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Simple Summary: Diagnosing cancer at an early stage increases the chance of performing effective
treatment in many tumour groups. Key approaches include screening patients who are at risk but have
no symptoms, and rapidly and appropriately investigating those who do. Machine learning, whereby
computers learn complex data patterns to make predictions, has the potential to revolutionise early
cancer diagnosis. Here, we provide an overview of how such algorithms can assist doctors through
analyses of routine health records, medical images, biopsy samples and blood tests to improve risk
stratification and early diagnosis. Such tools will be increasingly utilised in the coming years.

Abstract: Improving the proportion of patients diagnosed with early-stage cancer is a key priority
of the World Health Organisation. In many tumour groups, screening programmes have led to
improvements in survival, but patient selection and risk stratification are key challenges. In addi-
tion, there are concerns about limited diagnostic workforces, particularly in light of the COVID-19
pandemic, placing a strain on pathology and radiology services. In this review, we discuss how
artificial intelligence algorithms could assist clinicians in (1) screening asymptomatic patients at risk
of cancer, (2) investigating and triaging symptomatic patients, and (3) more effectively diagnosing
cancer recurrence. We provide an overview of the main artificial intelligence approaches, including
historical models such as logistic regression, as well as deep learning and neural networks, and
highlight their early diagnosis applications. Many data types are suitable for computational analysis,
including electronic healthcare records, diagnostic images, pathology slides and peripheral blood,
and we provide examples of how these data can be utilised to diagnose cancer. We also discuss the
potential clinical implications for artificial intelligence algorithms, including an overview of models
currently used in clinical practice. Finally, we discuss the potential limitations and pitfalls, including
ethical concerns, resource demands, data security and reporting standards.

Keywords: early diagnosis; artificial intelligence; machine learning; deep learning; screening

1. Introduction

Early cancer diagnosis and artificial intelligence (AI) are rapidly evolving fields with
important areas of convergence. In the United Kingdom, national registry data suggest that
cancer stage is closely correlated with 1-year cancer mortality, with incremental declines in
outcome per stage increase for some subtypes [1]. Using lung cancer as an example, 5-year
survival rates following resection of stage I disease are in the range of 70–90%; however,
rates overall are currently 19% for women and 13.8% for men [2]. In 2018, the proportion of
patients diagnosed with early-stage (I or II) cancer in England was 44.3%, with proportions
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lower than 30% for lung, gastric, pancreatic, oesophageal and oropharyngeal cancers [3].
A national priority to improve early diagnosis rates to 75% by 2028 was outlined in the
National Health Service (NHS) long-term plan [4]. Internationally, early diagnosis is
recognised as a key priority by a number of organisations, including the World Health
Organisation (WHO) and the International Alliance for Cancer Early Detection (ACED).

Many studies indicate that screening can improve early cancer detection and mortality,
but even in disease groups with established screening programmes such as breast cancer,
there are ongoing debates surrounding patient selection and risk–benefit trade-offs, and
concerns have been raised about a perceived ‘one size fits all’ approach incongruous with
the aims of personalised medicine [5–7]. Patient selection and risk stratification are key
challenges for screening programmes. AI algorithms, which can process vast amounts
of multi-modal data to identify otherwise difficult-to-detect signals, may have a role in
improving this process in the near future [8–10]. Moreover, AI has the potential to directly
facilitate cancer diagnosis by triggering investigation or referral in screened individuals
according to clinical parameters, and automating clinical workflows where capacity is
limited [11]. In this review, we discuss the potential applications of AI for early cancer
diagnosis in symptomatic and asymptomatic patients, focussing on the types of data that
can be used and the clinical areas most likely to see impacts in the near future.

2. An Overview of Artificial Intelligence in Oncology
2.1. Definitions and Model Architectures

AI is an umbrella term describing the mimicking of human intelligence by comput-
ers (Figure 1). Machine learning (ML), a subdivision of AI, refers to training computer
algorithms to make predictions based on experience, and can be broadly divided into
supervised (where the computer is allowed to see the outcome data) or unsupervised (no
outcome data are provided) learning. Both approaches look for data patterns to allow
outcome predictions, such as the presence or absence of cancer, survival rates or risk
groups. When analysing unstructured clinical data, an often-utilised technique, both in
oncology and more broadly, is natural language processing (NLP) [12]. NLP transforms
unstructured free-text into a computer-analysable format, allowing the automation of
resource-intensive tasks.
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It is common practice in ML to split data into partitions, so that models are developed
and optimised on training and validation subsets, but evaluated on an unseen test set
to avoid over-optimism. A summary of commonly used supervised learning methods is
provided in Table 1. Such methods include traditional statistical models such as logistic
regression (LR) as well as novel decision tree and DL algorithms.
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Table 1. Common supervised ML techniques with early diagnosis examples.

