaluation Matrix (%) Year Ref.

SVM algorithm Segmentation Private Acc = 89.5 2016 [100]

3D CNN trained on weakly
labeled data Nodule Detection SPIE-LUNGx SN = 80 2016 [101]

DCNN Lung cancer detection Kaggle, LUNA16 Acc = 0.75, SN = 0.77, SP = 0.74 2017 [102]

Deep residual networks Nodule classification LIDC/IDRI Acc = 89.9, SN = 91, SP = 88.6 2017 [103]

3D-CNN Detection and
Classification Bowl 2017 Acc = 86.6 2017 [104]

Polygon approximation with
SVM Nodule detection LIDC Acc = 98.8, SN = 97.7, SP = 96.2 2018 [90]

Deep residual networks Nodule classification LIDC-IDRI Acc = 0.89, SN = 0.91, SP = 0.88 2017 [103]

Deep learning Nodule detection LIDC-IDRI Acc = 0.96, SN = 0.95, SP = 0.97 2020 [105]

Deep reinforcement learning Nodule detection LIDC-IDRI Acc = 0.64, SN = 0.58, SP = 0.55 2018 [106]

3D nodule candidate Nodule detection LIDC Acc = 0.99, SN = 0.98, SP = 0.98 2019 [107]

Optimized Random Forest Automatic detection LIDC-IDRI Acc = 93.1, SN = 94.8, SP = 91.3,
FP = 0.086 2020 [91]

CNN Segments nodules LIDC Acc = 89.8, SN = 85.2, SP = 90.6 2020 [108]

2D DCNN Nodule detection LUNA16 SN = 86.42, FP = 73.4 2019 [98]

Generative adversarial
networks with DCNN Nodule classification Private SN = 93.9, SP = 77.8 2020 [109]

Patch-Based CNN Nodule detection LIDC-IDRI SN = 92.8 2019 [110]

SVM Detection and
segmentation Private SN = 90.6, SP = 73.6 2021 [111]

VGG-16 based CNN Classifcation
Massachusetts

General Hospital
(MGH)

Acc = 68.6, SN = 37.5, SP = 82.9,
AUC = 0.70 2021 [112]
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From the literature analysis of lung cancer diagnosis, it was found that the CT scan is
a widely employed modality in the CAD system. The researchers believe that 3D CNNs
would provide more promising results than 2D CNN owing to the ability of the model to
manipulate spatial information via 3D convolution and pooling operation. Up till now few
works is reported in literature where 3D CNNs are employed in medical image analysis for
lung cancer diagnosis [101,105,113,114]. Overall, some reports exhibit good performances
in segmentation and classification. However, still, some methods have some limitations
like low sensitivity, high FP, and more time consumption. Therefore, developing robust
CAD meeting the aforementioned demand is the challenge. These days using a pre-trained
model is in trend, which can surpass these limitations.

Figure 4. CAD system for lung cancer detection.

6. Skin Cancer

The diagnosis of melanoma skin cancer illnesses has been conventionally detected
by manual analysis and visual examination. These visual examination methods and
analyses of skin lesion scans by expert dermatologists are lengthy, complicated, biased,
expensive [115]. Melanoma skin cancer is a lethal illness that leads to death when not
diagnosed in time. Traditionally, skin cancer was detected based on hand-crafted feature
techniques that restrict the high performance of CAD approaches. Current improvements
in deep learning methods in medical image analysis and computer vision have led to
excessive development of CAD and detection schemes to recognize fatal cancerous skin
infections [116].

DL systems automatically extract essential features and have the additional benefit of
extracting features directly from the un-processed image. Recently, DCNNs achieved substantial
performance in medical imaging [117] and the segmentation of skin lesion images. MAR Ratul
et al. [118] proposed an automated CAD system using four CNN-based networks, namely VGG-
16, VGG-19, MobileNet, and InceptionV3, to identify malignant skin lesions. The developed
architectures were evaluated on the HAM10000 dataset and attained 87.42% for VGG-16, 85.02%
for VGG-19, 88.22% for MobileNet, and 89.81% for InceptionV3. In another report, an improved
U-Net approach named skinNet was applied using dilated convolutions in the final layer
of the encoder section. Its shortcoming includes skin lesion image feature lost by the U-Net
shortcut skip connection; thus, a weaker decoder branch in recuperating feature vectors [119].
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Esteva et al. [120] implemented a CNN model, trained from scratch, applying dermoscopic
images for evaluation that indicated the promising results of the designed CNN network.
However, to train an entire architecture from scratch to identify skin lesion cancer utilizing
small datasets is usually not realistic. Thus, most scientists typically use fine-tuned methods or
pre-trained algorithms through transfer learning.

