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Simple Summary: We developed a clinical proteomics methodology, known as Wise MS Transfer
(WiMT), for deep identification of blood proteins in undepleted plasma samples. We applied it to the
analysis of undepleted melanoma plasma samples as a proof of principle. Malignant melanoma is
the most aggressive type of skin cancer, and early diagnostic and prognostic predictors are essential
to establish the most suitable treatment tailored to the patient. Our results showed the greatest
identification of proteins and biological processes to date reported for a “dilute and shoot” approach
within plasma samples from melanoma patients. More than 1200 proteins related to key biological
processes in melanoma progression were mapped, including signaling (the PI3K–Akt signaling
pathway), immune system processes (complement and coagulation cascade), and secretion (exosome
proteins). These proteins and related biological processes constitute the core of blood components
that could be monitored by mass spectrometry in clinical proteomic studies from undepleted plasma
samples in melanoma.

Abstract: Plasma analysis by mass spectrometry-based proteomics remains a challenge due to its
large dynamic range of 10 orders in magnitude. We created a methodology for protein identification
known as Wise MS Transfer (WiMT). Melanoma plasma samples from biobank archives were directly
analyzed using simple sample preparation. WiMT is based on MS1 features between several MS runs
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together with custom protein databases for ID generation. This entails a multi-level dynamic protein
database with different immunodepletion strategies by applying single-shot proteomics. The highest
number of melanoma plasma proteins from undepleted and unfractionated plasma was reported,
mapping >1200 proteins from >10,000 protein sequences with confirmed significance scoring. Of
these, more than 660 proteins were annotated by WiMT from the resulting ~5800 protein sequences.
We could verify 4000 proteins by MS1t analysis from HeLA extracts. The WiMT platform provided
an output in which 12 previously well-known candidate markers were identified. We also identified
low-abundant proteins with functions related to (i) cell signaling, (ii) immune system regulators, and
(iii) proteins regulating folding, sorting, and degradation, as well as (iv) vesicular transport proteins.
WiMT holds the potential for use in large-scale screening studies with simple sample preparation,
and can lead to the discovery of novel proteins with key melanoma disease functions.

Keywords: malignant melanoma; plasma; proteome; proteomics; biomarkers; WiMT

1. Introduction

The diagnosis and prognosis of malignant melanoma (MM) is mainly determined by
histological tumor characterization and by its staging [1]. There is, however, an increasing
need to identify predictive molecular biomarkers serologically, as blood samples can be
obtained in a minimally invasive manner [2,3]. Although plasma holds most of the blood
components, the characterization of plasma/serum proteomes is still challenging, especially
for low-abundant protein expression. Covering the entire proteome is difficult due to its
large dynamic range (which is more than 10 orders in magnitude) and the presence of a
small group of proteins in high concentrations (such as immunoglobulins and albumin)
which represent 99% of the total plasma protein content [4–6].

In the 2000s, the search for new MM biomarkers was performed mainly by proteomic
fingerprinting and two-dimensional gel electrophoresis coupled to mass spectrometry (MS)
analysis, with the identification of only a few proteins or proteomic profiles that could
distinguish patient groups from different disease stages [7–9]. Immunodepletion of the most
abundant proteins [10], sample fractionation, or a combination of these methodologies can
allow for a deeper characterization of plasma/serum MM proteomes. This improves the
number of identifications from a few hundred to thousands of proteins by LC-MS/MS [11–16].

Currently, there is a lack of techniques and methodologies able to encompass the
entire plasma/serum proteome without modifying sample characteristics. This is essential
for accurate protein quantification in clinical proteomic studies [17–19].

Different strategies have successfully been adopted by MS-based proteomic workflows
for the characterization of low-abundant proteins in samples with large dynamic ranges.
The procedures explore and/or improve either MS1 or MS2 events by MS in combination
with a centered-designed database to reduce the search space [20–27]. At the MS1 level,
these strategies focus on MS1 information transference (MS1 transfer or MS1t) between
experiments. This means that the identification of peptides achieved by comparing the
eluting precursors in different chromatographic runs with high mass accuracy and repro-
ducible retention times is ensured for correct assignments [18,19,28–32]. The MS1t principle
has been reflected in many practical applications, such as the match between runs in the
MaxQuant software (MBR) [32–35], or has been simply defined as the transfer of MS1
features with easy-interfaced software/algorithms such as OpenMS [34,36–38] or Proteome
Discoverer [39] (Thermo Fisher Scientific, San José, CA, USA) to increase identifications
and to improve label-free quantification (LFQ) workflows by reducing missing values. In
2016 and 2019, Geyer et al. [18,19] applied MBR software to increase the plasma proteome
coverage by transferring MS1 information. This was completed using a database of de-
pleted and fractionated plasma samples without previous functional characterization of
the proteins identified in the database. This strategy allowed the identification of around
1000 proteins, reaching the low-abundance region down to ~10 ng/mL.
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In the present work, we describe the melanoma plasma proteome (MPP) obtained
from the analysis of undepleted and unfractionated plasma samples from patients with ma-
lignant melanoma. This is performed using the Wise MS Transfer procedure (WiMT), which
includes the MS1t principle, a custom in-depth database, and single-shot proteomics. The
custom database was built and characterized using different immunodepletion strategies
for plasma samples. The information covered by the database was transferred to plasma
samples from MM patients by MS1t. We suggest increasing the undepleted MPP coverage
by performing a single nLC-MS/MS run (using a nano liquid chromatography system
interfaced to high-resolution mass spectrometry) without any prior interference with the
sample integrity. The database design is simple and tracks protein abundance according to
the depletion level required for positive annotation and identification. Most of the proteins
from the database have been identified in the unfractionated samples, allowing for deeper
characterization of undepleted MPP, in which the main biological processes and protein
classes were successfully mapped.

2. Results and Discussion
2.1. Custom Database Development

We developed a custom database containing more than 1300 proteins identified in
plasma from malignant melanoma patients using different immunodepletion approaches
(Table S1). The proteins were categorized depending on the strategy applied and we related
the protein abundances with the depletion level needed for identifying the proteins in the
database. The custom database was divided into four levels depending on the degree of
plasma depletion. The undepleted samples represent the first level, and the top7, top14,
and SuperMix strategies constitute the second (Low-Dep), third (Mid-Dep), and fourth
levels (Deep-Dep), respectively. The database contains a total of 1385 identified proteins,
of which 554 are from undepleted plasma, and with the immunodepletion strategies
the number of identified proteins increased by ~18%, 40%, and 98% for top7 depletion,
top14, and SuperMix, respectively (Figure 1A). While many reports have compared the
immunodepletion strategies in terms of efficiency, reproducibility, and specificity [16,40–42],
to the best of our knowledge this study is the first to surpass 1000 identified proteins without
previous sample fractionation, using a simple “dilute-and-shoot” approach. Unsupervised
hierarchical clustering of quantified proteins showed that depleted samples clustered
together (Figure 1B). Thus, it was possible to observe the quantitative difference between
the immunodepletion approaches, confirming the enrichment of lower abundant proteins
(Cluster A). Cluster B comprises those proteins that are enriched in Low-Dep and Mid-Dep
levels but show a decrease in abundance at the Deep-Dep level. As previously stated, the
SuperMix depletes 50–60 highly abundant proteins from plasma [10,43,44]. The proteins
identified in cluster B and the proteins reported to be captured using SuperMix sample
preparation have been compared [43]. At least 52% of the proteins within the cluster
were depleted by this methodology (Table S2). Figure 1A shows the numbers of unique
proteins identified in undepleted and depleted samples. A comparison of the top7 and
top14 strategies with the undepleted plasma results showed that most of the proteins
lost in the process were immunoglobulins, at ~32%, and 53%, respectively. Excluding
the immunoglobulins, approximately 83% of the proteins were lost due to top7 depletion.
Consequently, these were also lacking when applying the top14 strategy. The protein
abundance distribution is illustrated in Figure 1C. Data collection from undepleted and
depleted samples using different strategies can compensate for this loss of information,
allowing a broader coverage of the plasma proteome.



Cancers 2021, 13, 6224 4 of 23Cancers 2021, 13, x FOR PEER REVIEW 4 of 25 
 

 

72
87

23

6
4

333

17

13

67

185

142

13

390

5

Depleted Top 7
(652)

Depleted Top 14
(773)

Undepleted
(554)

Depleted Supermix
(1096)

24

Cluster B

Cluster A

UndepletedTop7Top14Supermix

-1.4 1.40

Intensity

 
Figure 1. Descriptive results of the proteomic analysis of immunodepleted plasma samples. (A) Comparative analysis of 
the number of proteins identified by each approach. (B) A hierarchical clustering heat map of the proteins identified as 
common among the 4 groups of samples studied. The gradient from blue to red represents the Z-score scale ranging from 
−1.4 to 1.4. (C) Protein abundance distribution curve. Classical plasma proteins, tissue leakage, and signaling proteins are 
highlighted. Tissue leakage proteins were defined as plasma proteins that are not secreted into the blood stream, classified 
as intracellular proteins (by available information) according to The Human Protein Atlas database (https://www.protein-
atlas.org/search/protein_class:Plasma+proteins, and https://www.proteinatlas.org/humanproteome/blood+protein/se-
creted+to+blood, accessed on: 5 March 2020) [45–47]. 

