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Simple Summary: Non-communicable diseases in general, and cancer in particular, contribute
greatly to the global burden of disease. Although significant advances have been made to address
this burden, cancer is still among the top drivers of mortality, second only to cardiovascular
diseases. Consensus has been established that a key factor to reduce the burden of disease from
cancer is to improve screening for and the early detection of such conditions. To date, however,
most approaches in this field relied on established screening methods, such as a clinical exami-
nation, radiographic imaging, tissue staining or biochemical markers. Yet, with the advances of
information technology, new data-driven screening and diagnostic tools have been developed.
This article provides a brief overview of the theoretical foundations of these data-driven ap-
proaches, highlights the promising use cases and underscores the challenges and limitations that
come with the introduction of these approaches to the clinical field.

Abstract: Despite the efforts of the past decades, cancer is still among the key drivers of global mortality.
To increase the detection rates, screening programs and other efforts to improve early detection were
initiated to cover the populations at a particular risk for developing a specific malignant condition. These
diagnostic approaches have, so far, mostly relied on conventional diagnostic methods and have made
little use of the vast amounts of clinical and diagnostic data that are routinely being collected along
the diagnostic pathway. Practitioners have lacked the tools to handle this ever-increasing flood of data.
Only recently, the clinical field has opened up more for the opportunities that come with the systematic
utilisation of high-dimensional computational data analysis. We aim to introduce the reader to the
theoretical background of machine learning (ML) and elaborate on the established and potential use
cases of ML algorithms in screening and early detection. Furthermore, we assess and comment on the
relevant challenges and misconceptions of the applicability of ML-based diagnostic approaches. Lastly,
we emphasise the need for a clear regulatory framework to responsibly introduce ML-based diagnostics
in clinical practice and routine care.

Keywords: cancer diagnostics; machine learning; artificial intelligence; high throughput; deep
learning; CNN; DNN

1. Introduction

The global burden of disease from non-communicable diseases has been on the rise
for decades. Among other factors, tobacco use, physical inactivity, unhealthy diets and
the excessive consumption of alcohol have greatly contributed to this trend [1]. The
latest Global Burden of Disease report of The Lancet, for example, identifies six non-
communicable diseases, among the ten top drivers of the global burden of disease [2].
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Among these, malignant diseases are of particular importance. Although major
age-standardised indicators show a significant decline in, for example, cancer mortality
since the 1990s [3], the global trends imply that the goal of eliminating cancer as one
of the major health concerns has not been achieved yet. The global burden of cancer
was estimated to account for 23.6 million cases in 2019, excluding non-melanoma skin
cancer, and ten million deaths in the same year [4]. Even in the U.S., with a highly
developed and high-resourced health care system, only about half of the patients with
cancer could be cured with existing therapies in 2019, while the remaining half was
expected to die with or of their disease [5].

The challenges that arise with these trends have long been recognised on a supra-
national level. As part of the Sustainable Development Goals (SDGs), the United Nations
(UN) has defined a global target to reduce the impact of non-communicable diseases
among premature populations (i.e., between the age of 30 and 70) by 30%. According to
recent analyses, the achievement of this reduction would not only result in an expanded
working population, a higher productivity and reduced disparity, but it would also yield
significant social, economic and political returns [6]. The key drivers to achieve this
reduction have been identified accordingly and include, among surveillance, prioritised
prevention and improved therapies, also the screening for and the early detection of
non-communicable diseases in general and malignant conditions in particular.

