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Simple Summary: Glioblastoma multiforme (GBM) remains to be the most frequent malignant 

tumor of the central nervous system (CNS), which accounts for approximately 54% of all primary 

brain gliomas. Current treatment modalities for GBM include surgical resection, followed by 

radiotherapy and chemotherapy with temozolomide (TMZ). However, due to its genetic 

heterogeneity, GBM tumors always recur, due to treatment reasistance. The aim of this study was 

to identify molecular gene signatures, responsible for cancer initiation, progression, resistances and 

to treatment, metastasis, and also evaluate the potency of our novel compounds SJ10 as potential 

target for CCNB1/CDC42/MAPK7/CD44 oncogenic signatures. Accordingly, we used computational 

simulation and identify these signatures as regulators of the cell cycle in GBM, which leads to cancer 

development and metastasis. We also showed the antiproliferative and cytotoxic effects of SJ10 com-

pound against a panel of NCI‐60 cancer cell lines. This suggests the potential of the compounds to 

inhibit CCNB1/CDC42/MAPK7/CD44 in GBM. 

Abstract: Current anticancer treatments are inefficient against glioblastoma multiforme (GBM), 

which remains one of the most aggressive and lethal cancers. Evidence has shown the presence of 

glioblastoma stem cells (GSCs), which are chemoradioresistant and associated with high invasive 
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capabilities in normal brain tissues. Moreover, accumulating studies have indicated that radiother-

apy contributes to abnormalities in cell cycle checkpoints, including the G1/S and S phases, which 

may potentially lead to resistance to radiation. Through computational simulations using bioinfor-

matics, we identified several GBM oncogenes that are involved in regulating the cell cycle. Cyclin 

B1 (CCNB1) is one of the cell cycle-related genes that was found to be upregulated in GBM. Over-

expression of CCNB1 was demonstrated to be associated with higher grades, proliferation, and me-

tastasis of GBM. Additionally, increased expression levels of CCNB1 were reported to regulate ac-

tivation of mitogen-activated protein kinase 7 (MAPK7) in the G2/M phase, which consequently 

modulates mitosis; additionally, in clinical settings, MAPK7 was demonstrated to promote re-

sistance to temozolomide (TMZ) and poor patient survival. Therefore, MAPK7 is a potential novel 

drug target due to its dysregulation and association with TMZ resistance in GBM. Herein, we iden-

tified MAPK7/extracellular regulated kinase 5 (ERK5) genes as being overexpressed in GBM tumors 

compared to normal tissues. Moreover, our analysis revealed increased levels of the cell division 

control protein homolog (CDC42), a protein which is also involved in regulating the cell cycle 

through the G1 phase in GBM tissues. This therefore suggests crosstalk among 

CCNB1/CDC42/MAPK7/cluster of differentiation 44 (CD44) oncogenic signatures in GBM through 

the cell cycle. We further evaluated a newly synthesized small molecule, SJ10, as a potential target 

agent of the CCNB1/CDC42/MAPK7/CD44 genes through target prediction tools and found that SJ10 

was indeed a target compound for the above-mentioned genes; in addition, it displayed inhibitory 

activities against these oncogenes as observed from molecular docking analysis. 

Keywords: glioblastoma multiforme (GBM); temozolomide (TMZ); chemoradioresistance; genetic 

heterogeneity; bioinformatics; molecular docking; National Cancer Institute (NCI)-60 

 

1. Introduction 

Glioblastoma multiforme (GBM) is one of the most frequent malignant tumors of the 

central nervous system (CNS) [1,2], which accounts for approximately 54% of all primary 

brain gliomas, with a yearly incidence of 3.2 per 100,000 adults globally [3,4], and is clas-

sified as grade IV by the World Health Organization (WHO) [5]. It is associated with poor 

clinical outcomes, with fewer than 10% of patients reaching a 5-year survival rate after 

diagnosis [6,7]. The current treatment modalities for GBM include surgical resection, fol-

lowed by radiotherapy and chemotherapy with temozolomide (TMZ) [8–10]. However, 

due to genetic heterogeneity, GBM tumors always recur mainly at the resection site, lead-

ing to an overall median survival of only 15 months following the initial diagnosis [5,11]. 

Therefore, understanding molecular mechanisms and invasive characteristics of GBM is 

pivotal as an essential strategy for developing more-effective therapeutics. Resistance to 

treatment in GBM is also associated with glioblastoma stem cells (GSCs), which may po-

tentially assist GBM cancer cells to escape irradiation [11–13]. Studies showed that GCSs 

are resistant to TMZ chemotherapy, thus promoting radio resistance through DNA dam-

age response activation [11]. 

One of the stem cell markers that is commonly expressed in various cancer types, 

including GBM is cluster of differentiation 44 (CD44), a surface adhesion receptor which 

promotes cancer progression and metastasis [14]; its expression in GBM cells is also crucial 

for GBM invasion and migration [15]. CD44-expressing cells were shown to escape exog-

enous DNA damage from radiation-induced double-stranded breaks (DSBs); it ultimately 

promoted tumor recurrence and resistance to radiation [16]. Moreover, accumulating 

studies indicated that radiotherapy contributes to abnormalities in cell cycle checkpoints, 

including the G1/S and S phases, which may potentially lead to resistance to radiation 

[17,18]. Cyclin B1 (CCNB1) is one of the cell cycle-related genes that was reported to be a 

potential biomarker in GBM [19,20]. Overexpression of CCNB1 was demonstrated to be 

associated with higher grades, proliferation, and metastasis of GBM [21]. Additionally, 
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CCNB1 was shown to regulate cell mitosis at the G2/M phase through interacting with 

cyclin-dependent kinase 1 (CDK1) [22]. Thus, CCNB1/CDK1 may be potential diagnostic 

and prognostic markers of GBM [23–25]. 

Mitogen-activated protein kinase 7 (MAPK7) is a member of MAPKs, which regulate 

signaling transduction cascades [26] and are associated with multiple cellular processes, 

such as cell proliferation and survival [27,28]. High expression levels of MAPK7 were 

identified in GMB tumors compared to adjacent normal brain tissues. In clinical settings, 

MAPK7 promotes resistance to TMZ and poor patient survival; however, its role in GBM 

still remains to be further investigated [29]. Increased expression levels of CCNB1 were 

reported to regulate activation of MAPK7 in the G2/M phase, which consequently modu-

lates mitosis [28]. Therefore, MAPK7 is a potential novel drug target due to its dysregula-

tion and association with TMZ resistance in GBM [30–32]. Moreover, cell division control 

protein 42 homolog (CDC42) is a protein which is also involved in regulating the cell cycle 

through the G1 phase. Overexpression of CDC42 in GBM was demonstrated to promote 

tumor cell invasion and migration; additionally, CDC42 was associated with low survival 

rates and drug resistance in GBM patients [33,34]. This therefore suggests crosstalk among 

CCNB1/CDC42/MAPK7/CD44 oncogenic signatures in GBM through the cell cycle. 

