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Simple Summary: Malignant melanomas (MMs) with aypical clinical presentation constitute a
diagnostic pitfall, and false negatives carry the risk of a diagnostic delay and improper disease man-
agement. Among the most common, challenging presentation forms of MMs are those that clinically
resemble seborrheic keratosis (SK). On the other hand, SK may mimic melanoma, producing ‘false
positive overdiagnosis’ and leading to needless excisions. The evolving efficiency of deep learning
algorithms in image recognition and the availability of large image databases have accelerated the
development of advanced computer-aided systems for melanoma detection. In the present study,
we used image data from the International Skin Image Collaboration archive to explore the capacity
of deep knowledge transfer in the challenging diagnostic task of the atypical skin tumors of MM
and SK.

Abstract: Malignant melanomas resembling seborrheic keratosis (SK-like MMs) are atypical, challeng-
ing to diagnose melanoma cases that carry the risk of delayed diagnosis and inadequate treatment.
On the other hand, SK may mimic melanoma, producing a ‘false positive’ with unnecessary lesion
excisions. The present study proposes a computer-based approach using dermoscopy images for the
characterization of SK-like MMs. Dermoscopic images were retrieved from the International Skin
Imaging Collaboration archive. Exploiting image embeddings from pretrained convolutional network
VGG16, we trained a support vector machine (SVM) classification model on a data set of 667 images.
SVM optimal hyperparameter selection was carried out using the Bayesian optimization method. The
classifier was tested on an independent data set of 311 images with atypical appearance: MMs had
an absence of pigmented network and had an existence of milia-like cysts. SK lacked milia-like cysts
and had a pigmented network. Atypical MMs were characterized with a sensitivity and specificity of
78.6% and 84.5%, respectively. The advent of deep learning in image recognition has attracted the
interest of computer science towards improved skin lesion diagnosis. Open-source, public access
archives of skin images empower further the implementation and validation of computer-based
systems that might contribute significantly to complex clinical diagnostic problems such as the
characterization of SK-like MMs.

Keywords: melanoma; seborrheic keratosis; SK-like MM; deep learning; knowledge transfer

1. Introduction

Malignant melanomas (MMs) with atypical clinical presentation constitute a diagnos-
tic pitfall, and false negatives carry the risk of a diagnostic delay and improper disease
management [1,2]. Among the most common, challenging presentation forms of MMs are
those that clinically resemble seborrheic keratosis (seborrheic keratosis-like MMs, SK-like
MMs) [3].
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SK is one of the most frequently diagnosed benign skin tumors in everyday clinical
practice. It is a hallmark of aged, chronically sun-exposed skin of older individuals, with
well-characterized, in most cases, diagnostic clinical features. The patients are usually
alarmed about the sometimes rapidly growing exophytic lesions; however, in most cases,
they can be assured that their growths are benign simply based on the clinical examination
and without the need for histologic confirmation. Moreover, in many clinically doubtful
cases, an additional dermoscopic assessment of the suspect lesion enables a clear-cut diag-
nosis of the condition based on a series of well-elaborated, typical dermoscopic features [4].
However, none of the SK dermoscopic findings is specific to SK [4], as they can be observed
in other skin tumors, including malignant ones, among which are also distinct MM cases
(SK-like MMs) [5].

The true incidence of SK-like MM is largely unknown since many of these lesions
are misdiagnosed as SK on the basis of the clinical and dermoscopic examination and are
not biopsied at this stage [3]. Izikson et al. [6], in a retrospective study covering ten years
(1992 to 2001), retrieved 9204 pathology reports of material admitted with the clinical
differential diagnosis SK. Melanoma was confirmed by histological examination in 61 of
these cases (0.66%).

