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Simple Summary: Brain imaging, specifically magnetic resonance imaging (MRI), plays a key role in the
clinical and research aspects of neuro-oncology. Novel neuroimaging techniques enable the transformation of
a brain MRI into a so-called average brain. This allows projects using already acquired brain MRIs to perform
group analyses and draw conclusions. Once the data are in this average brain, several types of analyses can
be performed. For example, determining the most vulnerable locations for certain tumor types or perhaps
even the underlying circuitry and gene expression that might cause predisposition to tumor growth. This
information may further our understanding of tumor behavior, leading to better patient counseling, surgery
timing, and treatment monitoring.

Abstract: Neuro-oncology research is broad and includes several branches, one of which is neu-
roimaging. Magnetic resonance imaging (MRI) is instrumental for the diagnosis and treatment
monitoring of patients with brain tumors. Most commonly, structural and perfusion MRI sequences
are acquired to characterize tumors and understand their behaviors. Thanks to technological ad-
vances, structural brain MRI can now be transformed into a so-called average brain accounting for
individual morphological differences, which enables retrospective group analysis. These normative
analyses are uncommonly used in neuro-oncology research. Once the data have been normalized,
voxel-wise analyses and spatial mapping can be performed. Additionally, investigations of un-
derlying connectomics can be performed using functional and structural templates. Additionally,
a recently available template of spatial transcriptomics has enabled the assessment of associated
gene expression. The few published normative analyses have shown relationships between tumor
characteristics and spatial localization, as well as insights into the circuitry associated with epilepto-
genic tumors and depression after cingulate tumor resection. The wide breadth of possibilities with
normative analyses remain largely unexplored, specifically in terms of connectomics and imaging
transcriptomics. We provide a framework for performing normative analyses in oncology while also
highlighting their limitations. Normative analyses are an opportunity to address neuro-oncology
questions from a different perspective.

Keywords: neuro-oncology; neuroimaging; MRI; normative analysis; connectomics; imaging
transcriptomics
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1. Introduction

Neuroimaging plays a crucial role in neuro-oncology research. At present, magnetic
resonance imaging (MRI) is a key tool for the diagnosis and treatment monitoring of
brain tumors. Most commonly, high spatial resolution structural images, such as T1 and
T2-weighted sequences with and without gadolinium contrast agents, are acquired [1].
Perfusion imaging has also become a mainstay of neuro-oncology imaging protocols in the
past decade, in which it has been used for brain tumor characterization as well as for the
evaluation of treatment response and disease progression [2]. Generally, neuro-oncology-
based analyses investigate tumors and their treatment in terms of signal characteristics
across patients. Thanks to recent technological advances, group analyses can be performed
in a so-called average brain [3,4]. However, while they have demonstrated their usefulness
in other research fields, these analyses are uncommonly used in neuro-oncology.

Neuroimaging advances have enabled precise transformation of a patient’s brain onto
an average brain template. Sophisticated computer algorithms use non-rigid methods
to transform an individual brain to the brain template while accounting for anatomical
differences [3,4]. Within the template, each voxel has a distinct address, which allows
comparisons across subjects with varied brain morphologies, also referred to as analysis
in normative space. Subsequently, voxel-based group statistics, functional and structural
connectomics, and imaging transcriptomics analyses can be performed [5,6]. Importantly,
these analyses only require high spatial resolution structural MRI, which are routinely
acquired in clinical neuro-oncology.

Brain lesions, including tumors, can have local and distant clinical and histopathologi-
cal effects that can be caused, for example, by local mass effects and invasion as well as
connectomal diaschisis, respectively. In this perspective, we aim to provide an overview
of normative voxel-based, connectomics, and imaging transcriptomics group analyses,
which are currently uncommonly used in neuro-oncology research. We will first provide
a technical summary to explain these methods. Then, we will discuss the few published
neuro-oncology examples, as well as several potential avenues for these techniques. We will
end by providing a practical framework to use these methods while also highlighting their
limitations.

2. Advanced Neuroimaging Analyses Using Normative Brain Templates

There is considerable variability between individual human brains. This variability
poses a challenge when comparing and communicating findings related to normal and
altered brain anatomy and function. To overcome this limitation, a brain reference space,
based on many individual brains, has been proposed: the Montreal Neurological Institute
(MNI) template [4,7–9]. This common space was widely adapted in the late 1990s [10].
It serves as the standard reference space for the analysis and reporting of results. A mul-
titude of multimodal publicly available atlases have been accurately registered in this
standard space.

