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Simple Summary: With the advancement of artificial intelligence, including machine learning, the 
field of oncology has seen promising results in cancer detection and classification, epigenetics, drug 
discovery, and prognostication. In this review, we describe what artificial intelligence is and its 
function, as well as comprehensively summarize its evolution and role in breast, colorectal, and 
central nervous system cancers. Understanding the origin and current accomplishments might be 
essential to improve the quality, accuracy, generalizability, cost-effectiveness, and reliability of ar-
tificial intelligence models that can be used in worldwide clinical practice. Students and researchers 
in the medical field will benefit from a deeper understanding of how to use integrative AI in oncol-
ogy for innovation and research. 

Abstract: Well-trained machine learning (ML) and artificial intelligence (AI) systems can provide 
clinicians with therapeutic assistance, potentially increasing efficiency and improving efficacy. ML 
has demonstrated high accuracy in oncology-related diagnostic imaging, including screening mam-
mography interpretation, colon polyp detection, glioma classification, and grading. By utilizing ML 
techniques, the manual steps of detecting and segmenting lesions are greatly reduced. ML-based 
tumor imaging analysis is independent of the experience level of evaluating physicians, and the 
results are expected to be more standardized and accurate. One of the biggest challenges is its gen-
eralizability worldwide. The current detection and screening methods for colon polyps and breast 
cancer have a vast amount of data, so they are ideal areas for studying the global standardization 
of artificial intelligence. Central nervous system cancers are rare and have poor prognoses based on 
current management standards. ML offers the prospect of unraveling undiscovered features from 
routinely acquired neuroimaging for improving treatment planning, prognostication, monitoring, 
and response assessment of CNS tumors such as gliomas. By studying AI in such rare cancer types, 
standard management methods may be improved by augmenting personalized/precision medicine. 
This review aims to provide clinicians and medical researchers with a basic understanding of how 
ML works and its role in oncology, especially in breast cancer, colorectal cancer, and primary and 
metastatic brain cancer. Understanding AI basics, current achievements, and future challenges are 
crucial in advancing the use of AI in oncology. 
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1. Introduction 
Artificial intelligence (AI) is a field in which computers are programmed to mimic 

human intelligence. The abundance of data in the field of medicine makes it a good can-
didate for problem solving using machine learning (ML). In oncology, ML can be used to 
diagnose and classify tumors, detect early-stage tumors, gather genetic and histopatho-
logical data, assist in pre- and post-operative planning, and predict overall survival out-
comes [1]. Deep Learning (DL), a type of ML, has proven to be effective in automating 
time-consuming steps such as detection and segmentation of lesions [2–4]. 

AI-based models have demonstrated excellent accuracy rates of cancer detection on 
screening mammography and breast cancer (BC) prediction based on genetics and hor-
monal factors [5–7]. AI plays a crucial role in early detection, classification, histopatholog-
ical aspects, genetics, and molecular markers detection in colorectal cancer (CRC) [8–10]. 
As a result of extensive data in present-day screening and improvements in life expec-
tancy caused by early detection of breast and colon cancer, we review the potential of AI-
based diagnostics and therapeutics. Because mammograms and colonoscopies are widely 
used in the general population worldwide, AI can be used extensively in future studies 
on cancer screening to build generalizable AI systems [11]. AI has made its way into other 
cancer types, which we do not review here. For instance, lung cancer screening is reserved 
for smokers, and the United States Preventive Services Task Force (USPSTF) approved 
low-dose chest computed tomography (CT) scans in 2013, and prostate cancer screening 
has not yet been approved universally [11,12]. CNS cancers are relatively rare and have a 
poor prognosis. Studying AI in such rare tumors can provide a scope of precision of AI 
integration in improving the current standard management. In the area of central nervous 
system (CNS) tumors, AI and radiomics have notably enhanced detection rates and re-
duced several time-consuming steps in glioma grading, pre- and intraoperative planning, 
and postoperative follow-up [13–15]. 

This review article outlines how AI works in simple terminology that medical pro-
fessionals can understand, how it has improved breast cancer screening, colon polyp de-
tection, and colorectal cancer screening, as well as the implications it has in the manage-
ment of CNS tumors. A literature search was conducted on PubMed, Google Scholar, 
arXiv, and Scopus. This is not a systematic review but a narrative review of the literature. 
We conclude with existing obstacles and future speculations of standardizing AI screen-
ing in oncology, as well as proposals for integrating AI basics into medical school curric-
ula. 

2. How Does Artificial Intelligence Work? 
AI is a broad concept that aims to simulate human cognitive ability. ML, an approach 

to AI, is the study of how computer systems can learn to perform a task or predict an 
outcome without being explicitly programmed [16]. Mitchell et al. (1997) succinctly de-
fines this learning process as follows: A computer program is said to learn from experi-
ence (E) with respect to some class of tasks (T) and performance measure (P), if its perfor-
mance at tasks in T, as measured by P, improves with experience E. A simple example of 
such a task is the classification of suspicious abnormality on a screening mammogram as 
probable malignant or benign [17]. To learn to perform this task, a computer program 
would experience a dataset containing examples of correctly classified cases of benign and 
malignant breast lesions and come up with a model that can generalize beyond these data. 
Its ability to then classify previously unseen examples of breast lesions correctly would be 
evaluated through a quantitative measure of its performance, such as accuracy, sensitiv-
ity, and specificity. 