Model Type Description Example

LR R Uses logistic function to predict
categorical outcomes Chhatwal et al. [13]

SVM R, C Constructs hyperplanes to maximise
data separation Zhang et al. [14]

NB C Utilises Bayesian probability including priors
for classification Olatunji et al. [15]

RF R, C Ensembles predictions of random
decision trees Xiao et al. [16]

XGB R, C As RF, but sequential errors minimised by
gradient descent Liew et al. [17]

ANN R, C Multiplies input by weights and biases to
predict outcome Muhammad [18]

CNN R, C Uses kernels to detect image features Suh [19]
Abbreviations: R: regression, C: classification, LR: logistic regression, SVM: support vector machine, NB: naïve
Bayes, RF: random forest, XGB: extreme gradient boosting, ANN: artificial neural network, CNN: convolutional
neural network.

Deep learning (DL) is a subgroup of ML, whereby complex architectures analogous
to the interconnected neurons of the human brain are constructed. Popular Python-based
frameworks for deep learning include Tensorflow (Google) and PyTorch (Facebook), which
provide features for model development, training and evaluation. Google also provides a
free online notebook environment, Google Colaboratory, allowing cloud-based Python use
and access to graphic processing units (GPUs) without local software installation.

Although a detailed description of neural network structures is beyond the scope of
this article, artificial neural networks (ANNs) can be used to illustrate the overarching
principles (Figure 2). As a recent example, Muhammad et al. used an ANN to predict
pancreatic cancer risk using clinical parameters such as age, smoking status, alcohol use
and ethnicity [18]. In their most basic form, ANNs consist of: (1) an input layer, (2) a
‘hidden layer’, consisting of multiple nodes which multiply the input by weights and add a
bias value, and (3) the output layer, passing the weighted sum of hidden layer nodes to
an activation function to make predictions. Deep learning simply refers to networks with
more than one hidden layer.

Many early diagnosis models have exploited convolutional neural network (CNN)
architectures, which led to a revolution in computer-vision research by allowing the use
of colour images as input data. While the downstream fully connected layers resemble
those of an ANN, the input data are processed by a series of kernels which slide over
image colour channels and extract features, such as edges and colour gradients. These
inputs are then pooled and flattened before being passed to the fully connected layer. Many
pre-defined CNN architectures with varying degrees of complexity are available for use,
including AlexNet [20], EfficientNet [21], InceptionNet [22], ResNet [23] and DenseNet [24].
As we discuss further in this article, CNNs have a wide range of applications in radiology
and digital pathology.

2.2. Data Types: Electronic Healthcare Records

A number of emerging healthcare data modalities are suitable for analysis with AI. In
recent years, a global expansion in electronic healthcare record (EHR) infrastructures has
occurred, enabling vast amounts of clinical data to be stored and accessed efficiently [25].
Many exciting digital collaborations are arising to facilitate early diagnosis research us-
ing EHRs, including the UK-wide DATA-CAN hub [26]. Other digital databases record
outcome measures and pathway data. For example, the Digital Cancer Waiting Times
Database aims to improve cancer referral pathways through user-uploaded performance
metrics [27].
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Figure 2. Example of a single-hidden-layer ANN architecture. (1) The smoking status in pack years
and lung nodule size (mm) are entered as the two input nodes. (2) In the hidden layer, each node
multiplies the values from incoming neurons by a weight (shown as decimals at incoming neurons)
and aggregates them. (3) The results are passed to an activation function, converting the output to a
probability of cancer between 0 and 1. Multiple learning cycles are used to update the hidden layer
weights to improve performance.

It is important to draw a distinction between local hospital EHR data and national
public health data registries, including those utilised by multi-centre screening studies.
With registries, unified database structures are being implemented for consistency across
institutions. A key aim of the NHSx ‘digital transformation of screening’ programme is
to ensure interoperability of systems, so that data can flow seamlessly along the entire
screening pathway, including into national registry databases [28]. An example of database
unification is the new U.K. cervical cancer screening management system, which will
simplify 84 different databases into a single national database, and aims to streamline data
entry and provide simple, cloud-based access for users [29].

Digital databases, whether local or national, are ripe for analysis with AI, which is
inherently able to process large amounts of information (‘Big Data’) [30]. EHR data typically
include structured, easily quantifiable data such as admission dates or blood results, and
unstructured free-text such as clinical notes or diagnostic reports. The latter can be analysed
using NLP approaches. An overview of NLP in oncology is provided by Yim et al. [12], and
example early diagnosis uses include identifying abnormal cancer screening results [31],
auditing colonoscopy or cystoscopy standards [32,33] and identifying or risk-stratifying
pre-malignant lesions [34–38]. NLP has also been used to automate patient identification
for clinical trials, reducing the burden of eligibility checks [39]. Morin and colleagues
published an exciting example of how AI and NLP technology can integrate into EHR
systems: their model can analyse millions of data points and perform real-time cancer
prognostication based on continuous learning of routinely collected clinical data [40].