It has become clear, and it is global consensus now, that the diagnosis of cancers
in early stages of the disease holds great potential to effectively reduce the burden
of disease and to facilitate an early treatment initiation that typically yields a better
prognosis for the individual patients [7]. Well-designed and thoroughly implemented
screening programs have already led to a significant reduction of burden of disease al-
ready, but also come with relevant drawbacks [8]. Population-wide screening programs
that demonstrated relevant positive outcomes, however, remain relatively sparse, be-
ing mostly limited to image-based breast cancer, more recently, lung cancer screening,
cytology-based cervical cancer screening, clinical, endoscopic and histological colorec-
tal cancer screening, as well as clinical and biochemical prostate cancer screening [3].
All of these approaches have in common that risks of overdiagnosis and overtreatment
can not only be harmful for the individual patient, but also for the system that employs
these screening programs [9]. This debate has been particularly prominent around the
prostate-specific antigen (PSA) screening for prostate cancer [10]. This highlights that
most approaches toward screening and early detection are still based on conventional
diagnostic methods, such as clinical examination, cytology, histology, radiographic
imaging or biochemical tests. However, the advancement of computer technology and
new approaches in machine learning (ML) ushers in an entirely new field of diagnostic
approaches that bear the potential to address the challenges of screening and early
detection very effectively [11]. The impact of ML on cancer diagnostics will be the
focus of this article, which aims to summarise (a) the status quo of the screening for
and early detection of malignant diseases using ML, (b) identify the challenges and
opportunities within the field and (c) contrast these with the gold standard approaches
for the detection of malignant diseases. Since, across both sexes, female breast cancer
has recently become the most common type of cancer, accounting for about 11.7% of all
cancer diagnoses, which is followed by lung cancers (11.4%), colorectal cancers (10%)
and prostate cancers (7.3%) [7], this review will primarily focus on these entities and
common the aspects of their respective diagnostic funnels.
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2. A Brief Introduction to Machine Learning

Artificial intelligence (AI) is an umbrella term and is used to describe so-called
intelligent agents, which are able to perceive external hazards and perform correspond-
ing actions to reach their goal [12]. A specific branch of artificial intelligence is machine
learning (ML). This branch uses mathematical and statistical techniques to learn from
data and perform inference. This learning process is subdivided into two phases: in
the first phase, the model estimates the unknown dependencies in the given data,
followed by the second phase in which the model uses these learned dependencies to
predict new outputs [13]. Due to the increasing availability of data and better hardware
capabilities, ML has become a very powerful tool in various areas of research [14–16].

In ML, different tasks can be designed and allow the application of certain methods
in a desired framework: the supervised learning task requires a labelled set of training
data to estimate a function that maps the input data to the given output value. In a
regression problem, the task is to predict a real-value variable from the data and can be
seen as a special case of supervised learning. Example algorithms for supervised learn-
ing include support-vector machines (SVMs), decision trees (DTs), k-nearest neighbour
(kNN) and neural networks (NNs). In contrast to the supervised learning tasks, the
unsupervised learning task does not require labelled training data and so the model is
agnostic of any output during the learning process. Consequently, the task of the model
centres on the discovery of any patterns or groups in the input data. Clustering, as an
example of an unsupervised learning task, automatically groups the training inputs
into clusters of similar features. New samples are assigned to a cluster according to
similar characteristics. A third widely used ML task is semi-supervised learning, which
combines labelled and unlabelled data to provide more accurate predictions [13].

2.1. Overview of Deep Learning Methods

Deep learning is a class of ML methods and is inspired by the information process-
ing in biological systems. These models use multiple stacked layers (therefore “deep”)
with numerous neurons per layer to progressively extract features from the input data.
Current state-of-the-art methods in image recognition and natural language process-
ing are built upon so-called seep neural networks (DNNs) and mostly outperform
traditional ML approaches [17,18].

Various applications of deep learning adopt feed-forward neural networks (NNs),
which are able to map a fixed-length input to a fixed-length output. The basic building
blocks of feed-forward neural networks are neurons (alternatively called units). Each
neuron computes a weighted sum of its inputs and applies a non-linear activation function
to it. A commonly used activation function is the rectified linear unit (ReLU) function,
which is defined as:

f (z) = max(z, 0) (1)

A feed-forward neural network consists of an input layer, one or more hidden layers
and an output layer. The output of one layer acts as an input for the next, sequentially
following layer, as can be seen in Figure 1a.
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Figure 1. Overview of the machine learning approaches employed in medical diagnosis. (a) Visu-
alisation of a feed-forward neural network with one hidden layer. (b) A CNN architecture with
convolution and max-pooling operations ending in a fully connected final layer. (c) The simplified
U-Net model with its characteristic shape generates a segmentation map from an input image. (d) In a
bidirectional RNN, the input sequence is processed in both directions. Images modified from [19–21].

To train such a deep neural network, a loss function is minimised by an optimisation
algorithm. The backpropagation procedure calculates the gradient of a loss function with
respect to the weights of a network by applying the chain rule of derivatives. This is used
to propagate all the gradients back to the input layer, where it is then used to compute the
gradients with respect to the weights of each neuron. An optimisation algorithm, such as
stochastic gradient descent (SGD), then updates the weights and biases based on only one
sample from the dataset (hence stochastic) and its partial derivatives with respect to the
parameters per iteration [22].