2.1. Subtypes of Machine Learning 
Algorithms for ML are typically categorized into supervised, unsupervised, or rein-

forcement learning. Supervised learning algorithms experience a dataset that contains a 
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label (or correct answer) for each data point. Examples of supervised learning algorithms 
include support vector machine (SVM) [18,19], linear regression, logistic regression, and 
k-nearest neighbors [20,21]. In contrast, unsupervised algorithms such as k-means clus-
tering [22,23], affinity propagation [24], and gaussian mixture model [25] study a dataset 
that does not contain labels and learn to derive structure from the given data. A reinforce-
ment learning system trains an agent to behave in an environment by assigning it with a 
reward for desired behaviors or penalizing it for undesired ones. The overall objective of 
an ML algorithm can be interpreted as learning an approximate function of the data. This 
function should take as input a set of features that describe the data and output a predic-
tion corresponding to the learning task. Classical ML algorithms are generally good at 
approximating linear or simple non-linear functions [13,26]. 

2.2. Deep Learning 
DL is a type of ML that enables the learning of complex non-linear functions of the 

data. Most modern DL methods use neural networks as their learning model, which are 
loosely inspired by neuroscience [27]. The fundamental computational unit of a neural 
network is called a neuron. It computes a weighted sum of its inputs and then applies a 
non-linear operation (often called the activation function) to the sum to compute the out-
put (See Figure 1a). Common activation functions include sigmoid, tanh, and rectified 
linear activation unit (ReLU) functions. A neural network comprises one or more layers 
of neurons, with each layer feeding on the outputs of the previous layer. Information flows 
forward through the network from the input, through a series of intermediate layers 
(called hidden layers) and finally to the output (see Figure 1b). As the number of layers 
and units within a layer increase, a neural network can represent functions of increasing 
complexity. This architecture gives neural networks the ability to learn their own complex 
features instead of being constrained to the hand-picked features provided as input to the 
model. 

During training, the parameters of the neural network are learned in order to fit the 
dataset for a given task. This corresponds to minimizing some notion of a cost function, 
which measures the model’s performance on the task. After each forward pass through 
the network, the cost function is used to compute the error between the predicted and 
expected output. An algorithm called backpropagation allows this cost information to 
flow backward through the neural network while adjusting the network parameters. 
Backpropagation computes the gradients of the cost function with respect to the network 
parameters, which determine the level of adjustment to be made to the parameters in each 
iteration [28]. These gradients are then used to update the network parameters using an 
optimization algorithm such as stochastic gradient descent (SGD) [29,30]. 
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Figure 1. (a): Neuron, the fundamental computational unit of a neural network, computes the 
weighted sum of its inputs (X1, X2, X3) and applies a non-linear operation to give output (Y). (b): An 
example of a feedforward neural network with two hidden layers, with five and four neurons, re-
spectively. (c): An example of a convolutional neural network (CNN) applied to the classification of 
a screening mammogram as probable malignant or benign. 

Apart from the simple feed-forward model discussed above, there are other special-
ized architectures of neural networks suited for specific tasks. For instance, convolutional 
neural networks (CNNs) have a grid-like topology and are well suited to process two or 
three-dimensional inputs such as images [31]. CNNs are designed to capture spatial con-
text and learn correlations between local features, due to which they yield superior per-
formance on image tasks, such as the classification of breast lesions in a screening mam-
mogram as probable malignant or benign (See Figure 1c). CNN-based architectures have 
also been applied to biomedical segmentation applications [32]. However, CNNs face 
computational and memory efficiency limitations in three-dimensional (3D) segmentation 
tasks. More efficient methods have been proposed for the segmentation of 3D data, such 
as magnetic resonance imaging (MRI) volumes [33]. A recent architecture, occupancy net-
works for semantic segmentation (OSS-Net) [34], is built upon occupancy networks (O-
Net) and contains efficient representations for 3D geometry, which allows for more accu-
rate and faster 3D segmentation [35]. 

Another family of neural networks, called recurrent neural networks (RNNs), are de-
signed to operate on sequential data. RNNs are well equipped to process sequential inputs 
of variable lengths for tasks such as machine translation and language modeling. Long 
Short Term Memory networks (LSTMs) are a special kind of RNNs capable of learning 
long-term dependencies between inputs [36]. Another technique called attention allows a 
model to selectively focus on parts of the input data as needed by enhancing specific parts 
of the input and diminishing others [37]. Recently, a network architecture called the Trans-
former has achieved state-of-the-art performance in a number of machine learning tasks 
[38]. Transformers discard recurrence and convolutions entirely, instead relying exclu-
sively on attention mechanisms. Attention-based transformers have demonstrated state-
of-the-art segmentation performance and may prove relevance to the field of oncology 
[39]. 
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3. Breast Cancer 
BC is the most prevalent cancer originally reported in National Cancer Institute Sta-

tistics, 2020 [40]. BC is a major cause of cancer-related mortality after lung cancer [41]. The 
death rates of BC have decreased annually from 1989 to 2017, attributed to the advance-
ments in screening and therapies [41]. AI has shown enormous benefits in screening mam-
mograms, BC predictive tools formulation, and drug development [5,6,42–44]. 

3.1. Screening Mammogram 
A screening mammogram is one of the most widely performed screening tests, but 

these mammograms have limitations of very high false positive and false negative rates 
[14,42]. The AI models reduced the workload and resulted in a 69% reduction in false 
positive rates and a higher sensitivity rate in screening mammograms [2,42]. AI in BC 
screening has good accuracy rates with some methodological issues and evidence gaps 
[14,45].  