To be able to use the tools and atlases available, individual brains have to be projected
onto the template space. This normalization step transforms a brain to match the template
brain and typically first involves rotation, translation, scaling, and shearing. These are
linear operations applied to all voxels and this is usually referred to as linear registra-
tion/transformation. In the next step, voxels are non-uniformly locally warped to better
match the template brain anatomy. This non-linear registration maximizes anatomical
correspondence between the individual brain and the template [11]. Once all brains have
been transformed into common space, one can now compare and make statistical inferences
about local anatomical differences [12] or map spatial characteristics of tumors and their
clinical attributes [13] (Figure 1). At this point, voxel-based analyses can be performed.
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Figure 1. Normative voxel-based, connectomics, and imaging transcriptomics analyses. Examples
of outcome maps depicting voxel-based analysis (top), functional connectomic analysis (middle),
and structural connectomic analysis (bottom) are shown on the left side of the figure. The resulting
spatial maps of those analyses can then be used as input for the spatial transcriptomics analysis
outlined on the right side of the figure. Atlas segmentation is used to calculate the correlation of
spatial gene expression and imaging results across all brain areas. The thresholded subset of the
list identifies the significantly implicated genes. This list can then be further investigated using,
for example, gene ontology analysis.

2.1. Connectomics

The brain is a complex system of a multitude of distinct areas that are intercon-
nected [14–18]. The networks formed by these groups of brain elements, as well as the
interaction within and between each network, form the basis of behaviors. The connectome
is key for understanding how the brain works. Over the last years, multiple studies have
demonstrated that neurological and psychiatric symptoms can be mapped to a common
distributed brain network [19–30]. The brain connectome can be assessed using different
MRI acquisitions: (1) diffusion-weighted MRI (dMRI) to estimate the structural connectivity
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using the directionality of water diffusion to evaluate tracts and projections [31]; (2) resting
state functional MRI (rsfMRI) to estimate functional connectivity making use of the low-
frequency blood oxygen level-dependent (BOLD) fluctuations found in brain regions that
are functionally related to each other [32]. The functional (i.e., rsfMRI) and structural (i.e.,
dMRI tractography) connectomes can be studied using normative, atlas-based connectome
data assembled using high-quality acquisitions from a large number of subjects [5,26,33].
The use of these normative connectomes allows the investigation of brain-wide circuits
implicated in clinical symptoms in the absence of patient-specific rsfMRI or dMRI acquisi-
tions [24,29,34–36] (Figure 1). For example, if tumors are found to cause a specific cognitive
impairment, one could use the normative functional connectome to map the key implicated
regions and optimize patient counseling and surgical timing of subsequent tumors with
similar characteristics.

2.2. Imaging Transcriptomics

These normative functional and structural connectomes have been highly valuable
resources for studying normal and abnormal brain processes. Spatially resolved gene
expression data provide yet another unique avenue to investigate the relationship between
brain circuits implicated in various behaviors and diseases, and cell organization and
underlying molecular characteristics [6,37]. The Allen Human Brain atlas provides spatially
resolved gene expression in a standardized template space [38–40]. It is an online open
access atlas of whole-brain microarray gene expression data (https://help.brain-map.org/
display/humanbrain/Documentation, accessed on 1 December 2021). Using post-mortem
tissue samples from six donors (age range 24–57 years, 1 female), over 20,000 genes were
sampled across 3702 distinct sites creating an anatomically comprehensive spatial gene
expression assay of the human brain [40]. This normative gene expression atlas allows one
to investigate the molecular and cellular mechanisms associated with a spatial pattern or
brain location identified in an independent neuroimaging analysis (Figure 1). For example,
a study by Zheng and colleagues used normative connectomics and transcriptomics to
investigate determinants of disease propagation in Parkinson’s disease [41] and recent
work by Mandal and colleagues demonstrated that the spatial distribution of gliomas is
related to the local normative expression of genes associated with chromatin organization
and synaptic signaling [41,42].

3. Neuro-Oncology Applications

The neuro-oncology literature contains a few examples of normative analyses; how-
ever, several potential applications remain unexplored, specifically connectomics and
imaging transcriptomics.

The majority of publications have used normative voxel-wise mapping to investigate
spatial patterns of tumors. Spatial mapping has shown that glioblastomas tend to occur in
different locations according to their molecular subtypes [43]. Similar analyses identified
brain areas favored by lung cancer metastases, as well as a relationship between their spatial
distribution and epidermal growth factor receptor mutation status [44,45]. Pediatric post-
surgical cerebellar lesion mapping was used to identify structures most strongly associated
with cognitive affective syndrome [46].

There is a paucity of neuro-oncology studies that have explored the normative func-
tional connectome. One study found that the underlying normative circuitry of a group
of spatially distinct mass lesions could explain the development of medically refractory
epilepsy [36]. Following further validation, this approach could be used for patient counsel-
ing and optimizing surgical timing for lesions in locations involving epileptogenic networks.
This type of analysis could also assess other tumor characteristics, such as preferential
localization to specific functional networks based on tumor histology and genetics. There is
also a case report of post-operative depression after cingulate low-grade glioma resection,
in which functional connectomics suggests that the surgical corridor, rather than the tumor
resection bed, had greater overlap with depression-related networks [47]. Furthermore,

https://help.brain-map.org/display/humanbrain/Documentation
https://help.brain-map.org/display/humanbrain/Documentation
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functional connectomics has been used to investigate the key functional networks underly-
ing cognitive affective syndrome after cerebellar lesion resection [46]. Normative functional
connectomic analyses are most appropriate when investigating distinct neurological man-
ifestations from lesions in anatomically disparate locations. This analysis can be used
to correlate symptoms and lesions, and may be a valuable tool for pre-operative patient
counseling and selecting the optimal surgical approach.