SK-like melanoma shares clinical and dermoscopic features of SK and melanoma,
making the diagnosis challenging. A somewhat regular shape and the presence of benign
dermoscopic patterns suggestive of an SK lead to underestimating the true malignant
nature of this type of lesion. This ambiguity in the diagnosis was highlighted in a study
by Carrera et al. [7] in which 54 dermatologists with about ten years of clinical practice
clinically misdiagnosed 40% of 134 SK-like melanomas as benign lesions. An additional
dermoscopic evaluation could improve the overall diagnostic accuracy from 60.9 to 68.1%,
i.e., not more than by about 20%. Additionally, in the largest dermoscopic study of SK-like
melanomas to date, the dermoscopy score and the seven-point checklist score showed
benignity range with values 4.2 and 2 [5]. In the same study, Carrera et al. found that
the most helpful criteria in correctly diagnosing SK-like MMs, despite the presence of
other SK features, were the identification of blue–white veil, streaks, and a pigmented
network [5]. Noninvasive optical methods, such as reflectance confocal microscopy (RCM)
and optical coherence tomography can be employed to improve accuracy in melanoma
diagnosis [8–10]. However, in SK-like MMs, the application has been limited due to
frequent clinical, dermoscopic misdiagnosis [3].

The diagnostic grey zone between SK and MM becomes even broader as SK mimicking
melanomas (MMs-like SK) have also been reported, with an increased risk of false MM
diagnoses [11–14]. Dermoscopy of typical SK is characterized by milia-like cysts, comedo-
like openings, and brain-like and finger-like structures [4]. However, pigmented SK can
sometimes present dermoscopic patterns that mimic melanocytic lesions, the most frequent
of which is the so-called false pigmented network. Dermoscopic evaluation of 402 lesions
indicated that pigmented SK could show at least one of the criteria most predictive of
melanocytic proliferations [11].

Recent studies have highlighted the contribution of RCM in characterizing MM-like SK.
Farnetani et al. [15] retrospectively evaluated RCM images of atypical SK lesions suspicious
of MM at dermoscopy to identify a diagnostic approach able to minimize surgical biopsies
or excisions. They assessed 111 facial lesions with histological SK diagnosis. By dermoscopy,
most lesions (n = 83 lesions, 75%) were classified as melanocytic-like. With RCM, only 16%
were classified as suspicious of malignancy, with the remaining 84% considered ‘SK-like’.
The presence of RCM features associated with typical SK, the rare presence of melanoma-
associated features, and the absence of medusa head-like structures seem to be the most
sensitive indicators for atypical SK facial lesions.

In another retrospective study, Pezzine et al. [16], applied RCM to analyze excised
skin lesions with a ≥1 score of the revisited seven-point dermoscopy checklist [17]. Their
objective was to evaluate the agreement of RCM classification and histological diagnoses
and the reliability of well-known RCM criteria for SK in identifying SK with atypical
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dermoscopy presentation. An excellent agreement (97%) was confirmed for RCM and
histopathologic examination for SK with atypical dermoscopy presentation, allowing an
effective noninvasive differential diagnosis. More importantly, RCM features in this group
of atypical lesions were similar to those described for typical SK cases.

Recently, computer-aided diagnosis (CAD) systems are increasingly combined with
various noninvasive imaging techniques to encompass advanced image processing and
enable the application of artificial intelligence (AI) methods to improve diagnostic accu-
racy [18–20]. In the field of quantitative noninvasive optical techniques, Bozsànyi et al. [21]
assessed the usefulness of spectral reflectance and autofluorescence measurements of MM
and SK for their accurate differentiation. Using image analysis, they have extracted quanti-
tative autofluorescence intensity measures and created a multiparameter descriptor—the
SK index. High values of SK index (resulting from high fluorescence intensity values and
the number of highly autofluorescent particles detected in the lesion area) were associated
with SK lesions and were mainly caused by the milia-like cysts and comedo-like open-
ing, which are primarily filled with keratin. On the other hand, compared with SK, the
melanomas exhibited significantly lower intensity values. The authors used a threshold
value of SK index and discriminated SK (n = 319) from MM (n = 161) with a sensitivity of
91.9% and specificity of 57.0%. It is worth noting that their data set included six image sets
of MM-like SK and 52 image sets of SK-like MM; however, they did not clarify the clinical
or dermoscopic atypia criteria of these latter cases.

In the same context, Wang et al. [22] developed a support vector machine (SVM) clas-
sification model fed with speckle patterns estimated from image histogram of copolarized
and cross-polarized speckle images and a depolarization ratio image D to differentiate
between MM and SK. Using a data set of 143 patients (MM n = 37, SK n = 106), they could
discriminate SK from MM with this approach with a sensitivity of 87.63% and a specificity
of 85.74%.