In the context of mammography, DL algorithms such as CNNs are principally used; 
the mechanism of the algorithm is illustrated in Figure 1c. The performance of AI is meas-
ured by sensitivity, specificity, the area under the curve (AUC), and computation time 
[46]. Different DL models have been studied with various classification systems to identify 
abnormalities in mammograms, with overall sensitivity rates ranging from 88% to 96% 
[47–49]. Detection rates are augmented by the positive reinforcement of an AUC over 0.96 
after biopsy confirmation [50]. A new AI model from Transpara 1.4.0 screenpoint medical 
BV, Nijmegen, the Netherlands, expedites interpretation and reduces workload by 20%–
50% by excluding mammograms with a low likelihood of cancer, allowing radiologists to 
concentrate on challenging cases [2,51]. The detection performance of radiologists using 
AI-aided systems was compared to radiologists using conventional systems. Radiologists 
with AI-aided systems achieved higher AUC rates, sensitivity, and classification perfor-
mance [52,53].  

Conventional computer-aided detection (CADe) in mammograms is hampered by 
high false positive and false negative rates. AI-based CAD systems have proven to reduce 
false positive rates by 69% and increase in sensitivity ranging from 84% to 91% [42,54]. 
The concept of double readers (mammogram read by two radiologists independently or 
together) is used in Europe to reduce false positives and false negatives. The use of AI in 
place of the second reader maintained a non-inferior performance and reduced the work-
load by 88% in a simulation study [55]. In another study, a single radiologist assessment 
was combined with an AI algorithm achieved higher interpretative accuracy with a spec-
ificity of 92% vs. 85.9% of a single radiologist’s interpretation. However, any single AI 
algorithm did not outperform radiologists’ accuracy rates [14]. Double readers are not a 
standard practice in the United States, but a prospect of cost-effective AI integration with 
radiologists can increase overall sensitivity. However, the acceptable miss rate threshold 
should be carefully considered. Another study used the breast imaging reporting and data 
system (BI-RADS) to incorporate radiologists’ subjective thresholds while using evidence-
based data to train AI. The study showed a reduction in false positives by 47.3% and a 
slight increase in false negatives by 26.7% [56]. AI also has the advantage of not increasing 
the interpretation time. AI CADe takes 20% less time than traditional CADe, but the same 
amount of time as radiologists [57]. Although further studies are required to assess the 
exact costs of AI mammography, the overall reduction in false positives could make it 
cost-effective [57]. DL models are being incorporated into digital breast tomosynthesis, 
and contrast-enhanced digital mammography datasets for volumetric assessment of 
breasts in three dimensions to further increase detection accuracy and reduce workload 
by 70% [7,58,59]. Radiomics is an approach to extract relevant quantitative properties, also 
known as features, from clinical, histopathological, and radiological data. It has been ap-
plied to breast imaging to further improve accuracy rates [60]. A more detailed description 
of radiomics is described in Section 5.2. 



Cancers 2022, 14, 1349 6 of 19 
 

 

3.2. Genetics and Hormonal Aspects in Breast Cancer Prediction 
Artificial neural networks (ANNs) achieved remarkable accuracy, measured by AUC 

of 0.909, 0.886, and 0.883, when assessed for their ability to predict 5-, 10-, 15-year BC-
related survival rates, respectively, based on factors such as age, tumor size, axillary nodal 
status, histological type, mitotic count, nuclear pleomorphism, and axillary nodal status 
[61]. Hybrid-DL models incorporate genetics, histopathology, and radiology data, which 
outperform traditional models such as Gail (which calculates BC risk in the next five years 
based on medical and reproductive history, not takes into account BRCA gene association) 
and Tyrer–Cuzick models (calculates the likelihood of carrying BRCA1 or BRCA2 muta-
tions based on personal and familial historical data) [5,6]. 

4. Colonic Polyps and Colorectal Cancer 
CRC is the third most common cancer in the United States, with the incidence of ap-

proximately 147,950 new cases in the year 2020. AI has shown great success in screening, 
diagnosis, and treatment of CRC. AI is bringing about a new era for CRC screening and 
detection with computer-assisted techniques for adenoma detection and characterization, 
computer-aided drug delivery techniques, and robotic surgery. Other benefits of AI in-
clude the incorporation of ANN to effectively screen with personal health data [62].  

4.1. Colorectal Cancer Screening 
By detecting adenomas and preventing progression to carcinoma, screening has sig-

nificantly reduced the incidence of CRC over the past decade. This has resulted in recom-
mendations for routine screening starting at age 45 [63]. The current screening methods 
for CRCs include invasive procedures (colonoscopy (gold standard) and flexible sig-
moidoscopy), minimally invasive procedures (capsular endoscopy), and non-invasive 
procedures (CT colonography or virtual colonoscopy, stool for occult blood, fecal immu-
nochemical test, and multitarget stool DNA).  