2.3. Data Types: Radiology

The migration from radiographic film to digital scans within Patient Archive and Com-
munication Systems (PACS) has yielded similar benefits for imaging research. Radiomics
refers to quantitative methods for analysing radiology images (including CT, nuclear
medicine, MRI and ultrasound scans), and may be divided into traditional ML and DL
approaches. For traditional ML approaches, textural features are captured from highlighted
regions of interest (ROIs), and relate broadly to size and shape, intensity and heterogeneity
readouts. These features are used to train models for classification or prognostication. In
the early cancer diagnosis setting, this includes classification of indeterminate nodules
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or cysts as benign or malignant. Many studies have employed a radiomics approach to
accurately classify lung nodules in this fashion [41,42], and Shakir et al. generated accurate
radiomics-based cancer likelihood functions across many tumour groups, including lung,
colorectal and head and neck cancers [43]. There is also potential to predict indolence
versus aggressive disease, which can be a relevant determinant of when early diagnosis
is most likely to be of patient benefit. As an example, in 2019, Lu et al. published a four-
feature radiomics signature which predicted survival and treatment response in ovarian
cancer [44].

As discussed above, CNNs are the cornerstone of DL-based medical-imaging classi-
fication. If we take the EfficientNet architectures developed in 2019 as an example, they
have been successfully applied to diagnosing many cancer types, including breast cancer
(AUC 0.95) [19], lung cancer (AUC 0.93) [45] and brain cancer (accuracy 98%) [46] with high
performance, while increasing computational efficiency compared with historic models [21].
In addition to benign/malignant classification tasks, many CNN architectures also exist for
lesion identification and segmentation, such as U-Net [47] and V-Net [48] models. Such
models can be evaluated using the Dice similarity co-efficient (Dice-score), which assesses
the degree of overlap between two segmentation masks. For example, Baccouche et al.
developed a U-Net model for mammographic breast-lesion segmentation with a Dice score
of 96% [49].

The possible benefits and drawbacks of traditional ML and DL approaches are pre-
sented in Table 2. A cited advantage of traditional ML models is explainability–features are
hand-crafted and defined upfront, and their expression levels can be readily quantified [50].
In contrast, DL has been criticised as a black box, due to the perception that the inner work-
ings are opaque. This criticism becomes less relevant as the field advances, and with the
caveats that DL models are computationally more intensive and data-hungry, they widely
outperform traditional models in classification and prediction tasks, and may become the
dominant force in the near future [51,52]. Hybrid models incorporating both hand-crafted
approaches and DL are also arising [53].

Table 2. Possible benefits and limitations of traditional ML vs. deep learning.

Traditional Machine Learning Deep Learning

Requires ROI segmentation ROI segmentation optional
Features are pre-specified Features generated by model

Features are easily quantified Features difficult to quantify
Computationally less intensive Computationally more intensive

May perform better on small datasets May perform better on large datasets

2.4. Data Types: Digital Pathology

Digital pathology, referring to the creation and analysis of digital images from scanned
pathology slides, is another important field of AI research relevant to early diagnosis [54].
In a U.K. survey, 60% of institutions had access to digital pathology scanners in 2018,
and the global uptake is likely to increase [55]. Schüffler and colleagues’ experience with
288,903 digital slides over a 3-year period demonstrates the power of this technology to
improve diagnostic workflows and facilitate large-scale sharing of research data [56]. Many
studies require pathological reviews of diagnostic specimens for eligible patients; thus, the
use of digital slides has removed previous bottlenecks associated with glass slide transfer
and processing, particularly for patients eligible for multiple studies [56]. The authors
also describe the benefits of integrated digital programmes, whereby histopathology data
are automatically linked with relevant tests, such as molecular results, and viewed on an
integrated platform, reducing the inefficiency of opening multiple windows per case [56].
As described by the digital pathology centre of excellence PathLAKE, the COVID-19
pandemic has highlighted many benefits of digital working, include increased work-force
resilience, time efficiency savings, outsourcing and easy access to expert supervision and
training [57]. The crosstalk between digital pathology and other electronic healthcare
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systems is an area of international focus highlighted by integrating health-care enterprises
(IHEs) [58].

CNNs have been widely utilised for cancer detection using automated whole-slide
analysis: a model published by Coudray et al. diagnosed lung cancer with an AUC of
0.97 [59], and high diagnostic accuracy has been observed amongst other tumour sub-
types [60–62]. CNNs are able to perform tumour sub-typing, including the identification
of molecular phenotypes and targetable receptors [63,64], and many models have been
trained to automate grade and stage assessments [65–68]. Applications such as Paige-AI
could provide clinically available tools for automated analysis, in this case of prostate
biopsies based on a CNN model [69].

As novel pathology techniques emerge, AI may have a role in processing the more
complex data they yield. Multiplex immunohistochemistry, for example, enables the
evaluation of multiple cellular subsets on a single pathology slide using unique chromogen
labels. Such an approach has enabled detailed analysis of the cancer immune landscape
in some subsites [70]. Fassler et al. developed a U-Net-based model to reliably detect and
classify six cell populations associated with pancreatic adenocarcinoma [71].

Exciting gains have also been made in predictive biomarker analysis. ML models have
been used to identify predictive signatures from peripheral blood samples and tumour
biopsy material, including analyses of whole-genome profiles [72–74].