The increasing worldwide integration of dermoscopy in clinical dermatology prac-
tice [23,24], the evolving efficiency of deep learning algorithms in image recognition, and
the availability of extensive image archives have greatly accelerated the development
of advanced CAD systems for melanoma detection [25–30]. Earlier efforts were mainly
concentrated on discriminating benign melanocytic lesions from MM. However, with the
availability of large image datasets, the interest has shifted towards a more sophisticated
categorization of skin tumors. Today, the largest, publicly available dataset of dermoscopic
images is the International Skin Image Collaboration (ISIC) archive [31]. ISIC promotes
CAD-based research by sponsoring annual related challenges for the computer science
community in association with leading computer vision conferences. Thus in recognition
of the immense clinical impact of differentiating between MM and SK, in 2017 ISIC released
a focused dataset with a three-task challenge: lesion segmentation, visual dermoscopic
features detection, and lesion discrimination firstly between melanoma vs. nevus and
seborrheic keratosis (malignant vs. benign lesions), and secondly between seborrheic
keratosis vs. nevus and melanoma (nonmelanocytic vs. melanocytic lesions) [32].

In the present study, we used image data from the ISIC archive to investigate the
discrimination efficiency of image embeddings derived from pretrained convolutional
network VGG16 to differentiate between MM and SK in the challenging diagnostic task
of the preinvasive diagnosis of SK-like MMs. To the best of our knowledge, this study is
the first effort exploring the capacity of deep knowledge transfer in refined complexity
diagnostic tasks of clinically atypical skin tumors.

2. Materials and Methods
2.1. Data Set Description

Our data set comprised 978 dermoscopic images (malignant melanoma, MM, n = 550;
seborrheic keratosis, SK, n = 428) retrieved from the International Skin Image Collaboration
archive [31]. Patients’ metadata are summarized in Table 1.
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Table 1. Patient metadata: Gender and age of the patients.

Patient Characteristics MM SK

Female 240 195
Male 248 230

Undefined 62 3

Mean Age 60.8 64
Median Age 65 65

Standard Deviation (SD) of Age 15.9 13.3
MM: malignant melanoma, SK: seborrheic keratosis.

The clinical diagnosis of all MM cases and of 310 SK cases (72.4%) was confirmed by
histological examination.

A large part of the images came from ISIC 2017 challenge [32]. This database provides
ground truth lesion images with annotation of the lesion area and the dermoscopic patterns.
To enhance our training set, we retrieved 200 additional images (n = 100 MM, n = 100 SK;
the BCN_20000 dataset, Hospital Clínic de Barcelona) from the ISIC archive. For the
remaining images (BCN_2000 dataset), the lesion area was annotated manually by our
experts. The study did not include images in which hair (or another type of noise such
as bubbles) substantially corrupted the lesion area. The image resolution in the dataset
ranged from 639 × 602 to 6720 × 4461 pixels.

To train our system, we used n = 349 cases of MM and n = 318 cases of SK. The
inclusion criteria of dermoscopic images in the test set (MM n = 201, SK n = 110) were
the presence of at least one atypical dermoscopy pattern. For MM, this is the absence of
pigmented network or the presence of milia-like cysts (or both). On the other hand, atypical
SK lacked milia-like cysts or had a pigmented network (or both) (Figures 1 and 2).

Figure 1. Atypical cases: (a) MM with milia-like cysts (annotated) (b) SK with a pigmented network
(annotated). Scale bar = 5mm applies to both panels. Images in the figure were adapted to a uniform
magnification (compare same lengths of the original integrated dermatoscope scale) Figures are
available online [31].

2.2. Feature Extraction Using Deep Knowledge Transfer

The objective of machine learning in CAD systems is to extract patterns from images
and use these patterns to make diagnostic predictions. These patterns are feature vector
representations of input images, also called embeddings. From the deep learning per-
spective, using pretrained embeddings to encode images into feature vectors is known as
transfer learning [33]. A typical example is to repurpose pretrained embeddings trained on
a large corpus of millions of images [34] for a large-scale classification task to implement a
classification model for a different classification task, with much fewer data available.
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Figure 2. Examples of MM (a) and SK (b) cases. Pairs (left-right) of selected cases are displayed to highlight the distinct
overlap of the morphological features. Scale bar = 5mm applies to all panels. All images in the figure were adapted
to a uniform magnification (compare same lengths of the original integrated dermatoscope scale) (Figures are available
online [31]).