A few AI models have been tested to predict the risk of CRC and high-risk colonic 
polyps (CPs) from historical data and complete blood counts (CBCs). One such software, 
ColonFLag, predicts polyps and CRCs according to age, sex, CBC, and demographic in-
formation. Scores were compared to gold standard colonoscopy and converted to percen-
tiles, then categories were made, such as CRC, high-risk polyps, and benign polyps [64]. 
Another retrospective study (MeScore, Calgary, Alberta, Canada) compared CBC results 
3–6 months before colonoscopy with those from colonoscopy in two unrelated groups 
(Israeli and the UK). AUC for CRC diagnosis was 0.82 +/− 0.01. Specificity for 50% detec-
tion was 87 ± 2% a year before diagnosis and 85 ± 2% for localized cancers [65]. Study 
results point to the possibility of an early and noninvasive preliminary screening that can 
be integrated into electronic medical records to flag high-risk patients who can then be 
aggressively screened to balance the risks and benefits of colonoscopy in young people. 
Another ANN model designed to screen a large population based only on personal health 
information from big data also achieved optimal results [62]. However, these models are 
not currently practiced and require further validation for generalizability. 

4.2. Colonic Polyps Detection 
Colonoscopy is the gold standard invasive testing for the detection of colonic ade-

noma and CRC. An adenoma is the most common precancerous lesion. Adenoma detec-
tion rate (ADR) measures a gastroenterologist’s ability to detect an adenoma. ADR is in-
versely related to the adenoma miss rate and the risk of post-colonoscopy CRC. ADR 
ranges from 7% to 53%, while AMRs vary from 6% to 27% based on healthcare facilities. 
Several factors have been postulated to explain these differences, including quality of pre-
procedural bowel preparation, time of withdrawal, operator experience and training, pro-
cedure sedation, cecal intubation rate, visualization of flexures (blind spots), and use of 
image enhanced endoscopy and presence of flat or diminutive (less than 5 mm) and small 
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(<10 mm but >5 mm) polyps. Studies show that endoscopists with higher ADR during 
screening colonoscopy are more effective in preventing subsequent CRC risk for patients 
[66,67].  

In recent years, CADe and computer-aided diagnosis (CADx) systems have been de-
veloped to automate polyp detection during colonoscopy and further characterize them. 
Because of its ability to detect diminutive polyps, real-time AI-aided colonoscopy has a 
greater ADR than colonoscopy (OR 1.53, 95% CI 1.32–1.77; p < 0.001), derived from a meta-
nalysis data [4,68,69]. An AI system, GI Genius, uses green squares to highlight suspicious 
lesions during a colonoscopy by generating a sound for each marker and displaying it as 
a video of the endoscopy. Several meta-analyses demonstrate excellent detection rates for 
polyp detection using AI-assisted algorithms with AUC 0.90, sensitivity 95%, and speci-
ficity 88% [8].  

4.3. Colon Polyps Classification 
AI-based classification of CP into cancerous vs. non-cancerous lesions on CT colon-

ography and capsular endoscopy is a fascinating discovery. CT colonography differenti-
ation by texture analysis based on gradient and curvature of high-order images and ran-
dom forest models significantly improved the accuracy of the classification of CPs [70,71]. 
AI-assisted CAD model revealed an inverse correlation of CP sphericity with adenoma 
detection sensitivity and a direct correlation with adenoma detection accuracy. This 
model can effectively detect flat colonic lesions and CRCs on CT colonography [72]. Cap-
sule endoscopy is another noninvasive diagnostic tool for gastrointestinal tract inspection, 
but it is a time-consuming process to process a large amount of data. Stack sparse autoen-
coding with image manifold constraint, a DL-based AI, is utilized to correctly identify 
capsular polyps from capsular endoscopic images with a rate of 98% accuracy and time 
effectiveness [73]. An ANN model with logistic regression showed a predictive risk of 
distant metastasis in CRC patients based on several clinical factors, such as pathologic 
stage grouping, first treatment, sex, age at diagnosis, ethnicity, marital status, and high-
risk behavior variables [74]. With DL models, tumors can be segmented and delineated 
more accurately, and faster region-based CNNs are trained to read MRI images, enabling 
faster and more accurate diagnosis of CRC metastasis [75,76]. 

4.4. Histopathological Aspects, Genetics, and Molecular Marker Detection 
Histopathological characterization is the gold standard for the classification of 

polyps [77]. However, one of the biggest challenges is the significant intra- and interob-
server variability. The use of DL and CNN models to automate image analysis can allow 
pathologists to classify CPs with an overall accuracy of 95% or more [10]. These DL models 
analyze whole slides and hematoxylin- and eosin-stained slides to identify four different 
stages, including normal mucosa, early preneoplastic lesions, adenomas, and cancer 
[9,10,78].  

AI-based models were used to identify gene expressions, gene profiling, and non-
coding micro-ribonucleotides (mi-RNAs) for diagnosis, prognosis, and targeted therapy 
planning [79–81]. The use of near-infrared (NIR) spectroscopy and counter propagation 
artificial neural networks (CP-ANNs) in the determination of mutant vs. wild B-rapidly 
accelerated fibrosarcoma (BRAF) gene mutations were shown to be highly accurate, spe-
cific, and sensitive [79]. Mutant BRAF is associated with a poor prognosis, and this AI 
model can assist in prognosticating and managing these patients aggressively. Backprop-
agation and learning vector quantization (LVQ) neural networks demonstrate a remarka-
ble role in assessing the genetic profiling database from the cancer genome atlas (TCGA) 
in improving CRC diagnosis [81]. Several neural networks, including S-Kohonen, back-
propagation, and SVM, were compared for predicting the risk of relapse after surgery. 
The S-Kohonen neural network was found to be the most accurate [82]. Non-coding mi-
RNA plays an important role in tumorigenesis and progression of cancer by interfering 
with various cell signaling pathways, including, WNT/beta-catenin, phosphoinositide-3-
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kinase (PI3 K)/protein kinase B (Akt), epidermal growth factor receptor (EGFR), 
NOTCH1, mechanistic target of rapamycin (mTOR), and TP53. The identification of miR-
NAs through AI models aids in the diagnosis, prognosis, and targeted treatment of CRCs 
[80,83–86]. 

