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Simple Summary: Absence of survival benefits when adding hyperthermic intraperitoneal
chemotherapy (HIPEC) with oxaliplatin to cytoreductive surgery in peritoneal metastasis from
colorectal cancer has recently been shown in the randomized controlled PRODIGE 7 trial. We there-
fore aimed to investigate the effects of this treatment modality in a preclinical micrometastasis model.

Cancers 2022, 14, 1158. https://doi.org/10.3390/cancers14051158 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers14051158
https://doi.org/10.3390/cancers14051158
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0002-3625-784X
https://orcid.org/0000-0001-9720-8243
https://orcid.org/0000-0001-9163-7127
https://orcid.org/0000-0003-1632-0167
https://orcid.org/0000-0002-2390-0226
https://orcid.org/0000-0002-2206-107X
https://orcid.org/0000-0003-1614-2647
https://orcid.org/0000-0003-2513-1317
https://doi.org/10.3390/cancers14051158
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers14051158?type=check_update&version=2


Cancers 2022, 14, 1158 2 of 19

Cancer cells were incubated with either patient samples obtained during HIPEC procedures or with
defined oxaliplatin-containing solutions prepared according to clinically established HIPEC protocols.
Our results demonstrate a limited effectiveness of short-term HIPEC in simulations with oxaliplatin
to eliminate micrometastases, although we used platinum-sensitive cell lines for our model. Since
these results are in line with findings from current research, our studies might offer further convincing
evidence and potential explanations for HIPEC futility observed in clinical application.

Abstract: Cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy (HIPEC)
was considered a promising treatment for patients with peritoneal metastasis from colorectal cancer.
However, the recently published randomized controlled PRODIGE 7 trial failed to demonstrate
survival benefits through the addition of short-term oxaliplatin-based HIPEC. Constituting a complex
multifactorial treatment, we investigated HIPEC in a preclinical model concerning the elimination
of minimal tumor residues, thereby aiming to better understand the size of effects and respective
clinical trial results. Patient samples of peritoneal perfusates obtained during HIPEC treatments and
oxaliplatin-containing solutions at clinically relevant dosages, conforming with established HIPEC
protocols, were assessed regarding their ability to eliminate modelled ~100 µm thickness cancer
cell layers. Impedance-based real-time cell analysis and classical end-point assays were used. Flow
cytometry was employed to determine the effect of different HIPEC drug solvents on tumor cell
properties. Effectiveness of peritoneal perfusate patient samples and defined oxaliplatin-containing
solutions proved limited but reproducible. HIPEC simulations for 30 min reduced the normalized cell
index below 50% with peritoneal perfusates from merely 3 out of 9 patients within 72 h, indicating full-
thickness cytotoxic effects. Instead, prolonging HIPEC to 1 h enhanced these effects and comprised
7 patients’ samples, while continuous drug exposure invariably resulted in complete cell death.
Further, frequently used drug diluents caused approximately 25% cell size reduction within 30 min.
Prolonging oxaliplatin exposure improved effectiveness of HIPEC to eliminate micrometastases in
our preclinical model. Accordingly, insufficient penetration depth, short exposure time, and the
physicochemical impact of drug solvents may constitute critical factors.

Keywords: PRODIGE 7 trial; peritoneal metastasis; peritoneal carcinomatosis; colorectal cancer;
micrometastasis model

1. Introduction

The combined use of cytoreductive surgery (CRS) and hyperthermic intraperitoneal
chemotherapy (HIPEC) for colorectal cancer (CRC) peritoneal metastasis has been sup-
ported by a leadoff randomized controlled trial (RCT) in 2003 showing prolonged overall
survival for this treatment compared to palliative chemotherapy alone [1]. For decades
this combined treatment approach has been in use for peritoneal metastases of different
cancers [2]. The theoretical rationale of HIPEC is the elimination of residual tumor cells
remaining after CRS through the locoregional administration of chemotherapy, which is
justified by the assumption that a compartmental effect caused by the so-called peritoneal–
plasma barrier prevents the penetration of intravenous drugs into the abdominal space [3].
The most frequent indication for this treatment has been peritoneal metastasis originating
from ovarian cancer or CRC as well as pseudomyxoma peritonei. Accordingly, CRS and
HIPEC has recently been shown to improve overall survival in a large cohort study in
patients with pseudomyxoma peritonei [4] and can be considered the standard of care
in this rare malignant syndrome [5]. In spite of long-standing practice, evidence from
RCTs was lacking that could confirm survival benefits for adding HIPEC treatment to CRS
alone. Only in 2018 an RCT demonstrated an increase in overall survival through adding
90-min cisplatin-based HIPEC to surgery in selected patients suffering from peritoneal
metastasis that originated from platinum-sensitive ovarian cancers [6]. Of note, HIPEC
treatment remained very heterogeneous over years [2,7]. In this context, the necessity of
uniform and comparable treatment protocols has been rarely addressed, although this
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has been done for HIPEC with oxaliplatin (OX) in the treatment of CRC [8]. In contrast,
attempts of standardization are commonplace for the surgical approach of CRS in peritoneal
metastasis [9] and a required learning curve for improvement is well-established [10,11].
Amongst the numerous protocols in use, one of the most frequently applied drugs for peri-
toneal metastases in CRC is OX [7,12]. However, the recently published PRODIGE 7 study
failed to show a survival benefit for the addition of 30-min OX-based HIPEC compared to
surgery alone [13]. This multicenter RCT had used 460 mg OX (i.e., 230 µg/mL =̂ 579 µM
OX) for open HIPEC (coliseum technique) and 360 mg OX (i.e., 180 µg/mL =̂ 453 µM
OX) for closed HIPEC, diluted in dextrose solvent with each 2 L of perfusate filled into
the abdomen. Since this outcome was unexpected, many discussions ensued as to why
the HIPEC procedure performed so surprisingly poor [14–16]. Remarkably, basic and/or
pharmacological research that may have shed more light in this context was unavailable. It
should be acknowledged that CRS and HIPEC constitute a complex compound treatment
with many variables, hence the single contribution of each of the components remains
poorly dissected [17].