2.2. Functional Building and Characterization of the Custom Database 
We were able to characterize the custom protein database according to: 

• biological processes; 
• protein classes; and 
• pathway biology and enrichment within these signaling cascades. 

We were able to verify the functional correlations by applying the respective deple-
tion levels. Protein enrichment is directly related to the increase in plasma proteome cov-
erage. Proteins considered as classical plasma proteins, proteins deriving from tissue leak-
age, and signaling proteins were identified (see Figure 1C). Most of the tissue leakage 
proteins were concentrated in the region of the medium abundance of the plasma prote-
ome, as has been previously discussed [2,4]. Signaling proteins such as interleukin-36 
gamma (IL36G), macrophage colony-stimulating factor 1 (CSF1), tumor necrosis factor 
ligand superfamily member 13B (TNFSF13B), and C-C motif chemokine 14 (CCL14) were 
successfully identified. It was possible to access larger ranges of concentration in the 
plasma proteome since the number of low abundance proteins identified increased from 
the Low-dep to Deep-dep level. For instance, we were able to identify 141, 301, 601, and 

Figure 1. Descriptive results of the proteomic analysis of immunodepleted plasma samples. (A) Comparative analysis of the
number of proteins identified by each approach. (B) A hierarchical clustering heat map of the proteins identified as common
among the 4 groups of samples studied. The gradient from blue to red represents the Z-score scale ranging from −1.4 to 1.4.
(C) Protein abundance distribution curve. Classical plasma proteins, tissue leakage, and signaling proteins are highlighted.
Tissue leakage proteins were defined as plasma proteins that are not secreted into the blood stream, classified as intracellular
proteins (by available information) according to The Human Protein Atlas database (https://www.proteinatlas.org/search/
protein_class:Plasma+proteins, and https://www.proteinatlas.org/humanproteome/blood+protein/secreted+to+blood,
accessed on: 5 March 2020) [45–47].

2.2. Functional Building and Characterization of the Custom Database

We were able to characterize the custom protein database according to:

• biological processes;
• protein classes; and
• pathway biology and enrichment within these signaling cascades.

We were able to verify the functional correlations by applying the respective depletion
levels. Protein enrichment is directly related to the increase in plasma proteome coverage.
Proteins considered as classical plasma proteins, proteins deriving from tissue leakage,
and signaling proteins were identified (see Figure 1C). Most of the tissue leakage proteins
were concentrated in the region of the medium abundance of the plasma proteome, as has
been previously discussed [2,4]. Signaling proteins such as interleukin-36 gamma (IL36G),
macrophage colony-stimulating factor 1 (CSF1), tumor necrosis factor ligand superfamily
member 13B (TNFSF13B), and C-C motif chemokine 14 (CCL14) were successfully iden-
tified. It was possible to access larger ranges of concentration in the plasma proteome
since the number of low abundance proteins identified increased from the Low-dep to
Deep-dep level. For instance, we were able to identify 141, 301, 601, and 62 proteins at a

https://www.proteinatlas.org/search/protein_class:Plasma+proteins
https://www.proteinatlas.org/search/protein_class:Plasma+proteins
https://www.proteinatlas.org/humanproteome/blood+protein/secreted+to+blood
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concentration level of <100 µg/L (low-abundance proteins, LAP) [48], according to the
Human Protein Atlas (https://www.proteinatlas.org/humanproteome/blood+protein,
accessed on: 5 March 2020), using the top7, top14, SuperMix, and undepleted plasma
approaches, respectively [45–47].

Proteins identified at each depletion level were submitted to functional annotation
enrichment analysis. As expected, proteins related to the acute phase, blood coagulation,
and complement pathway were not enriched by any of the immunodepletion techniques
(see Figure 2 and Table S3), since most of these proteins can be found in the high and
medium concentration ranges [18]. The Low-dep strategy improved the identification of
proteins related to angiogenesis, lysosomes, and cell projection, as well as the cytoskeleton.
Although there was a higher number of proteins identified with the Mid-dep approach as
compared with the Low-dep approach, it was possible to see similarities between the two
methodologies, particularly for signaling and secreted proteins. For both strategies, most of
the proteins lost in the process were immunoglobulins. The Mid-dep strategy improved our
identification, with the enrichment of cell junction, proteasome, tyrosine kinase, and stress
response protein kinases. Remarkably, we could annotate membrane, transmembrane, and
receptor proteins, together with tissue remodeling and MHC I proteins enriched using the
Deep-dep approach.
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The results showed a close association between the depletion level and the enrichment
of groups of proteins with related functions. As a general trend, the deeper the immunode-
pletion approach, the higher the number of proteins identified per functional groups and at
lower concentrations (Figure 3). Our approach allows the identifications of growth factors,
which are known to be present in plasma in concentrations around ng/L, as described in
The Human Blood Atlas (Available in: https://www.proteinatlas.org/humanproteome/
blood+protein, accessed on: 11 August 2020) [45–47]. These proteins are commonly identi-
fied by immunoassays, whereas the detection by MS still is a challenge [49]. This means
that the customized database has great potential for biomarker research [2]. To verify the va-
lidity of the WiMT developments, known and established melanoma biomarkers are clearly
identified, including lactate dehydrogenase, metalloproteinases, and S100 proteins [50].
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Figure 3. Functional groups identified in whole and immunodepleted plasma samples. The proteins were annotated using
the information included in The Human Protein Atlas database for plasma proteins (https://www.proteinatlas.org/search/
protein_class:Plasma+proteins, accessed on: 29 July 2020) [45–47]. The graphs were built using the protein concentrations in
blood reported in the same database. The boxes represent the median and whisker ranges: 5th–95th percentiles.

We also found the enrichment of proteins related to the biosynthesis of amino acids,
carbon metabolism, and glutathione metabolism pathways (Table S4), which have been
related to different disorders such as cancer and neurodegenerative diseases [51–57]. The
PI3K–Akt signaling pathway has been found to be altered in several types of cancer,
including melanoma. It regulates multiple (patho)physiological processes such as cellular
growth, survival, invasion, and angiogenesis in melanoma [58]. This pathway is enriched
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at the Mid-dep and Deep-dep levels, showing a higher number of proteins identified in the
latter. Therefore, we can achieve a better understanding of some aspects of these diseases
and discover potential biomarkers.

Other strategies can be applied to improve database development and consequently
peptide/protein identification by WiMT, including extensive fractionation of immunode-
pleted samples and/or the addition of orthogonal enrichment methods such as
ProteoMiner® [59]. However, the inclusion of fractionated samples requires an improve-
ment in bioinformatic strategies for chromatogram alignment and MS1 transfer.

Since the database was mainly built based on samples from healthy individuals, its
applicability is not restricted to melanoma studies, but could be applied to other diseases.
We included the undepleted data from the analysis of a plasma pool from melanoma
patients to maintain the main characteristics of melanoma to the greatest degree possible.
Consequently, this enabled us to identify low-abundant proteins that could not be identified
in the analysis of a single sample. More specific proteins could be identified by developing
a personalized database with depleted samples from patients with the disease in question
(in our case melanoma patients). In WiMT, the researcher can adapt the library to respond
the biological question.

2.3. Evaluating the MS1 Transfer Procedure (MS1t)

We optimized an experimental model using diluted HeLa protein digests to evalu-
ate the MS1t. The Hela digest is a well-known standard and is commonly used by the
proteomics community to evaluate the performance of instruments, new sample prepa-
rations, or data acquisition methodologies [27,60,61]. It has also been applied in the
evaluation of other MS1 transfer methodologies and single-cell proteomics [62,63]. In
addition, most of the proteins identified in different types of cancer cell lines can be found
in Hela, which means that this standard provides a qualitative representation of different
cell proteomes [64].

The MS1t consists of the transference of MS1 features between two sets of MS data
for the identification of peptides, ensuring high mass accuracy and reproducible retention
times for the comparison of the eluting precursors [18,19,28–32]. However, these biological
fluids contain proteins at a high dynamic range concentration, and in some cases the
input of material to be analyzed by LC-MS/MS may be limited. In fact, these factors
could compromise MS1t efficiency with regard to both quantitative and qualitative aspects.
In this context, HeLa digest dilutions series were utilized to evaluate the dynamic and
linearity ranges of MS1t.

Overall, the MS1t analysis allowed us to verify approximately 4000 protein identi-
fications linearly transferred from 1 µg to 10 ng analyses. Figure 4A confirms that the
regression coefficient using the protein intensity medians per concentration (or dilution)
group was greater than 0.99. This demonstrates that MS1t maintains linearity, and thus the
input material is reduced. To assess the identification data in detail, comparisons between
MS1-t, standard DDA, and DIA analysis for each dilution were proven (see Figure 4B). As
expected, the identification rate decreased dramatically as the input material was lowered
in DDA mode. At 200 ng, the difference between MS1t and DDA was about 1500 proteins,
and with 10 ng, this difference increased to more than 3500 proteins. In the same way, in
DIA mode (MS2 acquisition) the protein identification decreased dramatically in samples
with the lowest input material (<40 ng). In contrast to standard DDA and DIA, MS1-t
appeared consistent across the dilution setting. This was because the intensity of some
precursors at MS1 was not high enough to select those precursors for fragmentation in
DDA. We observed that in DIA experiments, the low intensity of fragments could be
the reason for the lack of a positive identification. Thus, MS1-t takes advantage of MS1
detection features to increase proteome coverage. On the other hand, MS1t appeared robust
in terms of variation, as shown in Figure 4C, where the median CV values of all dilution
points remained lower than 10%. We found that more than 75% of the proteins in all cases
had a CV < 25%.