In the early detection of CRC, ML-based AI can help isolate circulating tumor cells in 
peripheral smear and analyze serum specific biomarkers, such as leucine-rich alpha-2-
glycoprotein 1 (LRG1), EGFR, inter-alpha trypsin inhibitor heavy chain family member 4 
(ITIH4), hemopexin (HPX), and superoxide dismutase 3 (SOD3) [87,88]. 

5. Central Nervous System Cancers 
In the United States, primary brain tumors have an annual incidence of 14.8 per 

100,000 people and have a male predominance. Despite significant advances in imaging 
modalities, surgical techniques, chemotherapy, radiotherapy, and radiosurgery, primary 
brain tumors such as glioblastoma multiforme (GBM) remains challenging to manage [89]. 
GBM is one of the primary intracranial neoplasms and accounts for nearly 60% of all pri-
mary brain tumors worldwide. Primary or metastatic CNS cancers are challenging to 
manage because of their rapid proliferation, prominent neovascularization, invasion to 
distant sites, and poor response to chemotherapy due to the blood–brain barrier. Clinical 
management includes initial observation, grading, accessing the depth of infiltration, seg-
mentation and location of the tumor, histopathological evaluation, and identification of 
molecular markers. As a result, clinicians have to manually compile all the data for vali-
dation in order to formulate a treatment plan. In this regard, AI has proven to be useful 
in the diagnosis and management of CNS malignancies [26]. 

5.1. Central Nervous System Neoplasm Detection 
AI has made significant advances in the diagnosis and classification of brain tumors 

in recent years. MRI is currently the gold standard tool for tumor detection and character-
ization [90]. Conventional MRI methods such as T1 and T2 weighted imaging and fluid-
attenuated inversion recovery (FLAIR) sequences have the disadvantage of nonspecific 
contrast enhancement and a high likelihood of missing tumor foci infiltration. In order to 
enhance detection chances, perfusion MRI with dynamic susceptibility-weighted contrast 
material enhancement, dynamic contrast enhancement, and arterial spin labeling are also 
used to evaluate the neoangiogenic properties of brain tumors such as GBM. In addition 
to identifying tissue microstructure, diffusion-weighted imaging shows neoplastic infil-
tration in areas of the brain that appear normal on conventional magnetic resonance (MR) 
images. The use of MR spectroscopy can also be used to identify chemical metabolites 
such as choline, creatine, and N-acetyl aspartate, which are useful for glioma grading and 
identifying tumor infiltrated regions [91]. By automating these steps, AI has enhanced 
detection rates and efficiency of radiologists, which, in turn, has reduced the amount of 
time traditionally spent in diagnosing a disease. CNN-based DL can also detect millime-
ter-sized brain tumors and can distinguish GBMs from metastatic brain lesions [3,92]. MRI 
technologies provide structured anatomical information on tumors, but tumor differenti-
ation is always based on histopathological evaluation, which is invasive, time-consuming, 
and expensive. It remains challenging to identify low-grade gliomas from high-grade gli-
omas on imaging, even with AI systems. Attention-based transformers are currently being 
investigated for the first time in glioma classification, and their use may offer a break-
through [39,93]. 
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5.2. Radiomics 
A comprehensive analysis of clinical, histopathological, and radiological data com-

bined with ML/DL image processing has paved the way for a new translational field in 
neuro-oncology called radiomics [60,94,95]. AI-based radiomics provides enhanced non-
invasive tumor characterization by enabling histopathologic classification/grading within 
minutes even at surgery time, prognostication, monitoring, and treatment response eval-
uation [96,97]. AI algorithms are able to analyze these images at the pixel level, so they 
can provide information not visible to the human eye and allow for more accurate grading 
[3]. Radiomics involves a set of the complex multi-step processes with manual, automatic, 
and semi-automatic segmentations. Two main types of radiomics are described: feature-
based and DL-based. Both provide more accurate and reliable results than human readers. 
The feature-based radiomics algorithms evaluate subsets of specific features from seg-
mented regions and volumes of interest (VOI) into mathematical representations. This 
multistep process includes image pre-processing (noise reduction, spatial resampling, and 
intensity modification), precise tumor segmentation (manual vs. DL-based techniques), 
feature extraction (histogram-based, textural, and higher-order statistics features), feature 
selection (filter methods, wrapper approaches, and embedded techniques), and model 
generation and evaluation (neural networks, SVM, decision trees/ random forests, linear 
regression, and logistic regression models) [95,98]. DL radiomics use CNNs, in which the 
model learns in a cascading fashion without any prior description of features and requires 
a large amount of data in the learning process. The cascading technique processes data to 
obtain useful information, removes redundancies, and prevents overfitting [27,31,98].  