2.5. Data Types: Multi-Omic Data

Given the complexity of tumour biology, models based on single data types could
miss important predictive information arising from the interaction between interdependent
biological systems. There is, therefore, a drive to integrate multi-model data, which may
include radiomic, genomic, transcriptomic, metabolomic and clinical factors, to better
describe the tumour landscape and improve diagnostic precision. Several large-scale
databases, including ‘LinkedOmics’, which contains multi-omic data for 11,158 patients
across 32 cancer types, are available to facilitate the detection of associations between data
modalities and assist model development [75].

Using central nervous system (CNS) tumours as an example, multi-omic data, includ-
ing single-nucleotide polymorphism (SNP) mutations (e.g., TARDBP), gene methylation
(e.g., 64-MMP) and transcriptome abnormalities (e.g., miRNA-21), are known to predict
the progression of meningiomas [76]. A systematic review of multi-omic glioblastoma
studies by Takahashi et al. found that most utilised ML techniques for analysis, likely
due to the size and complexity of the data [77]. In one study of 156 patients with oligo-
dendrogliomas, mRNA expression arrays, microRNA sequencing and DNA methylation
arrays were analysed using a multi-omics approach to better classify 1p/19q co-deleted
tumours [78]. Use of unsupervised clustering techniques identified previously undescribed
molecular heterogeneity in this group, revealing three distinct subgroups of patients [78].
These subgroups had differences in important histological factors (microvascular prolif-
eration and necrosis), genetic factors (cell-cycle gene mutations) and clinical factors (age
and survival) [78]. Franco et al. explored DL autoencoder models to predict cancer sub-
types from multi-omic data, included methylation, RNA and miRNA sequencing readouts
from The Cancer Genome Atlas (TCGA) [79]. The authors identified three GBM subtypes
with differentially expressed genes relating to synaptic function and vesicle-mediated
transport [79].

These studies demonstrate how machine learning approaches applied to multi-omic
data can reveal previously hidden elements of tumour biology, which may have important
implications for diagnosis and prognostication.

3. Clinical Applications

Below, we discuss the areas where AI is likely to have clinical impact in the near future,
using exemplar cancer groups (Figure 3).
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3.1. Risk-Stratified Screening of Asymptomatic Patients

Several large-scale studies have shown that lung-cancer screening in at-risk patients
confers survival benefits [80,81]. Subsequently, in the U.S., the Centers for Medicare &
Medicaid Services (CMS) deemed that patients aged 55–77 with a ≥30 pack-year smoking
history are eligible for CT screening, with new guidelines suggesting that this should be
relaxed further [82,83]. However, in practice, only a small proportion of eligible patients
are actually screened, partially due to poor smoking-status documentation and physician
time pressures [84,85]. To improve screening selection, Lu et al. developed a CNN model
incorporating chest X-rays and minimal EHR data (age, sex, current smoking status) to
predict 12-year incident cancer risk, which was compared with the CMS criteria [86]. The
imaging component was trained using an Inception V4 network on 85,748 radiographs
from the PLCO trial and validated in 5615 and 5493 radiographs from the PLCO and
NLST studies, respectively. The team found that the model improved upon CMS eligibility
criteria, reporting an AUC of 0.755 compared with 0.634, and achieved parity with more
complex risk scores requiring 11 data points (PLCOM2012) [86].

More recently, Gould et al. published an ML model based on non-imaging EHR
data [87]. Using a dataset of 6505 patients with lung cancer and 189,597 controls, the
model was more accurate than the PLCO criteria at predicting lung cancer within the next
9–12 months (AUC 0.86). Moreover, it improved upon standard eligibility criteria for lung
cancer screening, providing evidence that AI-enhanced assessment of routine clinical data
can help identify patients for targeted screening programs. Use of AI to improve patient
selection for screening may be a useful path to early diagnosis in the future.

3.2. Symptomatic Patient Triage

General practitioners (GPs) are often the first port of call for patients with cancer
symptoms, and have a critical role to play as gatekeepers to secondary care [88]. Over the
last decade, a number of decision-support tools have emerged to assist GPs in determin-
ing which cancer symptoms require referral for further investigation [89]. For example,
the CE-marked decision support tool, ‘C The Signs’, is currently being piloted across a
number of practices to assist GPs in cancer risk stratification [90,91]. The tool provides a
dashboard for use in real time and suggests investigations or referrals based on cancer-
symptom profiles. Early evaluation reports suggest an increased cancer-detection rate of
6.4% [91]. It should be noted there are currently no peer-reviewed publications relating to
this tool in the literature, and although marketing indicates the utilisation of AI to map
decisions to the latest evidence, it is not possible to fully critique its infrastructure without
published methodology.
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Technologies are also emerging to diagnose and triage patients directly according to
self-described symptoms, using chat-bots or online symptom checkers. The commercial dig-
ital healthcare provider, Babylon Health, provides patients access to private consultations
by phone or computer apps [92]. Babylon utilises a Bayesian network based on disease
probability profiles informed by epidemiological data and expert opinion to diagnose
diseases and recommend actions, such as attending Accident and Emergency, or booking a
non-urgent GP appointment, according to patient-entered symptoms [93]. Its triage and di-
agnostic system are reported as having comparable accuracy and safety to human clinicians,
with the caveat that the use of simulated consultations limits the external validity of this
evaluation [93]. It is again important to note that this tool has been implemented clinically
despite a paucity of peer-reviewed publications detailing robust testing and validation
procedures, which has drawn criticism from the MHRA and oncology community [94].