A popular approach for training the deep learning models is transfer learning. In the
transfer learning scenario, a pre-trained model based on a different but related task is used
as a starting point for fine-tuning on the actual data. The implicit knowledge contained in
the pre-trained model supports the learning process and improves the performance of the
fine-tuned model.

2.1.1. Multilayer Perceptron (MLP)

Multilayer perceptrons are a special case of feed-forward neural networks and a funda-
mental architecture for deep learning approaches. This prediction function is composed by
multiple fully connected (FC) layers, including input and output layers, and an activation
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function (for example, ReLU or sigmoid function) σ : R→ R , which is applied to each
component as seen in:

y̌ = Wkσ(Wk−1σ(. . . σ(W1χ + b1) . . .) + bk−1) + bk (2)

where Wl ∈ Rnl×nl−1 is the weight matrix and bl ∈ Rnl is the bias in layer l = 1, . . . , k. It is
shown that MLPs are able to fit data with arbitrary precision, given enough parameters
in terms of the depth and width. Therefore, MLPs can be seen as universal function
approximators and are able to capture more complex interactions [23].

2.1.2. Convolutional Neural Network (CNN)

Feed-forward neural networks and multilayer perceptrons are commonly used for
structured data, whereas convolutional neural networks are mostly applied to image data.
These networks contain one or more convolutional layers, where each layer multiplies a
kernel (i.e., a set of learnable parameters) with the portion of the receptive field in the image.
This results in an activation map, which reflects the response of the kernel at different
spatial positions.

Convolutions are linear operations, therefore we usually introduce non-linearity in the
resulting activation maps by non-linear layers with, e.g., ReLU as an activation function.
To reduce the computational complexity, pooling subsamples neighbourhood outputs and
replaces the outputs by its summary statistics. Max-pooling is a commonly used pooling
function which simply returns the maximum value of the neighbourhood (Figure 1b).
Lastly, all these layers end up in one or more fully connected layers, which map the learned
representations of the input image to the output [24,25].

Stacking many layers leads to the degradation problem, where accuracy is prone to
saturate and degrade with the increasing depth of the network. Deep residual learning,
as introduced in [17], tackles this problem via shortcut or skip connections. These connec-
tions allow passing feature information on to the lower layers. This approach led to the
widely used ResNet [17] architecture. Other common architectures include AlexNet [14],
VGGNet [26], GoogleNet [27] and SqueezeNet [28].

The input images for CNNs usually come in 2D, but for medical use cases volumetric
images are often the norm. A 3D-CNN is the counterpart to a 2D-CNN, which takes a
sequence of 2D frames as input. The convolution and pooling layers are adopted according
to the altered input format [29].

2.1.3. Fully Convolutional Network (FCN)

These kinds of networks are used for semantic segmentation, where each pixel in the
image is classified and therefore results in the segmented maps of objects. In comparison to
CNNs, FCNs drop the fully connected layers and append up-sampling and deconvolutional
layers to reverse the proceeding convolution and pooling operations [30].

An adaptation of the FCN architecture in the area of biomedical image segmentation
is called a U-Net [31]. They optimise the original FCN for small amounts of training images
and more precise segmentations. Feature channels in the up-sampling part enables the
network to pass-through context information to higher layers (Figure 1c).

2.1.4. Recurrent Neural Network (RNN)

Recurrent neural networks (RNNs) are able to exhibit temporal dynamic behaviour
and are therefore often used for text and sequential data in general. In these networks,
information of the preceding elements of the sequence have an effect on the current input
and output [32]. To be more formal, given an input sequence x = (x1, . . . , xT), the hidden
sequence vector and the output sequence is computed in the following way:

ht = σ(Wxhxt + Whhht−1 + bh)
yt = Whyht + by

(3)
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with W as the weight matrix, b as the bias vector and σ as the hidden layer function
(e.g., sigmoid).

As opposed to the unidirectional RNNs, bidirectional recurrent neural networks
(BRNNs) are enabled to use future information of the sequence to improve the performance
of the model (Figure 1d). Another form of RNN architecture is the long short-term memory
(LSTM) model, which addresses the problem of long-term dependencies by custom memory
cells to utilise long-range context in the sequence [33]. Gated recurrent units (GRUs), as
introduced in [34], similarly address the issue of the short-term memory of RNNs by
so-called reset and update gates, which control the information retention.