Cancers 2021, 13, 6224 8 of 23
Cancers 2021, 13, x FOR PEER REVIEW 8 of 25 
 

 

 
Figure 4. A HeLa experimental model for MS1 feature transfer evaluation. (A) Linearity analysis of 
protein abundance depending on the protein amount analyzed. Abundance: Log2 (intensity). (B) 
Comparison of the results obtained by MS1t, DDA, and DIA analyses (verified by MS2). (C) MS1t 
coefficient of variation evaluation throughout the dilution points. Blue bars represent the median 
CV values of dilution points, and orange bars show the percentages of proteins with cv lower than 
25%. 

The previous MS1t analysis was also performed in grouped proteins according to 
their abundance. In all dilution points, proteins identified by MS1t and DDA were ranked 
by their respective intensities and divided into 10 groups of ~300 proteins in each. As il-
lustrated in Figure S1, linearity was maintained across the groups regardless of the protein 
abundance, ensuring that MS1t was achievable in proteins with at least 2–3 orders of lin-
earity. When MS1t was contrasted with DDA and DIA in the different groups, it was evi-
dent that MS1t became significant as the protein abundances decreased, especially at low 
levels (Figure S2). Particularly, with 40 ng or less input material, low-abundance proteins 
were accessible mostly by MS1t (groups 8, 9, and 10). Overall, these results indicate that 
proteins present in the nanogram range could be accessible “exclusively” by MS1t with 
high transference confidence. This is particularly relevant in plasma/serum studies where 
the proteome covering could be improved by applying the MS1t concept, especially for 
low-abundance key regulators. Furthermore, the HeLa model was successfully applied in 
the evaluation of our methodology; however, use of a melanoma cell line could reveal 
additional information regarding key and/or low-abundance melanoma proteins for their 
effective identification through MS1 transfer. 

2.4. MM Plasma Proteome Assessment by Applying WiMT 
Unlike other methodologies for MS1 transferring in plasma that used extensive de-

pletion top 14–20 together with previous peptide fractionations [18,19] we developed a 
strategy to use single-shot proteomics (without peptide fractionation), taking advantage 
of the power of a SuperMix depletion (reaching more than 1000 proteins after LC-MS) 
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The previous MS1t analysis was also performed in grouped proteins according to
their abundance. In all dilution points, proteins identified by MS1t and DDA were ranked
by their respective intensities and divided into 10 groups of ~300 proteins in each. As
illustrated in Figure S1, linearity was maintained across the groups regardless of the
protein abundance, ensuring that MS1t was achievable in proteins with at least 2–3 orders
of linearity. When MS1t was contrasted with DDA and DIA in the different groups, it was
evident that MS1t became significant as the protein abundances decreased, especially at low
levels (Figure S2). Particularly, with 40 ng or less input material, low-abundance proteins
were accessible mostly by MS1t (groups 8, 9, and 10). Overall, these results indicate that
proteins present in the nanogram range could be accessible “exclusively” by MS1t with
high transference confidence. This is particularly relevant in plasma/serum studies where
the proteome covering could be improved by applying the MS1t concept, especially for
low-abundance key regulators. Furthermore, the HeLa model was successfully applied
in the evaluation of our methodology; however, use of a melanoma cell line could reveal
additional information regarding key and/or low-abundance melanoma proteins for their
effective identification through MS1 transfer.

2.4. MM Plasma Proteome Assessment by Applying WiMT

Unlike other methodologies for MS1 transferring in plasma that used extensive de-
pletion top 14–20 together with previous peptide fractionations [18,19] we developed a
strategy to use single-shot proteomics (without peptide fractionation), taking advantage
of the power of a SuperMix depletion (reaching more than 1000 proteins after LC-MS)
combined with other depletion strategies in order to complement the specific losses dur-
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ing each stage of depletion. Thus, in a single-shot experiment it is possible to run each
depletion method using the same LC-MS condition in which the undepleted samples are
analysed, while keeping the MS1 transfer as simple as possible and in an equivalent way
to how it was done with diluted Hela.

The custom database described in the first section was applied for peptide identifica-
tion using MS1t from immunodepleted to undepleted plasma from MM patients, with more
than 1200 proteins and 10,000 peptides identified in total with significant scoring. About
660 proteins and ~5800 peptides were annotated by WiMT (Tables S5 and S6). Although the
presence of these peptides was not inferred by MS2 spectra annotation, their presence was
confirmed by MS1t transfer evaluation and FDR filtering since we could provide evidence
of a great improvement in protein identification using a multiple dilution strategy with the
HeLa experiment. Furthermore, 80% of the proteins reported on The Human Melanoma
Proteome Atlas from depleted plasma samples of the same patients were also identified
here [65]. Additionally, our improvement in protein identification is like that reported by
Geyer et al. in 2016 [18].

The total expression dataset analyzed from melanoma patients is important as it builds
on the expansion of our melanoma database over time. The WiMT approach increased the
number of proteins identified in undepleted plasma and consequently enriched several
biological processes and pathways that could only be accessed at the highest levels of
depletion. The database was built with a depletion protocol, without using any sample
fractionation procedures. Therefore, each depletion method is represented by nLC-MS/MS
shotgun sequencing, providing the MS1 features and enabling good chromatogram align-
ment for the MS1t. A graphical representation of the four-layer custom database is shown
in Figure 5A. The intensities of the proteins transferred to the undepleted samples are rep-
resented by colors depending on the depletion level. The proteins identified show different
intensities according to the immunodepletion strategy applied due to MS signal improve-
ments. Thus, higher-intensity layers are associated with the plasma depletion extension
(Low-dep, Mid-dep, and Deep-dep). With this strategy, 1088 proteins were identified in a
pool of undepleted plasma samples from MM patients (Table S7). Approximately 81–94%
of the proteins identified in each of the 3 immunodepletion strategies were transferred
to the undepleted plasma samples. As discussed in The Human Melanoma Proteome
Atlas [65], we could also identify more than 60% of the FDA-approved biomarkers. The
identification in the non-depleted samples of more than 80% of the proteins identified
from this pool of metastatic depleted melanoma samples supported the identification
process [65]. The analysis included 12 potential MM biomarker candidates such as lactate
dehydrogenase, C-reactive protein, serum amyloid A, osteopontin, and the melanoma cell
adhesion molecule, among others (Table 1). In general, the deregulation of these protein
abundances is also associated with other types of cancers and even with other diseases,
which means that these are not melanoma-specific [66–72]. However, their abundances can
be included in protein signatures/patterns to associate changes related to the physiological
characteristics of melanoma patients.
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Figure 5. Assessment of proteins identified in undepleted plasma by WiMT. (A) A graphic representation of the 4-layer
custom database. The layers represent the depletion levels and the intensities of the proteins are represented by colors.
(B) Protein classification according to their depletion levels. The y axis refers to the protein abundance in undepleted plasma
samples. One-way ANOVA test (GraphPad Prism 8.3.1): ** <0.01; **** >0.0001. (C) Proteome profiling of undepleted plasma
applying MS1t for peptide identification. The proteins were annotated using the information included in The Human
Protein Atlas database for plasma proteins (https://www.proteinatlas.org/search/protein_class:Plasma+proteins, accessed
on: 29 July 2020) [45–47]. The graphs were built using the protein concentrations in blood reported in the same database.
The boxes represent the median and whiskers for the 5th and 95th percentiles, respectively. (D) KEGG pathway enrichment
analysis for the comparison of undepleted plasma before and after MS1t. Each circle represents a pathway, while the size of
each circle is related to the number of proteins, and the colors differ from the results obtained before and after MS1t.

https://www.proteinatlas.org/search/protein_class:Plasma+proteins
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Table 1. Potential plasma/serum malignant melanoma biomarkers.

Description FDA
Biomarkers

Identified in
the Pools

with WiMT

Custom Database % MM
Patients Reference

Pool Low-Dep Mid-Dep Deep-Dep

Lactate
dehydrogenase x x x x x x 100 [73]

Tyrosinase [73]

Vascular
endothelial growth

factor
[73]

Osteopontin x x 40 [73]

YKL-40,
Chitinase-3-like

protein 1
x x x 100 [73]

Melanoma-
inhibitory

activityprotein
[73]

S100B [73]

Interleukin-8 [73]

CD44 antigen x x x x x 100 [74]

Laminin x x x 100 [74]

Tenascin C x x [74]

Collagen type VI x x x x 100 [74]

Melanoma cell
adhesion molecule

(MCAM)
x x x x x 100 [75]

Galectin-3 binding
protein x x x x x 100 [76]

Endostatin-
Collagen alpha-1

(XVIII) chain
x x x x x 100 [76]

C-reactive protein x x x x x x 100 [77]

Serum amyloid A x x x x x 100 [7]

List of proteins considered as MM biomarkers candidates in plasma or serum by previous works. Among the 17 proteins, lactate
dehydrogenase and C-reactive protein have been approved by the FDA. Using the WiMT strategy, we were able to identify 12 proteins
in the pools and 11 in individual plasma from MM patients. The immunodepleted strategies were important for the identification of
osteopontin, chitinase-3-like protein 1, laminin, tenascin C, and collagen type VI. The percentage of MM patients that had proteins identified
with WiMT was calculated, and most were identified in all the 10 patients.