There are very few publications taking advantage of normative structural connec-
tomics and imaging transcriptomics. There is evidence that certain types of tumors exhibit
preferential growth along white matter fiber directions [48,49]. Tumor growth patterns
could be further assessed with large-scale data using normative structural connectomics.
Two recently published reviews also suggest the application of brain connectomics for
glioma surgery [50,51]. Similarly, understanding tumor behaviors and associated symp-
toms might require a whole-brain approach [52]. Rather than considering tumors with
traditional lesion mapping, disconnectivity analysis may further our understanding of how
white matter disconnections may predict tumor growth and recurrence patterns, as well
as pre- and post-operative symptoms. Disconnectivity analysis could also inform surgical
planning. The Allen Human Brain atlas [53], which integrates gene expression data and
neuroanatomical information, has not yet been applied to neuro-oncology. This could
potentially represent a powerful tool to investigate normative gene expression for various
tumor types. Hypothetically, the results may show the vulnerability of certain brain areas
to tumor growth and, possibly, highlight new genetic therapeutic targets. Similarly, sites of
recurrence after resection could be assessed based on the normative gene expression of the
adjacent brain; once again, these may reveal a pattern of vulnerability of certain brain areas.
This could help understand and predict recurrences, as well as optimize surgical timing.

4. Practical Framework for Normative Brain Analyses

The use of these advanced normative brain atlases enables the analysis of retrospective
patient data using MRI routinely acquired with clinical scans. Two items are necessary to be-
gin: (1) approval from the local ethics board allowing chart review and data consolidation;
(2) high spatial resolution MRI (typically a T1 or T2-weighted whole-brain image) allowing
the localization of the relevant features (e.g., a tumor) and transformation of the patient
data into template brain space (Figure 2). The next step is the identification/segmentation
of the feature of interest using the native brain (Figure 2). Most commonly, the images
have to be converted from DICOM (i.e., most common output format from MRI scanners)
to nifti format [53,54]. There are many publicly available toolboxes that can easily be
installed and used to perform these operations, for example SPM (https://www.fil.ion.ucl.
ac.uk/spm/, accessed on 1 December 2021), FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki,
accessed on 1 December 2021), ANTs (http://picsl.upenn.edu/software/ants/, accessed
on 1 December 2021), or MINCtools (https://bic-mni.github.io/, accessed on 1 Decem-
ber 2021). To normalize the images containing the identified/segmented feature of in-
terest (e.g., brain tumor), one would derive linear and non-linear transformations us-
ing the native structural MRI and apply these to the image capturing the feature of
interest (Figure 2) [11,55,56]. This has to be performed for each individual subject/patient.
Once transformed, the first question that can be investigated is whether or not the feature
of interest shows a distinct spatial pattern, for example voxels or regions more or less likely
to have tumor occurrence (Figure 2).

https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
http://picsl.upenn.edu/software/ants/
https://bic-mni.github.io/
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Figure 2. Framework for normative brain analyses. Following typical research project prerequisites
(upper left side of the image), the analysis begins with the native patient MRI. The feature of interest
(e.g., tumor) is manually segmented (red arrow) using the native patient image. The native patient
brain is then normalized (transformed) to MNI space and the estimated transforms applied to the
native patient brain (for quality control) and the segmented feature (green arrows). The segmented
feature (e.g., tumor) in MNI space is the main input for further processing, such as voxel-based group
analysis (yellow arrow), and is used as seeds in normative structural (turquoise arrow) and functional
(purple arrow) connectome analyses to derive brain-wide connectivity patterns. dMRI = diffusion-
weighted MRI; MNI = Montreal Neurological Institute; MRI = Magnetic resonance imaging;
rsfMRI = resting state functional MRI.

Using the segmented feature in the template space as the input in the normative func-
tional and structural connectomes, one can then identify the brain-wide network of func-
tionally and structurally connected areas (Figure 2). This allows identification of networks
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involved in clinical symptoms or disease processes (Figure 1) [22,25–27,46]. For example,
tumor growth might preferentially move along a specific fiber tract or metastasis might be
more likely to appear in brain areas functionally connected.