The combination of CNNs and RNNs leads to convolutional recurrent neural networks
(CRNNs) [35]. In this architecture, the CNN part extracts the features from the input images
and the recurrent neural network then processes these features in order and learns the
possible links between those features.

3. Machine Learning Applications in Cancer Diagnostics

Commonly, the diagnostic pathway for a cancerous condition is typically initiated
through a routine screening in the asymptomatic patient, or through the active consultation
of a somewhat symptomatic patient. Based on the correct interpretation of the diagnostic
results obtained and the diagnostic workup for the respective condition, the practitioner
then decides the treatment regimen for the patient, typically based on national or interna-
tional guidelines. Since clinical data, mostly in the form of digital images or structured
data, are easily machine readable and since the path to a qualified diagnosis is, generally
speaking, strictly logical, ML approaches are well suited to support the medical staff to
instrumentalise the vast amounts of diagnostic information more efficiently. However, due
to the diverse nature of cancer and the multitude of processed information a practitioner
may ask for, there is no one-fits-it-all algorithm that can serve all tasks. This chapter intro-
duces the standard ML algorithms that evolved over the last decade and were employed
for specific diagnostic tasks and data (Table 1).

To understand and interpret diagnostic data, one needs to perform a series of analysis
steps, which evolved into different tasks addressed by ML algorithms.

The simplest readout comes with detection algorithms. Detection identifies tumorous
tissue in a binary decision model, typically based on radiographic imaging or histological
samples.

A little more information will be provided by classification. This algorithms identify
tumour tissues and enable the qualitative analysis and potential implications of this tumour
for the patient. It contains the identification of objects of different types and multilabel
classifications.

A more sophisticated outcome is accomplished with segmentation. This process
identifies and localises (e.g., mark area on an image) potential malignant tissue from
healthy intact tissue. This task is performed on all kinds of visual data, such as whole slide
images (WSIs), mammograms, MRI and CT scans [36].

When it comes to the analysis of OMICs data, the nature of the data completely
changes. OMICs data are the expression data of biochemical molecules, such as RNA,
proteins or metabolites [11]. A comparison of expression patterns can be used to perform
prognosis prediction.

Over the last several years, ML algorithms emerged that are able to support the
clinician in the interpretation of data (Table 1).
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Table 1. Best suited machine learning algorithms for the various approaches of cancer identification.
Depending on the task and the type of data, specific deep learning methods prove to be well suited.

Task Type of Data ML Method Disease Spectrum References

Segmentation
MRI images 3D-CNN, CNN Brain tumour, prostate cancer [37,38]

Mammograms CNN Breast cancer [39–41]
Ultrasound images U-Net (FCN) Breast cancer [42]

Classification

Histological images CNN, CRNN Breast cancer, colorectal cancer [43–45]
Dermoscopic segmentation CNN Skin lesions [46,47]

Ultrasound images CNN Breast cancer [48,49]
(Volumetric) CT scans, slides CNN Lung cancer [50–52]

OMICs, multi-OMICs DNN Various [53–55]
H&E images, slides CNN Colorectal cancer [56]

MRI images CNN, CRNN Brain tumour [19,57]
Mammograms CNN Breast cancer [58]

Detection
Mammograms CNN Breast cancer [58]

CT scans 3D-CNN Lung cancer [59]

Prognostic OMICs, multi-OMICs DNN Various [55,60–64]
Histological images CNN Soft tissue cancers [65]

Abbreviations: CT abbreviations: CT—computed tomography; CNN—convolutional neural network; DNN—deep
neural network; H&E—haematoxylin and eosin stain; MRI—magnetic resonance imaging; CRNN—convolutional
recurrent neural networks; FCN—fully convolutional network and DL—deep learning.