Integrated bioinformatics analyses have been extensively applied in the early stages 

of drug discovery and development and have significantly accelerated the process, as well 

as reduced costs. Computational simulation approaches and molecular structural anal-

yses of ligand-protein interactions have contributed to the identification and prediction of 

novel diagnostic and prognostic biomarkers in cancer research [35,36]. In this study, we 

explored Microarray Data Extraction and predicted overexpressed and downregulated 

genes in GBM tumors; moreover, we utilized online prediction tools to further identify 

and validate expressions of our genes of interest, the CCNB1/MAPK7/CDC42/CD44 onco-

genes and also predicted patients’ clinical outcomes in GBM under the same settings. To 

date, only bevacizumab, everolimus and TMZ are the common FDA-approved drugs for 

brain tumor treatment [37]. Fortunately, with our innovative lab techniques, as mentioned 

in previous preliminary studies in drug discovery [38,39], we synthesized 9-chloro-6-(pi-

perazin-1-yl)-11H-indeno[1,2-c]quinolin-11-one (SJ10), a quinolone and piperazine deriv-

ative, with anticancer activities (Figure 1). In addition to our earlier studies, quinoline de-

rivatives were demonstrated to possess anticancer activities by inducing DNA double-

strand breaks and apoptosis [39,40]. Therefore, in this study, we performed drug target 

predictions and identified CCNB1/MAPK7/CDC42/CD44 oncogenic signatures as poten-

tial drug candidates of SJ10, and further performed ligand-protein binding simulations 

using in silico molecular docking, which validated CCNB1/MAPK7/CDC42/CD44 as drug-

gable candidates of SJ10. The antiproliferative and cytotoxic effects of SJ10 were evaluated 

in vitro using the US National Cancer Institute (NCI)-60 central nervous system (CNS) cell 

lines to determine responses of single-dose and dose-dependent treatments with SJ10 [41]. 
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Figure 1. Rationale of NSC772862 (SJ10) and some of the representative drugs in natural products 

and marketed drugs. 

2. Material and Methods 

2.1. Dataset Collection 

Gene expression profiles (GEPs) from GBM patient samples were downloaded from 

the Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/gds/ 4 Au-

gust 2021), an international public repository for high-throughput microarray data [42]. 

(3) different expression profile datasets obtained, viz., GSE4290, GSE68848 and GSE30563 

were further analyzed using GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/, accessed 

on 4 August 2021), an interactive online platform to identify differentially expressed genes 

(DEGs) [43], which was used to identify DEGs between GBM tumor samples and normal 

samples. The Benjamini–Hochberg adjustment was made to p values (adj. p) to control the 

false discovery rate (FDR) and maintain the balance between the possibility of false-posi-

tives and the detection of significant genes. The fold-change (FC) threshold was set to 1.5, 

and adj. p < 0.05 was considered statistically significant. Venn diagrams were constructed 

using the Bioinformatics & Evolutionary Genomics (BEG) online tool (http://bioinformat-

ics.psb.ugent.be/webtools/Venn/, accessed on 4 August 2021). 

2.2. Identifying Molecular Targets and Therapeutic Classes of SJ10 

Potential SJ10 target genes were predicted using an open-source web tool based on 

the Prediction of Biological Activity Spectra (PASS) [44] (http://www.way2drug.com/pas-

sonline/predict.php, accessed on 17 August 2021). In addition, we explored the Swiss tar-

get prediction tool (http://www.swisstargetprediction.ch/, accessed on 17 August 2021), a 

web-based algorithm that uses the principle of similarity to predict drug targets of bioac-

tive small molecules [45,46] as an independent tool to further validate the predicted po-

tential target genes of SJ10 (Table 1). 
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Table 1. Prediction of Biological Activity Spectra (PASS) and Swiss target genes and classes of the 

SJ10 compound. 

SwissTarget Prediction PASS Prediction Results 

Target Gene Target Class PA PI Activities 

AKT1 Kinase 0.703 0.054 MAP kinase kinase 4 inhibitor 

MAPK8 Kinase 0.652 0.014 Histidine kinase inhibitor 

TTK Kinase 0.598 0.088 Cyclic AMP phosphodiesterase inhibitor 

PIM2 Kinase 0.513 0.024 MAP3K5 inhibitor 

CDK9 Kinase 0.487 0.037 Antineoplastic (glioblastoma multiforme) 

SLC6A3 ECT 0.529 0.091 Protein kinase inhibitor 

EGFR Kinase 0.422 0.004 Focal adhesion kinase inhibitor 

CDK2 Kinase 0.445 0.040 Cyclin B1 inhibitor 

MAPK7 Kinase 0.435 0.037 Apoptosis agonist 

MAPK9 Kinase 0.415 0.021 Protein kinase B gamma inhibitor 

CCNA2 CDK2 Kinase 0.541 0.152 MAP kinase kinase 7 inhibitor 

CCND1 CDK4 Kinase 0.395 0.020 Transcription factor STAT3 inhibitor 

CDK1 CCNB1 Other cytosolic protein 0.407 0.049 T cell inhibitor 

CDK2 CCNA1 CCNA2 Other cytosolic protein 0.407 0.055 Wee-1 tyrosine kinase inhibitor 

MAPK1 Kinase 0.353 0.042 CDC42 inhibitor 

MAPK3 Kinase 0.406 0.102 Check point kinase 2 inhibitor 

Pa > Pi, Pa, probability of being active; Pi, probability of being inactive. 

2.3. DEG Identification by the Tumor Immune Estimation Resource (TIMER) 

Expression profiles of genes showing differential expression between GBM tumor 

and adjacent non-tumor tissues in The Cancer Genome Atlas (TCGA) database were ana-

lyzed with TIMER (https://cistrome.shinyapps.io/timer/, accessed on 9 August 2021), a 

web-based tool for the analysis of interactions between genes of interest and immune cells. 