5.3. Histopathological Aspects, Genetics, and Molecular Marker Detection 
Traditional histopathological evaluation of cranial tumors identifies the microscopic 

features with areas of neovascularization, central necrosis, endothelial hyperplasia, and 
regions of infiltration. These are sometimes overlapping and could lead to false-positive 
results [99]. To overcome this complexity, digital slide scanners are now used to convert 
microscopic slides into image files interpreted by AI-based algorithms such as SVM and 
decision trees. SVMs have shown higher precision rates [98]. The AI-based algorithms an-
alyze pathological specimens of gliomas and predict outcomes based on genetic and mo-
lecular markers, including isocitrate dehydrogenase (IDH) mutation status, 1 p/19 co-de-
letion status, O-6-methylguanine-DNA methyltransferase (MGMT) methylation status, 
epidermal growth factor receptor splice variant III (EGFRvIII), Ki-67 marker expression, 
prediction of p53 status in gliomas, prediction of mutations in BRAF, and catenin β-1 in 
craniopharyngiomas [96,98,100–103]. IDH mutation leads to the accumulation of an on-
cometabolite called D-2 hydroxyglutarate. This mutation is an important prognosticator 
in GBM. CNN-based AI has detected this biomarker from conventional MRI modalities 
[100]. O-6-MGMT promoter hypermethylation (encoding for DNA repair protein), which 
is exhibited in about 33%–57% diffuse gliomas, is a better prognostic factor owing to in-
creased sensitivity to alkylating agents such as temozolomide [98,101,104]. AI types such 
as supervised machine learning combined with texture features have been found to detect 
this methylation status. Performing principal component analysis on the final layer of 
CNN indicated that features, such as nodular and heterogeneous enhancement and 
“masslike FLAIR edema,” predicted MGMT methylation status with up to 83% accuracy 
[105]. EGFRvIII mutation is found in about 40% of GBM. Tumors with this mutation have 
been found to exhibit deep peritumoral infiltration, which is consistent with a more ag-
gressive phenotype. EGFR mutation is also associated with increased neovascularization 
and cell density [106]. 1 p/19 codeletion status has been shown to have a protective effect 
on the prognosis. This codeletion is observed in oligodendrogliomas [102]. CNN-based AI 
can be employed to detect this codeletion. Ki-67 marker expression indicates tumor cell 
proliferation. Traditionally, this marker is detected via immunohistochemical studies on 
the extracted tumor sample. This method is invasive and time-consuming. Identifying this 
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marker is essential in making a differential diagnosis and treatment plan. AI-based radi-
omics has been developed to detect this marker from fluorodeoxyglucose positron emis-
sion tomography (FDG PET) and MRI images [107]. 

5.4. AI in pre- and intra-Operative Planning, Postoperative Follow-Up, and Metastasis 
5.4.1. Preoperative Assessment 

Segmentation, volumetric assessment, and differentiating the tumor from healthy 
brain tissue and peripheral edema, quantitative measurements such as risk stratification, 
treatment response, and outcome prognosis are essential elements in the treatment plan-
ning of CNS tumors [108,109]. In traditional radiographic imaging, contrast-enhanced ra-
diographic images are used to estimate tumor volume or burden; however, single-dimen-
sion imaging may not be as accurate in the volumetric assessment of nonuniform tumors, 
such as high-grade tumors including GBMs. Another challenge is differentiating tumor 
borders from surrounding edema [110]. AI algorithms such as the random forest, CNN, 
and SVM have been applied to the tumor segments to overcome these challenges, and 
they have been shown to provide precise and accurate localization of the tumor. A two-
step protocol with CNN and transfer learning models led to precise and accurate locali-
zation of glioma [111]. 3D-U-Net CNN on 18 -fluoroethyl-tyrosine-PET, when used for 
automated segmentation of gliomas, showed 88% sensitivity, 78% positive prediction, 
99% negative prediction, and 99% specificity [32,112].  

5.4.2. Intraoperative Modalities 
High-grade tumors such as GBM have a rapid proliferation rate and invade the sur-

rounding regions beyond the enhancing regions on the radiological images, and excision 
of these areas could be missed [26,113]. AI-based DL algorithms have been developed to 
facilitate the surgeons to remove maximum tumor regions and less of the normal healthy 
brain tissue simultaneously. Three-dimensional CNNs have shown promising results in 
aiding stereotactic radiation therapy planning. It is often difficult to differentiate among 
primary brain tumors, primary CNS lymphoma, and brain metastases in some situations. 
However, AI-based algorithms such as decision tree and multivariate logistic regression 
models have been developed to differentiate among these entities by using diffusion ten-
sor imaging and dynamic susceptibility-weighted contrast-enhanced MRI [114–116]. 

5.4.3. Postoperative Surveillance 
MRI with gadolinium contrast is the standard for determining postoperative tumor 

growth and tumor response [117]. CNN-based AI algorithm techniques determine accu-
rate tumor size compared to linear methods. The ability of CNN models to differentiate 
the true progression from pseudo-progression and ML algorithms to differentiate radia-
tion necrosis from tumor recurrence is revolutionary [109,110,118]. Additionally, CNN 
and SVM create a superior model to predict the treatment response and survival outcomes 
from clinical, imaging, genetic, and molecular marker data [26]. 