The current literature suggests that AI may play a role in triaging symptomatic patients
in the community at risk of cancer in the future; however, further evidence, including
robust prospective validation studies, is needed to confirm their efficacy and safety for
clinical deployment.

3.3. Diagnostic Workflow Triage

Given increasing concerns about the limited diagnostic workforce and infrastructure,
particularly after the COVID-19 pandemic which disrupted diagnostic workflows and
halted screening programs [95,96], we are likely to see an increasing role for AI-based
workflow triage in the near future. Such systems are intended to screen diagnostic test
results and allocate cases for specialist review, for example by pathologists or radiolo-
gists, based on risk, so that the large volume of normal or low-risk examinations are not
escalated (Figure 4).
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Figure 4. Example diagnostic triage pipeline. The AI model assigns a risk group to each examination,
as well as a confidence estimate, and scans that are either high risk or have low diagnostic confidence
are escalated for specialist review. CT images taken from the public LUNGx dataset [97].

A recent paper by Gehrung et al. utilised deep learning to triage pathology work-
flows [98]. Barrett’s oesophagus (BE), referring to reflux-induced epithelial metaplasia,
is a risk factor for oesophageal cancer which requires significant diagnostic resources for
surveillance endoscopies and biopsies [99]. The emergence of innovative non-endoscopic
approaches, such as Cytosponge, improve the patient experience but exacerbate the pathol-
ogy resource problem, due to the amount of generated cellular material requiring patholo-
gist review [100]. The team trained a selection of CNN architectures to perform Cytosponge
slide quality control and BE detection, and generated a priority system for manual review
based on a combination of the type of findings (positive or negative) and model confi-
dence [98]. Five of the eight diagnosis-confidence categories could be fully automated by
the chosen CNN while maintaining comparable diagnostic accuracy to a pathologist (sensi-
tivity and specificity 82.5% and 92.7%, respectively). The model was externally validated
on 3038 slides from 1519 patients, with a simulated reduction in pathologist workload of
57.2% [98].

In breast cancer imaging, AI can detect mammographic abnormalities with compa-
rable accuracy to radiologists, and a wealth of commercial software packages have come
onto market in recent years [101–104]. A 2020 study by Dembrower et al. evaluated the
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ability of AI-enhanced triage to reduce radiologist workloads using a set of over 1 million
mammograms from 500,000 women [8]. The team tested rule-out thresholds based on AI
malignancy-risk scores, and found that most women could be safely triaged to no radiol-
ogist review for predicted risks of less than 60% [8]. An enhanced-assessment algorithm
was also developed, whereby the AI system gave a second read of mammograms reported
negative by radiologists. The team set rule-in thresholds for recommending further eval-
uation with MRI, and found that for the top 1% of risk scores, 12% and 14% of patients
developed interval or screen-detected cancers, respectively [8]. More recently, Yi et al.
published performance metrics for DeepCAT, another mammography triage system trained
on 1878 images. In the test set of 595 images, the model triaged 315 scans (53%) as low
priority [105]. None of the low-priority images contained cancer, again supporting the
notion that AI can provide a safe and effective triage of mammograms.

These studies provide good evidence that AI systems can be well integrated into
clinical workstreams, and that with appropriate risk thresholding, can reduce the burden
of diagnostic work through enhanced triage.

3.4. Early Detection

Automating the detection and classification of pre-malignant lesions and early cancers
is an area where AI is well established. For image-based models, indeterminate pulmonary
nodules are a good candidate, because such nodules are found frequently and are usually
benign, with a small proportion representing early-stage cancers [80,81].

Ardila and co-authors at Google published an end-to-end solution, meaning that
nodule identification and classification were integrated into one workstream, trained on
42,290 CT scans from 14,851 patients enrolled in the National Lung Screening Trial [52,80].
An example end-to-end pipeline is shown in Figure 5. A region-based convolutional neu-
ral network (R-CNN) was developed to register longitudinal scans where available, and
whole-CT scan data and bounding-box nodule ROIs were utilised to predict malignancy
using a 3D Inception model [52]. The model outperformed the average radiologist at ma-
lignancy risk-prediction, and achieved a cutting-edge AUC of 95.5% at external validation
in 1139 cases [52]. The model has not been prospectively validated, but could become
available for clinical use in the future.
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Figure 5. Example of an ‘end to end’ cancer detection pipeline. 1: A whole CT volume is used as input
into the model. 2: A region detection architecture (such as UNet) is used to identify a sub-volume and
assign a bounding-box ROI. 3: The volume encompassed by the ROI is input into a classification CNN
(such as InceptionNet) to learn patterns associated with the outcome variable. 4: A risk prediction of
malignancy is output. Abbreviations: ROI: region of interest, CNN: convolutional neural network.
CT images taken from the public LUNGx dataset [97].