The relative gene expression level is indicated as transcripts per million (TPM) and the 

expression value was normalized by log transformation. Moreover, we explored the Chi-

nese Glioma Genome Atlas (CGGA) (http://www.cgga.org.cn/index.jsp, accessed on 16 

August 2021) to analyze gene expression correlations between the two datasets into posi-

tive and negative correlations, with positive Pearson correlation coefficients and p < 0.05 

considered statistically significant. 

2.4. Validation of DEGs in GBM 

To validate expression levels of identified DEGs in GBM, we explored the Human Pro-

tein Atlas (HPA) database for immunohistochemistry (IHC) (https://www.proteinatlas.org/, 

accessed on 13 September 2021) to compare expression levels between tumor samples and 

normal samples. The HPA database represents the protein expression in 44 major human 

tissues and some cancer tissues by IHC [47]. Statistical analyses were performed using the 

statistical package for social sciences (SPSS) vers. 21.0 (Chicago, IL, USA) and the p value 

was determined using the Mann–Whitney U-test. Moreover, for further analysis, the pre-

dicted genes were validated by an independent bioinformatics tool, the CGGA [48]. 

2.5. Protein-Protein Interaction (PPI) Network Construction and Functional Enrichment 

Analysis 

To assess PPIs, we used the search tool for the Retrieval of Interacting Genes/Proteins 

database (STRING, https://string-db.org/, accessed on 21 September 2021), a web tool de-

veloped to analyze interactions of PPIs, such as physical and functional associations [49]. 

Functional enrichments with the clustering network were also retrieved from the STRING 

analysis, and they included gene ontology (GO) involving biological processes (BPs) and 

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, with p < 0.05 considered 
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significant. For further analysis, we used Network Analyst (https://www.networkana-

lyst.ca/, accessed on 21 September 2021), a web-based visual analytics platform for com-

prehensive gene and protein expression profiling [50,51]. In this platform, we used the 

SIGnaling Network Open Resource (SIGNOR 2.0) and selected the BP database to analyze 

enriched co-expressed genes. 

2.6. Predictions of Patient Clinical Outcomes with Radiomics Signature Construction 

To predict prognostic outcomes in GBM, radiomics signatures were constructed us-

ing the GlioVis database (http://gliovis.bioinfo.cnio.es/, accessed on 28 August 2021), an 

online portal used for analysis of brain tumor expression [52]. The distribution of 

radscores and maximally selected rank statistics of DEGs were used to determine the op-

timum cutoff values for the CCNB1, CDC42, MAPK7, and CD44 oncogenes, in order to 

evaluate overall survival (OS). 

2.7. Receiver Operating Characteristic (ROC) Curves and Kaplan-Meier (KM) Analyses Were 

Used to Validate the Prognostic Values of the CCNB1, CDC42, MAPK7, and CD44 Oncogenic 

Signatures in GBM Samples 

To evaluate and validate the diagnostic and prognostic significance of CCNB1, 

CDC42, MAPK7, and CD44 in GBM patients, we used ROC curve, which was retrieved 

from (https://kmplot.com/analysis/, accessed on 1 September 2021), and further explored 

the GlioVis database for the KM analysis. The ROC curve was based on true positive (sen-

sitivity) and false positive (specificity) rates in GBM patients. We evaluated whether the 

test measurement had a specific condition. We assessed the area under the curve (AUC), 

and an AUC of 0.5 indicated no discrimination, while an AUC of 1.0 indicated discrimi-

nation of the curve that includes all possible decision thresholds from a diagnostic test 

result, which were patients who experienced disease onset and individuals who did not. 

2.8. Evaluation of Drug Likeness, Pharmacokinetics (PKs), and Medicinal Chemistry of SJ10 

Identifying novel and potential drug candidates in the early stage of drug discovery 

and development is crucial, as it reduces time and costs; herein, we applied the drug-

likeness concept based on specific criteria [53,54]. We explored the SwissADME algorithm 

developed by the Swiss Institute of Bioinformatics (http://www.swissadme.ch/index.php, 

accessed on 2 September 2021), and molecular in silico (molsoft) tools 

(https://molsoft.com/mprop/, accessed on 2 September 2021), to evaluate the PKs, drug 

likeness, medicinal chemistry friendliness, adsorption, distribution, metabolism, excre-

tion, and toxicity (ADMET) properties of SJ10 [55,56]. We analyzed the drug-likeness 

properties according to the Lipinski (Pfizer) rule-of-five), Ghose (Amgen), Veber (GSK), 

and Egan (Pharmacia), and further showed relationships between PK and physicochemi-

cal properties [57]. Moreover, we analyzed the gastrointestinal absorption (GIA) and 

brain-penetration properties using the brain or intestinal estimated permeation (BOILED-

Egg) model [58]. The Abbot Bioavailability Score was determined based on the probability 

of the compound having at least 10% oral bioavailability in rats or measurable Caco-2 

permeability [59]. 

2.9. In Vitro Anticancer Screening of SJ10 against NC1-60 CNS Cells 

SJ10 was submitted to the National Cancer Institute (NCI)-Development Therapeu-

tics Program (DTP) to be screened for potential antiproliferative and cytotoxic effects 

against a panel of NCI-60 CNS cell lines, in agreement with the outlined protocol of the 

NCI (https://dtp.cancer.gov/, accessed on 11 September 2021). The compound was tested 

at an initial dose of 10 μM. Results showed that SJ10 exhibited antiproliferative activities 

against CNS cell lines. 
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2.10. Molecular Docking Analysis 

Receptor-ligand interactions were predicted using a molecular docking analysis, a 

technique used to predict the predominant binding ability of a ligand with a protein’s 

three-dimensional (3D) structure [60]. To assess possible interactions of SJ10 with target 

genes predicted and selected from the Swiss-target and PASS prediction tools, we per-

formed a docking analysis of SJ10 with the CCNB1, CDC42, MAPK7, and CD44 oncogenes. 

For further analysis, we used the Food and Drug Administration (FDA)-approved stand-

ard inhibitors of CDC42 and MAPK of CASIN and BAY-885, respectively. Accordingly, 

the 3D structure of SJ10 was assembled with the Avogadro molecular visualization tool 

[61], the 3D structures of CASIN (CID:2882155) and BAY-885 (CID:134128280) were down-

loaded from PubChem as SDF files, and the files were subsequently converted to PDB 

format using PyMol software (https://pymol.org/2/, accessed on 6 October 2021). In addi-

tion, the crystal structures of CCNB1 (PDB:2B9R), CDC42 (PDB: 2ODB), MAPK7 

(PDB:4H3Q), and CD44 (PDB:1UUH) were downloaded from the Protein Data Bank 

(PDB). For further processing, we converted all PDB files to PDBQT file format using au-

todock software (http://autodock.scripps.edu/resources/adt, accessed on 6 October 2021) 

and, finally, performed docking. To visualize and interpret the docking results, we ap-

plied BIOVIA discovery studio software for analysis [62]. 