The spatial pattern of either the segmented feature (i.e., voxel-based analysis) and
connectomics analyses can then be related to the spatial pattern of gene expression,
which enables investigating the relationship of brain patterns and cell types or molec-
ular processes [53–55]. One can use, for example, the regional Allen Gene Expression
data (https://human.brain-map.org/, accessed on 1 December 2021) or tools, such as
the abagen toolbox [54], to derive gene expression patterns and correlate these with the
connectome or tumor occurrence pattern (Figure 1). This allows the identification of the
gene set showing similar or opposite expression patterns. Moreover, gene ontology analysis
(http://geneontology.org/, accessed on 1 December 2021) can assess processes associated
with that gene set. If investigating tumor occurrences, this process could identify biological
or molecular processes that make tumor occurrences more or less likely (Figures 1 and 3).
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Figure 3. Neuro-oncology applications of normative analyses. Voxel-based, connectomics, and imag-
ing transcriptomics are various tools that can be used when performing normative analyses. Their
applications to neuro-oncology are broad and include the assessment of tumor characteristics and
behaviors, leading to potential pre- and post-operative improvements for patients.

5. Limitations of Normative Analyses

While normative analyses could have broad applications to the field of neuro-oncology,
it is important to acknowledge their weaknesses. The major limitation of normative
datasets is that the templates do not contain information about the brains of the individual
patients to which they are applied [5,55]. This means that normative connectomes are
not sensitive to intrinsic interindividual differences at a more granular level. Similarly,
they may omit certain idiosyncrasies of pathology-specific brain characteristics. Therefore,
it is imperative to ask appropriate scientific questions when using normative analyses.
The normalization process represents another limitation. Although this has been highly
optimized for non-linearly registering subcortical elements with submillimeter precision,
normalization remains an imperfect process, particularly when marked morphological

https://human.brain-map.org/
http://geneontology.org/
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changes are present [3]. Of note, certain techniques, including masking specific brain areas
or emphasizing certain brain structures during this process, can be used to improve the
normalization of specific datasets. Finally, direct electrical stimulation during surgery
may still provide more immediate and accurate information for surgical planning than
functional and structural imaging, even at the patient level [56]. The unfamiliarity of
the neuro-oncology field with these neuroimaging analyses combined with the novelty
and requisite expertise to apply these techniques likely accounts for the paucity of neuro-
oncology publications taking advantage of normative connectomics and transcriptomics.

These disadvantages are partially offset by considering that normative templates are
high-resolution, high-fidelity, and high-n aggregate imaging data from initiatives such as
the Brain Genomics Superstruct Project [57–59]. This is in contrast with clinically acquired
individual patient imaging, which is often limited by suboptimal acquisition parameters
due to time constraints and outdated hardware [5,55].

6. Conclusions

Normative neuroimaging approaches provide an opportunity to perform large-scale
retrospective data analysis with MRI commonly acquired with clinical protocols. Thus far,
their usage in neuro-oncology has been limited. We discussed their potential broad novel
applications, from assessing tumor characteristics to pre-operative patient counselling and
from surgical planning to post-operative treatment monitoring (Figure 3). These analyses
may provide different perspectives on the current knowledge base.
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BOLD blood oxygen level-dependent
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References
1. Ellingson, B.M.; Bendszus, M.; Boxerman, J.; Barboriak, D.; Erickson, B.J.; Smits, M.; Nelson, S.J.; Gerstner, E.; Alexander, B.;

Goldmacher, G.; et al. Consensus Recommendations for a Standardized Brain Tumor Imaging Protocol in Clinical Trials. Neuro.
Oncol. 2015, 17, 1188–1198. [CrossRef]

2. Boxerman, J.L.; Quarles, C.C.; Hu, L.S.; Erickson, B.J.; Gerstner, E.R.; Smits, M.; Kaufmann, T.J.; Barboriak, D.P.; Huang, R.H.;
Wick, W.; et al. Consensus Recommendations for a Dynamic Susceptibility Contrast MRI Protocol for Use in High-Grade Gliomas.
Neuro. Oncol. 2020, 22, 1262–1275. [CrossRef] [PubMed]

3. Avants, B.B.; Tustison, N.J.; Song, G.; Cook, P.A.; Klein, A.; Gee, J.C. A Reproducible Evaluation of ANTs Similarity Metric
Performance in Brain Image Registration. Neuroimage 2011, 54, 2033–2044. [CrossRef]

http://doi.org/10.1093/neuonc/nov095
http://doi.org/10.1093/neuonc/noaa141
http://www.ncbi.nlm.nih.gov/pubmed/32516388
http://doi.org/10.1016/j.neuroimage.2010.09.025


Cancers 2022, 14, 464 9 of 11

4. Fonov, V.S.; Evans, A.C.; McKinstry, R.C.; Almli, C.R.; Collins, D.L. Unbiased Nonlinear Average Age-Appropriate Brain
Templates from Birth to Adulthood. Neuroimage 2009, 47, S102. [CrossRef]

5. Horn, A.; Fox, M.D. Opportunities of Connectomic Neuromodulation. Neuroimage 2020, 221, 117180. [CrossRef]
6. Ståhl, P.L.; Salmén, F.; Vickovic, S.; Lundmark, A.; Navarro, J.F.; Magnusson, J.; Giacomello, S.; Asp, M.; Westholm, J.O.;

Huss, M.; et al. Visualization and Analysis of Gene Expression in Tissue Sections by Spatial Transcriptomics. Science 2016, 353,
78–82. [CrossRef] [PubMed]

7. Talairach, J.; Tournoux, P. Co-Planar Stereotaxic Atlas of the Human Brain. 3-Dimensional Proportional System: An Approach to Imaging;
Georg Thieme Verlag: New York, NY, USA; Thieme Medical Publishers, Inc.: New York, NY, USA, 1988.