Several studies have indicated that embeddings extracted from deep convolutional
neural networks (CNNs) are powerful for various visual recognition tasks [35–37]. Their
outstanding performance as image representation learners grew the trend of utilizing them
as optimized feature generators for skin lesion classification [38–43]. Our work, aligned
with previous research evidence, explores the efficiency of the pretrained CNN, namely
the VGG16 [44] as the starting point, for the generation of image embeddings in order to
discriminate between cases of atypical MM and atypical SK.

As a conventional deep CNN, VGG16 is a 16-layer architecture that consists of convolu-
tional and fully connected parts. VGG16 pretrained on ImageNet is a classifier architecture
for distinguishing a large number of object classes [34]. This goal is achieved gradually by
learning image representations in a hierarchical order (Figure 3).
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Figure 3. VGG16 architecture and the image representation hierarchies.

Top layers capture more abstract and high-level semantic features. They are robust
at distinguishing objects of different classes (i.e., flowers, dogs, etc.) even at significant
appearance changes or in the presence of a noisy background. Still, they are less discrimina-
tive to objects of the same category (i.e., differentiate between different species of flowers).
Moreover, several studies confirmed that the fully connected layers of the CNN, whose role
is primarily that of classification, tend to exhibit relatively worse generalization ability and
transferability [45]. In contrast, the lower convolutional layers provide more detailed spa-
tial representations. They are more helpful to localize fine-grained details and distinguish
a target object from its distracters (other objects with similar appearance, i.e., distinguish
between bird species). However, they are less robust to appearance changes. The convo-
lutional layers, acting progressively from fine, spatial to coarse, abstract representations
generally transfer well [33,37,45,46] to diverse classification tasks. Based on this evidence,
in the present work, we aimed to find the optimal transition point in the convolutional
layers to mine high-capacity image representations for the challenging diagnostic task of
SK-like MMs characterization.

We exploited image representations from the layers “pool2–pool5”. For comparison
purposes, we also extracted the fully connected layers’ “FC6”, “FC7” feature maps so that
we can contrast the behavior of the convolutional and fully connected layers (Figure 3).

Finally, the efficiency of VGG16 representations was compared with hierarchical
feature embeddings from the ResNet50 convolutional network [47]. Image encoding from
fine spatial to coarse abstract, was explored using the layers ReLU_10, ReLU_22, ReLU_40,
and ReLU_49.

The image representation of a convolutional layer (activation) forms a tensor of
HxWxd, consisting of d feature maps of size H × W. Each feature map is flattened using
global average pooling to produce a d-dimensional feature vector. Table 2 summarizes the
different VGG16 and ResNet50 layers’ representations and their resulting feature vectors
for an input image of 224 × 224 × 3 pixels.
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Table 2. VGG16 and ResNet50 pretrained image representations and their corresponding d-
dimensions feature vectors by global averaging. CNN: convolutional neural network.

CNN Layer Imager Representation
(Activation)

Feature Vector
Dimension (d)

VGG16

Pool2 56 × 56 × 128 128
Pool3 28 × 28 × 256 256
Pool4 14 × 14 × 512 512
Pool5 7 × 7 × 512 512
FC6 1 × 1 × 4096 4096
FC7 1 × 1 × 4096 4096

ResNet50

ReLU_10 56 × 56 × 256 256
ReLU_22 28 × 28 × 512 512
ReLU_40 14 × 14 × 1024 1024
ReLU_49 7 × 7 × 2048 2048

2.3. Implementation and Evaluation of the Diagnostic Model

The extracted deep feature vectors (Table 2) were used to train different binary SVM
classifiers. SVM is the classifier of choice for assessing representations from pretrained
CNNs [35,36]. For all SVM models, optimal hyperparameter selection (Box Constraint,
Kernel function, Kernel scale, Polynomial order) was carried out using the Bayesian
optimization method [48] that minimizes k-fold (k = 5) cross-validation classifier error.
For each model, the accuracy performance was evaluated in an independent data set of
challenging cases of MM and SK in terms of sensitivity, specificity, and overall accuracy:

Sensitivity =
TP

TP + FN
(1)

Speci f icity =
TN

TN + FP
(2)

Accuracy =
TP + TN

TP + FP + TN + FN
(3)

where TN is the number of SK correctly identified, FN is the number of MM incorrectly
identified as SK, TP is the number of MM correctly identified, and FP is the number of SK
incorrectly identified as MM.