The lung health company Optellum have developed virtual nodule clinical software
based on a lung cancer prediction CNN (LCP-CNN). The IDEAL study is a two-phase study
aiming to validate the LCP-CNN retrospectively and prospectively across three healthcare
trusts [106]. While the prospective results are awaited, Baldwin et al. report an AUC of
89.6% for malignancy prediction, which outperforms a commonly used risk score (Brock),
with a reduction in false negatives, in retrospective evaluation [51]. It is likely that the
use of digital nodule-management tools for identifying and risk-stratifying nodules will
become commonplace in the next five years, although validation in different patient cohorts
will be required. For example, the DART study will evaluate the role of the LCP-CNN in
screen-detected nodules.

In addition to X-ray and CT modalities, early detection models trained on bi- or multi-
parametric MRI scans are also emerging. In one retrospective study by Schelb et al., a U-Net
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model was developed using T2 and diffusion-weighted MRI images from 312 patients
undergoing evaluation for prostate cancer [107]. The architecture provides probabilities
of each voxel (3D pixel) belonging to normal or abnormal prostate tissue and creates an
automated segmentation map of the relevant regions. The automated model achieved
comparable performance to clinical assessment of prostate lesions (sensitivity 88% vs.
92%, specificity 50% vs. 47%, respectively), and was highly accurate at whole-prostate
segmentation (Dice score 0.89) [107]. Many other studies support the conclusion that AI-
based early detection algorithms can achieve parity with clinical assessments of prostate
MRI, and again, commercial solutions are now available [108,109].

Aside from image-based approaches, there is increasing interest in the use of peripheral
blood biomarkers for early cancer detection, in part due to easier access to next-generation
sequencing (NGS) [110]. There are currently several FDA-approved liquid biopsy tests
available for therapeutic target detection, and in the United Kingdom, the Galleri trial
is exploring the utility of cell-free DNA in early cancer detection in a large multi-centre
study [111,112]. Many early detection approaches utilise high-dimension data, although
are good candidates for enhancement with AI. As recent examples, Tao et al. developed
a modified random forest algorithm to diagnose hepatocellular carcinoma using whole-
genome data, achieving a maximum validation AUC of 0.920 [113], and a DL model to
analyse the Raman spectroscopy of liquid biopsy blood exosomes had an AUC of 0.912
for lung cancer detection [114]. In the literature, a wide number of ML techniques have
been applied to liquid biopsy material, including linear models, support vector machines,
decision trees, and deep learning models, with excellent AUCs for cancer detection [115–
118]. CancerSEEK is a notable example: the test can detect eight common cancer types
through analysis of cell-free DNA, and is based on a random forest model evaluating
eight proteins and 1933 gene positions [118]. CancerSEEK can predict malignancy with an
AUC of 91%, and although performance varied across tumour groups, it identified a very
high proportion of ovarian and liver cancers [118]. It is likely that ML-enhanced methods
will play a central role in high-dimensional cancer biomarker analysis, particularly as the
amount of extractable data increases and the appetite to combine imaging with liquid
biopsy and digital pathology data evolves [119]. Anticipating this fact, and acknowledging
possible barriers to entry, Issadore and colleagues have developed a user guide for applying
ML to liquid biopsy data, as well as a web-based tool which automates model generation
without user input [120,121].

3.5. Early Detection of Recurrence

Another application of AI to oncology which is making strides is improved prognosti-
cation and earlier recurrence detection following treatment. In the pre-treatment setting,
accurate prognostication could facilitate personalised therapy [122], so that cases identified
as high-risk may be offered more intensive primary treatment, for example, radiotherapy
dose escalation, whereas lower risk patients could be stratified to less intensive treatment
to reduce side effects [123,124].

Post-treatment surveillance is a universally recommended aspect of cancer care, which
offers patients ongoing support for treatment-related side effects, reassurance and man-
agement of co-morbidities [125]. Increased surveillance intensity according to risk could
facilitate earlier treatment for recurrence, or improve early diagnoses of second primary can-
cers, especially where shared risk factors exist [126,127]. In addition, stratified surveillance
may enable optimal resource allocation and have significant financial benefits [128]. ML
using routinely available clinical data (patient, tumour and treatment characteristics) has
been able to predict recurrence of bladder cancer at 1, 3, and 5 years post-cystectomy with
greater than 70% sensitivity and specificity [129]. Such models provide a useful prognostic
benchmark in a tumour that otherwise lacks widely recognised biomarkers.