8. Mazziotta, J.C.; Toga, A.W.; Evans, A.; Fox, P.; Lancaster, J. A Probabilistic Atlas of the Human Brain: Theory and Rationale for Its
Development. Neuroimage 1995, 2, 89–101. [CrossRef]

9. Mazziotta, J.; Toga, A.; Evans, A.; Fox, P.; Lancaster, J.; Zilles, K.; Woods, R.; Paus, T.; Simpson, G.; Pike, B.; et al. A Probabilistic
Atlas and Reference System for the Human Brain: International Consortium for Brain Mapping (ICBM). Philos. Trans. R. Soc.
Lond. B Biol. Sci. 2001, 356, 1293–1322. [CrossRef]

10. Brett, M.; Johnsrude, I.S.; Owen, A.M. The Problem of Functional Localization in the Human Brain. Nat. Rev. Neurosci. 2002, 3,
243–249. [CrossRef]

11. Klein, A.; Andersson, J.; Ardekani, B.A.; Ashburner, J.; Avants, B.; Chiang, M.-C.; Christensen, G.E.; Collins, D.L.; Gee, J.; Hellier,
P.; et al. Evaluation of 14 Nonlinear Deformation Algorithms Applied to Human Brain MRI Registration. Neuroimage 2009, 46,
786–802. [CrossRef]

12. Almairac, F.; Duffau, H.; Herbet, G. Contralesional Macrostructural Plasticity of the Insular Cortex in Patients with Glioma.
Neurology 2018, 91, e1902–e1908. [CrossRef]

13. Sagberg, L.M.; Iversen, D.H.; Fyllingen, E.H.; Jakola, A.S.; Reinertsen, I.; Solheim, O. Brain Atlas for Assessing the Impact of
Tumor Location on Perioperative Quality of Life in Patients with High-Grade Glioma: A Prospective Population-Based Cohort
Study. NeuroImage Clin. 2019, 21, 101658. [CrossRef]

14. Leergaard, T.B.; Hilgetag, C.C.; Sporns, O. Mapping the Connectome: Multi-Level Analysis of Brain Connectivity. Front.
Neuroinform. 2012, 6. [CrossRef]

15. Hagmann, P. From Diffusion MRI to Brain Connectomics; EPFL: Lausanne, Switzerland, 2005.
16. Sporns, O. Structure and Function of Complex Brain Networks. Dialogues Clin. Neurosci. 2013, 15, 247–262.
17. Sporns, O. The Human Connectome: A Complex Network. Ann. N. Y. Acad. Sci. 2011, 1224, 109–125. [CrossRef]
18. Sporns, O.; Tononi, G.; Kötter, R. The Human Connectome: A Structural Description of the Human Brain. PLoS Comput. Biol.

2005, 1, 0245–0251. [CrossRef] [PubMed]
19. Elias, G.J.B.; Germann, J.; Boutet, A.; Pancholi, A.; Beyn, M.E.; Bhatia, K.; Neudorfer, C.; Loh, A.; Rizvi, S.J.; Bhat, V.; et al.

Structuro-Functional Surrogates of Response to Subcallosal Cingulate Deep Brain Stimulation for Depression. Brain 2021.
[CrossRef]

20. Boutet, A.; Madhavan, R.; Elias, G.J.B.; Joel, S.E.; Gramer, R.; Ranjan, M.; Paramanandam, V.; Xu, D.; Germann, J.; Loh, A.; et al.
Predicting Optimal Deep Brain Stimulation Parameters for Parkinson’s Disease Using Functional MRI and Machine Learning.
Nat. Commun. 2021, 12, 3043. [CrossRef] [PubMed]

21. Neudorfer, C.; Elias, G.J.B.; Jakobs, M.; Boutet, A.; Germann, J.; Narang, K.; Loh, A.; Paff, M.; Horn, A.; Kucharczyk, W.; et al.
Mapping Autonomic, Mood and Cognitive Effects of Hypothalamic Region Deep Brain Stimulation. Brain 2021, 144, 2837–2851.
[CrossRef] [PubMed]

22. Germann, J.; Elias, G.J.B.; Neudorfer, C.; Boutet, A.; Chow, C.T.; Wong, E.H.Y.; Parmar, R.; Gouveia, F.V.; Loh, A.; Giacobbe, P.; et al.
Potential Optimization of Focused Ultrasound Capsulotomy for Obsessive Compulsive Disorder. Brain 2021. [CrossRef] [PubMed]