In addition, the WiMT strategy covered more than 40% (176/435) of the secreted
blood proteins previously identified by immunoassays and collected based on published
research articles as described in The Human Protein Atlas (https://www.proteinatlas.
org/humanproteome/blood+protein/proteins+detected+by+immunoassay, accessed on:
28 November 2021) [45–47]. There are 55 out of 110 currently FDA-approved blood
biomarkers in the list above, with just 11 falling within the very- to ultra-low abundance
protein range, i.e., from 10 µg/L to lower 10 ng/L, respectively. In this context, none of
these proteins were identified by applying WiMT, nor have they ever been identified in
similar studies on undepleted plasma [18].

However, the WiMT strategy allowed the identification of 247 proteins with concen-
trations under 10 ng/mL, which opens up the possibility of identifying novel melanoma
biomarkers with this approach, as has been predicted when more than 1000 proteins are
identified in plasma samples [2].

https://www.proteinatlas.org/humanproteome/blood+protein/proteins+detected+by+immunoassay
https://www.proteinatlas.org/humanproteome/blood+protein/proteins+detected+by+immunoassay
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To support the identification process, the multi-level design of the database allows us
to categorize the proteins identified in the undepleted samples according to the depletion
levels information that we obtained from the well-characterized database. Significant dif-
ferences were observed in protein abundances when comparing the four levels (Figure 5B).
A decrease in the median abundance of proteins categorized as identified in undepleted to
SuperMix was observed. These results support the identification process based on a clear
association between the protein expressions in the undepleted samples and the depletion
levels from the database. No significant difference was found between the top7 and top14
categories, as expected from the characterization of Low-Dep and Mid-Dep levels.

Although the number of proteins and their intensities from top7 to top14 increases,
this increment is not sufficient for the observation of statistically significant changes.
More importantly, this shows that it is possible to increase the coverage of the MPP
using a WiMT strategy similar to the one achieved with the database. Furthermore,
the identification of the same functional groups enriched by these immunodepletion
approaches (See Figures 3 and 5C) was achieved. The increased proteome coverage was
reached without any additional steps in sample processing. In this way, the sample
quantitative characteristic was maintained, helping to ensure protein transfer.

Figure 5D shows the pathways enriched in the analysis of non-depleted plasma as
compared with the results obtained with WiMT. This resulted in the enrichment of the
pathways discussed above, including the PI3K–Akt signaling pathway, the biosynthesis
of amino acids, carbon metabolism, adherens junctions, proteasomes, and lysosomes. In
addition, the WiMT increased the number of proteins identified in relation to some of
these pathways.

In addition, WiMT was applied to the analysis of plasma samples from 10 malig-
nant melanoma patients in the early stages of the disease, i.e., when the primary tumors
were detected. Using the custom database, 1134 proteins were identified (Table S7). No-
tably, almost 90% of the proteins identified in a pool of depleted samples from metastatic
melanoma patients [65], including the potential melanoma biomarkers, were covered using
the WiMT methodology in undepleted samples. Most of the biomarkers (Table 1) can
be found in all the patients, except for osteopontin, which was identified in 40% of the
samples. The proteomap based on KEGG pathway enrichment showed that the plasma
proteome can be divided into six major groups: environmental information processing,
genetic information processing, organismal systems, metabolism, cellular processes, and
human diseases (see Figure 6A). These groups can be further divided into categories such
as signaling molecules and interaction, signal transduction, biosynthesis, the immune
system, and vesicular transport, for instance. The third level of categorization shows
the detection of proteins related to the PI3K–Akt, MAPK, and Ras signaling pathways,
cell adhesion molecules, complement and coagulation cascades, glycolysis, peptidases,
proteasomes, lysosomes, and exosome proteins. Gene ontology analysis showed that more
than 200 biological processes were enriched, including the immune system, cell adhesion,
angiogenesis, inflammatory response, and positive regulation of the ERK1 and ERK2 cas-
cade. These biological processes and pathways have been found to be dysregulated in
many types of cancers, including melanoma, which indicates that the proteins identified
could be potential biomarkers, as discussed previously. Evaluating the percentages of
genes identified in each process, the 10 patients showed similar results, indicating good
reproducibility of the results among the patients using WiMT strategy (see Figure 6B).
When comparing the biological processes enriched using the MS1t strategy and the protein
identification by MS2 spectra annotation only, 102 biological processes were specifically
enriched. Within these, angiogenesis, cell adhesion, adherens junction organization, cell
migration, and the regulation of cell proliferation were identified as constituting the main
biological processes (Figure 6C).
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Figure 6: Plasma proteome characterization of MM patients. (A) Plasma proteomap based on KEGG
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specifically enriched in 10 MM patients using MS1t (at least 50% of the patients). This analysis was
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Figure 6. Plasma proteome characterization of MM patients. (A) Plasma proteomap based on KEGG pathway enrichment.
The analysis covered 57.8% of the MM plasma proteome. The results are grouped into 6 main groups. Light blue:
Environmental information processing. Dark blue: Genetic information processing. Pink: Organismal system. Orange:
Metabolism. Red: Cellular processes. Black: Human diseases. (B) Comparative analysis of the biological processes identified
in the undepleted plasma of 10 MM patients using a custom database and MS1t strategy. This analysis was performed
using the DAVID functional annotation tool, considering the results with p-value and FDR < 0.05. (C) Biological processes
specifically enriched in 10 MM patients using MS1t (at least 50% of the patients). This analysis was performed using the
DAVID functional annotation tool, considering the results with p-value and FDR < 0.05.

Quantitative results showed a good correlation between the two MM pool replicates,
with R = 0.97 and a p-value < 0.0001 (Pearson correlation) (Figure S3), and a coefficient
variation lower than 10% (85% of the proteins with CV 25%). Similar results were obtained
in other experiments with undepleted plasma samples using the WiMT strategy, with a
CV < 10% and Pearson correlation above 0.96 (p-value < 0.0001). These results showed a good
correlation (R2 of 0.6154) between the estimated protein abundances by mass spectrometry
and the estimated protein concentrations in blood (available in: https://www.proteinatlas.
org/humanproteome/blood+protein, accessed on: 5 March 2020) [45–47], which were to
be compared to the values obtained previously [18] in the analysis of undepleted plasma
with similar strategies (See Figure S3). A good correlation was also observed as a resulting
outcome from the 10 MM patients, with a mean R = 0.92 (Pearson correlation) and a coefficient
variation lower than 5% (Figure S4).

Altogether, our results provide evidence of a successful MS1 transfer, generating
the identity and quantification of more than 1200 proteins in undepleted plasma and
detecting 12 out of 17 potential MM biomarker candidates. Here, the WiMT was applied
to characterize MPP; however, this strategy can be expanded for the study of different
pathologies. Although the WiMT is based on well-known concepts (MS1 transfer), the
accuracy and methods for controlling the false discovery rates after transfer depend on

https://www.proteinatlas.org/humanproteome/blood+protein
https://www.proteinatlas.org/humanproteome/blood+protein
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the platforms used and have previously been discussed [29,31,33,36,78,79]. For reliable
MS1 transfer, a highly reproducible retention time and accurate determination of m/z
are required for chromatogram alignment. Therefore, the use of robust HPLC systems
coupled to high-resolution mass spectrometry such as Q Exactive HF-X (ThermoScientific)
is indispensable. We strongly recommend the use of WiMT only for relative quantification
in discovery proteomics, and complementing the analysis, when possible, with orthogonal
experiments and biological or clinical information. The validation of selected differentially
expressed proteins could be performed in another cohort by use of low-resolution mass
spectrometers such as triple quadrupoles, or immunoassays.

3. Materials and Methods

Figure 7 depicts the WiMT developed and applied in the present study. The approach
is divided into 3 steps: (1) the development and characterization of a 4-layer custom
database by using 3 plasma immunodepletion strategies and nLC-MS/MS; (2) evaluation
of MS1t efficiency throughout the analysis of a series of diluted HeLa samples; and (3) A
custom database applied for the plasma proteome assessment of MM patients.
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3.1. Blood Sample Collection and Storage

Blood sample collection was performed before tumor resection surgery at Semmelweis
University Hospital. The samples underwent automated fractionation into plasma, serum,
lymphocytes, and erythrocytes [80,81] and were stored at −80 ◦C within 2 h. The samples
were then transferred in dry ice to the melanoma biobank (Lund, Sweden) where they were
stored at −80 ◦C until further processing. The project was approved by the local Ethical
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Committee 727 and the Ethical Committee at Semmelweis University (191-4/2014), as
well as the Swedish Ethical Review Authority in Lund (code DNR 2014/311). All patients
provided written informed consent. Here, the analyses were performed using a pool of
57 MM patients at different stages of the disease, plasma samples from 10 patients at the
primary tumor stage, and a pool of 30 healthy individuals.

3.2. Development of a Custom Database for MS1-Transferring
3.2.1. Plasma Immunodepletion

A pool of plasma samples from healthy individuals (n = 30) was depleted using a
Multiaffinity Removal Column human-7 (4.6 × 50 mm), Multiaffinity Removal Column
human-14 (4.6 × 100 mm) (Agilent Technologies, Santa Clara, CA, USA), and Seppro®

SuperMix LC2 (6.4 × 63 mm) (Sigma-Aldrich, St. Louis, MO, USA) coupled to a 1260 In-
finity LC System (Agilent Technologies, Santa Clara, CA, USA). Each immunodepletion
protocol was performed according to the manufacturer’s instructions on technical replicates
(Figure S5A–C). To eliminate the variation caused by technical issues, the replicates for
each strategy were pooled together for further steps.