The models’ accuracies were assessed with the McNemar test to detect whether the
misclassification rates between any of the two models were statistically significant or
not [49,50].

2.4. Image Preprocessing

Before being used as input to pretrained CNNs, all images were preprocessed fol-
lowing a standard pipeline of color normalization, cropping, and resizing (Figure 4). To
achieve a color constancy in the whole data set, we used the Grey world color constancy
method [51], initially used by [52] and followed by many researchers in automated skin
classification works [53–55]. Finally, the exact lesion dimensions were used to crop the
images as proposed in [55].
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Figure 4. Image preprocessing example. (a) Each image is color normalized and combined with the
lesion image mask to produce (b) the final lesion-cropped and adequately resized input to the CNN
model. Scale bar = 5mm. (Figure available online [31]).

3. Results

Bayesian optimization was run for 100 iterations, and different image embeddings
from pretrained VGG16 and ResNet50 layers resulted in different classification models,
with noticeable differences in test classification accuracies (Table 3).

Table 3. SVM classification models performance using different image representations. Bold annota-
tion highlights the best performance yielded by VGG16 and ResNet50, respectively.

CNN Layer SVM Model Sensitivity (%) Specificity (%) Accuracy (%)

VGG16

Pool2 Polynomial 56.7 86.4 67.2
Pool3 Gaussian 78.6 84.5 80.7
Pool4

Linear

68.2 90.9 75.2
Poo5 59.2 85.4 68.5
FC6 57.2 86.4 67.5
FC7 62.2 82.7 69.4

ResNet50

ReLU_10 Polynomial 68.1 86.4 74.6
ReLU_22 Gaussian 76.1 85.4 79.4
ReLU_40

Linear
70.6 89.1 77.2

ReLU_49 62.7 86.4 71.1

The SVM model with a gaussian kernel using feature vectors from the ‘pool3’ layer
exhibited the best overall accuracy of 80.7% (251/311 cases) and a sensitivity and specificity
of 78.6% (158/201 cases) and 84.5% (93/110 cases), respectively. The highest specificity,
90.9% (100/110 cases), was achieved by a linear SVM classifier and features from the convo-
lutional layer ‘pool4’. Considering the ResNet50 approach, there was also the SVM model
with a gaussian kernel using feature vectors from the ‘ReLU_22’ layer that exhibited the best
overall accuracy of 79.4% with a sensitivity and specificity of 76.1% and 85.4%, respectively.

More detailed comparison results are illustrated in Table 4, where the statistical
significance (McNemar test) of the differences in the observed accuracies is displayed.
Considering the VGG16 embeddings, layer ‘pool3’ produced significantly better sensitivity
and overall accuracy with more than a 99.9% confidence level. The ‘pool4’ layer outper-
formed the sensitivity and overall accuracy of pool5 and FC7 layers with a confidence of
more than 95% and those of layers pool2 and FC6 with a confidence of more than 99.9%.
The fully connected layer FC7 outperformed the FC6 layer in sensitivity with more than
95% confidence.
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Table 4. Cross-comparison of the classifiers’ accuracies (McNemar test). The arrowheads point to the classifier with the
highest accuracy, and the lines denote comparable accuracies. The overall accuracy, sensitivity, and specificity results are
denoted with dark, red, and blue colors. For example, comparing the performance of layers’ representations FC6 and
FC7, the FC7 layer exhibited statistically higher sensitivity with a confidence level of more than 95%. Only p-values of
significantly different outcomes are displayed.

Pool2 Pool4 Pool5 FC6 FC7 ReLU_22

Pool3 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

Pool2 - p < 0.001 p < 0.001

Pool4 - - p < 0.05 p < 0.001 p < 0.05 p < 0.001

Pool5 - - - p < 0.001

FC6 - - - - p < 0.05 p < 0.001

FC7 - - - - - p < 0.001

Overall, all the representations resulted in comparable levels of specificity.