23. Li, N.; Hollunder, B.; Baldermann, J.C.; Kibleur, A.; Treu, S.; Akram, H.; Al-Fatly, B.; Strange, B.A.; Barcia, J.A.; Zrinzo, L.; et al.
A Unified Functional Network Target for Deep Brain Stimulation in Obsessive-Compulsive Disorder. Biol. Psychiatry 2021.
[CrossRef] [PubMed]

24. Siddiqi, S.H.; Schaper, F.L.W.V.J.; Horn, A.; Hsu, J.; Padmanabhan, J.L.; Brodtmann, A.; Cash, R.F.H.; Corbetta, M.; Choi, K.S.;
Dougherty, D.D.; et al. Brain Stimulation and Brain Lesions Converge on Common Causal Circuits in Neuropsychiatric Disease.
Nat. Hum. Behav. 2021, 5. [CrossRef] [PubMed]

25. Germann, J.; Elias, G.J.B.; Boutet, A.; Narang, K.; Neudorfer, C.; Horn, A.; Loh, A.; Deeb, W.; Salvato, B.; Almeida, L.; et al. Brain
Structures and Networks Responsible for Stimulation-Induced Memory Flashbacks during Forniceal Deep Brain Stimulation for
Alzheimer’s Disease. Alzheimer’s Dement. 2021, 17, 777–787. [CrossRef] [PubMed]

26. Fox, M.D. Mapping Symptoms to Brain Networks with the Human Connectome. N. Engl. J. Med. 2018, 379, 2237–2245. [CrossRef]
[PubMed]

27. Fox, M.D.; Buckner, R.L.; Liu, H.; Chakravarty, M.M.; Lozano, A.M.; Pascual-Leone, A. Resting-State Networks Link Invasive
and Noninvasive Brain Stimulation across Diverse Psychiatric and Neurological Diseases. Proc. Natl. Acad. Sci. USA 2014, 111.
[CrossRef]

28. Cohen, A.L.; Ferguson, M.A.; Fox, M.D. Lesion Network Mapping Predicts Post-Stroke Behavioural Deficits, and Improves
Localization. Brain 2021, 144. [CrossRef]

29. Darby, R.R.; Joutsa, J.; Fox, M.D. Network Localization of Heterogeneous Neuroimaging Findings. Brain 2019, 142, 70–79.
[CrossRef]

http://doi.org/10.1016/S1053-8119(09)70884-5
http://doi.org/10.1016/j.neuroimage.2020.117180
http://doi.org/10.1126/science.aaf2403
http://www.ncbi.nlm.nih.gov/pubmed/27365449
http://doi.org/10.1006/nimg.1995.1012
http://doi.org/10.1098/rstb.2001.0915
http://doi.org/10.1038/nrn756
http://doi.org/10.1016/j.neuroimage.2008.12.037
http://doi.org/10.1212/WNL.0000000000006517
http://doi.org/10.1016/j.nicl.2019.101658
http://doi.org/10.3389/fninf.2012.00014
http://doi.org/10.1111/j.1749-6632.2010.05888.x
http://doi.org/10.1371/journal.pcbi.0010042
http://www.ncbi.nlm.nih.gov/pubmed/16201007
http://doi.org/10.1093/brain/awab284
http://doi.org/10.1038/s41467-021-23311-9
http://www.ncbi.nlm.nih.gov/pubmed/34031407
http://doi.org/10.1093/brain/awab170
http://www.ncbi.nlm.nih.gov/pubmed/33905474
http://doi.org/10.1093/brain/awab232
http://www.ncbi.nlm.nih.gov/pubmed/34145884
http://doi.org/10.1016/j.biopsych.2021.04.006
http://www.ncbi.nlm.nih.gov/pubmed/34134839
http://doi.org/10.1038/s41562-021-01161-1
http://www.ncbi.nlm.nih.gov/pubmed/34239076
http://doi.org/10.1002/alz.12238
http://www.ncbi.nlm.nih.gov/pubmed/33480187
http://doi.org/10.1056/NEJMra1706158
http://www.ncbi.nlm.nih.gov/pubmed/30575457
http://doi.org/10.1073/pnas.1405003111
http://doi.org/10.1093/brain/awab002
http://doi.org/10.1093/brain/awy292


Cancers 2022, 14, 464 10 of 11

30. Corp, D.T.; Joutsa, J.; Darby, R.R.; Delnooz, C.C.S.; van de Warrenburg, B.P.C.; Cooke, D.; Prudente, C.N.; Ren, J.; Reich, M.M.;
Batla, A.; et al. Network Localization of Cervical Dystonia Based on Causal Brain Lesions. Brain 2019, 142, 1660–1674. [CrossRef]

31. Jbabdi, S.; Sotiropoulos, S.N.; Haber, S.N.; Van Essen, D.C.; Behrens, T.E. Measuring Macroscopic Brain Connections in Vivo. Nat.
Neurosci. 2015, 18, 1546–1555. [CrossRef]

