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Simple Summary: Elevated expression of Metastasis-Associated in Colon Cancer 1 (MACC1) has
been identified as a strong prognostic marker of adverse outcomes for human colorectal (CRC) and
other solid cancers. The biological basis of high MACC1 expression and the context of its occurrence
are still poorly understood. This study investigated whether chromosomal instability and somatic
copy number alterations (SCNA) frequently occurring in CRC contribute to MACC1 dysregulation,
with prognostic and predictive impact.

Abstract: Metastasis-Associated in Colon Cancer 1 (MACC1) is a strong prognostic biomarker in-
ducing proliferation, migration, invasiveness, and metastasis of cancer cells. The context of MACC1
dysregulation in cancers is, however, still poorly understood. Here, we investigated whether chro-
mosomal instability and somatic copy number alterations (SCNA) frequently occurring in CRC
contribute to MACC1 dysregulation, with prognostic and predictive impacts. Using the Oncotrack
and Charité CRC cohorts of CRC patients, we showed that elevated MACC1 mRNA expression was
tightly dependent on increased MACC1 gene SCNA and was associated with metastasis and shorter
metastasis free survival. Deep analysis of the COAD-READ TCGA cohort revealed elevated MACC1
expression due to SCNA for advanced tumors exhibiting high chromosomal instability (CIN), and
predominantly classified as CMS2 and CMS4 transcriptomic subtypes. For that cohort, we validated
that elevated MACC1 mRNA expression correlated with reduced disease-free and overall survival. In
conclusion, this study gives insights into the context of MACC1 expression in CRC. Increased MACC1
expression is largely driven by CIN, SCNA gains, and molecular subtypes, potentially determining
the molecular risk for metastasis that might serve as a basis for patient-tailored treatment decisions.

Keywords: CRC; MACC1; gene copy number alteration; gene expression; survival

1. Introduction

Metastatic dissemination of primary tumors is directly linked to patient survival rep-
resenting the most lethal attribute of cancer. It critically limits successful therapy in many
tumor entities. Biomarkers identifying cancer patients at high risk for metastasis and si-
multaneously acting as key drivers for metastasis are extremely desired. Until today, about
25–30% of all colorectal cancer (CRC) patients are already distantly metastasized when
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presenting the first time (stage IV); 40–50% of all patients newly diagnosed with CRC with-
out distant metastases (stages I–III) will develop distant metastasis later (metachronously)
after primary surgery, which is significantly linked to shorter survival. Patient survival
is about 80% in the early stages, but below 10% when distant metastases occurred [1–3].
Thus, novel prognostic tools for patient stratification identifying those patients at high risk
for distant metastasis in early stages followed by tailored novel therapeutic options are
ultimately desired.

We discovered the novel, previously undescribed gene Metastasis-Associated in Colon
Cancer 1 (MACC1) in human CRC in our group [4]. MACC1 induces fundamental processes,
such as proliferation, migration, invasiveness, and metastasis formation in xenografted
and transgenic mice [5,6]. Meanwhile, MACC1 has been established by us and many
groups as a key player, and prognostic and predictive biomarker for tumor progression
and metastasis in more than 20 solid cancer entities, including CRC, with meta-analyses to
solid cancers, hepatocellular cancer, and gastrointestinal tract cancers, such as CRC and
gastric cancer [7–12].

High MACC1 expression levels, determined in the primary tumor or in cancer patient
blood, predict tumor aggressiveness and metastasis formation linked to shorter patient
survival [6,13]. Identification of the MACC1 gene promoter has unveiled transcription
factors and respective transcription factor binding sites regulating the transcription of the
metastasis inducer MACC1 [14,15]. Post-transcriptional regulations of MACC1 expression
by miRNA, lnc-RNA and circRNA are also reported [5,16].

Genetic factors might provide additional layers for MACC1 expression regulation
resulting in phenotypical features of cell proliferation, dissemination, and motility, and
more importantly link to tumor progression, metastasis formation, treatment response, and
ultimately, to patient survival.