4. Discussion

The importance of the timely diagnosis of difficult to recognize melanomas that can
clinically resemble benign tumors, such as the SK-like MMs, has been emphasized in
previous studies [3,5,7,55,56]. Carrera et al. have indicated specific dermoscopic criteria
for correctly identifying such challenging SK-like MM cases [5]. On the other hand, given
their larger numbers and significant dermoscopic variability, SK may, at times, mimic
melanoma contributing to the clinical MM overdiagnosis [14,15]. RCM may help diagnose
challenging cases [3], and recent studies have highlighted the ability of RCM patterns to
identify SK with atypical dermoscopy presentation [15,16]. However, there is a lack of
related RCM studies focusing on SK-like MM [3]. Moreover, these later studies [5,15,16]
have unilaterally highlighted the diagnostic accuracy of dermoscopic and RCM features.
The dermoscopic features that assist experts in characterizing SK-like MM have not been
employed to assess atypical cases of SK, and the specific RCM patterns were not evaluated
in SK-like MM cases. Moreover, the use of RCM is time-consuming, and the increased cost
of the equipment restricts the wide availability of this technology.

Today, with the rapid advancement of deep learning methods and the publicly avail-
able data sets, dermoscopic images almost monopolize the research interest of CAD skin
lesion systems. Numerous breakthrough studies, mainly from the field of computer sci-
ence, have demonstrated high (expert-level) accuracy in melanoma detection. These high
accuracy rates are either related to binary classification tasks as benign vs. malignant or
multidifferential diagnosis tasks. In this study, we explored the potential of deep knowl-
edge transfer to approach the challenging ‘grey zone’ of atypical cases of MM and SK.
Studying the different image representation transfer results from a well-known VGG16
architecture and following a standard workflow, we achieved a sensitivity of 78.6% and a
specificity of 84.5% using the convolutional layer ‘pool3’ as a feature extractor. Our results
confirm that meaningful feature reuse is concentrated at the convolutional layers rather
than at higher, fully connected layers [33,36]. We have also tested the ResNet50 network,
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and we have verified the existence of the optimal transition from fine spatial to coarse
semantic features through the deeper convolutional blocks of ResNet. However, since the
discriminating image embeddings are located at the middle layers, the middle-level image
embeddings from ResNet50 are of comparable capacity to that of middle-level VGG16.

Moreover, a meta-analysis of 70 studies on CAD systems, published between 2002
and 2018 [19], gave a melanoma sensitivity of 0.74 (95% CI, 0.66–0.80) and a specificity of
0.84 (95% CI, 0.79–0.88), indicating that we have tackled the challenging discrimination of
SK-like MMs with comparable accuracies.

In future work, aggregating methods to combine embeddings from middle convolu-
tional layers of the same network or different networks in a global, dense image represen-
tation might further boost the system’s accuracy. However, the availability of annotated
and high-quality image data remains the key contributor to improving accuracy.

Our present contribution is thus twofold: Firstly, the comprehensive evaluation of the
transferability of features from different layers of pretrained VGG16 and ResNet50 unveiled
the excellent efficiency and generalization properties of the middle-level convolutional
layers. Secondly, we targeted a challenging diagnostic task where key dermoscopic patterns
of either condition are shared between benign and malignant lesions. It is worth noting
that the herein proposed CAD system is aligned with the recent technological advances
in smartphone-based teledermatology that promise to enhance diagnostic efficacy at the
clinical level [57].

The main limitation of this study is that the feature extraction from pretrained image
embeddings is acting more like a black box. The exploited image patterns generate little
human interpretable evidence of lesion diagnosis. The effectiveness of this algorithm in
prediagnosed cases is within the scopes of a future prospective study.

5. Conclusions

Deep learning has boosted the efficiency of CAD systems significantly. With the pub-
licly available data collections, the computer science community has now the opportunity
to test the accuracy of these systems in melanoma diagnosis. Moreover, when these systems
clearly focus on a specific diagnostic task and are trained and tested sufficiently, they may
support dermatologists in challenging diagnostic tasks.
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30. Kassem, M.; Hosny, K.; Damaševičius, R.; Eltoukhy, M. Machine Learning and Deep Learning Methods for Skin Lesion
Classification and Diagnosis: A Systematic Review. Diagnostics 2021, 11, 1390. [CrossRef]

31. The International Skin Imaging Collaboration. Available online: https://www.isic-archive.com (accessed on 24 October 2021).
32. Codella, N.C.F.; Gutman, D.; Celebi, M.E.; Helba, B.; Marchetti, M.A.; Dusza, S.W.; Kalloo, A.; Liopyris, K.; Mishra, N.;

Kittler, H.; et al. Skin Lesion Analysis toward Melanoma Detection: A Challenge. arXiv 2017, arXiv:1710.05006v3, 168–172.
Available online: https://arxiv.org/abs/1710.05006v3 (accessed on 22 September 2021).