For this reason, we were interested to investigate how different OX-containing solu-
tions would perform under simulated HIPEC conditions in a ~100 µm thick micrometastasis
model. Already in previous work we had established an impedance-based real-time cell
analysis (RTCA) assay, enabling continuous monitoring of cancer cells. Hereby, a thorough
characterization of patient perfusate samples taken during HIPEC procedures was per-
formed [18]. At this time, we had used respective OX-containing samples diluted with 50%
serum-containing cell culture medium and left them incubated with OAW42 ovarian cancer
cells. This assay unanimously showed an elimination of the exposed cell layer within
72 h. The aim of the present study was now to assess HIPEC treatment in a preclinical
model to separately characterize its effects within the multimodal therapy approach. To
this end, we incubated a ~100 µm thick layer of platinum-sensitive tumor cells at 42 ◦C for
30 min or 60 min with well-defined sample materials previously obtained during HIPEC
treatment of patients. We also used OX at clinically relevant concentrations diluted in
different solvents, conforming with established HIPEC protocols. This also encompassed
the exact OX dosages and diluents that have been reported for the PRODIGE 7 trial [13].

2. Materials and Methods
2.1. Patient Samples

Studies on materials sampled during patient treatment were approved by the institu-
tional review board at Tübingen University (project number: 367/2013BO1). All patients
gave their written informed consent before study inclusion. Patient characteristics and
treatment details can be assessed elsewhere [18]. Drug solvent circulated through the
abdomen of patients was collected prior to addition of OX (0 min) as well as OX-containing
samples taken at 5, 10, 15, 20, 25, and 30 min after starting the HIPEC procedure. For
patient 8 and 9, samples were only obtained in 10-min intervals. Samples were stored at
−80 ◦C until usage. Cellular debris and other impurities were cleared by centrifugation
(5 min at 13,000× g) before use.

2.2. Impedance-Based Real-Time Cell Analysis (RTCA)

Materials and methods were used as established before [18], with slight modifica-
tions. As described previously, platinum-sensitive OAW42 cells (European Collection of
Authenticated Cell Cultures, Salisbury, UK) were grown under appropriate conditions,
seeded and used as a model system to monitor effects of OX in real-time [18]. In brief, cells
were grown in cell culture medium (DMEM; Dulbecco’s Modified Eagle Medium, high
glucose; Gibco/Life Technologies, Carlsbad, CA, USA, adding 10% fetal calf serum (FCS);
Sigma-Aldrich/Merck Life Science, St. Louis, MO, USA; 100 U/mL penicillin G; PAA,
Pasching, Austria; and 100 µg/mL streptomycin; PAA). Cell cultures were periodically
tested for mycoplasma using commercially available polymerase chain reaction (PCR) kits
(Minerva Biolabs, Berlin, Germany). An RTCA device (xCELLigence SP; Roche, Grenzach-



Cancers 2022, 14, 1158 4 of 19

Wyhlen, Germany) was employed as previously described [18]. After a calibration of the
device with 100 µL DMEM (blank values), 5 × 104 OAW42 cells/ well were seeded into
dedicated 96-well plates (E-plate 96; ACEA, San Diego, CA, USA) and left to adhere for 24 h.
Subsequently, fluid was discarded from wells and adherent cells were washed once with
warmed Dulbecco’s phosphate-buffered saline (PBS; Gibco Life Technologies, Carlsbad, CA,
USA). Then, either 200 µL of peritoneal perfusate obtained during HIPEC from patients or
defined concentrations of OX (Oxaliplatin-GRY/ oxaliplatin 5 mg/mL; Teva, Petach Tikwa,
Israel/ Fresenius Kabi, Bad Homburg, Germany; dose range: 5.6–230 µg/mL =̂ 14–579 µM
OX) diluted in peritoneal dialysis fluid (PDS; Physioneal 40 Glucose 2.27% m/v; Baxter,
Deerfield, IL, USA) or dextrose 5% in water (D5W; Glucosteril 5%; Fresenius Kabi) were
added. Likewise, adequate controls were employed, including 1% (v/v) Triton X-100
(Sigma) as a positive control (lysis control for dead cells) and negative controls with either
PDS or DMEM only. HIPEC conditions were subsequently simulated by incubating cells
for 30 min or 60 min at 42 ◦C in an ambient air incubation shaker (Infors, Bottmingen,
Switzerland) with slight movement (50 rotations per min; rpm). Afterwards, liquids were
discarded by flicking and cells were washed twice in PBS and then cultivated in appropriate
medium. All samples were analyzed at least in duplicates and impedance was measured
continuously in 15-min intervals. Technical errors and outliers were removed. For inter-
experiment comparability, the cell index was set to 1 immediately before simulated HIPEC
treatment (normalized cell index; nCI). Results were analyzed using RTCA software (V.
1.2.1). GraphPad prism software (V. 7.01; GraphPad software Inc., La Jolla, CA, USA) was
used for presentation of results. In addition, biorender software was used for visualizations
(www.biorender.com). Findings of multiple experiments were combined, when adequate.