2.11. Statistical Analysis 

Pearson’s correlations were used to assess correlations of 

CCNB1/CDC42/MAPK7/CD44 expressions in GBM cancer types. The statistical signifi-

cance of DEGs was evaluated using the Wilcoxon test. * p < 0.05 was accepted as being 

statistically significant. 

3. Results 

3.1. Identification of DEGs in GBM 

Gene expression profiles (GEPs) from GBM samples and normal brain samples tal-

lied from different studies were extracted from the microarray dataset. The analytical re-

sults showed that 100, 256, and 30 GBM samples and normal samples were, respectively, 

obtained from the GSE4290, GSE68846, and GSE30563 datasets. Further analysis with a 

Venn diagram demonstrated 87 overlapping upregulated genes from the three datasets 

(Figure 2A) and 50 overlapping downregulated genes from the same database (Figure 2B). 

Moreover, Figure 1 is the heatmap of overexpressed overlapping genes. Figure 2D–F 

shows volcano plots of GBM tumor samples compared to normal samples, the volcano 

plot revealed the statistical significance of the difference between tumor and normal sam-

ples through −10 log and −2 log fold change, respectively. The p-value in the volcano plot 

was used to indicate threshold indicators for adjusted p-values, which was further used 

to show all the genes that are statistically differentially-expressed with an adjusted p value 

threshold of 0.05 considered significant. 
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Figure 2. Differentially-expressed genes (DEGs) in glioblastoma multiforme (GBM) extracted from 

the GSE4290, GSE68846, and GSE30563 microarray datasets. (A) Venn diagram of 87 selected over-

expressed overlapping DEGs. (B) Venn diagram of 50 selected downregulated overlapping DEGs. 

(C) is the heatmap of overexpressed overlapping genes. (D–F) Volcano plots of DEGs from the 

GSE4290, GSE68848 and GSE30563 datasets with red and blue dots respectively representing up-

regulated and downregulated genes (at p < 0.05). 

3.2. Evaluation of Drug Likeness, PKs, and Medicinal Chemistry of the SJ10 Compou 

We explored the SwissADME algorithm developed by the Swiss Institute of Bioin-

formatics and molecule in silico (molsoft) to evaluate the PKs, drug likeness, medicinal 

chemistry friendliness, adsorption, distribution, metabolism, excretion, and toxicity (AD-

MET) properties of SJ10 [55,56]. We analyzed the drug-likeness properties according to 

the Lipinski (Pfizer) rule-of-five)), Ghose (Amgen), Veber (GSK), and Egan (Pharmacia), 

and further showed relationships between the PK and physicochemical properties [57]. 

Moreover, we analyzed the GIA and brain-penetration properties, using the brain or in-

testinal estimated permeation (BOILED-Egg) model [58]. The Abbot Bioavailability Score 
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was determined based on the probability of the compound having at least 10% oral bioa-

vailability in rats or measurable Caco-2 permeability [59] (Figure 3) 

 

Figure 3. SJ10 passed the required physicochemical properties, medicinal chemistry, pharmacoki-

netics (PK), and drug-likeness criteria. (A,B) Structure of the SJ10 (NSC772862) small molecule, bio-

availability radar (BA), displaying the six physicochemical properties of absorption including lipo-

philicity (XLOGP3 = 3.90), molecular weight (349.10 g/mol), polarity (PSA = 37.08 Å²), solubility (Log 

S (ESOL) = −4.7), flexibility (rotation = 4), saturation (fraction Csp3 = 0.2), and pKa of the most basic 

or acidic group (= 0.5) of the SJ10 compound. In addition, the SJ10 compound demonstrated a 

highly-probable GIA absorption, bioavailability score (55%) and good synthetic accessibility (2.89). 

(C) The compound passed the blood–brain barrier (BBB) with a score of 4.98, and further displayed 

a drug-like model score of −0.68. A structural characterization of the compounds was done with the 

help of spectroscopic studies including IR, proton NMR, 13C NMR, MS, and elemental analysis (D). 

3.3. CCNB1/CDC42/MAPK7/CD44 Oncogenic Signatures Are Overexpressed in GBM 

A bioinformatics analysis through TIMER online web tool with default settings 

showed significantly increased messenger (m)RNA levels of 

CCNB1/CDC42/MAPK7/CD44 in pan cancers, including GBM tumor tissues compared to 

normal tissues from TCGA) (Figure 4A–D). Relative gene expression levels are indicated 

as transcripts per million (TPM) and the expression value was normalized by log trans-

formation of the statistical significance, as evaluated by the Wilcoxon test, with p value 

significant codes: 0 ≤ *** < 0.001 ≤ ** < 0.01 ≤ * < 0.05 ≤ . < 0.1. We further explored the 

CGGA tool with default settings to investigate correlations among the 

CCNB1/CDC42/MAPK7/CD44 oncogenes. When all four genes were combined for analy-

sis, the predicted results showed positive correlations ranging r = 0.43~0.67 of CCNB1 with 

CDC42, CCNB1 with MAPK7, CCNB1 with CD44, and MAPK7 with CD44 in GBM pa-

tients (Figure 4E–H), with positive Pearson correlation coefficients and p < 0.05 considered 

statistically significant. 
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Figure 4. CCNB1/CDC42/MAPK7/CD44 oncogenic signatures are overexpressed in glioblastoma mul-

tiforme (GBM). (A–D) Increased mRNA levels of CCNB1/CDC42/MAPK7/CD44 in pan cancers, includ-

ing GBM tumor tissues, compared to normal tissues from The Cancer Genome Atlas (TCGA). The 

relative gene expression level is indicated as transcripts per million (TPM), and expression values were 

normalized by log transformation of the statistical significance as evaluated by the Wilcoxon test, with 

p value significant codes: 0 ≤ *** < 0.001 ≤ ** < 0.01 ≤ * < 0.05 ≤. < 0.1. (E–H) Correlation analysis of 

CCNB1/CDC42/MAPK7/CD44 oncogenes revealed correlations among all four genes when combined 

for analysis. Predicted results showed positive correlations ranging r = 0.43~0.67 of CCNB1 with 