33. Raghu, M.; Zhang, C.; Kleinberg, J.; Bengio, S. Transfusion: Understanding Transfer Learning for Medical Imaging. arXiv 2019,
arXiv:1902.07208. Available online: http://arxiv.org/abs/1902.07208 (accessed on 4 January 2021).

34. ImageNet. Available online: https://image-net.org/ (accessed on 27 September 2021).
35. Sharif Razavian, A.; Azizpour, H.; Sullivan, J.; Carlsson, S. CNN Features Off-The-Shelf: An Astounding Baseline For Recogni-

tion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, OH, USA,
23–28 June 2014; pp. 512–519. [CrossRef]

36. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmen-
tation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA,
23–28 June 2014; pp. 580–587. [CrossRef]

37. Garcia-Gasulla, D.; Parés, F.; Vilalta, A.; Moreno, J.; Ayguadé, E.; Labarta, J.; Cortés, U.; Suzumura, T. On the Behavior of
Convolutional Nets for Feature Extraction. J. Artif. Intell. Res. 2018, 61, 563–592. [CrossRef]

38. Codella, N.; Cai, J.; Abedini, M.; Garnavi, R.; Halpern, A.; Smith, J.R. Deep Learning, Sparse Coding, and SVM for Melanoma
Recognition in Dermoscopy Images. In Proceedings of the 6th International Workshop on Machine Learning in Medical Imaging,
Munich, Germany, 5–9 October 2015; pp. 118–126. [CrossRef]

39. Majtner, T.; Yildirim-Yayilgan, S.; Hardeberg, J.Y. Optimised Deep Learning Features for Improved Melanoma Detection. Multimed
Tools Appl. 2018, 78, 11883–11903. [CrossRef]

40. Devassy, B.M.; Yildirim-Yayilgan, S.; Hardeberg, J.Y. The Impact of Replacing Complex Hand-Crafted Features with Standard
Features for Melanoma Classification Using Both Hand-Crafted and Deep Features. Adv. Intell. Syst. Comput. 2018, 150–159.
[CrossRef]

41. Mahbod, A.; Schaefer, G.; Wang, C.; Ecker, R.; Ellinge, I. Skin Lesion Classification Using Hybrid Deep Neural Networks. In
Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Brighton, UK, 12–17 May 2019; pp. 1229–1233. [CrossRef]

42. Liu, L.; Mou, L.; Zhu, X.X.; Mandal, M. Automatic Skin Lesion Classification Based on Mid-Level Feature Learning. Comput. Med.
Imaging Graph. 2020, 84, 101765. [CrossRef] [PubMed]

43. Yildirim-Yayilgan, S.; Arifaj, B.; Rahimpour, M.; Hardeberg, J.Y.; Ahmedi, L. Pre-trained CNN Based Deep Features with
Hand-Crafted Features and Patient Data for Skin Lesion Classification. Commun. Comput. Inf. Sci. 2021, 1382, 151–162. [CrossRef]

44. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the
International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015; pp. 1–4. [CrossRef]

45. Liu, L.; Chen, J.; Fieguth, P.; Zhao, G.; Chellappa, R.; Pietikäinen, M. From BoW to CNN: Two Decades of Texture Representation
for Texture Classification. Int. J. Comput. Vis. 2018, 127, 74–109. [CrossRef]

46. Tan, C.; Sun, F.; Kong, T.; Zhang, W.; Yang, C.; Liu, C. A Survey on Deep Transfer Learning. In Proceedings of the 27th
International Conference on Artificial Neural Networks, Rhodes, Greece, 4–7 October 2018; pp. 270–279. [CrossRef]

47. He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

48. Gelbart, M.A.; Snoek, J.; Adams, R.P. Bayesian Optimization with Unknown Constraints. arXiv 2014, arXiv:1403.5607, 250–259.
Available online: https://arxiv.org/abs/1403.5607v1 (accessed on 26 September 2021).