For CRC, single nucleotide polymorphisms (SNPs) were reported in intronic regions 1,
2 and 6 as well as in the coding region of MACC1 [17–19]. Some of these SNPs were found
to be clinically relevant and were linked to shorter patient survival as well as increased
risk for metachronous metastasis for patients younger than 60 years with stage I or II CRC
tumors (rs1990172, rs975263) or increased risk of recurrence after liver transplantation
(rs1990172, rs975263). Further clinically relevant MACC1 SNPs were identified for breast
cancer [20–22] and hepatocellular carcinoma [23]. Besides SNPs, somatic copy number
alteration (SCNA) might have a prognostic and predictive impact for MACC1 expression
regulation and function. Here, we hypothesized a potential correlation of SCNA of MACC1
as a novel regulatory category of MACC1 expression levels and association with molecular
CRC subtypes. Therefore, we proved independent CRC patient cohorts to determine
whether high MACC1 expression was associated with genomic alteration events occurring
in CRC tumors, whether they could predict metastasis formation in early-stage patients.
Next, by using the TCGA colon and rectum adenocarcinoma (COAD-READ) cohorts, we
have refined the context of MACC1 expression with CRC molecular subtypes and the
association with cancer patients’ clinical outcomes. Altogether, these analyses contribute
to a better understanding of MACC1 expression modalities in CRC and their impact on
patient prognosis.

2. Materials and Methods

Information about the CRC cohorts used is presented in Table S1.

2.1. Oncotrack Cohort of CRC Patients

In this cohort, tumor tissue samples of 106 CRC patients collected by the Oncotrack
consortium (RRID:SCR_003767) were analyzed. All experiments were performed in ac-
cordance with the guidelines approved by the institutional review boards, number EA
1/069/11, of the Charité–Universitätsmedizin Berlin, Germany, and the ethics committee of
the Medical University Graz, confirmed by the ethics committee of the John of God Hospital
Graz (23-015 ex 10/11). All patients gave their written consent. The authors complied with
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all relevant ethical regulations for research involving human participants. For detailed
patient characteristics and for all methodological aspects, please see Schütte et al. [24].

2.2. SCNA and Gene Expression Analysis of the Oncotrack Cohort

The OncoTrack CRC cohort was analyzed as previously published [25]. In brief,
MACC1 SCNA was estimated from whole genome or exome sequencing data. DNA reads
were aligned to the human reference genome hg19 using BWA (bwa0.7.7-r441-mem for
75/101 bp, bwa0.5.9-r16-aln for 51 bp reads, RRID:SCR_010910). SCNA was estimated
using the BICSeq algorithm and the read coverage data of tumor versus normal pairs [26].
We inferred ploidy using the B allele frequencies of heterozygous germline variants. For
low coverage whole genome sequencing without matching blood data, we used as a proxy
an electronic pool of six sex-matched normal samples.

For MACC1 expression, RNA reads were aligned to hg19 using BWA and SAM tools
(RRID:SCR_002105). Mapped reads were annotated using Ensembl v70 (RRID:SCR_002344).
Gene expression levels were quantified in reads per kilobase of exon per million mapped
reads (RPKM).

2.3. Charité Metastasis Cohort of CRC Patients

For this study, tumor tissue samples of 35 CRC patients were analyzed. All experi-
ments were carried out in accordance with the guidelines approved by the institutional
review board, number AA3/03/45, of the Charité–Universitätsmedizin Berlin, Germany.
All patients gave their written consent (Charité–Universitätsmedizin, Berlin, Campus
Mitte). The authors complied with all relevant ethical regulations for research involving
human participants.

All patients were without familial history of CRC, did not receive any prior cancer
treatment, and underwent R0 resection of the primary tumor (complete resection with no
microscopic residual tumor). Snap frozen samples were subjected to molecular analysis.
For detailed patient characteristics: see Table S2.

2.4. DNA Isolation and ddPCR

For quantification of MACC1 SCNA in tumor tissue of CRC patients from the Charité
Metastasis cohort, genomic DNA was isolated using the Charge Switch gDNA Micro
Tissue Kit (Thermo Fisher, Waltham, MA, USA) according to manufacturer’s instruction.
DNA was dissolved in water and quantified using NanoDrop 2000 spectrophotometer
(RRID:SCR_018042). Equal amounts were used for copy number analysis in droplet digital
PCR (ddPCR). In brief, the reaction mix was prepared using 1× EvaGreen Supermix (Bio-
Rad, Hercules, CA, USA), 100 nM of each primer (Biotez, Berlin, Germany) 10 U BamHI
(Fermentas now Thermo Fisher, Waltham, MA, USA) and 10 ng genomic DNA. The primers
used are presented in Table S3.