CDC42, CCNB1 with MAPK7, CCNB1 with CD44, and MAPK7 with CD44 in GBM samples, with 

positive Pearson correlation coefficient and p < 0.05 considered statistically significant. 
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3.4. Validation of CCNB1/CDC42/MAPK7/CD44 Oncogenic Signature Expressions in GBM 

To validate expression levels of the CCNB1/CDC42/MAPK7/CD44 gene signatures in 

GBM, we explored the HPA database for IHC to compare gene expression levels between 

GBM tumor tissues and normal samples. CCNB1 displayed medium staining, with strong 

intensity and quantity (25%) (Figure 5A), while CDC42 displayed medium staining, with 

moderate intensity and quantity (75%) (Figure 5B), and MAPK7 and CD44 displayed high 

staining with strong intensity and quantity (75%) (Figure 5C,D) in GBM tissues as com-

pared to normal tissues. For further analysis, the GlioVis database showed increased 

mRNA expression levels of CCNB1/CDC42/MAPK7/CD44 oncogenes in GBM tissues com-

pared to non-tumor tissues (Figure 5E–H). In addition, we explored the CGGA, an inde-

pendent glioma database, and validated expressions of the CCNB1/CDC42/MAPK7/CD44 

gene signatures in WHO grade II, III, and IV GBM tumors using the Analysis of variance 

(ANOVA) (Figure 5I–L), with p < 0.05 considered statistically significant. 

3.5. Immunofluorescent (IF) Staining of the U251-MG GBM Human Cell Line 

To further validate expressions of the CCNB1/CDC42/MAPK7/CD44 genes in GBM, 

we explored HPA IF staining, using the U251-MG GBM cell line. The following antibodies 

were used for staining: CCNB1 (HPA030741), CDC42 (CAB004360), MAPK7 (CAB018561), 

and CD44 (CAB000112). Staining results of the U251-MG cell line exhibited the location of 

genes, with antibodies shown in green, nuclei in blue, and microtubules in red. CCNB1 

was localized in the cytosol, CDC42 was detected in microtubules, while the localization 

of MAPK7 was in the nucleoplasm and CD44 was found in plasma membranes (Figure 6). 

3.6. PPI Network Construction and Functional Enrichment Analysis 

To assess PPIs, we used the STRING database (https://string-db.org/, accessed on 21 

September 2021), a web tool developed to analyze interactions of PPIs, such as physical 

and functional associations. The clustering analysis had nine nodes and 15 edges, with an 

average local clustering coefficient of 0.917 and a PPI enrichment p value of 0.0293. More-

over, the interaction score confidence was set to > 0.4, and considered most significant. 

Active interactions were based on text mining, experiments, databases, co-expressions, 

neighborhood, gene fusion and co-occurrence (Figure 7A). Functional enrichments with 

the clustering network were also retrieved from the STRING analysis, and they included 

gene ontology (GO) involving BPs and KEGG pathways, with p < 0.05 considered signifi-

cant (Figure 7B,C). For further analysis, we used Network Analyst (https://www.net-

workanalyst.ca/, accessed on 21 September 2021), a web-based visual analytics platform 

for comprehensive gene and protein expression profiling [50,51]. In this platform, we used 

the SIGnaling Network Open Resource (SIGNOR 2.0) and selected the BP database to an-

alyze enriched co-expressed genes (Figure 7D). The signaling network analysis of KEGG 

pathway enrichment showed co-expressions of CCNB1/CDC42/MAPK7/CD44 oncogenes 

in the same network cluster, and results were viewed from the network topology in a force 

atlas layout analyzed from the Igraph R package (Figure 7E). 
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Figure 5. Increased expressions of CCNB1/CDC42/MAPK7/CD44 oncogenic signatures in glioblas-

toma. (A) CCNB1 displayed medium IHC staining, with strong intensity and quantity (25%). (B) 

CDC42 displayed medium IHC staining, with moderate intensity and quantity (75%). (C,D) MAPK7 

and CD44 displayed high IHC staining with strong intensity and quantity (75%), in GBM tissues as 

compared to normal tissues. (E–H) Increased mRNA expression levels of 

CCNB1/CDC42/MAPK7/CD44 oncogenes in GBM tissues compared to non-tumor tissues from a 

GlioVis database analysis. (I–L) Expressions of CCNB1/CDC42/MAPK7/CD44 gene signatures in 

WHO grade II, III, and IV GBM tumors using the Analysis of variance (ANOVA), with p < 0.05 

considered statistically significant in all datasets. All images can be found online. 

 

Figure 6. HPA staining results of the U251-MG cell line exhibited the locations of genes. Antibodies 

are shown in green, nuclei in blue, and microtubules in red. (A) CCNB1 was localized in the cytosol, 

(B) CDC42 was detected in microtubules, (C) while the localization of MAPK7 was in the nucleo-

plasm, and (D) CD44 was found in plasma membranes. All images are available online. 
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Figure 7. Protein–protein interaction (PPI) network revealed interactions among the 

CCNB1/CDC42/MAPK7/CD44 oncogenes in glioblastoma multiforme (GBM). (A) The clustering net-

work consisted of nine nodes and 15 edges, with an average local clustering coefficient of 0.917 and 

a PPI enrichment p value of 0.0293. Moreover, the interaction score confidence was set to > 0.4, and 

p < 0.05 was considered statistically significant. Active interactions were based on text mining, ex-

periments, databases, co-expressions, neighborhood, gene fusion, and co-occurrence. (B) The top 

biological processes (BPs), (C) KEGG pathways, and (D) Signaling network analysis from the BP 

database, showing that co-expressions of the CCNB1/CDC42/MAPK7/CD44 oncogenes displayed 

enrichment in the cell cycle, regulation of molecular function, positive regulation of cellular pro-

cesses, regulation of protein metabolic processes, and protein phosphorylation among others (red 

bubble). (E) Signaling network analysis of the KEGG pathway enrichment analysis showed co-ex-

pression of CCNB1/CDC42/MAPK7/CD44 oncogenes in the same network cluster. 