After depletion, the samples were submitted to a buffer exchange using an Amicon
Ultra Centrifugal filter (0.5 mL–10 kDa, Millipore, County Cork, Ireland). Briefly, samples
were transferred to the Amicon 10 kDa and centrifuged at 13,000× g for 20 min. Then,
400 µL of 50 mM ammonium bicarbonate (Ambic) was added, followed by centrifugation
at 13,000× g for 20 min. This step was repeated, and centrifugation was carried out for
30 min. Lastly, 70 µL of 10% of sodium dodecyl sulfate (SDS)/25 mM of 1,4-dithiothreitol
(DTT) in 100 mM of triethylammonium bicarbonate buffer (TEAB) were added, the Amicon
was turned upside down, and the sample was recovered in a tube by centrifugation at
1000× g for 5 min.

3.2.2. Samples Digestion

Samples were digested in an S-Trap (Protifi, Farmingdale, NY, USA) plate, as described
by Kuras et.al in 2020 [82]. Briefly, 70 µg of protein, quantified by Pierce 660 nm protein
assay (Thermo Scientific, Waltham, MA, USA), was used for sample processing in the top7
approach, and all protein content in top14 and SuperMix. For sample reduction, samples
were incubated in SDS/25 mM DTT in 100 mM TEAB for 5 min at 99 ◦C, with shaking
at 500 rpm. Alkylation was performed with iodoacetamide with a final concentration of
50 mM for 30 min at room temperature in the dark. The samples were then acidified by
adding orthophosphoric acid to a final concentration of 1.2% and diluted 7× with binding
buffer (90% methanol, 100 mM TEAB). Samples were transferred to the S-Trap plate and
captured proteins were washed 4 times with a binding buffer. Each step was performed
with centrifugation at 1000× g for 2 min. The protein digestion was carried out by adding
LysC (Wako Chemicals, Richmond, VA, USA) in 50 mM TEAB in a ratio of 1:50 (enzyme:
protein) and incubating the S-trap plate at 37 ◦C for 2 h, followed by the addition of trypsin
(Promega, Madison, WI, USA) (1:50) in 50 mM TEAB and incubation at 37 ◦C overnight.
Peptide elution was performed in 3 steps by adding 80 µL of 50 mM TEAB, 0.2% formic acid
(FA), and then 50% acetonitrile (ACN)/0.2% FA, centrifuging the S-Trap plate at 1000× g
for 2 min after each step. The peptides were dried down and resuspended in 40 µL of
2% ACN/0.1% trifluoroacetic acid (TFA). Peptide content was estimated using the Pierce
Quantitative Colorimetric Peptide Assay (Thermo Scientific, Waltham, MA, USA) prior to
nLC-MS/MS analysis.

3.2.3. LC-MS/MS Analysis

The data were acquired using the data-dependent acquisition (DDA) mode in an
UltiMate 3000 RSLCnano system coupled with the high-resolution Q Exactive HF-X mass
spectrometer (Thermo Fisher Scientific, San José, CA, USA) to guarantee retention time
reproducibility and mass accuracy. The full MS scan was set with an acquisition range of
m/z 375–1500, a resolution of 120,000 (at m/z 200), a target AGC value of 3 × 106, and a
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maximum injection time (IT) of 100 ms. The top 20 precursors were fragmented with a
normalized collision energy (NCE) of 28. For the MS2 acquisition, the instrument was set
with a resolution of 15,000 (at m/z 200), a target AGC value of 1 × 106, a maximum IT of
50 ms, and an isolation window of 1.2 m/z. Dynamic exclusion was 40 s. Approximately
2 µg of peptides were analyzed for each sample with at least 2 replicates. Peptide elution
was performed with a gradient of ACN and FA for 120 min, using the trap column C18
Acclaim PepMapTM 100 (2 cm × 75 µm i.d.; 100 Å) and the column PepMapTM RSLC C18
(2 µm, 100 Å, 75 µm i.d. × 50 cm).

3.2.4. Data Analysis

Data analysis was performed on Proteome Discoverer 2.4 (Thermo Scientific, San José,
CA, USA). For peptide identification, MSPepSearch was used against the Human spectral li-
brary ProteomeTools_HCD28_PD using a UniProt human database (Date: 28 January 2020).
SEQUEST HT was also used against the same UniProt human database for unassigned
peptides from MSPepSearch. For the peptide search, cysteine carbamidomethylation was
set as a static modification, methionine oxidation as a dynamic modification, and acetyla-
tion, methionine loss (met-loss), and met-loss plus acetylation as a dynamic modification in
the protein terminus. The precursor and fragment mass tolerance were set at 10 ppm and
0.02 ppm, respectively, and up to 2 missed cleavages were allowed. The confidence level
used was FDR < 0.01 at the peptide level and FDR < 0.05 at the protein level. The node
Feature Mapper was used in the consensus workflow for chromatographic alignment and
identification of peptides based on MS1 information. For chromatographic alignment, the
maximum RT shift was set at 3 min and the mass tolerance at 10 ppm. For feature linking
and mapping, the RT and mass tolerance were set at 0 min and 0 ppm, respectively, the
default for Proteome Discoverer, and the minimum S/N threshold was 5. Peptide and
protein quantifications were performed based on the Label-free quantification approach
using the precursor ion intensity to infer peptide abundance, and considering all peptides
to calculate the abundance at the protein level.

3.2.5. Bioinformatic Analysis

For data analysis, the proteins identified in at least 1 technical replicate were in-
cluded. The characterization of undepleted and depleted plasma proteome was per-
formed using the DAVID functional annotation tool, analyzing the functional category
“UP_KEYWORDS” and “KEGG Pathway” and considering the results with a p-value and
FDR < 0.05. The quantitative analysis was performed with the Perseus 1.6.12.0 software.
The data were transformed by log2, normalized by subtracting the median, and fil-
tered by 1 valid value in each group. The coefficient variation (CV) between experi-
ments was determined considering the lognormal distribution of the MS experiment
results [83–85]. The heatmap was built using the mean values and normalizing the pro-
teins by Z-score. The construction of boxplot graphs was performed with the GraphPad
Prism. 8.3.1 software using the estimated concentration of proteins in the blood avail-
able in the The Human Protein Atlas database for plasma proteins (available at https:
//www.proteinatlas.org/humanproteome/blood+protein, accessed on: 5 March 2020).
The proteins were annotated using the information available in the same database (avail-
able at https://www.proteinatlas.org/search/protein_class:Plasma+proteins, accessed on:
29 July 2020) [45–47].

3.3. Evaluation of MS1-Transferring Efficiency-HeLa Digest Dilution Series

The peptide dilution series were prepared from commercial HeLa digest (PierceTM

HeLa Protein Digest Standard, Thermo Scientific, Waltham, MA, USA). The analysis
considered the following concentrations: 1000, 500, 200, 100, 40, 20, and 10 ng/µL. Each
dilution was analyzed by LC-MS/MS by injecting 1 µL of solution. In the case of dilutions
of DIA analysis, samples were spiked in with iRT Kit peptides (Biognosys, Schlieren,
Switzerland) for retention time normalization. All analyses were performed in triplicate.

https://www.proteinatlas.org/humanproteome/blood+protein
https://www.proteinatlas.org/humanproteome/blood+protein
https://www.proteinatlas.org/search/protein_class:Plasma+proteins
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Sample loading, separation, and data acquisition were performed in the same LC-MS/MS
system described previously. Samples were separated by 97 min gradients whereby data
were acquired by both DDA and DIA modes. In DDA, the instrument was set as follows:
full MS in a range of m/z 375–1500, resolution of 120,000 (at m/z 200), target AGC value of
3 × 106, and maximum injection time (IT) of 50 ms. The top 20 precursors were fragmented
with an NCE of 28. MS2 acquisition was set with a resolution of 15,000 (at m/z 200), a target
AGC value of 1 × 105, maximum IT of 19 ms, and an isolation window of 1.2 m/z. Dynamic
exclusion was set to 40 s. For DIA acquisition, the instrument was set as follows: full-MS
scan parameters were kept the same as described for DDA experiments; for fragmentation
analysis, the NCE was set at 28, resolution at 30,000 (at m/z 200), the AGC target value at
1 × 106, and the MSX count and isolation window at 18 and m/z 16, respectively. Data from
DDA were analyzed using the same parameters described previously. For DIA, protein
identification was performed in Spectronaut (Biognosys, Schlieren, Switzerland) with the
following parameters: chromatogram alignment and RT calibration were performed with
the iRT Biognosys’ kit; the MS quantity level was set as MS1; the quantity type was set as
the height and precursor; and protein q-value cutoff was 1%. The spectral library was built
in Spectronaut (Biognosys, Schlieren, Switzerland) using all Proteome Discoverer results
from the DDA data.

To demonstrate the linear nature of the MS1 transfers, a linear regression analysis per
protein was performed, where the MS intensities (log2 expression values) were used as
a response variable and the dilution points as an independent variable. The rate of false
discoveries was analyzed by following a target–decoy strategy [86]. A decoy set of proteins
was created by randomizing the MS intensities from the original set of proteins (target)
so that each protein adopted an incorrect intensity value. The linear regression analysis
was repeated using both sets of proteins (target + decoy) and the R2 parameter was used
as a score to determine the FDR. In this case, an FDR threshold of 5% was set and these
proteins were considered to be truly linearly transferred. Linear regression analyses were
performed using the R software [87,88].