In another investigation [121], researchers developed a pre-trained architecture using
an ensemble of deep learning models including EfficientNets, SENet, and ResNeXt WSL
to address skin lesion classification. To attain state-of-the-art results, ISIC 2019 dataset
was employed on the proposed model, and certain scaling rules were applied, making it
flexible for each image dimension. In another study, [122] developed an effective CNN-
based transfer learning SqueezeNet model for Mobile-based skin lesions classification. The
networks were trained and tested on 1856 images. The squeezeNet model achieved state-
of-the-art results in terms of overall accuracy of 97.21%, sensitivity 94.42%, and specificity
98.14%. CNN-based SqueezeNet architecture is presented in Figure 5.

A fully convolutional residual network (FCRN) based CAD system was suggested
by [123], by employing an index calculation unit to refine final results. The mean pos-
sibilities of each map are applied for the classification of melanoma skin lesions. Dash
et al. [124] introduced an improved U-Net approach called PsLSNet to extract spatial
information and used 29 hidden layers of CNN. A novel CNN-based segmentation system
was introduced without any preprocessing step [125]. The system learns full resolution
features using CNNs. The algorithm was tested on dual datasets called PH2 and ISBI 2017,
and the achieved results were compared with other methods, for instance, FCN, SegNet,
and U-Net. Although DL-based learning algorithms attain outstanding acknowledgment
achievements in the medical imaging domain, more investigation is still needed to improve
the performance of CAD systems. The reported CAD systems can never replace doctors
but can only assist doctors in the planning of skin cancer diagnosis. Table 5 shows the
state-of-the-art CAD approaches of skin cancer.

Table 5. State-of-the-art CAD systems of skin cancer/lesion diagnosis.

Methods Task Performed Dataset Evaluation Matrix (%) Year Ref.

K-means clustering and SVM Skin Lesions Detection Dermweb Acc = 95.4, SN = 96.8, SP = 89.3 2016 [126]

CNN and SVM Melanoma classification DERMIS Acc = 93.7, SN = 87.5, SP = 100 2016 [127]

CNN Melanoma lesion
segmentation Dermquest Acc = 98.5, SN = 95.0, SP = 98.9 2016 [128]

SVM Framework Melanoma Detection Public Acc = 97.32, SN = 98.21, SP = 96.43 2017 [129]

CNNs Classification Clinical Images Acc = 72.0 2017 [120]

Encoder-Decoder with DeepLab
and PSPNet Skin lesion segmentation ISIC 2018 Acc = 94.2, SN = 90.6, SP = 96.3,

Dice = 89.8 2018 [130]

Ensemble Classifiers Classification ISIC 2018 Acc = 97.4, SN = 74.7, SP = 95.1,
Dice = 97.4 2018 [131]

Fine-tuned neural neworks Classification ISIC 2018 Acc = 97.4, SN = 75.7, SP = 95.9,
Dice = 97.2 2018 [132]

Deeep Supervised Multi-Scale
Network

Skin Cancer
Segmentation ISBI 2017 and PH2 Acc = 94.3, SN = 85.9, Dice = 87.5 2019 [133]

SVM Skin lesion classification ISBI 2016 Dice = 77.5, Acc = 85.1 2019 [134]

Neural Networks Melanoma detection PH2 Acc = 0.81, SN = 0.72, SP = 0.89 2019 [135]

Full resolution convolutional
network (FRCN) Segmentation ISBI 2017 and PH2 Acc = 94 2018 [125]

CNN Detection and
Categorization DermIS Acc = 95, SN = 93.3 2020 [136]

Deep Learning Segmentation and
classification MyLab Pathology Acc = 97.9 2021 [137]

ResNet-50 based CNN and
Naive Bayes classifier Skin lesion classification Ph2, ISBI2016, and