49. Dietterich, T.G. Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms. Neural Comput.
1998, 10, 1895–1923. [CrossRef]

50. Bostanci, B.; Bostanci, E. An Evaluation of Classification Algorithms Using Mc Nemar’s Test. In Proceedings of the Seventh
International Conference on Bio-Inspired Computing: Theories and Applications, ABV-Indian Institute of Information Technology
and Management Gwalior (ABV-IIITM Gwalior), Madhya Pradesh, India, 14–16 December 2012; pp. 15–26. [CrossRef]

51. Gijsenij, A.; Gevers, T.; van de Weijer, J. Computational Color Constancy: Survey and Experiments. IEEE Trans. Image Process.
2011, 20, 2475–2489. [CrossRef]

52. Barata, A.F.; Celebi, M.E.; Marques, J.S. Improving Dermoscopy Image Classification Using Color Constancy. IEEE J. Biomed.
Health Inform. 2015, 19, 1146–1152. [CrossRef]

53. Mahbod, A.; Schaefer, G.; Ellinger, I.; Ecker, R.; Pitiot, A.; Wang, C. Fusing Fine-Tuned Deep Features for Skin Lesion Classification.
Comput. Med. Imaging Graph. 2018, 71, 19–29. [CrossRef]

54. Zhang, J.; Xie, Y.; Xia, Y.; Shen, C. Attention Residual Learning for Skin Lesion Classification. IEEE Trans. Med. Imaging 2019, 38,
2092–2103. [CrossRef] [PubMed]

55. Mahbod, A.; Tschandl, P.; Langs, G.; Ecker, R.; Ellinger, I. The Effects of Skin Lesion Segmentation on the Performance of
Dermatoscopic Image Classification. Comput. Methods Programs Biomed. 2020, 197, 105725. [CrossRef] [PubMed]

http://doi.org/10.3390/diagnostics11081390
https://www.isic-archive.com
https://arxiv.org/abs/1710.05006v3
http://arxiv.org/abs/1902.07208
https://image-net.org/
http://doi.org/10.1109/CVPRW.2014.131
http://doi.org/10.1109/CVPR.2014.81
http://doi.org/10.1613/jair.5756
http://doi.org/10.1007/978-3-319-24888-2_15
http://doi.org/10.1007/s11042-018-6734-6
http://doi.org/10.1007/978-3-030-01054-6_10
http://doi.org/10.1109/ICASSP.2019.8683352
http://doi.org/10.1016/j.compmedimag.2020.101765
http://www.ncbi.nlm.nih.gov/pubmed/32810817
http://doi.org/10.1007/978-3-030-71711-7_13
http://doi.org/10.1016/j.infsof.2008.09.005
http://doi.org/10.1007/s11263-018-1125-z
http://doi.org/10.1007/978-3-030-01424-7_27
http://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/1403.5607v1
http://doi.org/10.1162/089976698300017197
http://doi.org/10.1007/978-81-322-1038-2_2
http://doi.org/10.1109/TIP.2011.2118224
http://doi.org/10.1109/jbhi.2014.2336473
http://doi.org/10.1016/j.compmedimag.2018.10.007
http://doi.org/10.1109/TMI.2019.2893944
http://www.ncbi.nlm.nih.gov/pubmed/30668469
http://doi.org/10.1016/j.cmpb.2020.105725
http://www.ncbi.nlm.nih.gov/pubmed/32882594


Cancers 2021, 13, 6300 13 of 13

56. Papageorgiou, V.; Apalla, Z.; Sotiriou, E.; Papageorgiu, C.; Lazaridou, E.; Vakirlis, S.; Ioannides, D.; Lallas, A. The Limitations of
Dermoscopy: False-Positive and False-Negative Tumours. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 879–888. [CrossRef]

57. Wang, Y.; Wang, J.; Zhang, W.; Zhan, Y.; Guo, S.; Zheng, Q.; Wang, X. A Survey on Deploying Mobile Deep Learning Applications:
A Systemic and Technical Perspective. Digit. Commun. Netw. 2021, in press. [CrossRef]

http://doi.org/10.1111/jdv.14782
http://doi.org/10.1016/j.dcan.2021.06.001

	Introduction 
	Materials and Methods 
	Data Set Description 
	Feature Extraction Using Deep Knowledge Transfer 
	Implementation and Evaluation of the Diagnostic Model 
	Image Preprocessing 

	Results 
	Discussion 
	Conclusions 
	References