3.4. Assessment of Plasma Proteome of MM Patients Using WiMT
3.4.1. Sample Description

A pool (n = 57) of MM samples from patients at different stages of the disease (as
described in the The Human Melanoma Proteome Atlas [65,89]) and 10 individual samples
from MM patients in the early stage (primary tumor) of disease were analyzed. All
patients had undergone surgical resection of their tumors and subsequent histopathological
characterization supported by imaging studies. Table 2 displays the clinicopathological
properties of the herein analyzed patients.

Table 2. Clinicopathological data of the 10 MM patients. Primary tumor samples from the 10 MM patients were submitted
for histopathological characterization after tumor resection. T, N, M system classification: T (Primary tumor), N (Regional
Lymph Nodes, M (Distant Metastasis).

Patients Patient
Code Age Gender Breslow Clark

Level
Type of
Tumor

Main Cell
Type T N M Stage Type of

Treatment
Systemic

Treatment

Patient 1 PTP054 70 Female 2.248 IV SSM Naevoid 3b 0 0 IIB Adjuvant Interferon alfa

Patient 2 PTP048 68 Female 13.19 IV SSM Naevoid 4b 0 0 IIC Adjuvant Interferon alfa

Patient 3 PTP050 73 Male 7.36 IV Unclassified Naevoid 4b 1b 0 IIIB None None

Patient 4 PTP068 75 Female 65 IV NM NaevoidSpindle 4a 0 0 IIC Adjuvant Interferon alfa

Patient 5 PTP007 74 Female 8.14 IV Unclassified Naevoid 4a 0 0 IIB None None

Patient 6 PTP027 69 Male 4.36 V ALM Spindle 4b 0 0 IIC None None

Patient 7 * PTP044 80 Male 9.86 IV SSM Spindle 4a 0 None None

Patient 8 PTP039 84 Male 3.208 IV ALM Naevoid 3a 0 0 IIA None None

Patient 9 PTP028 25 Male 11.84 IV NM Naevoid 4b 0 0 IIC None None

Patient 10 PTP029 83 Female 0.386 II SSM Naevoid 1a 0 0 IA None None

* The full classification of patients 7 was not possible as the examination was not fully completed.
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3.4.2. Sample Digestion

EDTA plasma samples were diluted with MilliQ water (1:10), and an aliquot of 8.75 µL
(~70 µg of protein) of each sample was separated using the S-trap protein digestion protocol.
For sample reduction, 42.25 µL of 10% SDS/25 mM DTT in 100 mM TEAB solution was
added to the diluted plasma. The reduction, alkylation, and digestion steps were performed
as described previously [82].

3.4.3. LC-MS/MS Analysis

The samples were loaded, separated, and analyzed in the same system, as described
for custom database development. The elution gradient and the parameters for data
acquisition were kept the same.

3.4.4. Data Analysis

The data analysis was performed using the same parameters described previously. The
proteomap analysis was performed using the online tool Bionic Visualizations-Proteomaps
(Homo sapiens database) [90–92]. For MS1t, all depleted samples were processed together
with the undepleted ones in the same workflow. To determine the FDR of the MS1 transfer, a
target–decoy strategy was followed [86]. A decoy set of proteins was created by simulating
a distribution of values similar to that followed by the MS1 intensities of the transferred
proteins (target dataset). To calculate the FDR values, an empirical score [20,93,94] per
protein was created based on the protein intensity (Ii), the protein abundance rank (proteins
sorted by ascending MS intensities, Rank1), and the probability of being a plasma protein.
The probability of being a plasma protein (PDi) was determined based on cumulative
distribution functions that utilized the previous identification of plasma proteins taken
from both public repositories (Table S8) and in-house experiments (Table S9). Finally, the
empirical scoring scheme was applied (Figure S6) for both the decoy and target proteins
datasets with an FDR threshold set at 5%. Proteins with FDR < 0.05 were considered
correctly transferred. The analysis was performed using R software [87,88] and SPSS
Statistics 21.0 (IBM, Somers, IL, USA). Bioinformatic analysis was performed as previously
described for the characterization of the custom database.

4. Conclusions

We established the MPP of undepleted patient samples using our newly developed
WiMT strategy, mapping more than 1200 proteins and 10,000 peptides in non-depleted
plasma samples from MM patients. The MPP is mainly characterized by proteins related to
cancer pathway signaling processes, the immune system, genetic information processing
(protein folding, sorting, and degradation), cellular processes (protein transport) and the
biosynthesis of metabolites. These results represent the proteins and processes that could
be followed by the proteomic analysis of undepleted plasma from melanoma patients. Our
results show great potential for large-scale screening in melanoma proteomics studies,
providing an invaluable tool for monitoring blood proteins in melanoma patients. The
developments are generic and can be applied to other neoplastic diseases.
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31. Pasa-Tolić, L.; Masselon, C.; Barry, R.C.; Shen, Y.; Smith, R.D. Proteomic analyses using an accurate mass and time tag strategy.
BioTechniques 2004, 37, 621–639. [CrossRef] [PubMed]

32. Cox, J.; Hein, M.; Luber, C.A.; Paron, I.; Nagaraj, N.; Mann, M. Accurate Proteome-wide Label-free Quantification by Delayed
Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ. Mol. Cell. Proteom. 2014, 13, 2513–2526. [CrossRef]

33. Lim, M.Y.; Paulo, J.A.; Gygi, S.P. Evaluating False Transfer Rates from the Match-between-Runs Algorithm with a Two-Proteome
Model. J. Proteome Res. 2019, 18, 4020–4026. [CrossRef]

34. Byrling, J.; Kristl, T.; Hu, D.; Pla, I.; Sanchez, A.; Sasor, A.; Andersson, R.; Marko-Varga, G.; Andersson, B. Mass spectrometry-
based analysis of formalin-fixed, paraffin-embedded distal cholangiocarcinoma identifies stromal thrombospondin-2 as a potential
prognostic marker. J. Transl. Med. 2020, 18, 343. [CrossRef]

35. Virant-Klun, I.; Leicht, S.; Hughes, C.; Krijgsveld, J. Identification of Maturation-Specific Proteins by Single-Cell Proteomics of
Human Oocytes. Mol. Cell. Proteom. 2016, 15, 2616–2627. [CrossRef]

36. Zhang, B.; Käll, L.; Zubarev, R.A. DeMix-Q: Quantification-Centered Data Processing Workflow. Mol. Cell. Proteom. 2016, 15,
1467–1478. [CrossRef]

37. Röst, H.; Sachsenberg, T.; Aiche, S.; Bielow, C.; Weisser, H.; Aicheler, F.; Andreotti, S.; Ehrlich, H.-C.; Gutenbrunner, P.;
Kenar, E.; et al. OpenMS: A flexible open-source software platform for mass spectrometry data analysis. Nat. Methods 2016, 13,
741–748. [CrossRef]

38. Kelemen, O.; Pla, I.; Sanchez, A.; Rezeli, M.; Szasz, A.M.; Malm, J.; Laszlo, V.; Kwon, H.J.; Dome, B.; Marko-Varga, G. Proteomic
analysis enables distinction of early-versus advanced-stage lung adenocarcinomas. Clin. Transl. Med. 2020, 10, e106. [CrossRef]

39. Poulsen, L.L.C.; Pla, I.; Sanchez, A.; Grøndahl, M.L.; Marko-Varga, G.; Andersen, C.Y.; Englund, A.L.M.; Malm, J. Progressive
changes in human follicular fluid composition over the course of ovulation: Quantitative proteomic analyses. Mol. Cell. Endocrinol.
2019, 495, 110522. [CrossRef]

40. Tu, C.; Rudnick, P.A.; Martinez, M.Y.; Cheek, K.L.; Stein, S.E.; Slebos, R.J.C.; Liebler, D.C. Depletion of Abundant Plasma Proteins
and Limitations of Plasma Proteomics. J. Proteome Res. 2010, 9, 4982–4991. [CrossRef]

41. Gong, Y.; Li, X.; Yang, B.; Ying, W.; Li, D.; Zhang, Y.; Dai, S.; Cai, Y.; Wang, J.; He, A.F.; et al. Different Immunoaffinity Fractionation
Strategies to Characterize the Human Plasma Proteome. J. Proteome Res. 2006, 5, 1379–1387. [CrossRef]

42. Roche, S.; Tiers, L.; Provansal, M.; Séveno, M.; Piva, M.-T.; Jouin, P.; Lehmann, S. Depletion of one, six, twelve or twenty major
blood proteins before proteomic analysis: The more the better? J. Proteom. 2009, 72, 945–951. [CrossRef]

43. Shi, T.; Zhou, J.-Y.; Gritsenko, M.A.; Hossain, M.; Camp, D.G.; Smith, R.D.; Qian, W.-J. IgY14 and SuperMix immunoaffinity
separations coupled with liquid chromatography–mass spectrometry for human plasma proteomics biomarker discovery. Methods
2012, 56, 246–253. [CrossRef]