Several seminal and influential publications were published over the past decade.
While earlier works in the field are thoroughly reviewed in [13], more recent advances
were comprehensively reviewed in [24,25,66]. This article, however, focuses on the primary
works highlighted in Table 1, as we deem the examples provided as particularly insightful
to understand the (a) theoretical foundations and the (b) clinical applications of each ap-
proach outlined. Applying ML in breast cancer diagnosis produced various approaches
on different input data types. Work in [41] first classifies an input mammogram for the
inclusion of potential masses via a CNN classifier. An FCN based on this CNN is then used
to output probability regions to localise the mass in the image. Similarly, in [58], a deep
learning detector is trained to detect breast lesions from entire mammograms. In a second
step, different state-of-the-art CNN classification models predict the mass to be benign or
malignant. A custom CNN architecture introduced in [39] recognises the abnormal mam-
mogram images. In [58], transfer learning is used to alleviate the need for large datasets.
Image features are extracted via a CNN and are then analysed by a SVM classifier. Ultra-
sound images are another widely used input data type for breast cancer diagnosis with ML.
Based on the introduced U-Net architecture, the approach in [42] segments the suspicious
breast masses on ultrasound images and is able to output predictions in real time (13–55 ms
per image). Several transfer learning techniques in combination with a matching layer
performing colour conversion to efficiently utilise the pretrained model are applied in [49].
The CNN based on the VGG neural network architecture was pre-trained on the ImageNet
dataset and then fine-tuned on a dataset of 882 ultrasound images of breast masses. In [67],
GoogleNet was trained to distinguish between benign and malignant tumours. A custom
dataset was built containing 7408 ultrasound breast images. Augmentation techniques to
artificially increase the dataset size included histogram equalisation, image cropping and
margin augmentation. The approach in [44], combines multiple fine-tuned CNN models
(including ResNet) in a so-called ensemble model to classify histopathological microscopy
images into normal tissue, benign lesion, in situ carcinoma and invasive carcinoma. A
custom technique named DNNS, enhances the input images by particular preprocessing
steps and features extraction methods to improve the performance of different classifier
models in [45].

Based on the MRI data, which congenitally comes in a 3D format, a multi-scale 3D-
CNN is introduced in [38] to accurately segment the brain lesions. A second pathway that
operates on down-sampled images is added to the model to effectively learn high level
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features, such as the location in the brain. The detailed local appearance of the lesion is
captured in the first pathway, which operates on default scaled images. The methylation
status of MGMT indicates the response to temozolomide and possibly influences the overall
patient survival. Work in [57] utilised different ResNet architectures to predict the MGMT
methylation status on the basis of the MRI data. Similarly, in [19], a bi-directional convo-
lutional recurrent neural network architecture (CRNN) is used to predict the methylation
state of the MGMT regulatory regions. In [38], MR images are used to automatically seg-
ment the prostate by extracting features via a CNN to generate a set of prostate proposals.
For each of these proposals, a graph is generated based on the extracted features to finally
select the best prostate proposal segmentation.

Classifying small lung nodules as malignant is clinically difficult, since they cannot be
reliably characterised. The authors in [50] tackled this task by introducing a deep belief
network (DBN) model and a CNN model trained on computed tomography (CT) images
for nodule classification. Another approach is presented in [51], where features from a pre-
trained CNN (AlexNet) model are combined with hand-crafted features to train a random
forest (RF) classifier. TumorNet, as introduced in [52], projects the CT scans into 2D patches
for each dimension and concatenates them. Each dimension corresponds to the different
channels of the input image for the CNN. A Gaussian process (GP) regression is performed
to predict the malignancy score of a nodule. The 3D-CNN used in [59] fully exploits the
input format of CT scans by extracting richer spatial information and more representative
features, based on the hierarchical architecture for pulmonary nodule detection.

The correct differentiation between the benign and malignant skin lesions is crucial to
subsequent patient observation and treatment. In [46], a hybrid deep learning approach is
presented. The extracted features from pre-trained AlexNet, VGG16 and ResNet-18 are used
to train separate SVM classifiers. The outputs of the classifiers are fused in the final stage
to obtain the predicted class of the input dermoscopic image. In Deepmole [47], features
extracted from the last three layers of the introduced CNN architecture are used by a
k-nearest neighbour classifier (kNN) to differ between melanoma and benign samples. The
availability of haematoxylin–eosin (H&E) stained tissue slides of colorectal cancer enabled
the application of deep learning algorithms to extract the prognosticators for diagnosis.
In [56], several CNN architectures, including AlexNet, VGG19, ResNet-50, SqueezeNet and
GoogleNet, were evaluated on 862 H&E slides for predicting nine possible output classes.