HAM1000 Acc = 95.40, 91.1, 85.50 2021 [138]
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The systematic review analysis reveals the fact that skin lesion diagnosis is undoubt-
edly a complex task. It might be attributed to the tremendous variation in image type
as well as human skin color and appearance, as illustrated in Figure 6. From the analyt-
ical analysis of skin cancer literature data, we determined that ensemble methods with
advanced architectures including Resnext, DenseNet121, PsLSNet, InceptionResNetV2,
SqueezeNet architecture, Xception, FRCN, ResNet-50 based CNN appears to perform
tremendously well. As is assessed from the literature that the utilization of appropriate
pre-processing techniques like grab-cut can overcome the skin cancer image analysis chal-
lenge. Because deep learning models produce far better classification results when the
well-pre-processed images are used as the input.

Figure 5. CNN-based SqueezeNet architecture for skin cancer detection.

Figure 6. Variation in skin lesion [139].

7. Discussion
7.1. Primary Observations

In this manuscript, we extensively analyze manuscripts published between the years
2016–2021. The comprehensive analysis is depicted in the form of a column graph, as
illustrated in Figure 7. One can see that researchers employed more DL-based supervised
classifiers (NN, CNN, U-Net, VGG-16, ResNet-50) as compared with ML-based (SVM, DT,
RF, K-means) and other classifiers for the detection of various cancers. Deep learning-based
unsupervised methods are not considered extensively.
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Figure 7. Distribution of publications between different DL-based, ML-based and other classifiers for
brain, breast, lung and skin cancer detection.

Compared to traditional ML approaches, DL-based CAD systems have been practiced
significantly in many applications. In the last few years, it has been found that most
researchers have imitated a robust trend towards the development of DL, particularly
CNN-based CAD systems. CNN has proven itself a better choice in the medical image
analysis field since its emergence in 1989 [140] owing to accurate analysis and time-saving
features. Moreover, it is the key solution for many learning problems including feature
extraction and object recognition. Summarizing all, CNN has marked great success for
detection, classification, and segmentation of multi-organ body cancer attributed to the
well-organization and the construction of the layered structure, elements employed in each
consecutive layer, and so forth [141,142]. The evident benefit of DL over traditional ML
techniques is its less dependency on feature extraction methods as it can automatically de-
velop related features by its hidden layers, that is, convolution and max-pooling [143,144].
Furthermore, DL empowers to directly extract features from input medical image data
through a back-propagation operation, which automatically modifies each layer’s weights
as stated parameters of supervised learning produced by validated data [144]. In contrast,
the execution of a conventional CAD system usually demands regular human participation
and constant engineering to confirm its smooth process. CNN-based models can increase
the global detection rate of different cancer medical images whenever the inaccurate output
is notified through repetitive self-learning skills. It is worth observing that additional
repetitions occur between the learning phases; thus, the network’s superior is its sensitiv-
ity. Moreover, as CNN extracts and learns features from input images directly thereby, a
tumor segmentation step is unnecessary. Nevertheless, in conventional approaches, the
segmentation of tumors for multi-organ cancer images is essential for learning appro-
priate features. Therefore, essential details might have vanished mainly when a wrong
segmentation appears [145]. Tables 2–5 clearly depict determined that the CNN-based
techniques [62,67,83,84,107,133] for different body organs-based CAD systems achieved
efficient and state-of-the-art performances for the detection, segmentation, and classification
using multi-modalities medical images. Additionally, we have highlighted a few loopholes
in DL-based approaches discussed in the next section and suggested some recommendations,
which can bridge the gap between research studies and early cancer diagnosis.

7.2. Open Research Challenges, Possible Solutions and Future Prospects

DL-based methods have significantly enhanced segmentation accuracy, obliged to
their ability to handle complicated tasks. Firstly, DL-based methodologies still have not
gained full acknowledgment among pathologists for everyday clinical exercise. One of
the primary causes might be the lack of standardized medical image acquisition protocols.
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The unification of the acquisition protocols could minimize it. Secondly, deep learning
algorithms usually need massive annotated medical images by expert radiologists to
accomplish the training task. Gathering such an enormous annotated dataset of medical
images is often a challenging task. Even performing the labeling of a new dataset through
experienced experts will also be very time-consuming and costly. Many techniques have
been commonly applied to conquer the scarcity of annotated data. Thirdly, the researchers
who worked on machine learning algorithms have limited knowledge about the radiology
of medical images that is also a barrier in achieving state-of-the-art performance. However,
we have discussed other problems and their possible solutions below. This study also
provides some recommendations, future directions, and a viewpoint for novice researchers
to excel in the medical image analysis domain:

• The most generally implemented technique to extend the range of the training dataset
is named data augmentation. It is the application in which different offline changes
are done, including affine transformation, cropping, flip, rotation, padding, saturation
to the examples [146], and colour augmentation [147];

• Transfer learning from the popular networks [86] employed in the same field or
even another area is considered another solution to surpass limited data. It has been
established that transfer learning by pre-trained networks produced superior results
even when the source and target networks are not the same, transferring the weights
of different tasks [148];

• The morphological variation in the cancerous cell is one of the significant issues in med-
ical cancer image detection. The cancerous organ/lesion may differ significantly in
dimension, outline, and position from patient to patient [149]. Using deeper architec-
tures can be an effective solution to this issue, as reported in [115]. The unclear border
with an imperfect contrast among targeting organs and the nearby tissues in tumor im-
ages is an inherent challenge typically produced via attenuation coefficient [150,151].
The use of multi-modality-based methods can solve this issue [152,153];

• The computational complexity of the network is another challenge in DL-based tech-
niques, owing to variability in image dimensions, network construction, or the heavily
over-parameterized networks. To evade the powerful GPU hardware constraint and
accelerate the segmentation task, one can decrease the number of hidden layers or pa-
rameters of the proposed network and emphasize algorithms that artificially generate
training data for example GAN [154,155] rather than altering the network;

• The appearance of mostly AI-based architectures seems like a black box. Thus, re-
searchers have no idea about the internal representations of the network and the
perfect approach to realize the system completely. Hence, DL approaches are greatly
affected by the inherent snags of medical images, that is, noise and illumination.
Complete knowledge and understanding of such black box issues in the future would
be a revolution in the DL field [156];

• During training time, the ground truth outlines are manually delineated by expert
physicians. If manual delineation would be done by a different individual or even the
same one at the distinct circumstance, there must be a possibility that the proposed
model can be biased and favor expert ground truths as a system error. However, this
drawback could be expected to occur in all supervised learning CAD techniques;

• The amalgamation of the robust individual approaches by utilizing their benefits is
suitable in further improving the CAD performance. Develop novel CAD systems
using hybrid ML-based approaches like SegNet [74], U-Net-Vnet-Fast-R-CNN [157],
AgileNet [158] to overcome the complication of overfitting that happens in the training
time; this could help in the early diagnosis of multi-organ cancers;

• It is observed that the DL-based unsupervised clustering techniques include; deep
auto-encoders, regularized information maximization (RIM), Deep InfoMax (DIM),
deep adaptive clustering (DAC), and so forth, have not been engaged widely in com-
parison with supervised learning techniques [159]. It could avoid the costly training
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process. These techniques could also be employed to improve the performance of
CAD systems in the medical imaging domain.

8. Conclusions

This survey critically analyzes four-organ cancer (brain, lung, breast, and skin) diag-
nosis techniques. The various algorithms were analyzed and discussed in terms of their
performances, which were published from 2016 to date. However, the main focus is on
recent DL-based approaches. This review work reveals the fact that MRI, CT, dermoscopic
images, and mammograms are the gold standard for a brain tumor, lung cancer, skin
cancer, and breast cancer diagnosis, respectively. From the comparative analysis, it was
found that BRAT, LIDC-IDRI, ISIC and PH2, WDSM, and DDSM are widely employed
databases for brain, lung, skin, and breast cancer, respectively. This study provides deep
knowledge about the significant positive impact of deep learning on medical image analy-
sis and strengthens the knowledge of the trend and the latest techniques over the past few
years. Despite extensive research conducted in this domain so far, there still exists room
for improvement. This review has elaborated on the open research challenges and their
possible solutions point by point. Moreover, the performance evaluation parameters and
publicly available standard datasets for each cancer disease have been briefly discussed.
This study will prove highly beneficial for the researchers practicing the deep learning-
based cancer diagnosis to design the robust CAD architecture that could be helpful for the
medical experts as a second opinion. Some useful recommendations would prove fruitful
for researchers as well. In the future, further studies will be conducted to analyze other
cancer diseases such as liver and stomach cancers and so forth.
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