3.7. Predictions of Patient Clinical Outcomes with Radiomics Signature Construction 

Prognostic outcomes of GBM patients were predicted by exploring radiomics signa-

tures constructed using the GlioVis database, and distributions of Radscores and maxi-

mally selected rank statistics were used to determine optimal cutoff values for the CCNB1, 

CDC42, MAPK7, and CD44 oncogenes. The obtained cutoff scores (Radscores) were 2.83, 

6.62, 3.9, and 3.48, respectively (Figure 8A–H). This analysis therefore showed that pa-

tients with lower Radscores generally displayed better OS; however, since the 

CCNB1/CDC42/MAPK7/CD44 oncogenes were shown to be highly expressed in GBM, 
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herein, they also exhibited high Radscores and, consequently, worse prognoses. There-

fore, predicted expressions of the CCNB1, CDC42, MAPK7 and CD44 oncogenes exhibited 

significant roles in the cell cycle, and thus are potential prognostic biomarkers in GBM. 

 

Figure 8. Optimal cutoff score calculations of Radscores of CCNB1, CDC42, MAPK7, and CD44 ex-

pressions in glioblastoma multiforme (GBM). (A,B) Radscores plot of CCNB1 with a cutoff value of 

2.83. (C,D) Radscores plot of CDC42 with a cutoff value of 6.62. (E,F) Radscore plot of MAPK7 with 

a cutoff value of 3.9. (G,H) Radscores plot of CD44 with a cutoff value of 3.48. The low radscores are 

indicated in blue and high radscores are indicated in red. This analysis shows that patients with 

lower Radscores generally displayed better overall survival. Therefore, predicted expressions of the 

CCNB1, CDC42, MAPK7, and CD44 oncogenes exhibited significant roles in the cell cycle, and are 

thus potential prognostic biomarkers for GBM. 

3.8. High Expressions of CCNB1, CDC42, MAPK7, and CD44 Were Associated with a Poor 

Prognosis in GBM 

To evaluate and validate prognostic significant values of CCNB1, CDC42, MAPK7, 

and CD44 in GBM patients, we used an ROC curve and KM analysis. The ROC curve was 

based on true (sensitive) and false (selective) positive rates of responses in GBM patients. 
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AUC scores of CCNB1, CDC42, MAPK7, and CD44 were 0.534, 0.515, 0.541, and 0.538, re-

spectively (Figure 9A–D). The KM analysis and log-rank test showed significantly pro-

longed OS times in the low-risk group compared to the high-risk group, with each sub-

type displaying different cutoff values; p < 0.05 was considered statistically significant 

(Figure 9E–H). This indicated that the CCNB1, CDC42, MAPK7, and CD44 oncogenic sig-

natures possessed potential diagnostic abilities in GBM. To evaluate whether the test 

measurements had specific conditions, we assessed the AUC, and an AUC of 0.5 indicated 

no discrimination, while an AUC of 1.0 indicated discrimination. The curve that included 

all possible decision thresholds from a diagnostic test result were patients who had expe-

rienced disease onset and individuals who had no thresholds from a diagnostic test result, 

which were patients who had experienced disease onset and individual thresholds. 

3.9. In Vitro Anticancer Screening of SJ10 against NC1-60 CNS Cell Lines 

SJ10 was submitted to the NCI-DTP for screening for potential antiproliferative and 

cytotoxic effects against a panel of NCI-60 CNS cell lines, in agreement with the outlined 

protocol of the NCI. The compound was tested at an initial dose of 10 μM. Results showed 

that SJ10 exhibited antiproliferative activities against several CNS cell lines. The com-

pound growth inhibition (GI) percentage showed that SNB-19 cells were more sensitive, 

with GI of 67.25%, followed by SF-539 at 36.91%, SF-268 at 34.33%, SF-295 at 23.75%, and 

SNB-75 at 22.34%, as shown in Figure 10A. The compound was further evaluated with 

dose-dependent treatment, since it exhibited antiproliferative activities at an initial dose 

of 10 μM. Accordingly, SF-268 displayed complete growth inhibition (−100%), followed 

by U251 at −96%, SNB-75 at −84%, SF-539 at −79%, SF-295 at −76%, and SNB-19 at −42%. 

Sulforhodamine B (SRB) dual-pass staining was used to further investigate the in vitro 

50% growth inhibition (GI50)/50% inhibitory concentration (IC50), and results ranged 

1.14~2.15 μM in the CNS cell lines, with SNB-75 more sensitiv at 1.14 μM, followed by 

U251 at 1.59 μM, SF-268 at 1.64 μM, SNB-19 at 1.67 μM, SF-539 at 1.69 μM, and SF-295 

at2.15 μM, showing a smaller response to SJ10 (Figure 10B,C). 
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Figure 9. High expression levels of the CCNB1, CDC42, MAPK7, and CD44 oncogenes were associated 

with a poor prognosis in glioblastoma multiforme (GBM). (A–D) Time-dependent ROC analysis ac-

cording of the true positive (sensitivity) and false positive (specificity) rates of survival, assessed by 

the prognostic accuracy based on AUC values. CCNB1 (AUC: 0.552), CDC42 (AUC: 0.566), MAPK7 

(AUC: 0.536), and CD44 (AUC: 0.565). An AUC of 0.5 indicates no discrimination, while an AUC of 1.0 

indicates discrimination. (E–H) Kaplan–Meier analysis predicted a significant prolonged overall sur-

vival time in the low-risk group compared to the high-risk group. The analysis was based on the opti-

mal cutoff point from the low- and high-risk groups, and p < 0.05 was considered significant. 
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Figure 10. In vitro anticancer screening of SJ10 against NC1-60 CNS cell lines (A) The initial dose 

was 10 μM. Results showed that SJ10 exhibited antiproliferative activities against various CNS cell 

lines. The compound growth inhibition (GI) percentage showed that SNB-19 was more sensitive, 

with GI of 67.25%, followed by SF-539 at 36.91%, SF-268 at 34.33%, SF-295 at 23.75%, and SNB-75 at 

22.34%. (B) Dose-dependent treatment results. SF-268 displayed complete growth inhibition at 

−100%, followed by U251 at −96%, SNB-75 at −84%, SF-539 at −79%, SF-295 at −76%, and SNB-19 at 

−42%. (C) SRB dual-pass staining was used to further investigate the in vitro GI50/IC50, and results 

ranged 1.14~2.15 μM for the CNS cell lines, with SNB-75 cells more sensitive at 1.14 μM, followed 

by U251 at 1.59 μM, SF-268 at 1.64 μM, SNB-19 at 1.67 μM, SF-539 at 1.69 μM, and SF-295 less re-

sponsive at 2.15 μM. 