A combination of the classification and prediction of the outcomes is established by
the CNN MesoNet, specialising in malignant mesothelioma diagnostics on whole slide
images. As a further fascinating feature, MesoNet allows a peek into the “black box” typical
to many ML algorithms, and there it can be seen that the decision of an image classification
is often not based on the tumour itself, but often on the surrounding tumour and its rate of
inflammation, vacuolisation and cellular diversity [65].

Interestingly, the data on the expression of genes, proteins or metabolites and its
matching to a phenotype can be processed by ML in a similar way as is expressed in the
above-mentioned images, although categorically different to the human eye. Since the rise
of next generation sequencing and microarray techniques databases are growing, it is a
major task for statistical analysis to mine for patterns that present hints for the present or
future development of diseases. Yet, ML is already outperforming the human eye when it
comes to the identification of the primary tumour from the data collected from a distant
metastasis. A deep learning classifier was trained to predict with 91% accuracy the cancer
type, based on patterns of somatic passenger mutations detected in the whole genome
sequencing of 2606 tumours from 24 common cancer types [53]. A different approach
maps the high-dimensional omics input data into a latent space with lower dimensionality.
Based on these generated embeddings, several downstream task (including tumour type
classification and survival prediction) modules are trained with a multi-task strategy, which
has a higher performance than training each task individually [55].

The initiative around a tool called DeepCC goes even further, which performs the
molecular subtyping of tumours and hence enables classification on its gene expression
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signature. In a supervised biological knowledge-based framework, a DNN creates a
functional spectrum to classify colorectal cancers [54].

Prognosis prediction is one central aspect of clinical diagnosis, staging and the con-
sequent disease management. Understanding the long-term effects of the fluctuations in
gene expression and the changes of molecular pathways allows an assessment of prognosis.
The freely available tool Cox-nnet represents a DNN-based algorithm that computes high
throughput transcriptomics data from patients to enable an accurate and highly efficient
prognosis prediction [60]. The Cox proportional hazard DNN is also employed in DeepSurv,
an ML algorithm that is trained on simulated and real survival data. It models the correla-
tions between the covariates of a patient and their risk of failure. Furthermore, the models
integrate potential treatment options and correct the survival data to the success of the
treatment regimen [61]. In [63], autoencoders are used to integrate the unique modalities
per omics data. They tested their approach on multi-omics data for breast cancer survival
prediction and reported a C-index of 0.641. Focusing on the prognosis for lung cancer, the
approach in [62] uses unsupervised learning techniques to detect subtypes in non-small
lung cancer, which are associated with the survival of patients and divide them into groups
of longer and shorter-surviving. Another approach combines 15 extracted biomarkers with
clinical data to predict the 5-year survival status of patients with non-small lung cancer.
Their integrative model, which combines two DNNs, one for microarray data and the other
for clinical data, achieves an AUC of 0.8163 [64].

However, not only is the analysis of transcriptomics data is time and resource con-
suming, but also the building of entire sequences from the up-to-1 billion reads provided
from a state-of-the-art sequencer is laborious and time consuming. A specialised CNN,
DeepVariant, was created to support the diagnostic facilities to faithfully reconstruct the
entire genomes from the machine generated reads [68].

Next to the building and understanding of the transcriptomics data, some convenient
CNNs were developed to support the researchers in designing projects. ML algorithms,
such as DeepBIND, DeepChrome and DeepHistone, are tools to predict the RNA and
DNA binding sites for proteins, the prediction of gene expression or prediction of histone
modifications, respectively [69–71].

4. A Practical Perspective on the Challenges and Limitations

The versatile applicability of ML-based diagnostic approaches is tempting and sparked
an ongoing debate about whether or when data-driven diagnostic approaches will replace
traditional diagnostic approaches in the near future. Among the top percentile of the most-
cited nature publications of the year 2017, for example, is the work by Esteva and colleagues,
who pitched a CNN against an international panel of fully qualified dermatologists to
comparatively assess their diagnostic accuracy in detecting malignant skin lesions [72].
Although the seemingly immediate clinical applicability of this and comparable diagnostic
approaches is tempting, several relevant challenges and limitations needs to be kept in
mind when discussing the current clinical value of ML-based diagnostic approaches.