2.3. CellTiter-Blue® (CTB) Cell Viability Assay

To confirm effects detected by RTCA on cell viability, CTB Cell Viability Assay
(Promega, Mannheim, Germany) was performed. OAW42 and HT29 cells were seeded in
24-well plates (3.15 × 105 cells) in a volume of 500 µL in triplicates and incubated overnight
at 37 ◦C and 5% CO2 in a humidified atmosphere. To mimic different HIPEC treatment
conditions, DMEM was discarded, cells were washed with PBS and then incubated for
30 min at 42 ◦C under ambient air conditions with OX (at concentrations of 45, 90, 180,
and 230 µg/mL; =̂ 113, 227, 453, and 579 µM OX) diluted either in D5W, PDS, or DMEM
(control). Following treatment, solutions were discarded and replaced by 500 µL of fresh
DMEM after washing with PBS and incubated for 72 h (37 ◦C; 5% CO2). In parallel, OX-
spiked DMEM remained on the cells to verify OX toxicity on OAW42 and HT29 cells after
72 h continuous exposure (37 ◦C; 5% CO2). As positive controls, cell death was induced
by lysing cells with 1% (v/v) Triton X-100 (Roth, Karlsruhe, Germany) for 10 min imme-
diately prior to CTB staining. To determine cell viability, 100 µL of assay reagent were
added and gently mixed. Fluorescence measurement was performed 1 h after incubation
(37 ◦C; 5% CO2) for each cell line with the Synergy HT microtiter plate reader (BioTek
Instruments Inc., Winooski, VT, USA; record fluorescence; excitation wavelength: 530/25
and emission wavelength: 590/35, adjusted sensitivity: 35). CTB assays were repeated in
3 independent experiments.

2.4. Sulforhodamine B (SRB) Cytotoxicity Assay

OAW42 and HT29 cells were seeded in 24-well plates (3.15 × 105 cells/ well) in a
volume of 500 µL as triplicates and incubated overnight (37 ◦C; 5% CO2). To mimic HIPEC
treatment, medium was discarded, and cells were washed with PBS and then incubated
for 30 min at 42 ◦C under ambient air conditions with OX diluted either in D5W, PDS, or
DMEM (see OX concentrations given above). After treatment, solutions were discarded
and replaced by 500 µL of fresh DMEM after washing with PBS and incubated for 72 h
(37 ◦C; 5% CO2). In a parallel experiment, OX-spiked DMEM remained on the cells to verify
OX effects on OAW42 and HT29 cells after 72 h exposure (37 ◦C; 5% CO2). As positive
control, cell death was induced by lysing cells with 1% (v/v) Triton X-100 (Roth, Karlsruhe,
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Germany) for 10 min immediately prior to SRB staining. Finally, growth inhibition was
evaluated by SRB assay. In brief, medium was discarded, and each well was washed
once with ice-cold PBS and fixed with 10% trichloroacetic acid (TCA) for 30 min at 4 ◦C.
After washing with tap water, cells were dried at 40 ◦C overnight. Then proteins were
stained for 10 min with SRB reagent (0.4% (w/v) in 1% (v/v) acetic acid; CAS 3520-42-1,
Sigma-Aldrich) and after removing unbound dye with tap water followed by 1% (v/v)
acetic acid, dried again at 40 ◦C. Protein-bound dye was resolved with 10 mM Tris base
(pH 10.5). After 10 min incubation at room temperature, optical density was measured in
triplicates (80 µL volume/ well) in 96-well plates with a Synergy HT microtiter plate reader
(BioTek Instruments; measurement wavelength 550 nm, reference wavelength 620 nm).
Data represent the mean of optical density values related to DMEM treated control cells.
SRB assays were repeated in 3 independent experiments.

2.5. Microscopy

In order to obtain a serial dilution, OAW42 cells were seeded at different numbers
of 12.5 × 103, 20 × 103, 25 × 103, 35 × 103, and 50 × 103 cells/ well (96-well flat bottom
plate) and incubated in 200 µL DMEM. After 24 h of cell culture, cells were carefully
washed with PBS and subsequently treated with fixation buffer (BioLegend, San Diego,
CA, USA) for 10 min at room temperature, carefully washed again and kept at 4 ◦C prior
to measurements. Experiments were performed twice. The thickness of cell layers was
obtained measuring z-stacks on a Nikon Ti Eclipse microscope (by an unbiased observer)
using 10× magnification. The analysis was performed with the NIS-Elements (Nikon,
Tokyo, Japan) or ImageJ software V. 1.52 h.

2.6. Flow Cytometry

OAW42 cells were seeded in 96-well plates (1 × 105 cells/ well) in either 200 µL of
DMEM, PDS, or D5W and kept for 30 min or 60 min at 42 ◦C. Immediately prior to flow
cytometric analysis, 7-amino-actinomycin D viability staining solution (7-AAD; BioLegend)
was added to each well at a final concentration of 600 ng/mL. Dead cells (7-AAD-positive)
as well as doublets were excluded. Forward scatter area (FSC-A) served as an indicator
for cell size. Samples were analyzed using a FACSCanto II (BD Biosciences, Heidelberg,
Germany) and data analysis was performed using FlowJo_V9 software (FlowJo LCC,
Ashland, OR, USA). Flow cytometric analysis of cell size under HIPEC conditions was
repeated in independent experiments.