6. Precision and Personalized Medicine 
AI has moved towards an era of personalized treatment in oncology with remarkable 

aid in oncologic drug development, clinical decision support systems, chemotherapy, im-
munotherapy, and radiation therapy [43]. AI algorithms have been developed to assess 
several factors such as oncogenetic mutation profile and drug sensitivity prediction show-
ing overall expected prognosis, efficacy, and adverse effects with a particular treatment 
option in a patient with particular cancer [43,119]. In a study, an ML algorithm was de-
signed to predict the effects of chemotherapy drugs, including gemcitabine and taxols, in 
correlation to patients’ genetic signatures [120]. In another study, an AI-based screening 
system based on homologous recombination (HR) deficiency was developed to detect can-
cer cells with HR defects can further narrow patients who would benefit from poly ADP-
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ribose polymerase (PARP) inhibitors in BC patients [44]. A DL algorithm was used to 
identify anticancer drugs that inhibit PI3K alpha and tankyrase, promising targets for 
CRC treatment [121]. An ML-based drug specificity detection by examining protein–pro-
tein interactions of anticancer drug and S100A9, a calcium-binding protein, may represent 
a potential therapeutic target for CRC [122]. These avenues of discovery of new anticancer 
targeted therapy by ML models is a fascinating step towards much effective therapeutic 
options. ML models can also be trained to interpret screening data to predict responses to 
new drugs or combinational therapies [123]. An ability to synthesize and assess a large 
amount of chemical data also plays a role in cancer drug development by narrowing the 
prediction towards a specific formula; beyond the traditional experimental methods in 
which DL systems are currently being explored [124,125]. Learning clinical big data of 
cancer patients with AI can generate personalized treatment options based on DL assessed 
factors, including clinical, genetic, cancer-type, and stage of cancer of a patient [126]. 
Moreover, AI application in radiotherapy is quite distinct. AI can help radiologists plan 
radiation treatment regimens with automation software as effective as conventional treat-
ment layouts in a robust, time-effective manner [127,128]. With the upcoming role of im-
munotherapy in managing various cancers, ML-based platforms are trained to predict the 
therapeutic response of immunotherapy effects in programmed cell death protein 1 (PD-
1) sensitive advanced solid tumors [129,130]. AI can thus support and even surpass the 
capability of humans in anticancer drug development and aid in personalized treatment 
plans in a time-effective manner. 

7. Generalizing Artificial Intelligence, Barriers, and Future Directions 
A number of factors challenge the generalizability of AI systems, including possible 

bias, external validation of AI performance, the requirement for heterogeneous data and 
standardized techniques [46].  

7.1. AI Performance Interpretation 
In order for AI to perform in clinical practice, it must be both internally and externally 

validated. In internal validation, the accuracy of AI is compared to expected results when 
AI algorithms are tested by using previously used questions [131]. Internal validation per-
formance tools rely on sensitivity, specificity, and AUC. The problem with interpreting 
AUC is that it does not consider the clinical context. For instance, different sensitivity and 
specificity can provide similar AUCs. In order to measure AI performance, studies should 
report AUC along with sensitivities and specificities at clinically relevant thresholds, this 
is referred to as “net benefit” [132]. As an example, high false-positive and false-negative 
rates continue to be a challenge in DL screening mammograms, for which balancing the 
net benefit would be important [42]. Thus, prior to concluding that an AI system can out-
perform a human reader, it is important to carefully interpret its diagnostic performance. 
Furthermore, the sensitivity, specificity, and accuracy of diagnostic tests are independent 
of real-life prevalence. As a result, robust clinical diagnostic, and predictive performance 
verification of AI for clinical applicability requires external validation. For external vali-
dation, a representative patient population and prospectively collected data would be nec-
essary to train AI algorithms [131]. Moreover, internal validation poses the challenge of 
overestimating AI performance by familiarizing itself too much with training data, known 
as overfitting [131]. By separating unused training datasets, including newly recruited pa-
tients, and comparing results with those of independent investigators at different sites, it 
is possible to improve generalizability and minimize overfitting [131]. In a recent study, 
curated large mammogram screening datasets from the UK and the US revealed a prom-
ising path to generalizing AI performance [55].  
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7.2. Standardization of Techniques 
An AI model that could be universally applicable must be taught a large amount of 

heterogeneous clinical data in order to become generalizable [3,54,107]. AI-based infra-
structure and data storage systems are not available at all institutes, which is one of the 
biggest barriers [133]. There is also a lack of standardization of staining reagents, proto-
cols, and section thicknesses of radiologic images, which can further hinder the generali-
zability of AI in clinical practice worldwide [1,54]. A number of automated CNN-based 
tools such as HistoQC, Deep Focus, and GAN-based image generators are being devel-
oped by societies such as the American College of Radiology Data Science Institute to 
standardize image sections [1,91]. In the field of radiomics, another challenge involves 
compliance with appropriate quality controls, ranging from image processing to feature 
extraction and from mechanics and feature extraction to algorithms for making predic-
tions [134]. There are several emerging initiatives using DLs and CNNs to normalize or 
standardize images, including, “image biomarker standardization technique” [134,135]. 
ML algorithms are treated as a “black box” because of a lack of understanding of its inner 
working. This can pose a challenge when dealing with regulated healthcare data. This 
necessitates transparent AI algorithms and the interpretation of AI-based results to ensure 
no mistakes are made [26,136]. A few recently developed methods, such as saliency maps 
and principal component analysis, are helping interpret the workings of these algorithms 
[105,137]. 