For droplet generation, the DG8 cartridges were filled with complete master mix
and oil (Bio-Rad) at the respective positions, using the QX200 droplet generator (Bio-
Rad, RRID:SCR_019707). The partitioned reaction mix containing up to 20,000 droplets
was transferred carefully using a multichannel pipette equipped with filter tips (Rainin)
to 96-well plates (Eppendorf, Germany). After initial denaturation at 95 ◦C for 10 min,
40 PCR cycles were performed in a T100 Thermal Cycler PCR machine (Bio-Rad) each
built of 94 ◦C/30 s, 58 ◦C/30 s, and 98 ◦C/10 min. For quantification of PCR product
positive droplets, the sealed plates were moved to the QX200 droplet reader (Bio-Rad,
RRID:SCR_019707). Droplet counts were analyzed, and Poisson corrected using the Quan-
taLife software package (Bio-Rad).

2.5. TCGA COAD-READ Cohorts of CRC Patients

MACC1 expression modalities in normal colon and in CRC were analyzed by using
the COAD-READ dataset which was generated by The Cancer Genome Atlas Network
(TCGA, (RRID:SCR_003193)). The TCGA data were downloaded from the Firehose platform
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(https://gdac.broadinstitute.org/ (accessed on 8 May 2018)). The collected cohort consists
of a total of 632 cancer patients with clinical information (Figure S2). Most of the resected
tumors, as well as normal tissues taken adjacent to the tumors, were analyzed for molecular
features. A total of 431 samples had available RNA-Seq data, of which 380 were tumors
and 51 were normal tissues; 598 tumor samples had SNP6.0 array profiling for SCNA
and somatic mutations were available for 473 tumor samples obtained from paired tumor
and normal tissue analyses by whole exome and whole genome sequencing. The study
was extended by using the dataset reported by Wang et al. [27] and that merged the
transcriptome of the COAD-READ cohort with those of the normal colon tissues from
the Genotype-Tissue Expression (GTEx, (RRID:SCR_013042)) project. In depth molecular
characteristics and subtypes of the COAD-READ samples and details about cancer patients
were taken from the publication of Liu et al. [28].

2.6. Statistical Analysis

Statistical analyses were carried out using GraphPad software (RRID:SCR_002798)
and the “R” statistical computing environment (RRID:SCR_001905) and associated mod-
ules from Bioconductor (RRID:SCR_006442), in the Linux operating system (Ubuntu,
12.04.5 [29]). The association between MACC1 gene ploidy and expression, with clini-
cal data (tumor location, grade, lymph node invasion or metastatic status) and molecular
subtypes were conducted by using the Mann–Whitney test or Kruskal–Wallis test. The
prognostic value of MACC1 was assessed by univariate and multivariate Cox analysis
against metastasis-free, disease-free and overall survival (MFS, DFS, OS), and in different
patient subgroups according to the CRC subtype status. For all subsequent analyses, the
median was used as the cut-off point for MACC1 expression. Survival probabilities were
calculated according to the Kaplan–Meier method, and group differences were assessed by
the log rank test. Multivariate p-values were based on Wald statistics. Statistical analysis
was performed with ”R” statistical software version 3.6.3 using the “survival” package
(RRID:SCR_021137) [29].

2.7. Data Availability

The sources of the molecular data used in this study are indicated in Table S1.