3. Results
3.1. Monitoring HIPEC Effects in a Micrometastasis Model in Real-Time by
Impedance Assessment

The 2-dimensional (2D) micrometastasis model as established here aims to recreate
the clinical conditions prevailing during HIPEC in a laboratory setting. Not only are cells
exposed to hyperthermia and realistic drug dosages but also exposure time and respective
solvents can be modelled with either patient samples or OX-containing solutions prepared
appropriately in this preclinical model. Of note, the used RTCA system allows continuous
monitoring of cell elimination and addresses the clinically relevant question of effectiveness
in peritoneal micrometastases after optimal CRS (Figure 1). For this reason, our model
system used a cell layer with defined thickness, requiring a penetration depth of about
100 µm for measurable effects (Figure S1).
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Figure 1 

 
Figure 1. Background on the used micrometastasis model and readout of the used real-time impedance-
based cell analysis (RTCA) assay. (a) The experiment in a 96-well E-plate is started 24 h before the planned
HIPEC treatment. Blank values with only cell culture medium are measured. Under these conditions,
electrons can flow freely between the gold electrodes located at the well bottom (baseline; low impedance).
(b) Subsequently, cells are added to each well and left to attach for 24 h forming a ~100 µm thick cell
layer (impedance increases to reach a plateau, since electron flow is heavily impaired through the isolation
effects of the added cells). At this point, before HIPEC simulation (b), impedance is normalized to 1
(nCI = 1) to allow for comparability between independent experiments. (c) HIPEC simulation is performed
by incubating cells with OX-containing solutions for 30 min or 60 min at 42 ◦C with slight movement.
Afterwards samples are removed, cells washed and supplemented with fresh medium. Measurement
is continued for 4 days. (d) If the complete full cell layer is affected, and cells become penetrable in full
thickness, while only debris remains, electrons can flow freely, and impedance decreases to baseline values.
(e) If cells persist and isolation effects impairing free electron flow remain, impedance diminishes depending
on intact cells left. An nCI = 0.5 specifies the value when the initial impedance has been bisected and can
be determined as a function of time. The thickness of the seeded cells was assessed and the linearity of
thickness according to cell numbers seeded per well established (Figure S1). For a relatable scale, the edge
length of a grain of salt is about 300 µm.
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The RTCA readout is generated by measuring electron flow between an array of
electrodes located at the bottom of each well in a specific 96-well E-Plate (Figure 1a). An
intact cell layer isolates the electrodes and thereby impairs electron flow. Accordingly,
impedance increases, which is indicated by a rising cell index (Figure 1b,c). This effect is
proportional to the cell number and morphology of cells covering the electrodes at the well
bottom (Figure 1e) [19]. In our model, relevant measurable effects require full thickness
defects of the cell layer (decline in cell index Figure 1d). An nCI value of 0.5 specifies that
the initially prevailing impedance measured at normalization has been bisected.

3.2. Modelling HIPEC with Patient Samples Displays Heterogeneous Effectivity (by RTCA Assay)
in a Micrometastasis Model

First, we used sample materials that were obtained during OX-based HIPEC from
9 patients and that have been extensively characterized previously [18]. As shown before,
the label-free RTCA assay enables monitoring cells continuously with good temporal reso-
lution. However, now we intended to model HIPEC conditions more precisely and exposed
ovarian cancer cells (OAW42) to respective aliquots from HIPEC patient samples for 30 min
or 60 min at 42 ◦C (50 rpm shaking) to simulate respective conditions, subsequently wash-
ing cells and extending cell culture with fresh culture medium and regularly assessing nCI
values (Figure 2a).

Previously published experiments have shown that these exact OX-containing samples
invariably eliminated the seeded cells, when continuously exposing them for 72 h to HIPEC
perfusates, even when diluting them through supplementation of 50% medium [18].
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Figure 2. HIPEC simulations using patient samples (RTCA assay). (a) Exemplary impedance readings
in 12-h intervals. The displayed time point 72 h after HIPEC simulation is marked by a red border.
(b,c) Simulated HIPEC (42 ◦C at 50 rpm shaking) was performed, either for 30 min (b) or for 60 min
(c) with 5 × 104 OAW42 cells per well. (d) Means of replicate values shown in (b,c) are annotated
as dots and respective overall mean values of different patient materials are shown as a bar plot
and annotated (left bars/ blue colors: 30 min exposure in HIPEC simulations; right bars/ green
colors: 60 min exposure in HIPEC simulations). Due to the large variance and partly bimodal data
distribution, any statistical significance testing was omitted and means chosen as a measure of central
tendency. X-axis: positive control (+ ctrl.) with Triton X-100, negative control (− ctrl.) (light grey
coloration) and HIPEC solutions obtained from patients (Pat.) 1–9 each: samples before/pre (dark
grey coloration), 10 min (dark blue/ dark green coloration), 20 min (medium blue/ medium green
coloration), and 30 min (light blue/ light green coloration) after adding OX to the HIPEC circuit
during patient treatment. Y-axis: nCI determined at 72 h since beginning of measurements after
HIPEC treatment. Each colored arrow marks an average decrease in nCI (72 h) below 0.5 (black
horizontal line). Depiction of mean values with standard deviation, number of replicates: 2–5.

In our modified HIPEC model, most aliquots from the previously characterized patient
samples [18] proved insufficient to effectively eliminate the cancer cells in our micrometas-
tasis model within 72 h, when HIPEC was simulated for 30 min. Strikingly, in 6 out of
9 investigated patients, none of the obtained OX-containing samples tested was able to
reduce impedance below 50% of initial values (nCI < 0.5) within 3 days following HIPEC
simulation (Figure 2b). Prolonging exposure time to 1 h considerably improved cytotoxic
effects but did not prove generally effective, lowering nCI < 0.5 when using samples from
7 out of 9 patients (Figure 2c). Observed effects were also stronger in those samples that
were taken earlier after HIPEC initiation during clinical patient treatment. Further, using
the overall means from different patient samples and comparing the different conditions to
each other (Figure 2d) revealed clear differences between 30 min and 60 min of OX-based
HIPEC simulation. When considering effects after 30 min exposure, both controls and
HIPEC perfusates sampled at different time points showed comparable mean nCI readings
ranging from 0.84 to 0.96 at 72 h following the treatment. In contrast, prolonging the proce-
dure to 60 min resulted in mean nCI readings of 0.33 with OX-containing HIPEC perfusates
sampled in patients after 10 min as well as decreasing mean nCI values to 0.61 (20 min)
and 0.57 (30 min) for respective samples obtained later. Although it has to be mentioned
that the source data partly show a bimodal distribution as well as a large variance (see also
Figure 2c), this evaluation supports improved effects with increased HIPEC duration as
well as underscoring patient individual differences.