44. Qian, W.-J.; Kaleta, D.T.; Petritis, B.O.; Jiang, H.; Liu, T.; Zhang, X.; Mottaz, H.M.; Varnum, S.M.; Camp, D.G.; Huang, L.; et al.
Enhanced Detection of Low Abundance Human Plasma Proteins Using a Tandem IgY12-SuperMix Immunoaffinity Separation
Strategy. Mol. Cell. Proteom. 2008, 7, 1963–1973. [CrossRef]

45. Uhlén, M.; Karlsson, M.J.; Hober, A.; Svensson, A.-S.; Scheffel, J.; Kotol, D.; Zhong, W.; Tebani, A.; Strandberg, L.; Edfors, F.; et al.
The human secretome. Sci. Signal. 2019, 12. [CrossRef]

46. Uhlen, M.; Oksvold, P.; Fagerberg, L.; Lundberg, E.; Jonasson, K.; Forsberg, M.; Zwahlen, M.; Kampf, C.; Wester, K.; Hober, S.; et al.
Towards a knowledge-based Human Protein Atlas. Nat. Biotechnol. 2010, 28, 1248–1250. [CrossRef]

47. Pontén, F.; Jirström, K.; Uhlen, M. The Human Protein Atlas—A tool for pathology. J. Pathol. 2008, 216, 387–393. [CrossRef]
48. Liu, Z.; Fan, S.-H.; Liu, H.; Yu, J.; Qiao, R.; Zhou, M.; Yang, Y.; Zhou, J.; Xie, P. Enhanced Detection of Low-Abundance Human

Plasma Proteins by Integrating Polyethylene Glycol Fractionation and Immunoaffinity Depletion. PLoS ONE 2016, 11, e0166306.
[CrossRef]

http://doi.org/10.1021/ac1012738
http://doi.org/10.1038/s41467-019-13866-z
http://doi.org/10.1002/mas.21400
http://doi.org/10.1016/j.cbpa.2014.10.017
http://doi.org/10.1038/s41592-018-0003-5
http://doi.org/10.1021/pr070146y
http://doi.org/10.1002/mas.20071
http://doi.org/10.1021/pr400705q
http://doi.org/10.2144/04374RV01
http://www.ncbi.nlm.nih.gov/pubmed/15517975
http://doi.org/10.1074/mcp.M113.031591
http://doi.org/10.1021/acs.jproteome.9b00492
http://doi.org/10.1186/s12967-020-02498-3
http://doi.org/10.1074/mcp.M115.056887
http://doi.org/10.1074/mcp.O115.055475
http://doi.org/10.1038/nmeth.3959
http://doi.org/10.1002/ctm2.106
http://doi.org/10.1016/j.mce.2019.110522
http://doi.org/10.1021/pr100646w
http://doi.org/10.1021/pr0600024
http://doi.org/10.1016/j.jprot.2009.03.008
http://doi.org/10.1016/j.ymeth.2011.09.001
http://doi.org/10.1074/mcp.M800008-MCP200
http://doi.org/10.1126/scisignal.aaz0274
http://doi.org/10.1038/nbt1210-1248
http://doi.org/10.1002/path.2440
http://doi.org/10.1371/journal.pone.0166306


Cancers 2021, 13, 6224 22 of 23

49. Khan, A. Detection and quantitation of forty eight cytokines, chemokines, growth factors and nine acute phase proteins in healthy
human plasma, saliva and urine. J. Proteom. 2012, 75, 4802–4819. [CrossRef]

50. Tandler, N.; Mosch, B.; Pietzsch, J. Protein and non-protein biomarkers in melanoma: A critical update. Amino Acids 2012, 43,
2203–2230. [CrossRef]

51. Bansal, A.; Celeste Simon, M. Glutathione metabolism in cancer progression and treatment resistance. J. Cell Biol. 2018, 217,
2291–2298. [CrossRef]

52. Smeyne, M.; Smeyne, R.J. Glutathione metabolism and Parkinson’s disease. Free. Radic. Biol. Med. 2013, 62, 13–25. [CrossRef]
53. Nugent, A.A.; Kolpak, A.L.; Engle, E.C. Human disorders of axon guidance. Curr. Opin. Neurobiol. 2012, 22, 837–843. [CrossRef]

[PubMed]
54. Vettore, L.; Westbrook, R.; Tennant, D.A. New aspects of amino acid metabolism in cancer. Br. J. Cancer 2020, 122, 150–156.

[CrossRef] [PubMed]
55. Lukey, M.J.; Katt, W.P.; Cerione, R.A. Targeting amino acid metabolism for cancer therapy. Drug Discov. Today 2017, 22, 796–804.

[CrossRef]
56. Ruocco, M.R.; Avagliano, A.; Granato, G.; Vigliar, E.; Masone, S.; Montagnani, S.; Arcucci, A. Metabolic flexibility in melanoma: A

potential therapeutic target. Semin. Cancer Biol. 2019, 59, 187–207. [CrossRef]
57. Wu, Z.; Wu, J.; Zhao, Q.; Fu, S.; Jin, J. Emerging roles of aerobic glycolysis in breast cancer. Clin. Transl. Oncol. 2020, 22, 631–646.

[CrossRef] [PubMed]
58. Davies, M.A. The Role of the PI3K-AKT Pathway in Melanoma. Cancer J. 2012, 18, 142–147. [CrossRef] [PubMed]
59. Li, L. Dynamic Range Compression with ProteoMiner™: Principles and Examples. In Proteomic Profiling. Methods in Molecular

Biology; Posch, A., Ed.; Humana Press: New York, NY, USA, 2015; Volume 1295, pp. 99–107. [CrossRef]
60. Bekker-Jensen, D.B.; Kelstrup, C.D.; Batth, T.S.; Larsen, S.C.; Haldrup, C.; Bramsen, J.B.; Sørensen, K.D.; Høyer, S.; Ørntoft, T.F.;

Andersen, C.L.; et al. An Optimized Shotgun Strategy for the Rapid Generation of Comprehensive Human Proteomes. Cell Syst.
2017, 4, 587–599. [CrossRef] [PubMed]

61. Bian, Y.; Zheng, R.; Bayer, F.P.; Wong, C.; Chang, Y.-C.; Meng, C.; Zolg, D.P.; Reinecke, M.; Zecha, J.; Wiechmann, S.; et al. Robust,
reproducible and quantitative analysis of thousands of proteomes by micro-flow LC–MS/MS. Nat. Commun. 2020, 11, 157.
[CrossRef]

62. Cong, Y.; Liang, Y.; Motamedchaboki, K.; Huguet, R.; Truong, T.; Zhao, R.; Shen, Y.; Lopez-Ferrer, D.; Zhu, Y.; Kelly, R.T. Improved
Single-Cell Proteome Coverage Using Narrow-Bore Packed NanoLC Columns and Ultrasensitive Mass Spectrometry. Anal. Chem.
2020, 92, 2665–2671. [CrossRef]

63. Ivanov, M.V.; Bubis, J.A.; Gorshkov, V.; Abdrakhimov, D.A.; Kjeldsen, F.; Gorshkov, M.V. Boosting MS1-only Proteomics with
Machine Learning Allows 2000 Protein Identifications in Single-Shot Human Proteome Analysis Using 5 min HPLC Gradient.
J. Proteome Res. 2021, 20, 1864–1873. [CrossRef]

64. Geiger, T.; Wehner, A.; Schaab, C.; Cox, J.; Mann, M. Comparative Proteomic Analysis of Eleven Common Cell Lines Reveals
Ubiquitous but Varying Expression of Most Proteins. Mol. Cell. Proteom. 2012, 11, M111.014050. [CrossRef]

65. Betancourt, L.H.; Gil, J.; Sanchez, A.; Doma, V.; Kuras, M.; Murillo, J.R.; Velasquez, E.; Çakır, U.; Kim, Y.; Sugihara, Y.; et al. The
Human Melanoma Proteome Atlas—Complementing the melanoma transcriptome. Clin. Transl. Med. 2021, 11, e451. [CrossRef]

66. Kato, G.J.; McGowan, V.; Machado, R.; Little, J.A.; Taylor, J.; Morris, C.R.; Nichols, J.S.; Wang, X.; Poljakovic, M.;
Morris, J.S.M.; et al. Lactate dehydrogenase as a biomarker of hemolysis-associated nitric oxide resistance, priapism, leg
ulceration, pulmonary hypertension, and death in patients with sickle cell disease. Blood 2006, 107, 2279–2285. [CrossRef]

67. Armstrong, A.J.; George, D.J.; Halabi, S. Serum lactate dehydrogenase (LDH) as a biomarker for survival with mTOR inhibition
in patients with metastatic renal cell carcinoma (RCC). J. Clin. Oncol. 2010, 28 (Suppl. 15), 4631. [CrossRef]

68. Vuong, N.L.; Le Duyen, H.T.; Lam, P.K.; Tam, D.T.H.; Chau, N.V.V.; van Kinh, N.; Chanpheaktra, N.; Lum, L.C.S.; Pleités, E.;
Jones, N.; et al. C-reactive protein as a potential biomarker for disease progression in dengue: A multi-country observational
study. BMC Med. 2020, 18, 35. [CrossRef]

69. Fond, G.; Lançon, C.; Auquier, P.; Boyer, L. C-Reactive Protein as a Peripheral Biomarker in Schizophrenia. An Updated
Systematic Review. Front. Psychiatry 2018, 9, 392. [CrossRef] [PubMed]