7.3. Bias in Artificial Intelligence 
Quality and quantity of data are key factors that determine the performance and ob-

jectivity of an ML system. AI can be biased in a number of ways—from assumptions made 
by engineers who develop AI to bias in the data used to train it. When training data are 
derived from a homogenous population, they may be poorly generalizable, which can 
potentially exacerbate racial/ethnic disparities, for example [138]. Thus, when training the 
AI, it is important to include diverse ethnic, age, and sex groups, as well as examples of 
benign and malignant tumors. Similarly, to integrate precision medicine and AI in real-
world clinical settings, it is necessary to consider environmental factors, limitations of care 
in resource-poor locations, and co-morbidities [139]. There is also the possibility of bias 
introduced when radiologists’ opinion is regarded as the “gold standard” rather than the 
actual ground truth or the absolute outcome of the case, benign or malignant [46]. As an 
example, several AI models in screening mammography are compared with radiologists 
instead of the gold standard biopsy results, introducing bias [46]. In order to overcome 
this problem, including interval cancers in testing sets and relying on reports from expe-
rienced radiologists might be helpful. 

7.4. Ethical and Legal Perspectives 
Creating future models that address the ethical issues and challenges of incorporat-

ing AI into preexisting systems requires an awareness of these issues. Few societies, such 
as the Department of Health and Social Care, the US Food and Drug Administration, and 
other global partnerships, oversee and regulate the use of AI in medicine [46,140]. The 
National Health Service (NHS) Trusts in the United Kingdom regulate the use of patient 
care data in AI in an anonymized format for research purposes [46]. In order for AI in 
oncology to achieve global standardization, more international organizations must be 
formed that can oversee future AI studies within ethical and legal boundaries to protect 
patient privacy. 

8. Integrative Training of Computer Science and Medical Professionals 
In order for AI to be effectively integrated into healthcare in general, as well as on-

cology, formal training of medical professionals and researchers would be critical. Nu-
merous societies and reviews have recommended formal training, but current medical 
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education and health informatics standards do not include mandatory AI education, and 
competency standards have yet to be established [141,142]. There have been efforts in the 
radiology community to determine students’ opinions about AI applications in radiology 
in order to develop formal training tools. A few of these are frameworks for teaching, 
principles for regulating the use of AI tools, special training for evaluating AI technology, 
and integrating computer science, health informatics, and statistics curriculum during 
medical school [143–145]. Few institutes in the United States have proposed initiatives for 
AI in medical education, which were originally submitted by the American Medical As-
sociation. Among these initiatives are medical students working with data specialists, ra-
diology residents working with technology base companies to develop computer-aided 
detection in mammography, offering a summer course by scientists or engineers to update 
new technologies, and involving medical students in engineering labs to create innovative 
ideas in health care [136]. Another framework would provide AI training for students in 
various fields, including medical students, health informatics students, and computer sci-
ence students [142]. In order to improve patient care, medical students should become 
proficient in interpreting AI technologies, comparing efficiency in patient care and dis-
cussing ethical issues related to using AI tools [142]. Furthermore, medical professionals 
should understand the limitations and barriers of AI in clinical applications, as well as the 
distinction between correct and incorrect information [146,147]. In health informatics, stu-
dents should be taught how to apply appropriate ML algorithms to analyze complicated 
medical data, integrate data analytics, and formulate questions to visualize large data sets. 
Students studying computer science should be trained in Python, R, and SQL program-
ming in order to solve complex medical problems [142]. Education tools that integrate 
medical professionals, health informatics students, and computer science students can 
pave the way for further developments in the fields of medicine and oncology. 

9. Conclusions 
Computer systems are capable of learning tasks and predicting outcomes without 

being explicitly programmed through AI. DL, a subset of ML, utilizes neural networks 
and enables learning complex, non-linear functions from data. CNNs are well suited to 
process two- to three-dimensional inputs such as images, while RNNs can handle sequen-
tial inputs of variable length such as textual data. Recently developed attention-based DL 
systems are capable of selectively focusing on data, resulting in better accuracy in cancer 
detection rates. AI has shown promising results in oncology in several areas, including 
detection and classification, molecular characterization of tumors, cancer genetics, drug 
discovery, predicting treatment outcomes and survival rates, and moving the trend to-
wards personalized medicine. In screening mammography, various DL models have 
demonstrated non-inferior cancer detection performance, with overall sensitivity rates of 
88%–96%. Radiologists with AI-assisted systems have achieved higher AUC rates and 
have reduced their workloads. Different real time CADe and CADx AI systems have 
demonstrated a higher ADR by automating polyp detection and detecting diminutive 
polyps during colonoscopy. The use of machines to improve cancer detection at an early 
stage on screening mammograms and colonoscopies has the potential to be tested for ap-
plication across the globe for more efficient patient care. Several AI-based cancer detection 
methods have been developed for other cancer types, including lung, prostate, and cervi-
cal cancer. It is possible to pursue future objectives to implement AI worldwide in all can-
cer types.  

CNS tumors such as GBM continue to have a poor prognosis. AI-based radiomics 
allows for the identification of tumors without invasive methods, by allowing for the clas-
sification and grading of tumors within minutes. Radiomics is largely used in CNS tumors 
identification and grading. State-of-the-art attention-based transformers are currently be-
ing studied to improve glioma classification. Analyzing histopathological, genetic, or mo-
lecular markers can be made easier with AI. With the advancement of AI, oncology has 
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moved to a more personalized era. AI has revolutionized drug development, clinical de-
cision support systems, chemotherapy, immunotherapy, and radiotherapy.  

A better understanding of the ethical implications of the use of AI, including its per-
formance interpretation, standardization of techniques, and the identification and correc-
tion of bias, is required for more reliable, accurate, and generalizable AI models. Global 
organizations must be formed to provide guidance and regulation of AI in oncology. For-
mal integrated training for medical, health informatics, and computer science students 
could drive further advances of AI in medicine and oncology. 
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