The differences in our micrometastasis model for the perfusates sampled in patients at
several different time points during HIPEC and used for short-term (30 min) and prolonged
(60 min) HIPEC simulations are striking. Looking at the RTCA results from perfusate
samples in 2 exemplary patients, we can discern in patient 3 (Figure 3a) that with none
of the OX-containing perfusates the exposed cell layer could be effectively eliminated
following 30 min of simulated HIPEC, as shown by persistently elevated impedance
readings. Prolonging the treatment duration to 1 h could rescue these effects and showed
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a decrease below nCI = 0.5 for the samples obtained during the first 15 min of clinical
HIPEC treatment in this patient, whereas the other samples (20–30 min) proved ineffective.
In contrast, patient 1 already showed a respective decrease of nCI to baseline values
after 30 min of simulated HIPEC for all samples obtained during the first 20 min of the
HIPEC procedure in the clinic (Figure 3b). Here, a prolonged exposure of cells to HIPEC
samples over 1 h showed impedance decreasing to baseline values in all OX-containing
perfusates tested.

For a comparison of aliquots from the same sample materials of the 2 presented
patients, contrasting both 30 min and 60 min of simulated HIPEC to continuous exposure,
we annotated the time points when nCI = 0.5 was reached in an overview chart (Figure 3c;
patient samples are aliquots from the materials previously characterized and data of
continuous incubation were previously published by Löffler et al. [18]).

On a side note, the perfusate used for continuous exposure of cells had to be diluted
with medium (50%), since this is inevitably required to sustain cell culture. Respective
samples therefore contain only half of the OX concentrations compared to those samples
used for 30 min and 60 min of simulated HIPEC (Figure 3c). Still, continuous exposure to
OX-containing HIPEC perfusates unanimously led to nCI decreases below 0.5. This was
usually reached within 48 h with a slight waning effect over time for perfusates sampled
later during HIPEC in patients. A complete dataset with results from the other patients is
provided in the Supplementary Materials (Figures S2–S15). Further, it has been established
that only 0.05 µM OX is sufficient to kill 50% of directly exposed OAW42 cells (LC50) within
72 h [20], whereas usual OX concentrations used during HIPEC are above 90 µM and reach
up to 579 µM according to the PRODIGE 7 protocol [13].

3.3. Short-Term HIPEC with OX-Containing Solutions Prepared According to Clinically
Established Protocols Proves Ineffective in Modelled Micrometastases (RTCA Assay)

Next, we prepared defined OX-containing solutions that comprised accurate amounts
of OX in different diluents, aiming to recreate the clinical conditions prevailing during
HIPEC as authentically as possible. To this end, we used a concentration range of OX,
encompassing the final drug dosages according to most established HIPEC protocols [16],
explicitly including those used in the PRODIGE 7 study [13] and conforming with previ-
ously published HIPEC models [21].

We assessed the effects of respective OX concentrations diluted either in D5W or PDS
in our 100 µm thickness micrometastasis model after simulating the HIPEC procedure
for 30 min. Subsequently, drugs were removed, and cells were washed and cultured in
medium for the long-term.

Here, we did not observe any substantial treatment induced decrease in nCI after
30 min of OX-based HIPEC using either D5W (Figure 4a) or PDS (Figure 4b) as a solvent
within 96 h following treatment, with the exception of the highest dosage of 230 µg/mL OX
diluted in PDS. Prolongation to 60 min simulated HIPEC showed effective for 180 µg/mL
and 230 µg/mL OX when diluted with PDS (see Supplementary Materials: Figure S16).
However, 60 min HIPEC exposure with OX diluted in D5W proved technically unfeasible
due to recurring detachment of the treated cell layer.

Again, when exposing cells continuously to OX at the specified concentrations diluted in
cell culture medium (here doubled concentrations were used to account for 50% dilution with
medium), this intervention proved effective to reduce nCI below 0.5 for a broad concentration
range. For example, concentrations of 11.2–230 µg/mL OX proved effective when diluted in D5W
and for 22.5–230 µg/mL in PDS. For the dose range of 22.5–45 µg/mL OX it appears that dilution
in PDS reached nCI = 0.5 slightly faster than with D5W. Further higher drug concentrations
seemed associated with reaching nCI = 0.5 earlier than when using a lower drug concentration.
However, measurable effects still took several hours to appear.
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Figure 3. HIPEC simulations for 30 min or 60 min using patient samples (RTCA assay) (a,b) Simulated
HIPEC (42 ◦C at 50 rpm shaking) was performed for 30 min (upper graph) and 60 min (lower graph)
with 5 × 104 OAW42 cells per well. Positive control (+ ctrl.) with Triton X-100, negative control
(− ctrl.) with PDS (peritoneal dialysis solution), MEM (cell culture medium), and HIPEC solutions
obtained from patient (Pat.) 3 (a) and Pat. 1 (b). Samples: before (pre), 5, 10, 15, 20, 25, and 30 min
after adding OX to the HIPEC circuit during clinical patient treatment. Y-axis: nCI determined until
96 h after restarting measurements following HIPEC treatment. (c) Duration until nCI = 0.5 was
reached after 30 min or 60 min simulated HIPEC or by continuous incubation (nota bene: dilution
with 50% MEM) with respective samples. Depiction of mean values with standard deviation, number
of replicates: 2–4. Respective RTCA readings with HIPEC sample materials obtained from Pat. 2 and
Pat. 4–9 are provided as Supplementary Materials (Figures S2–S15).
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Figure 4 Figure 4. HIPEC simulation for 30 min using prepared OX-containing solutions (RTCA assay)
(a,b) Simulated HIPEC (42 ◦C and 50 rpm shaking) was performed for 30 min with 5 × 104 OAW42
cells per well. Positive control (+ ctrl.) with Triton X-100, negative control (− ctrl.) and prepared
solutions with specified OX concentrations in dextrose 5% (D5W) (a) or peritoneal dialysis solutions
(PDS) (b). Y-axis: nCI determined until 96 h (h) after restarting measurements following HIPEC treat-
ment. (c) Duration until nCI = 0.5 was reached after 30 min simulated HIPEC or when continuously
incubated (dilution with 50% cell culture medium (MEM)) with respective samples. Depiction of
mean values with standard deviation, number of replicates: 2–3. Respective RTCA readings with
continuous OX exposure are provided as Supplementary Materials (Figures S17 and S18).