4.1. Data-Driven Approaches and Human Interaction Complement Each Other

A lacking mutual understanding for the needs of clinicians and other practitioners
on the one hand, and the abilities that data-driven diagnostic approaches possess today
on the other hand, has led to a protective and sceptical attitude towards what the techno-
logical advances of the past decade can contribute to the current mode of clinical practice.
After early attempts towards the automated detection of potentially malignant findings on
mammograms and other radiographic images only led to higher recall rates, but did not
yield better outcomes for the individual patient, for example, many practitioners deemed
data-driven diagnostic aids unfit for the clinical practice [73]. As unreliable and faulty re-
ports from a data-driven diagnostic approach do not only not help the practitioner, but also
increase the workload and contribute to alert fatigue [70], many practitioners are hesitant
to embrace the advantages that data-driven diagnostic approaches can, eventually, yield. It
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has, for example, been shown that integrated and collaborative (“AI-assisted”) diagnostic
approaches can significantly increase the diagnostic accuracy for diabetic retinopathy, as
compared with the clinical judgment or data-driven diagnostic approach alone [74].

4.2. Dataset Shift and the Inhomogeneity of Patient Populations

For a comprehensive applicability in clinical practice, any data-driven diagnostic
approach must account for the fact that input data are generated in a dynamic, non-
stationary environment. In this context, input datasets can shift significantly [75] and a
data-driven approach that relies inherently on the generalisation, through interpolation
and extrapolation, of the input dataset that it has been trained on, can consequently come
to false conclusions [76]. While practitioners can subconsciously adapt to these dynamic
changes, data-driven diagnostic approaches would require close monitoring and periodical
updates to perform accordingly in a real-world context. Closely related to this issue are
the concepts of brittleness and bias, which corrupt the input datasets in a way that leads to
their faulty procession and false conclusions, respectively [77,78].

4.3. The Clinical Applicability of Accuracy Metrics Is Limited

The accuracy of most data-driven diagnostic approaches is, due to its nature in the
scientific field of data science, often reported in the form of a receiver operator curve (ROC),
or sensitivity and specificity, if a continuous variable is dichotomizsed. However, the
former more than the latter does not necessarily translate into a practical conclusion about
whether a given application provides any true benefit for the individual patient [79]. Efforts
have been made to establish a more standardised approach for reporting the results from
a data-based diagnostic or therapeutic approach, as, for example, the TRIPOD statement
illustrates [80]. However, to fully address this challenge, a better and mutual understanding
of a clinically relevant outcome and how a methodologically sound data-driven approach
can lead to such needs to be established. Closing this so-called “AI chasm”, therefore,
remains a priority to introduce data-driven diagnostics into the clinical practice [81]. This
also includes efforts to increase the “data science literacy” among practitioners in the
medical field.

4.4. Prospective Evaluation and Peer-Reviewed Reporting

Although the methodological sophistication of many data-driven diagnostic ap-
proaches facilitates a broad applicability in principle, the validation of these models has
been mostly based on retrospective data. Esteva and colleagues, for example, based their
evaluation on a total of 129,450 retrospectively collected clinical images [72], but failed to
provide any subsequent prospective validation of their approach. Yet, similar to pharma-
ceutics and medical devices, regulatory bodies and practitioners alike require, or at least
strongly prefer, a thorough prospective evaluation. As long as the majority of data-driven
diagnostic approaches fails to provide prospective evaluations, market access, as well as
the acceptance among practitioners, is likely to remain low. An additional important aspect
focuses on where the reporting of these evaluations is published. The accustomed manner
of data scientists who report their findings for an academic audience is to upload their
results to pre-print servers. Although the medical field could potentially learn from this
more progressive way of reporting research findings, practitioners are typically sceptical
about non-peer-reviewed research. Additionally, the establishment of reporting standards
and guidelines is much more difficult in the less regulated field of pre-print reports [80,82].

4.5. Safety and Protection from Adversarial Attacks

As a diagnostic tool, data-driven approaches need to meet safety and security stan-
dards, just as any other information technology does. To our knowledge, however, no
application has been optimised to effectively resist an adversarial attack. Yet, at the same
time, reports about brittleness, as outlined above, or the intentional deception of a data-
driven diagnostic approach become more frequent [77,83,84]. More prominently, Finlayson
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and colleagues provided examples of how these fraudulent attacks lead to tangible and
disadvantageous outcomes for the affected patients [85]. Although the first autonomous
AI-based diagnostic tool received FDA approval [86], the debate about how developers
and manufacturers of data-driven diagnostic and therapeutic approaches can make sure to
meet the regulatory standards is ongoing [87]. These challenges have, from our perspective,
not been addressed thoroughly enough.