Digital pathology has also been utilised for ML-based recurrence prediction, and has
shown promise for several cancers including hepatocellular carcinoma (HCC), bladder,
melanoma and rectal cancers [130–133]. Yamashita et al. developed a deep learning model
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for recurrence risk following the surgical resection of HCC, with performance exceeding
TNM-based prognostication [131]. The model successfully stratified patients into high-
and low-risk groups with statistically significant survival differences [131]. Jones et al.
discovered that the ratio of desmoplastic to inflamed stroma predicts disease recurrence
in locally excised rectal cancer [133]. This novel marker can be assessed on a single H&E
section, thus offering easily accessible information to guide further management [133].

The number of imaging-based radiomic and DL models for the prognostication of
post-treatment recurrence has grown considerably over the last decade [134]. Shen et al.
used deep learning with PET scans to develop a model to predict local recurrence of cervical
cancer following chemoradiotherapy. Test set sensitivity and specificity were 71% and 93%,
respectively; however, the study was limited by a small, single-centre sample size [135].
Zhang et al. applied machine learning to pre-operative CT-derived radiomic and clinical
features to develop a recurrence prediction model for gastric cancer. With an external
test set AUC of 0.808 (confidence interval 0.732–0.881), this model lays the foundation for
future pre-operative personalised prognostic tools to guide further treatment in gastric
cancer [136].

DL combined with radiomics has been used to predict treatment failure following
stereotactic ablative radiotherapy (SABR) in NSCLC and make recommendations towards
individualised radiotherapy doses to reduce failure-risk [137]. When combined with clinical
features, the ‘Deep Profiler’ model had a concordance index of 0.72 (95% CI 0.67–0.77)
for predicting local treatment failure. Results from this study suggest the existence of
image-distinct subpopulations with varying sensitivity to radiation, and that AI can be
used to individualise radiotherapy doses [137].

4. Challenges and Future Directions

The promise of healthcare AI comes with several challenges, including ethical con-
siderations, algorithmic fairness, data bias, governance and security [138–140] (Figure 6).
Developing ethical principles and frameworks is the subject of significant ongoing work in
healthcare AI [141]. The WHO have called on healthcare AI stakeholders to ensure that
new technologies place ethics and human rights at the centre of their design and use [142].
Although a detailed analysis of ethical issues is beyond the scope of this review, we have
previously discussed common concerns, including the black-box nature of AI decisions,
the impact on patient experience and shared decision-making, and where responsibility
lies if AI fails to make accurate predictions [143].

Cancers 2022, 14, x  12 of 21 
 

 

 
Figure 6. Challenges and possible solutions to improve the robustness of AI models in the future. 

As the field evolves, there is increasing awareness of the negative consequences of 
model bias, particularly in respect to demographic characteristics such as sex and ethnic-
ity. As one example, an AI-tool for diagnosing skin cancer based on 129,450 clinical images 
achieved parity with dermatologists [144], but less than 5% of images pertained to darker 
skin, drawing criticism about reproducibility and external validity [145]. A large meta-
analysis published recently concluded that ethnicity data are available for only 1.3% of 
images in publicly available skin datasets, with ‘substantial underrepresentation of darker 
skin types’ [146]. A commentary by Robinson et al. highlights that understanding and 
addressing structural racism and bias is likely to improve both model accuracy and exter-
nal validity, and we hope that measures to describe ethnic distributions and address bi-
ases will become increasingly adopted [147].  

Data curation and storage can be time consuming and costly, and with the increasing 
focus on data stewardship amongst the scientific community, many agencies now require 
clear plans for data management from the outset [148]. The FAIR guiding principles for 
data management aim to assist researchers in good data stewardship, as well as in max-
imising the utility of datasets to the broader research community [148].  

The requirement for large sets of labelled data for model training, which are time 
consuming and costly to generate, presents a significant challenge to researchers. Methods 
to circumvent data limitations have historically included transfer learning, whereby mod-
els pre-trained on larger datasets, such as ImageNet, are applied to a new problem [149]. 
However, as the field evolves sophisticated solutions are arising, including self-super-
vised learning, whereby visual representations of unannotated data are used to assign 
labels based on similarity measures [150,151]. A recent Google paper showed that this 
approach had better image classification performance than traditional labelled methods 
[152]. Many groups are also utilising synthetic data to boost sample sizes. For example, 
Liu et al. used a generative adversarial network (GAN) to create synthetic serum glyco-
sylation data, leading to improvements in hepatocellular carcinoma diagnosis and staging 
[153].  

Data security is also an ongoing concern, especially in light of recent high-profile 
leaks and the potential threat of inference attacks [154,155]. Approaches are emerging to 
improve data security and reduce the risks associated with transferring data across mul-
tiple institutions. In 2016, Google introduced the term ‘Federated Learning’, referring to 

Figure 6. Challenges and possible solutions to improve the robustness of AI models in the future.