3.4. Confirming RTCA Results with Prepared OX-Containing Solutions by Classical
End-Points Assays

To confirm the RTCA results previously obtained, we performed 2 different well-
established conventional end-point assays. The fluorometric assay CTB is based on the
conversion of resazurin to resorufin, occurring only in living cells [22], and a cytotoxicity
assay using SRB, which binds stoichiometrically to proteins under mild acidic condi-
tions [23]. Cells were densely seeded to reach comparable conditions as used previously
in the RTCA assays. To broaden our analysis, we also added the human colon cancer cell
line HT29 [24], which is part of the NCI60 human tumour cell line anticancer drug screen
panel and therefore well characterized [25]. The LC50 for OX in HT29 has been established
at 72.44 µM [26].

After simulated HIPEC for 30 min with 45–230 µg/mL OX diluted in PDS and subse-
quently culturing the washed cells in medium, both the OAW42 and the HT29 cell lines
showed no reduction of mean cell viability below 50% (LC50) in none of the assessed
conditions within 3 days after treatment (Figure 5a). This finding applied to both assays
performed. Repeating the experiments under identical conditions with OX diluted in D5W
solution failed also to induce LC50 at 72 h following treatment for all tested concentrations
(Figure 5b). In contrast, when OX was spiked into cell culture medium (to allow for ex-
tended cultivation) and remained with the cells, both cell lines showed clearly enhanced
induction of cell death (Figure 5c). Cell viability reproducibly fell below LC50 values
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within 3 days after exposure to all drug concentrations investigated, with the exception of
45 µg/mL OX in medium when tested on HT29 cells. Findings proved reproducible as the
results were comparable for both assays.
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Figure 5. HIPEC simulation for 30 min using prepared OX-containing solutions diluted either in PDS
or D5W (CTB and SRB assay). OAW42 cells (red coloration) as well as HT29 cells (blue coloration) were
used at a density of 3.15 × 105 cells per well (in a 24-well format) to recreate the conditions encountered
in RTCA assays before. HIPEC was simulated for 30 min at 42 ◦C with prepared solutions containing the
specified amounts of OX diluted either in PDS (a) or in D5W (b). After exposure, cells were washed and
subsequently cultured in cell culture medium (MEM) for another 3 days. Further, respective cells were
incubated continuously with the specified amounts of OX, spiked into MEM to allow for continuous cell
culture and heated likewise (30 min at 42 ◦C) followed by 72 h cell culture (c). Thereafter, the CTB cell
viability assay (left graphs) or the SRB cytotoxicity assay (right graphs) were used. Cells were normalized to
cells treated identically with D5W, PDS, and MEM only (viab. ctrl.). Positive control (+ ctrl.) was carried out
with 1% (v/v) Triton X-100. Statistical analysis was performed using the Dunnet’s multiple comparison
test, confidence interval 95%. ns: p ≥ 0.05; **: p < 0.01; ***: p < 0.001 vs. the respective viability control.
The LC50 threshold is marked with a black line. Depiction of mean values with standard deviation from
3 independent experiments, with triplicate values assessed in each experiment performed.
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3.5. Drug Solvents Used for HIPEC Reduce Cell Size

OAW42 cells were exposed to D5W and PDS at 42 ◦C for either 30 min or 60 min
and cell size was measured by flow cytometry, since respective solvents constitute the
most frequently used drug diluents for HIPEC with OX. Significant cell size reduction of
about 25% (in FSC-A) was observed after 30 min and 60 min of incubation at hyperthermic
conditions with both solvents tested (D5W and PDS), when compared to cells maintained
in cell culture medium (Figure 6). The observed effects are comparable between both
solvents and showed only a slightly more increased shrinkage after 1 h as compared to
30 min exposure.
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Figure 6. Flow cytometry of OAW42 cells after exposure to different drug diluents for 30 min or
60 min under hyperthermic conditions. OAW42 cells were incubated with D5W (blue coloration)
or with PDS (green coloration) at 42 ◦C and slight shaking (30 rpm) for 30 min (a) or 60 min
(b) and compared to untreated control cells cultured in medium (MEM; grey coloration). Histograms
from flow cytometry showing cell counts versus forward scatter area (FSC-A) (left panels) and a
comparison of FSC-A between the respective solvents (right panels). Significant differences are
marked by an asterisk (*: p < 0.05; Bonferroni corrected Student’s t-test). Each data point represents
the mean value of 3 replicates in independent experiments.