3.10. Molecular Docking Analysis 

The potential inhibitory effects of SJ10 were assessed using a docking analysis. Re-

sults of receptor-ligand interactions obtained from the Autodock tool revealed putative 

binding affinities of SJ10 with CCNB1 (−7.9 kcal/mol), CDC42 (−7.8 kcal/mol), MAPK7 

(−8.4 kcal/mol), and CD44 (−7.0 kcal/mol). When compared to standard inhibitors of 

CASIN (CID: 2882155) for CDC42 and BAY-885 (CID: 134128280) for MAPK7, they 

showed lower binding energies of −7.4 and −7.3 kcal/mol, respectively. For a further anal-

ysis, we used Pymol and Discovery Studio to visualize the analytical results. The 

SJ10/CCNB1 complex displayed interactions by conventional hydrogen (H) bonds with 

ALA128 (2.07 Å) and ARG68 (2.73Å). The interactions were stabilized by van der Waals 

interactions (ASN130, LEU129, PHE131, GLY132, PHE131, ASN130, GLY134, and 

PRO136), pi-sigma (GLY132), and pi-alkyl (LEU17, LEU17, and ARG135) displayed in 

their binding pockets. The SJ10/CDC42 complex displayed van der Waals interactions 

(THR25, PHE28, SER30, THR17, and TYR40), pi-sigma (ILE21), and pi-alkyl (PHE18, 
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LYS27, and PRO29) in their binding pockets, while SJ10/MAPK7 exhibited conventional 

hydrogen bond with SER153 (2.23 Å) and was further stabilized by van der Waals inter-

actions (LYS114, GLY34, TRP192, and THR193), carbon hydrogen bond (GLU33), pi-sigma 

(THR190), pi-pi stacked (TYR113), and pi-alkyl (PRO152 and LYS151) in their binding 

pockets. Interactions between the SJ10/CD44 complex displayed van der Waals interac-

tions (THR102, GLY103, ARG90, LEU70, TYR79, SER71, ILE96, and ARG78), carbon hy-

drogen bond (CYS77), pi-pi T-shaped (TYR42) and pi-alkyl (ILE91) in their binding pock-

ets (Figure 11). For further analysis, we used the FDA approved standard inhibitors of 

CDC42 and MAPK7, CASIN and BAY-885 respectively. The interaction of CDC42 in com-

plex with CASIN exhibited binding energy of (−7.4 kcal/mol) and MAPK7 in complex with 

BAY-885 displayed binding energy of (−7.3 kcal/mol), these results exhibited a much 

lower binding affinities as compared to SJ10, this suggesting the potential inhibitory ef-

fects of SJ10 in GBM expression CCNB1, CDC42, MAPK7, and CD44 oncogenic signatures 

(Figure 12, Table 2). 

 

Figure 11. In silico docking results of SJ10 in complex with the CCNB1, CDC42, MAPK7, and CD44 

oncogenes in 2D representations. (A) The CCNB-SJ10 complex exhibited a putative binding energy of 

−7.9 kcal/mol, and displayed interactions by conventional H-bonds (green) with ALA128 and ARG68, 

and short binding distances of 2.07 and 2.73 Å, respectively. (B) The CDC42-SJ10 complex showed a 

binding energy of −7.8 kcal/mol, and displayed van der Waals interactions (THR25, PHE28, SER30, 

THR17, and TYR40), pi-sigma (ILE21), and pi-alkyl (PHE18, LYS27, and PRO29) in their binding pock-

ets. (C) The MAPK7-SJ10 complex displayed a unique binding energy of −8.4 kcal/mol, and further 

showed conventional hydrogen bonds (SER153), with a shorter binding distance of 2.23 Å. (D) The 

CD44-SJ10 complex showed a binding energy of −7.8 kcal/mol, and exhibited van der Waals interac-

tions (THR102, GLY103, ARG90, LEU70, TYR79, SER71, ILE96, and ARG78), carbon hydrogen bonds 

(CYS77), pi-pi T-shaped (TYR42), and pi-alkyl (ILE91) in their binding pockets. 
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Figure 12. In silico docking results CDC42 and MAPK7 with standard inhibitors (A) interaction of 

CDC42 in complex with CASIN exhibited binding energy of (−7.4 kcal/mol). (B) MAPK7 in complex 

with BAY-885 displayed binding energy of (−7.3 kcal/mol), in 2D representations. 

Table 2. Analytical summary table showing interactions of SJ10 with CCNB1/CDC42/MAPK7/ CD44 

oncogenes. 

SJ10-CCNB1 Complex (= −7.9 kcal/mol) SJ10-CDC42 Complex (= −7.6 kcal/mol) 

Type of interactions 

and number of 

bonds 

distance of interacting Amino acids 

Type of interactions 

and number of 

bonds 

distance of interacting Amino acids 

Conventional 

Hydrogen bond (2) 
ALA128 (2.07 Å) and ARG68 (2.73Å) 

Van der Waals 

forces 

THR25, PHE28, SER30, THR17, and 

TYR40 

Van der Waals 

forces 

ASN130, LEU129, PHE131, GLY132, PHE131, 

ASN130, GLY134, and PRO136  
Pi-Sigma ILE21 

Pi-Sigma GLY132 Pi-alkyl PHE18, LYS27, PRO29 

Pi-Alkyl LEU17, LEU17, and ARG135   

SJ10-MAPK7 Complex (= −8.4 kcal/mol) SJ10-CD44 Complex (= −7.0 kcal/mol) 

Type of interactions 

and number of 

bonds 

distance of interacting Amino acids 

Type of interactions 

and number of 

bonds 

distance of interacting Amino acids 

Conventional 

Hydrogen bond (1) 
SER153 (2.23 Å) 

Van der Waals 

forces 

THR102, GLY103, ARG90, LEU70, 

TYR79, SER71, ILE96, and ARG78 

Van der Waals 

forces 

THR102, GLY103, ARG90, LEU70, TYR79, SER71, 

ILE96, and ARG78 TRP192, THR193 

Carbon hydrogen 

bond 
CYS77 

Carbon hydrogen 

bond 
CYS77 pi-pi T-shaped TYR42 

Pi-sigma THR190 Pi-Alkyl ILE91 

Pi-Alkyl ILE91   

Pi-Pi stacked TYR113   

Pi-alkyl PRO152 and LYS151   

4. Discussion 

Despite improvements in standard therapies, including surgical resection, radiation, 

and chemotherapy with TMZ, patients with GBM still exhibit poor clinical outcomes, with 

a median survival of only about 15 months [63], mainly due to GBM’s biological and genetic 

heterogeneity. Therefore, understanding molecular mechanisms and invasive characteris-

tics of GBM is pivotal as an essential strategy for developing more-effective therapeutics. 