70. Li, H.; Xiang, X.; Ren, H.; Xu, L.; Zhao, L.; Chen, X.; Long, H.; Wang, Q.; Wu, Q. Serum Amyloid A is a biomarker of severe
Coronavirus Disease and poor prognosis. J. Infect. 2020, 80, 646–655. [CrossRef]

71. Li, Z.; Hou, Y.; Zhao, M.; Li, T.; Liu, Y.; Chang, J.; Ren, L. Serum amyloid a, a potential biomarker both in serum and tissue,
correlates with ovarian cancer progression. J. Ovarian Res. 2020, 13, 67. [CrossRef]

72. Hara, A.; Niwa, M.; Noguchi, K.; Kanayama, T.; Niwa, A.; Matsuo, M.; Hatano, Y.; Tomita, H. Galectin-3 as a Next-Generation
Biomarker for Detecting Early Stage of Various Diseases. Biomolecules 2020, 10, 389. [CrossRef]

73. Karagiannis, P.; Fittall, M.; Karagiannis, S.N. Evaluating biomarkers in melanoma. Front. Oncol. 2014, 4, 1–11. [CrossRef]
74. Malaguarnera, M. Serum markers of cutaneous melanoma. Front. Biosci. 2010, 2, 1115–1122. [CrossRef]
75. Eisenstein, A.; Gonzalez, E.C.; Raghunathan, R.; Xu, X.; Wu, M.; McLean, E.O.; McGee, J.; Ryu, B.; Alani, R.M. Emerging

Biomarkers in Cutaneous Melanoma. Mol. Diagn. Ther. 2018, 22, 203–218. [CrossRef] [PubMed]
76. Nyakas, M.; Aamdal, E.; Jacobsen, K.D.; Guren, T.K.; Aamdal, S.; Hagene, K.T.; Brunsvig, P.; Yndestad, A.; Halvorsen, B.;

Tasken, K.A.; et al. Prognostic biomarkers for immunotherapy with ipilimumab in metastatic melanoma. Clin. Exp. Immunol.
2019, 197, 74–82. [CrossRef]

http://doi.org/10.1016/j.jprot.2012.05.018
http://doi.org/10.1007/s00726-012-1409-5
http://doi.org/10.1083/jcb.201804161
http://doi.org/10.1016/j.freeradbiomed.2013.05.001
http://doi.org/10.1016/j.conb.2012.02.006
http://www.ncbi.nlm.nih.gov/pubmed/22398400
http://doi.org/10.1038/s41416-019-0620-5
http://www.ncbi.nlm.nih.gov/pubmed/31819187
http://doi.org/10.1016/j.drudis.2016.12.003
http://doi.org/10.1016/j.semcancer.2019.07.016
http://doi.org/10.1007/s12094-019-02187-8
http://www.ncbi.nlm.nih.gov/pubmed/31359335
http://doi.org/10.1097/PPO.0b013e31824d448c
http://www.ncbi.nlm.nih.gov/pubmed/22453015
http://doi.org/10.1007/978-1-4939-2550-6_9
http://doi.org/10.1016/j.cels.2017.05.009
http://www.ncbi.nlm.nih.gov/pubmed/28601559
http://doi.org/10.1038/s41467-019-13973-x
http://doi.org/10.1021/acs.analchem.9b04631
http://doi.org/10.1021/acs.jproteome.0c00863
http://doi.org/10.1074/mcp.M111.014050
http://doi.org/10.1002/ctm2.451
http://doi.org/10.1182/blood-2005-06-2373
http://doi.org/10.1200/jco.2010.28.15_suppl.4631
http://doi.org/10.1186/s12916-020-1496-1
http://doi.org/10.3389/fpsyt.2018.00392
http://www.ncbi.nlm.nih.gov/pubmed/30190688
http://doi.org/10.1016/j.jinf.2020.03.035
http://doi.org/10.1186/s13048-020-00669-w
http://doi.org/10.3390/biom10030389
http://doi.org/10.3389/fonc.2014.00383
http://doi.org/10.2741/e170
http://doi.org/10.1007/s40291-018-0318-z
http://www.ncbi.nlm.nih.gov/pubmed/29411301
http://doi.org/10.1111/cei.13283


Cancers 2021, 13, 6224 23 of 23

77. Fang, S.; Wang, Y.; Sui, D.; Liu, H.; Ross, M.I.; Gershenwald, J.E.; Cormier, J.N.; Royal, R.E.; Lucci, A.; Schacherer, C.W.; et al.
C-Reactive Protein As a Marker of Melanoma Progression. J. Clin. Oncol. 2015, 33, 1389–1396. [CrossRef]

78. Yu, F.; Haynes, S.E.; Nesvizhskii, A.I. IonQuant Enables Accurate and Sensitive Label-Free Quantification with FDR-Controlled
Match-Between-Runs. Mol. Cell. Proteom. 2021, 20, 100077. [CrossRef] [PubMed]

79. Perez-Riverol, Y.; Sánchez, A.; Ramos, Y.; Schmidt, A.; Müller, M.; Betancourt, L.; González, L.J.; Vera, R.; Padron, G.; Besada, V. In
silico analysis of accurate proteomics, complemented by selective isolation of peptides. J. Proteom. 2011, 74, 2071–2082. [CrossRef]

80. Malm, J.; Végvári, Á.; Rezeli, M.; Upton, P.; Danmyr, P.; Nilsson, R.; Steinfelder, E.; Marko-Varga, G. Large scale biobanking of
blood—The importance of high density sample processing procedures. J. Proteom. 2012, 76, 116–124. [CrossRef]

81. Malm, J.; Lindberg, H.; Erlinge, D.; Appelqvist, R.; Yakovleva, M.; Welinder, C.; Steinfelder, E.; Fehniger, T.E.; Marko-Varga, G.
Semi-automated biobank sample processing with a 384 high density sample tube robot used in cancer and cardiovascular studies.
Clin. Transl. Med. 2015, 4, 67. [CrossRef]

82. Kuras, M.; Woldmar, N.; Kim, Y.; Hefner, M.; Malm, J.; Moldvay, J.; Döme, B.; Fillinger, J.; Pizzatti, L.; Gil, J.; et al. Proteomic
Workflows for High-Quality Quantitative Proteome and Post-Translational Modification Analysis of Clinically Relevant Samples
from Formalin-Fixed Paraffin-Embedded Archives. J. Proteome Res. 2021, 20, 1027–1039. [CrossRef] [PubMed]

83. Canchola, J.A.; Tang, S.; Hemyari, P.; Paxinos, E.; Marins, E. Correct Use of Percent Coefficient of Variation (%CV) Formula for
Log-Transformed Data. MOJ Proteom. Bioinform. 2017, 6, 316–317. [CrossRef]

84. Koopmans, L.H.; Owen, D.B.; Rosenblatt, J.I. Confidence intervals for the coefficient of variation for the normal and log normal
distributions. Biometrika 1964, 51, 25–32. [CrossRef]

85. Limpert, E.; Stahel, W.A.; Abbt, M. Log-normal Distributions across the Sciences: Keys and Clues: On the charms of statistics, and
how mechanical models resembling gambling machines offer a link to a handy way to characterize log-normal distributions,
which can provide deeper insight into variability and probability—Normal or log-normal: That is the question. BioScience 2001,
51, 341–352. [CrossRef]

86. Elias, J.E.; Gygi, S.P. Target-Decoy Search Strategy for Mass Spectrometry-Based Proteomics. Proteome Bioinform. 2010, 604, 55–71.
[CrossRef]

87. RStudio Team. RStudio: Integrated Development for R; RStudio: Boston, MA, USA, 2016.
88. Team R Core. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna,

Austria, 2016.
89. Betancourt, L.H.; Gil, J.; Kim, Y.; Doma, V.; Çakır, U.; Sanchez, A.; Murillo, J.R.; Kuras, M.; Parada, I.P.; Sugihara, Y.; et al. The

human melanoma proteome atlas—Defining the molecular pathology. Clin. Transl. Med. 2021, 11, e473. [CrossRef]
90. Bernhardt, J.; Funke, S.; Hecker, M.S.J. Visualizing Gene Expression Data via Voronoi Treemaps. In Proceedings of the Sixth

International Symposium on Voronoi Diagrams, Copenhagen, Denmark, 23–26 June 2009; pp. 233–241. [CrossRef]
91. Liebermeister, W.; Noor, E.; Flamholz, A.; Davidi, D.; Bernhardt, J.; Milo, R. Visual account of protein investment in cellular

functions. Proc. Natl. Acad. Sci. USA 2014, 111, 8488–8493. [CrossRef]
92. Otto, A.; Bernhardt, J.; Meyer, H.; Schaffer, M.; Herbst, F.-A.; Siebourg, J.; Mäder, U.; Lalk, M.; Hecker, M.; Becher, D. Systems-wide

temporal proteomic profiling in glucose-starved Bacillus subtilis. Nat. Commun. 2010, 1, 137. [CrossRef] [PubMed]
93. Chalkley, R.J. Improving Peptide Identification Using Empirical Scoring Systems. In Mass Spectrometry Data Analysis in Pro-

teomicols, Methods in Molecular Biology (Methods and Protocols); Humana Press: Totowa, NJ, USA, 2013; Volume 1007, pp. 173–182.
[CrossRef]

94. Ivanov, M.; Levitsky, L.; Lobas, A.; Panic, T.; Laskay, Ü.A.; Mitulović, G.; Schmid, R.; Pridatchenko, M.L.; Tsybin, Y.; Gorshkov,
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