4. Discussion

Over the past decades, survival in metastatic CRC has widely improved. This is also
true for metastases limited to the peritoneum, which were considered unresponsive to
chemotherapy and therefore a generally palliative disease stage in the past [27]. Here CRS
with HIPEC has relevantly enhanced patient prognosis. However, in CRC this complex
compound treatment is currently highly controversial, since the randomized controlled
PRODIGE 7 trial could not establish survival benefits for patients through adding OX-
based HIPEC following CRS [13], whilst increasing morbidity and duration of hospital stay.
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Further, HIPEC using OX was unsuccessful in an another RCT in the adjuvant setting, where
no benefit could be shown for HIPEC to decrease the incidence of metachronous peritoneal
metastasis following primary CRC resection [28]. Certainly, it should not go unmentioned
that CRS alone was able to increase median overall survival of patients to 41 months
according to the PRODIGE 7 trial, which is unprecedented for this disease [13]. These
unexpectedly high survival rates in both study cohorts have raised questions pertaining
to the study design and the included patient population as well as to tumor biology.
These issues include a high rate of crossovers into the HIPEC group and the inclusion of
highly selected patients with heavy pretreatment (including systemic OX administration),
therefore potentially weakening the validity of these trial results and limiting conclusions
that can be drawn regarding HIPEC ineffectiveness [29,30]. In any case, HIPEC with OX
currently faces pressure for justification.

Besides the prevailing controversies concerning the clinical use of HIPEC and the
interpretation of the PRODIGE 7 trial results, including patient selection and speculations
on acquired resistance of peritoneal metastases against OX [14–16,31], it should be acknowl-
edged that preclinical research has never been a priority in the implementation of this
treatment modality. The consequence of this is an abundance of different HIPEC protocols
in clinical use [2,7] and lacking evidence regarding the precise mode of action of HIPEC. In
accordance, taking a step back and systematically investigating the effects of the varying
treatment parameters of HIPEC in a preclinical setting before implementation in clinical
trials is a sensible strategy and should serve as an example [32]. One central but hitherto
poorly answered question is the tissue penetration depth of drugs used for HIPEC and
more importantly their respective biological effects on cells [17]. Low penetration depth has
been identified early on as a potential limiting factor of intraperitoneal drug delivery [33],
which was assumed to be a few millimeters at most [34]. While only sparse clinical data
are available in this context and in spite of research that suggests an increased penetration
depth with heat for OX [35], recent findings suggest ineffectiveness of 30 min OX-based
HIPEC in organoids [21]. Therefore, to better assess tissue penetration depth during HIPEC
and respective cytotoxic effects in a dedicated 2D model, we repurposed a RTCA assay [18],
allowing the continuous assessment of a ~100 µm thick cell layer by using the platinum
sensitive cell line OAW42 [20]. For our model we simulated HIPEC conditions by incu-
bating cells with either peritoneal perfusate samples obtained during HIPEC treatment in
patients or OX-containing solutions prepared at clinically relevant dosages by dilution in
peritoneal dialysis or dextrose solutions [7,13]. Hence, we assume this model can elucidate
the direct cytotoxic effects of HIPEC on peritoneal micrometastases. Moreover, it should be
mentioned that OX cytotoxicity is well-established for the used cell lines, even at a fraction
of the concentrations employed in our experiments [20,36].

The observed results underscore that short-term HIPEC with OX exerts only very
slight effects in a model system that requires drugs to penetrate a distance of about 1/10 of
a millimeter and to affect exposed cells in this way. A respective lack of effectiveness was
witnessed in platinum-sensitive cells after 30 min HIPEC simulation with OX diluted in
dextrose solutions over a wide concentration range, also encompassing the drug amounts
employed in the PRODIGE 7 trial [13]. According to these results, OX only proved effective
when diluted in peritoneal dialysis solution at the highest concentration tested and OX
diluted in dextrose solution generally failed to decrease impedance values relevantly,
thus suggesting a lack of a profound impact on residual metastatic tissue. Using sample
materials obtained during HIPEC from 9 patients and characterized to contain a calculated
mean of 93.7 µg/mL OX [18], no relevant effects were observed with materials from 6
patients following 30 min of HIPEC simulation within a measurement window of 72 h.
In contrast, prolonging exposure to 1 h relevantly improved cytotoxic effects and proved
effective with materials from 7 patients. Further assessment of overall means from different
patient samples emphasized lacking effectiveness of 30 min OX-based HIPEC in simulations
as well as substantial improvements after prolongation to 60 min, although with large
variance underscoring relevant individual differences of the sample materials assessed.
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Recently a study in patient-derived CRC organoids likewise showed that prolonged
exposure to OX at lower concentrations was more cytotoxic than short-term exposure at
higher concentrations [37]. This notion generally conforms with our results, since the
effects observed after simulated HIPEC with materials from 9 patients could be improved
by prolonging simulated HIPEC treatment to 60 min. Regarding the RTCA assay with
OX-containing solutions prepared at clinically relevant dosages, unfortunately we cannot
conclude comprehensively on HIPEC prolongation to 1 h, since with dextrose solution our
model proved unsuitable due to cell detachment. Nevertheless, the results from short-term
exposure were supported by the assessment of 2 different cell lines in 2 well-established end-
point assays using a comparable setting: following 30 min of OX-based HIPEC simulation,
less than 25% reduction of cell viability was observed compared to values below 50% cell
viability when continuously exposed to OX even at low concentrations. Likewise, long
term exposure to OX even at relatively low concentrations unanimously eliminated the
exposed cell layer in our RTCA model.