Integrated bioinformatics analyses have been extensively applied in the early stages of drug 

discovery and development and have significantly accelerated the process and reduced 

costs. In the current study, we applied computational simulation analyses to predict and 
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identify dysregulated gene networks and pathways leading to resistance to radio- and 

chemotherapies (TMZ). Accumulating studies have demonstrated that therapeutic re-

sistance in GBM is also associated with GSCs, which may potentially assist GBM cancer cells 

escape irradiation. Others have shown that GCSs are resistant to TMZ chemotherapy, thus 

promoting radioresistance through DNA damage-response activation [11–13]. 

SJ10 (NSC7772862) is a small molecule and a derivative of a quinolone and piperazine 

derivative and was recently synthesized in our laboratory. Through application of the 

Swisstarget and PASS prediction tools (Table 1), we predicted CCNB1, CDC42, MAPK7, 

and CD44 oncogenic signatures as target genes for SJ10. Moreover, we explored the Swis-

sAMDE and molsoft algorithms to evaluate the PK, drug-likeness, medicinal chemical 

friendliness, and ADMET properties of SJ10 [55,56]. The compound successfully passed 

the required physicochemical properties, medicinal chemistry, PK, and drug-likeness cri-

teria. Bioavailability radar, displaying the six physicochemical properties of absorption-

included lipophilicity (XLOGP3 = 3.90), molecular weight (349.10 g/mol), polarity (PSA = 

37.08 Å²), solubility (Log S (ESOL) = −4.7), flexibility (rotation = 4), saturation (Fraction 

Csp3 = 0.2), and pKa (= 0.5) of the SJ10 compound. In addition, the SJ10 compound demon-

strated highly probable GIA absorption, a bioavailability score (55%), and good synthetic 

accessibility (2.89). The compound reached the BBB with a score of 4.98, and further dis-

played a drug-like model score of (−0.68) (Figure 2). 

We identified significantly increased mRNA levels of the 

CCNB1/CDC42/MAPK7/CD44 oncogenes in pan cancers, including GBM tumor tissues 

compared to normal tissues from TCGA, using the TIMER bioinformatics tool. These re-

sults were further validated using the HPA and GlioVis database analyses, which showed 

similar outputs displaying overexpression of CCNB1/CDC42/MAPK7/CD44 gene signa-

tures in WHO grade II, III, and IV GBM tumors using an ANOVA. For further analysis, 

we used the STRING online web tool and showed that CCNB1/CDC42/MAPK7/CD44 ac-

tively interacted with each other in the same clustering network, based on text mining, 

experiments, databases, co-expressions, neighborhood, gene fusion, and co-occurrence 

and also exhibited enrichment of GO involving BPs and (KEGG pathways, with p < 0.05 

considered significant (Figure 6B,C). Furthermore, we predicted patients’ clinical out-

comes using the Radiomics signature constructed from the GlioVis database, to determine 

optimal cutoff values for the CCNB1, CDC42, MAPK7, and CD44 oncogenes. The obtained 

cutoff scores (Radscore) were 2.83, 6.62, 3.9, and 3.48, respectively (Figure 7). The analysis 

therefore showed that patients with lower Radscores generally displayed better OS; how-

ever, since the CCNB1/CDC42/MAPK7/CD44 oncogenes were shown to be highly ex-

pressed in GBM, herein, they also exhibited high Radscores, which consequently led to 

worse prognoses. Therefore, predicted expressions of the CCNB1, CDC42, MAPK7, and 

CD44 oncogenes exhibited significant roles in the cell cycle, and thus are potential prog-

nostic biomarkers for GBM. In addition, MAPK7 is a potential novel drug target due to its 

dysregulation and association with TMZ resistance in GBM. Herein, we showed that tar-

geting MAPK7 in GBM tumors can potentially improve the strength of TMZ in suppress-

ing tumor cells [30–32]. 

The potential anticancer activities of SJ10 were evaluated against NCI human CNS 

cell lines. Accordingly, an initial dose of 10 μM exhibited antiproliferative activities 

against the CNS cell lines, as shown in Figure 9A. The compound was further evaluated 

with dose-dependent treatment, since it exhibited antiproliferative activities at an initial 

dose of 10 μM. Accordingly, SJ10 displayed complete growth inhibition at −100% against 

SF-268 cells, followed by U251 at −96%, SNB-75 at −84%, SF-539 at −79%, SF-295 at −76%, 

and SNB-19 at −42%. SRB dual-pass staining was used to further investigate in vitro 

GI50/IC50 values, and results ranged 1.14~2.15 μM in the CNS cell lines, with SNB-75 more 

sensitive at 1.14 μM, followed by U251 at 1.59 μM, SF-268 at 1.64 μM, SNB-19 at 1.67 μM, 

SF-539 at 1.69 μM, and SF-295 at 2.15 μM, showing a weaker response to SJ10. Finally, we 

evaluated the potential inhibitory effects of SJ10, which were assessed using a docking 
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analysis. The results of receptor-ligand interactions obtained from the Autodock tool re-

vealed higher binding energies of SJ10 with CCNB1 (−7.9 kcal/mol), CDC42 (−7.8 

kcal/mol), MAPK7 (−8.4 kcal/mol), and CD44 (−7.0 kcal/mol) compared to the standard 

inhibitors of CASIN (CID: 2882155) for CDC42 and BAY-885 (CID: 134128280) for MAPK7, 

which showed lower respective binding energies of −7.4 and −7.3 kcal/mol (Fig.12). There-

fore, the above-mentioned results suggest that SJ10 exhibits drug-like characteristics, with 

anticancer activities and is a potential oral drug candidate. Further in vitro and in vivo 

studies are both currently in progress in our laboratory. 

5. Conclusions 

In summary, our obtained results showed that CCNB1/CDC42/MAPK7/CD44 onco-

genic signatures are potential biomarkers of GBM therapeutic-resistant tumors, and po-

tential drug targets of our novel small molecule, SJ10. We further showed that SJ10 exhib-

its anticancer activities against a panel of NCI human CNS cancer cell lines when admin-

istered at an initial dose of 10 μM and also in a dose-dependent manner. We evaluated 

receptor-ligand interactions using a docking analysis and identified unique and higher 

binding energies of SJ10 in complex with the CCNB1, CDC42, MAPK7, and CD44 onco-

genes, compared to their interactions with two FDA-approved inhibitors. Further in vitro 

and in vivo studies are both currently in progress in our laboratory. 
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