32. Biswal, B.B.; Mennes, M.; Zuo, X.-N.; Gohel, S.; Kelly, C.; Smith, S.M.; Beckmann, C.F.; Adelstein, J.S.; Buckner, R.L.;
Colcombe, S.; et al. Toward Discovery Science of Human Brain Function. Proc. Natl. Acad. Sci. USA 2010, 107, 4734–4739.
[CrossRef]

33. Elias, G.J.B.; Germann, J.; Loh, A.; Boutet, A.; Taha, A.; Wong, E.H.Y.; Parmar, R.; Lozano, A.M. Normative connectomes and their
use in DBS. In Connectomic Deep Brain Stimulation; Academic Press: Cambridge, MA, USA, 2022; pp. 245–274.

34. Mithani, K.; Boutet, A.; Germann, J.; Elias, G.J.B.; Weil, A.G.; Shah, A.; Guillen, M.; Bernal, B.; Achua, J.K.; Ragheb, J.; et al. Lesion
Network Localization of Seizure Freedom Following MR-Guided Laser Interstitial Thermal Ablation. Sci. Rep. 2019, 9, 1–11.
[CrossRef] [PubMed]

35. Elias, G.J.B.; De Vloo, P.; Germann, J.; Boutet, A.; Gramer, R.M.; Joel, S.E.; Morlion, B.; Nuttin, B.; Lozano, A.M. Mapping the
Network Underpinnings of Central Poststroke Pain and Analgesic Neuromodulation. Pain 2020, 161, 2805–2819. [CrossRef]
[PubMed]

36. Mansouri, A.M.; Germann, J.; Boutet, A.; Elias, G.J.B.; Mithani, K.; Chow, C.T.; Karmur, B.; Ibrahim, G.M.; McAndrews, M.P.;
Lozano, A.M.; et al. Identification of Neural Networks Preferentially Engaged by Epileptogenic Mass Lesions through Lesion
Network Mapping Analysis. Sci. Rep. 2020, 10, 1–11. [CrossRef] [PubMed]

37. Rodriques, S.G.; Stickels, R.R.; Goeva, A.; Martin, C.A.; Murray, E.; Vanderburg, C.R.; Welch, J.; Chen, L.M.; Chen, F.; Macosko,
E.Z. Slide-Seq: A Scalable Technology for Measuring Genome-Wide Expression at High Spatial Resolution. Science 2019, 363,
1463–1467. [CrossRef]

38. Shen, E.H.; Overly, C.C.; Jones, A.R. The Allen Human Brain Atlas: Comprehensive Gene Expression Mapping of the Human
Brain. Trends Neurosci. 2012, 35, 711–714. [CrossRef]

39. Jones, A.R.; Overly, C.C.; Sunkin, S.M. The Allen Brain Atlas: 5 Years and beyond. Nat. Rev. Neurosci. 2009, 10, 821–828. [CrossRef]
40. Hawrylycz, M.J.; Lein, E.S.; Guillozet-Bongaarts, A.L.; Shen, E.H.; Ng, L.; Miller, J.A.; van de Lagemaat, L.N.; Smith, K.A.; Ebbert,

A.; Riley, Z.L.; et al. An Anatomically Comprehensive Atlas of the Adult Human Brain Transcriptome. Nature 2012, 489, 391–399.
[CrossRef]

41. Zheng, Y.-Q.; Zhang, Y.; Yau, Y.; Zeighami, Y.; Larcher, K.; Misic, B.; Dagher, A. Local Vulnerability and Global Connectivity
Jointly Shape Neurodegenerative Disease Propagation. PLoS Biol. 2019, 17, e3000495. [CrossRef]

42. Mandal, A.S.; Romero-Garcia, R.; Hart, M.G.; Suckling, J. Genetic, Cellular, and Connectomic Characterization of the Brain
Regions Commonly Plagued by Glioma. Brain 2020, 143, 3294–3307. [CrossRef]

43. Bilello, M.; Akbari, H.; Da, X.; Pisapia, J.M.; Mohan, S.; Wolf, R.L.; O’Rourke, D.M.; Martinez-Lage, M.; Davatzikos, C. Population-
Based MRI Atlases of Spatial Distribution Are Specific to Patient and Tumor Characteristics in Glioblastoma. Neuroimage Clin.
2016, 12, 34–40. [CrossRef]

44. Wang, Y.; Xia, W.; Liu, B.; Zhou, L.; Ni, M.; Zhang, R.; Shen, J.; Bai, Y.; Weng, G.; Yuan, S.; et al. Exploration of Spatial Distribution
of Brain Metastasis from Small Cell Lung Cancer and Identification of Metastatic Risk Level of Brain Regions: A Multicenter,
Retrospective Study. Cancer Imaging 2021, 21, 41. [CrossRef]