3. Results
3.1. Correlation between Increased MACC1 SCNAs and Elevated Expression Levels in CRC
Patient Samples (Oncotrack Cohort)

We first tested for MACC1 expression level dependency on gene SCNA in human
tumors. Based on the Oncotrack cohort data (see material and methods) in which both
MACC1 SCNA and mRNA expression information was available for 90 tumors, we ob-
served that MACC1 expression levels were tightly copy number dependent (p = 0.002,
Kruskal–Wallis test, excluding 1N as category due to small sample size) (Figure 1A). Com-
pared to samples with no somatic copy number alteration (SCNA = 2N) there was an
increase of MACC1 expression level with increased SCNA that was further elevated with
each gain of MACC1 copy number. Surprisingly, one sample showed no MACC1 expres-
sion after the loss of one genomic MACC1 copy. The highest MACC1 expression levels
were found in human CRC with 4N and >4N. Thus, we identified an additional layer
that regulates MACC1 expression, potentially indicating the patient´s risk for metastasis
formation. We further showed that the MACC1 SCNA and elevated mRNA expression
correlated with higher protein levels by using data issued from the proteogenomic study
published by Vasaikar et al. [30] (Figure S1) (data and figure accessible via the cbio portal:
https://www.cbioportal.org/, accessed on 8 March 2022).

https://gdac.broadinstitute.org/
https://www.cbioportal.org/


Cancers 2022, 14, 1749 5 of 17

Figure 1. Overlay of copy number, expression of MACC1, and metastasis in the CRC OncoTrack
cohort and Charité metastasis cohort. (A), Box plot shows expression distribution of samples with
different copy number estimates for MACC1. The copy numbers are indicated below each box (xN).
The number of samples per group is shown in brackets. (B), MACC1 SCNA in patients with and
without metastasis. Patients with known metastasis status and MACC1 gene expression level were
assessed for MACC1 copy number. Patients with low MACC1 gene expression and no metastasis
showed less genomic MACC1 copies compared to patients with unfavorable high MACC1 gene
expression and diagnosed metastasis. (C), Receiver operating characteristic (ROC) curve to define the
cut-off value for MACC1 gene copy number discriminating patients in groups above and below this
threshold. The maximum of the Youden-index (J = Sensitivity + specificity− 100) was used to identify
this value. (D), Kaplan-Meier analysis showing CRC patient metastasis-free survival stratified by
tumor MACC1 gene copy number (SCNA > cut-off vs. SCNA > cut-off). The median was used as the
cut-off point for MACC1 expression.

3.2. Correlation between Increased MACC1 SCNAs, Elevated Expression Levels and Metastasis
Formation in CRC Patients (Charité Cohort)

By using the Charité cohort (N = 35), we tested next for a correlation of CRC patients,
who are low in MACC1 and have no distant metastasis, and those patients who are high in
MACC1 and have metastasis, with respect to SCNA. Impressively, we found significantly
higher SCNAs in the MACC1 high/with metastasis group vs. MACC1 low/no metastasis
(Mann–Whitney p = 0.008, t-test p = 0.005; Figure 1B). The grouping in MACC1 low/high
expressing patients was performed earlier by ROC analysis [4] (Figure 1C). The median
metastasis-free survival SCNAs < cut-off vs. > cut-off is significantly different (p = 0.0035
log-rank (Mantel–Cox) and p = 0.002 Gehan–Breslow–Wilcoxon; cut-off = 3.34 copies)
(Figure 1D). This cut-off was associated with a sensitivity of 77.78% and a specificity of
76.92%. For SCNA > cut-off patients, the metastasis-free survival was 42.47 months; for
the SCNAs < cut-off patients, the metastasis-free survival was undefined (these patients
do not have any metastasis). The longest follow-up time was 168 months (then the patient
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died), the shortest was 8 months. Taken together, by the inclusion of the MACC1 SCNA, we
cannot only predict the MACC1 expression level but potentially also the distant metastatic
capacity of CRC patients.

3.3. Correlation between Increased MACC1 SCNA, Elevated Expression Levels and Clinical,
Molecular Subtypes, and Patient Survival Variables (TCGA COAD-READ Cohort)
3.3.1. Association with Anatomopathological Parameters