4.6. Ethical Implications for ML in Health Care

The use of individual electronic medical records in automated big data processing
creates an ethical, legal and moral conundrum. A complete medical record contains all
the information to undoubtedly identify the individual. According to Western legislation,
this data record always belongs to the patient and can only be accessed and analysed after
obtaining a voluntary and informed consent. Yet, to train ML algorithms sufficiently, large
amounts of data are required. To circumnavigate this issue, researchers started to create
anonymised medical record data repositories and share them to train the ML algorithms
for different applications. Such anonymised datasets are then provided by many centres
and processed by researchers around the globe. However, studies show that many of these
anonymisation processes are incomplete and merely produce pseudonymisation, with the
potential to still withdraw information about the specific individual [88].

Not only does the data itself cause ethical and legal issues, but also the conclusions
drawn out of ML generated information has to be handled with care. According to the EU
legislation, each patient has the right to fully understand how the information was created
that leads to his diagnosis and treatment regimen [89]. However, as mentioned above, the
output created by a well-trained ML algorithm cannot be fully understood by the human
mind. ML creates a highly complex analytic funnel that neither the data scientist nor the
practitioner can explicitly explain. This autonomy that is given to software needs to be
reflected in the regulatory framework in which these approaches work. The FDA is aware
of this issue and that is the main reason why currently all approved ML apparatus have to
be labelled as “diagnostic support tool” and are not allowed to be marketed as automatic
diagnostic finding equipment: the intuition and experience of the practitioner still needs
to remain as the final frontier of a treatment decision. This is also of crucial importance
when it comes to technical limitations. ML, with all its fascinating possibilities and results,
still remains a statistical application and, hence, relies on probabilistic determination. Yet,
any statistical application can only be as precise as the quality of the input data. Hitherto,
it is known that training sets are often incomplete, noisy and have an inherent bias that
causes a legal, moral and ethical issue. Therefore, the reliability of any conclusions drawn
for the clinical practice need to be handled cautiously. ML is often designed at large
university centres in the developed world and thus many training data sets originate from
the geographical location of the research institute. Furthermore, the creation of digital
data is very cost intensive. Hence, the large accumulation of datasets is limited to wealthy
health systems or to health systems that are paid for by the patient directly. The emerging
precision medicine is very cost intensive and many publicly funded medical systems cannot
afford this. This implies that, only from financially strong patients, digital data, such as
sequencing, high resolution imaging and MRI scans, are performed and those data are fed
into the ML algorithms. This again creates a bias of data available to ML based on patient
selection by race, ability, sex and class.

Many of these above-mentioned issues can be combined in the emerging topic of cyber
and bio-security [90]. Biological data are nowadays mostly stored as digital entities and
this is also the foundation of all subsequent ML processing. However, by shifting biological
and medical data into cyberspace, new threats for the integrity of the information arise.
Next to all the established medical ethical standards, further standards that are in use in
cybersecurity now need to be taken into account. The term cyberbiosecurity was coined in
2018, but was not known to a broad audience until the United Nations led the G7 Global
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Partnership against the Spread of Weapons and Materials of Mass Destruction (WMD)
identified it as a key developmental field of its future activities [91].

Even if the benefits of new methods, such as the use of ML in medicine, outweigh the
downsides by magnitudes, an honest and open discussion of such scenarios needs to be
initiated, to create a legal and ethical safe space in which scientists can further develop the
tools.

5. Conclusions

Non-communicable diseases in general and cancer in particular, have been shown
to contribute greatly to the global burden of disease. A key factor to reduce the burden
of disease from cancer is to improve the screening methods and detection models of such
conditions. The status quo of the conventional approaches in this field, however, is being
challenged. Specialised ML models are becoming an applicable aid along the diagnostic
pathways of more and more malignant conditions. Yet, it needs to be kept in mind that ML
should not be considered as a standalone diagnostic tool that can operate independently,
as long as it is provided with suitable input data. Identifying and compiling suitable
training data within an ethical and regulatory framework to ensure data safety and security,
reduce the biases and limit overfitting that is becoming a new and required skill set for
researchers. Yet, if practitioners and scientists are aware of these challenges and address
them responsibly, ML yields the potential to become another key driver to address the
global burden of disease from cancer.
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