45. Takano, K.; Kinoshita, M.; Takagaki, M.; Sakai, M.; Tateishi, S.; Achiha, T.; Hirayama, R.; Nishino, K.; Uchida, J.; Kumagai, T.; et al.
Different Spatial Distributions of Brain Metastases from Lung Cancer by Histological Subtype and Mutation Status of Epidermal
Growth Factor Receptor. Neuro. Oncol. 2016, 18, 716–724. [CrossRef]

46. Albazron, F.M.; Bruss, J.; Jones, R.M.; Yock, T.I.; Pulsifer, M.B.; Cohen, A.L.; Nopoulos, P.C.; Abrams, A.N.; Sato, M.; Boes,
A.D. Pediatric Postoperative Cerebellar Cognitive Affective Syndrome Follows Outflow Pathway Lesions. Neurology 2019, 93,
e1561–e1571. [CrossRef]

47. Mansouri, A.; Boutet, A.; Elias, G.; Germann, J.; Yan, H.; Babu, H.; Lozano, A.M.; Valiante, T.A. Lesion Network Mapping Analysis
Identifies Potential Cause of Postoperative Depression in a Case of Cingulate Low-Grade Glioma. World Neurosurg. 2020, 133,
278–282. [CrossRef]

48. Esmaeili, M.; Stensjøen, A.L.; Berntsen, E.M.; Solheim, O.; Reinertsen, I. The Direction of Tumour Growth in Glioblastoma Patients.
Sci. Rep. 2018, 8, 1199. [CrossRef] [PubMed]

49. Mickevicius, N.J.; Carle, A.B.; Bluemel, T.; Santarriaga, S.; Schloemer, F.; Shumate, D.; Connelly, J.; Schmainda, K.M.; LaViolette,
P.S. Location of Brain Tumor Intersecting White Matter Tracts Predicts Patient Prognosis. J. Neurooncol. 2015, 125, 393–400.
[CrossRef] [PubMed]

50. Duffau, H. Brain Connectomics Applied to Oncological Neuroscience: From a Traditional Surgical Strategy Focusing on Glioma
Topography to a Meta-Network Approach. Acta Neurochir. 2021, 163, 905–917. [CrossRef]

51. Samuel, N.; Vetkas, A.; Pancholi, A.; Sarica, C.; Loh, A.; Germann, J.; Harmsen, I.E.; Tasserie, J.; Milano, V.; Yamamoto, K.; et al.
A Network-Based Approach to Glioma Surgery: Insights from Functional Neurosurgery. Cancers 2021, 13, 6127. [CrossRef]

52. Griffis, J.C.; Metcalf, N.V.; Corbetta, M.; Shulman, G.L. Lesion Quantification Toolkit: A MATLAB Software Tool for Estimating
Grey Matter Damage and White Matter Disconnections in Patients with Focal Brain Lesions. Neuroimage Clin. 2021, 30, 102639.
[CrossRef] [PubMed]

http://doi.org/10.1093/brain/awz112
http://doi.org/10.1038/nn.4134
http://doi.org/10.1073/pnas.0911855107
http://doi.org/10.1038/s41598-019-55015-y
http://www.ncbi.nlm.nih.gov/pubmed/31819108
http://doi.org/10.1097/j.pain.0000000000001998
http://www.ncbi.nlm.nih.gov/pubmed/32694384
http://doi.org/10.1038/s41598-020-67626-x
http://www.ncbi.nlm.nih.gov/pubmed/32620922
http://doi.org/10.1126/science.aaw1219
http://doi.org/10.1016/j.tins.2012.09.005
http://doi.org/10.1038/nrn2722
http://doi.org/10.1038/nature11405
http://doi.org/10.1371/journal.pbio.3000495
http://doi.org/10.1093/brain/awaa277
http://doi.org/10.1016/j.nicl.2016.03.007
http://doi.org/10.1186/s40644-021-00410-w
http://doi.org/10.1093/neuonc/nov266
http://doi.org/10.1212/WNL.0000000000008326
http://doi.org/10.1016/j.wneu.2019.10.020
http://doi.org/10.1038/s41598-018-19420-z
http://www.ncbi.nlm.nih.gov/pubmed/29352231
http://doi.org/10.1007/s11060-015-1928-5
http://www.ncbi.nlm.nih.gov/pubmed/26376654
http://doi.org/10.1007/s00701-021-04752-z
http://doi.org/10.3390/cancers13236127
http://doi.org/10.1016/j.nicl.2021.102639
http://www.ncbi.nlm.nih.gov/pubmed/33813262


Cancers 2022, 14, 464 11 of 11

53. Sunkin, S.M.; Ng, L.; Lau, C.; Dolbeare, T.; Gilbert, T.L.; Thompson, C.L.; Hawrylycz, M.; Dang, C. Allen Brain Atlas: An
Integrated Spatio-Temporal Portal for Exploring the Central Nervous System. Nucleic Acids Res. 2013, 41, D996–D1008. [CrossRef]
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