We aimed to confirm that MACC1 expression was dependent on tumor genetic back-
ground on a larger scale. We analyzed the modalities of MACC1 mRNA expression within
the COAD and READ cohorts from the TCGA (details of the cohorts: see material and
methods and Figure S2). Overall, MACC1 expression (RNA-Seq, RSEM normalized, log2
transformed; [31]) varied from 5.45 to 13.07. In both COAD and READ cohorts, tumors
expressed higher MACC1 levels than normal tissues (Wilcoxon test: COAD: p < 2.2 ×
10−16, READ: p = 2.4 × 10−7) (Figure 2A). High MACC1 expression in tumor samples
was further confirmed with a derived dataset reported by Wang et al., 2018 [27] in which
COAD-READ tumors were unified with 729 normal tissues from the GTEx database
(https://gtextportal.org/home/, accessed on 08 May 2018) (median: COAD tumors =
6.7, and GTEx normal colons = 3.65; READ tumors = 7.14, GTEx normal rectums = 3.52,
Wilcoxon test: both p < 2.2 × 10−16) (Figure S3A). In both analyses, MACC1 expression
levels did not differ in normal samples from proximal and distal parts of the colon and
rectum. MACC1 level was found to be slightly higher in the READ cohort compared to
COAD (median: READ = 10.7; COAD = 10.4, Wilcoxon test: p = 0.011) (Figure 2A), with
READ tumors expressing overall higher levels of MACC1 compared to those of the COAD
cohort (median: COAD tumors = 10.49; READ tumors = 10.74, Wilcoxon test p = 0.013).
Of note, the analysis also revealed higher variability of MACC1 expression among COAD
tumor samples, with notably some outliers with very low values (<8) (COAD ranged from
5.58 to 12.55; READ: 8.99 to 13.07). Similar observations were made in the data set of
Wang et al. [27] dataset (Figure S3A).

We next confirmed that, as primarily observed in the Oncotrack cohort data, MACC1
was subjected to SCNAs (SCNA 6= 0) in 62% of the tumors of the COAD-READ cohort
(N = 233/374) and that increased MACC1 SCNA correlated with increased mRNA expres-
sion (median: SCNA (−1) = 9.36, SCNA (0) = 10.17, SCNA (1) = 10.81, SCNA (2) = 12.2,
Wilcoxon test: p < 2.2 × 10−16) (Figure S3B).

We tested the association of MACC1 expression with clinical and pathological parame-
ters. We found that MACC1 expression levels varied depending on the tumor localization
with an expression that was higher in tumors from the distal part than the proximal (median:
cecum = 10.18; ascending colon = 10.54, transverse colon = 10.49, descending colon = 10.46,
sigmoid colon = 10.8, rectum = 10.7, Anova test: p = 5.5 × 10−5) (Figure 2B). Tumors with
highest MACC1 expression (>11) were mostly localized in descending colon and rectum,
particularly at the sigmoid and recto-sigmoid junction (median: sigmoid-rectosigmoid =
10.8; others = 10.46, Wilcoxon test: p = 3.9 × 10−5 (Figure S3C). By contrast, among tumors
localized in the cecum, there was a subset (n = 7/76) with very low MACC1 expression (<8)
that was not seen in tumors localized in the other anatomic sites. In this cohort, high MACC1
expression was associated with higher tumor stages (median: stage I–II = 10.45, stage III–IV
= 10.62, Wilcoxon test: p = 0.013) (Figure 2C) and nodal invasion (median: N0 = 10.49; N1
= 10.62, Wilcoxon test: p = 0.03) (Figure 2D), association with metastatic status was only
modest (median: M0 = 10.54, M1 = 10.77, Wilcoxon test: p = 0.26) (Figure 2E). No significant
association was found between MACC1 levels and size of primary tumors (Figure 2F).

https://gtextportal.org/home/
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Figure 2. MACC1 expression in the COAD-READ dataset. (A), Box plot showing MACC1 mRNA
expression values of the COAD and READ samples stratified by normal or tumor tissue types.
(B–F), MACC1 mRNA expression by tumor (B), localization, (C), stage, (D), patient nodal invasion,
(E), patient metastatic status, (F), size. Box plots (A–F), MACC1 data are RNA-Seq data RSEM-log2
transformed, horizontal bars indicate median values, boxes are interquartile range, whiskers indicate
values within 1.5 times interquartile range. The number of samples (N) per group is given in brackets.