Evidently, as HIPEC involves a variety of factors, these may become relevant in the
context of different drugs used and influence molecular mechanisms relevant for anti-
cancer effects. Importantly, both the exposure period and heat have been implicated in
HIPEC effects. For instance, in vitro studies with OX have shown increased drug uptake
and DNA damage with heat, resulting in increased apoptosis but still required 60 min
exposure for effectiveness in respective CRC models, whereas, e.g., mitomycin C lacked
such synergistic effects [38]. Further, it is known that heat inhibits DNA repair, e.g., through
inhibiting poly(ADP-ribose)-polymerase (PARP1), and therefore it can sensitize cells for
chemotherapy [39,40]. Another important determinant in HIPEC is the solvent used to
dilute the drugs. Here we observed significant cell size reduction of about 25% after 30 min,
persisting also at 60 min under hyperthermic conditions with both tested solvents (PDS
and D5W as compared to medium). We speculate that the observed changes are most likely
caused by a fluid shift to the extracellular space, which also occurs during HIPEC treatment
and may impair drug penetration into tissues.

As a limitation of this modelling study it should be acknowledged that this system
is artificial, since merely effects on platinum-sensitive cancer cells are assessed and the
peritoneal microenvironment cannot be imitated. In reality, increased interstitial fluid
pressure in the tumor [41], tissue cohesion, edema formation, and other factors may likely
complicate the picture. Using sample materials obtained during HIPEC from patients also
has immanent limitations, since, e.g., we found previously that the administered OX does
react with contents of peritoneal dialysis solutions by forming new compounds [18], which
may affect cellular uptake and molecular drug mechanisms.

Apart from this, the introduced model has several advantages compared to alternative
approaches. These include the possibility to investigate HIPEC effects continuously in
the 2D model under specific consideration of the penetration depth, which is in contrast
to 3D models that show considerably higher degrees of freedom, e.g., with regard to
organoid size and other properties [21,37]. Due to the biosensors´ functional assessment a
spatial resolution is ensured, informing only about the cell viability of those cells located
at the well bottom. Thereby effects on cells can be directly investigated, avoiding the
extrapolation of biological effects from drug penetration depth, which itself comes with
immanent limitations and idiosyncrasies [42]. Our assay is robust and shows consistency
and good reproducibility, allowing for systematic comparisons to be performed. Further
continuous measurements provide a good temporal resolution and are therefore more
sensitive to changes occurring with delay and superior to end-point assays. Hitherto, there
are few good preclinical models for laboratory use and our model is unique in several
aspects, adding a new tool to HIPEC research.

Overall, preclinical models for HIPEC are scarce and mainly restricted to animal
models so far [43,44], whereas adequate model systems have only been established very
recently [21,32,37]. If the findings observed for OX hold true for other tumor entities and
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drugs used for HIPEC and under normothermic conditions remains unclear, which is why
our model system may be a worthwhile addition for future research.

5. Conclusions

Overall, our investigations showed severely limited effects of short-term OX-based
HIPEC, in line with previous research. We now show that the desired effects could be
improved by prolonged exposure. Strikingly, our simulations of HIPEC treatment in
platinum-sensitive cell lines using excessive OX dosages proved insufficient to eradicate
even minimal tumor cell accumulations.

Thus, the presented work may support the notion that short-term OX-based HIPEC
is ineffective to eliminate peritoneal micrometastasis and may hint to possible causes for
this failure. Our findings suggest that drug distribution into deeper tissue layers may be a
crucial factor as well as exposure time but also the solvents used for OX dilution in HIPEC
may substantially alter drug induced effects.

Based on the restricted penetration depth of most HIPEC drugs [45], systematic
preclinical research is warranted. Taken together, HIPEC—in contrast to CRS—remains an
experimental approach for treatment of peritoneal metastasis originating from CRC and
new evidence is urgently needed.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers14051158/s1, Figure S1: Assessment of the thickness of an OAW42 cell layer seeded at
different densities; Figure S2: RTCA: Pat. 2: Exposure of OAW42 cells to OCS for 30 min at 42 ◦C;
Figure S3: RTCA: Pat. 2: Exposure of OAW42 cells to OCS for 60 min at 42 ◦C; Figure S4: RTCA:
Pat. 4: Exposure of OAW42 cells to OCS for 30 min at 42 ◦C; Figure S5: RTCA: Pat. 4: Exposure of
OAW42 cells to OCS for 60 min at 42 ◦C; Figure S6: RTCA: Pat. 5: Exposure of OAW42 cells to OCS
for 30 min at 42 ◦C; Figure S7: RTCA: Pat. 5: Exposure of OAW42 cells to OCS for 60 min at 42 ◦C;
Figure S8: RTCA: Pat. 6: Exposure of OAW42 cells to OCS for 30 min at 42 ◦C; Figure S9: RTCA:
Pat. 6: Exposure of OAW42 cells to OCS for 60 min at 42 ◦C; Figure S10: RTCA: Pat. 7: Exposure of
OAW42 cells to OCS for 30 min at 42 ◦C; Figure S11: RTCA: Pat. 7: Exposure of OAW42 cells to OCS
for 60 min at 42 ◦C; Figure S12: RTCA: Pat. 8: Exposure of OAW42 cells to OCS for 30 min at 42 ◦C;
Figure S13: RTCA: Pat. 8: Exposure of OAW42 cells to OCS for 60 min at 42 ◦C; Figure S14: RTCA:
Pat. 9: Exposure of OAW42 cells to OCS for 30 min at 42 ◦C; Figure S15: RTCA: Pat. 9: Exposure of
OAW42 cells to OCS for 60 min at 42 ◦C; Figure S16: RTCA: Oxaliplatin (OX)-spiked into PDS 60 min
at 42 ◦C; Figure S17: RTCA: Continuous exposure of OAW42 cells to OCS in PDS; Figure S18: RTCA:
Continuous exposure of OAW42 cells to OCS in D5W.
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