Cancers 2022, 14, 1524 12 of 20

As the field evolves, there is increasing awareness of the negative consequences of
model bias, particularly in respect to demographic characteristics such as sex and ethnicity.
As one example, an AI-tool for diagnosing skin cancer based on 129,450 clinical images
achieved parity with dermatologists [144], but less than 5% of images pertained to darker
skin, drawing criticism about reproducibility and external validity [145]. A large meta-
analysis published recently concluded that ethnicity data are available for only 1.3% of
images in publicly available skin datasets, with ‘substantial underrepresentation of darker
skin types’ [146]. A commentary by Robinson et al. highlights that understanding and
addressing structural racism and bias is likely to improve both model accuracy and external
validity, and we hope that measures to describe ethnic distributions and address biases will
become increasingly adopted [147].

Data curation and storage can be time consuming and costly, and with the increasing
focus on data stewardship amongst the scientific community, many agencies now require
clear plans for data management from the outset [148]. The FAIR guiding principles for data
management aim to assist researchers in good data stewardship, as well as in maximising
the utility of datasets to the broader research community [148].

The requirement for large sets of labelled data for model training, which are time
consuming and costly to generate, presents a significant challenge to researchers. Methods
to circumvent data limitations have historically included transfer learning, whereby models
pre-trained on larger datasets, such as ImageNet, are applied to a new problem [149].
However, as the field evolves sophisticated solutions are arising, including self-supervised
learning, whereby visual representations of unannotated data are used to assign labels
based on similarity measures [150,151]. A recent Google paper showed that this approach
had better image classification performance than traditional labelled methods [152]. Many
groups are also utilising synthetic data to boost sample sizes. For example, Liu et al. used a
generative adversarial network (GAN) to create synthetic serum glycosylation data, leading
to improvements in hepatocellular carcinoma diagnosis and staging [153].

Data security is also an ongoing concern, especially in light of recent high-profile
leaks and the potential threat of inference attacks [154,155]. Approaches are emerging
to improve data security and reduce the risks associated with transferring data across
multiple institutions. In 2016, Google introduced the term ‘Federated Learning’, referring
to the process of training models peripherally without movement of sensitive data to the
central institution [156]. Kaissis et al. recently released PriMIA (privacy-preserving medical
image analysis), an open-source framework to enable federated medical imaging analysis
of encrypted data across institutions [157]. The process works by sending the untrained
model from the central server, training it locally at each institution, and periodically
aggregating the results centrally for inference. The authors deployed a federated DL model
for paediatric chest X-ray classification across three institutions, which performed as well as
non-secure local models and was robust to model inversion attacks [157]. Such approaches
may help to allay data sharing concerns in the future.

Perhaps the most significant criticism of AI is that many models have not been evalu-
ated with the same rigour as expected for other medical interventions. Firstly, as mentioned
above, some tools have been used clinically without peer-reviewed publication, meaning
they have not been subjected to the standard of rigorous adversarial feedback expected
by the scientific community. Moreover, if the methodology is not published it cannot
be reproduced, which is concerning given claims of an ongoing reproducibility crisis in
academia [158]. In addition, despite the rapid rise in AI publications utilising extremely
large datasets, there is a notable paucity of prospective studies [159]. The randomised con-
trol trial (RCT) has long been the gold standard for medical interventions, but again, these
are highly uncommon for AI models [159]. This is a problem, because the few RCTs we do
have suggest performance is likely to drop when evaluated under RCT conditions [160]. A
recent systematic review of AI systems in breast cancer screening found that many were of
poor methodological quality, and promising results from small studies did not carry over
to larger trials [161]. Finally, many retrospective models are not externally validated, again
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leading to overly optimistic performance estimates [162]. Models which are not externally
validated do not provide good evidence of generalisability required for clinical adoption.
A number of frameworks have been developed to improve the standard of healthcare
AI publications, including CONSORT-AI, SPIRIT-AI and TRIPOD-AI [163], as well as a
toolkits to empower clinicians to critically appraise such studies [164].

5. Conclusions

We have seen that the application of AI to healthcare data has the potential to revolu-
tionise early cancer diagnosis and provide support for capacity concerns through automa-
tion. AI may allow us to effectively analyse complex data from many modalities, including
clinical text, genomic, metabolomic and radiomic data.

In this review, we have identified myriad CNN models that can detect early-stage
cancers on scan or biopsy images with high accuracy, and some had a proven impact on
workflow triage. Many commercial solutions for automated cancer detection are becoming
available, and we are likely to see increasing adoption in the coming years.

In the setting of symptomatic patient decision-support, we argue that caution is needed
to ensure that models are validated and published in peer-reviewed journals before use.
Moreover, we identified a number of challenges to the implementation of AI, including
data anonymisation and storage, which can be time-consuming and costly for healthcare
institutions. We also addressed model bias, including the under-reporting of important
demographic information such as race and ethnicity, and the implications this can have
on generalisability.

In terms of how study quality and model uptake can be improved going forwards,
quality assurance frameworks (such as SPIRIT-AI), and methods to standardise radiomic
feature values across institutions, as proposed by the image biomarker standardisation
initiative, may help [165]. Moreover, disease-specific, ‘gold standard’ test sets could help
clinicians benchmark multiple competing models more readily.

Despite the above challenges, the implications of AI for early cancer diagnosis are
highly promising, and this field is likely to grow rapidly in the coming years.
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