3.3.2. Association with Tumor Subtypes and Molecular Characteristics

We next analyzed MACC1 SCNA and expression in the context of CRC subtypes.
For this, we used the sample subtype annotations provided by Liu et al. [28], that were
available for 243/638 tumor samples of the COAD-READ cohort (Table S1). In this tumor
subset, we validated that high MACC1 expression correlated with increased SCNA and
occur preferentially in tumors located in the distal part of the colon (Figure 3A). We noticed,
additionally, that the gene was rarely mutated (COAD: 24/367—7%; READ: 4/121—3%).
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Figure 3. MACC1 mRNA expression and CRC molecular subtypes. (A), Landscape showing the
association of MACC1 SCNA and expression according major colorectal-cancer-associated subtypes
including MSI status, genomic subtypes, hypermutation status, hypermethylation, consensus molecular
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subtypes (CMS), tumor location and genes commonly mutated in CRC. (B), Donut chart representing
the percentage distribution of each genomic molecular subtype in the Liu et al. COAD-READ tumor
subset. (C), Box plot of MACC1 mRNA expression by tumor molecular subtypes (genomic). HM-SNV
was excluded from the analysis due to small sample size. (D), Donut chart showing the percentage
of tumors classified according to the consensus molecular subtypes (CMS 1–4), CMSx are mixed
or indeterminate. (E), Box plot showing the distribution of the MACC1 mRNA expression in the
different CMS tumor subtypes. (C,E), horizontal bars indicate median values, boxes are interquartile
range, whiskers indicate values within 1.5 times interquartile range.

The genomic subtypes of these CRC samples were microsatellite instable (MSI: 36;
14.8%), hypermutated-single nucleotide variants (HM-SNV: 3; 1.2%; hypermutated defined
by mutation density >10 per megabase (Mb)), genomic stable (GS: 33; 13.6%) and chromo-
some unstable (CIN: 171; 70.4%) (Figure 3B). High MACC1 SCNAs and high expression
levels were mostly observed for CIN tumors, whereas MSI, HM-SNVs and GS tumors with
normal ploidy had lower MACC1 expression levels (median: CIN = 10.8, GS = 10.29, HM-
SNV = 9.92, MSI = 9.65, Wilcoxon test: CIN vs. MSI: p = 1.4 × 10−10, CIN vs. GS: p = 0.0001,
HM-SNV was excluded from the analysis due to small sample size) (Figure 3A,C). When
CIN tumors are subclassified as Focal or Broad depending on the length of the gene copy
number alterations [28], CIN tumors with MACC1 SCNA are preferentially classified into
the CIN-Focal group (71%) than in the CIN-Broad (29%). However, the difference of
MACC1 mRNA expression between both the CIN-Broad and the CIN-Focal groups was
not significant (Figure S4A), Wilcoxon test p = 0.53). In contrast, the subset of tumors
with a very low MACC1 expression belonged mostly to the MSI tumors having normal
ploidy (Figure 3A,C). The low MACC1 expression was also associated with high CpG island
methylator phenotype (CIMP-H), predominantly observed in MSI tumors [32], compared
to CIMP-low (CIMP-L) or non-CIMP (median: CIMP-H = 10.18, CRC CIMP-L = 10.54,
non-CIMP = 10.77; Wilcoxon test: p = 0.0035 and p = 0.0046, respectively) (Figure S4B).

To obtain more insight into the genetic background and aggressive phenotype associ-
ated with MACC1 expression, we tested whether certain mutated genes can be associated
with its expression levels (cohort of 243 tumors with both transcriptomic and mutation
data). Focusing first on CRC-related cancer genes, we found only some weak associations.
MACC1 expression was lower in tumors mutated for KRAS (median: mutated = 10.52; wild
type = 10.76; Wilcoxon p = 0.005), irrespective of G12 or G13 mutation types and POLE
(catalytic subunit of DNA polymerase epsilon; median: mutated = 10.02; wild type = 10.61;
Wilcoxon test: p = 0.042) genes, whereas no other significant association was found for the
other genes (Figure 3A, Table S4).

MACC1 was next analyzed in the context of the transcriptomic-based consensus molec-
ular subtypes (CMSs) which were established based on the tumor gene expression [33]. In
the cohort reported [28], CRCs classified into CMS1 35/243 (microsatellite instability im-
mune, 14.4%), CMS2 80/243 (canonical, 32.9%), CMS3 30/243 (metabolic, 12.3%) and CMS4
63/243 (mesenchymal, 25.9%), and CMSx 35/243 (indeterminate or undefined: 14.4%)
(Figure 3D). MACC1 expression levels were associated with the tumor CMS subtypes (me-
dian: CMS1 = 10.1, CMS2 = 10.8, CMS3 = 10.2, CMS4 = 10.6, Kruskal–Wallis test p = 1.6
× 10−6) (Figure 3A,E). MACC1 expression was higher in tumors of the CMS2 subtype
compared to CMS1 and CMS3 (Wilcoxon test p = 1.5 × 10−6 and p = 0.003, respectively)
but not CMS4. Similarly, MACC1 was higher in CMS4 subtype than in CMS1 and CMS3
(Wilcoxon test p = 5.3 × 10−5 and p = 0.025, respectively). MACC1 levels tended to be
lower in CMS1 than in CMS3 subtype (Wilcoxon test p = 0.1). In summary, we showed here
that tumors with high MACC1 expression and increased SCNAs were mostly seen in CIN
tumors of the CMS2 subtype, which is the epithelial type with marked WNT activation,
and of the CMS4 subtype defined as mesenchymal with prominent transforming growth
factor activation, stroma invasion and angiogenesis. Tumors of the CMS3 subtype were
frequently GS with overall lower MACC1 expression levels. Finally, the CMS1 subtype
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aggregated mostly MSI, HM-SNV and CIMP-H tumors with normal ploidy and frequently
very low MACC1 mRNA expression.

We also investigated MACC1 expression with the immune contexture of the tumors.
We used the quanTIseq deconvolution method [34] to quantify the fractions of immune
cell types from bulk COAD-READ RNA-Seq tumor samples (N = 380). Each sample
was analyzed for respective content of ten immune cell types including B cells, M1 and
M2 macrophages, monocytes, neutrophils, natural killer (NK), CD4+ and CD8+ T cells,
regulatory T cells (Tregs) and dendritic cells, versus the content of any other cell type
present in the sample. The overall immune cell content ranged from 12% to 60% (median =
26%). Among the immune cells, neutrophils have the highest percentage in COAD-READ
tumors (median = 9.1%), followed by M1 macrophages (median = 4.7%), while monocytes
were not detected. High MACC1 mRNA levels positively correlated with non-immune cell
content (rho = 0.19, p = 0.0002) and negatively with sample overall immune cell content
(rho = −0.18, p = 0.0003) (Figure S5). MACC1 levels mostly inversely correlated with the
proportion of CD8+ T cells (rho = −0.21, p = 2.43 × 10−5), M1 macrophages (rho = −0.18, p
= 0.0004) and Treg cells (rho = −0.14, p = 0.005).

3.3.3. Association with CRC Patient DFS and OS

In the COAD-READ cohort, we tested the association between MACC1 SCNA, ele-
vated mRNA expression and CRC patients DFS and OS. For that, we merged clinical
and molecular data that were available for 372 patients. The clinical data were ob-
tained from firehose (http://firebrowse.org/, accessed on 9 May 2018). Curated DFS
and OS information were collected from the National Cancer Institute website at: https:
//gdc-portal.nci.nih.gov/legacy-archive/, accessed on 12 July 2021 [35]. MACC1 cut-offs
were set at: SCNA > 0 and mRNA (log2) > 10.57 (corresponding to the median of MACC1
expression) to dichotomized CRC tumors.

In univariate analysis, we found that MACC1 expression but not SCNA was sig-
nificantly associated with patient DFS (MACC1 > 10.57: HR: 1.88; 95% CI [1.27 to 2.88];
Wald test p = 0.003) and OS (MACC1 > 10.57: HR: 1.77; 95%CI [1.14 to 2.74]; Wald test
p = 0.01) (Figure 4A). Large tumor sizes, advanced cancer stages, lymph node invasion and
metastatic status were, as expected, strong predictors of shorter DFS and OS in this patient
cohort (all: p < 0.05). Patient age was also associated with shorter OS (p < 0.05) but not DFS.

The association of MACC1 expression with patient DFS and OS was further assessed
by multivariate analysis against tumor size and stage, nodal and metastatic status. With
this parameter combination, MACC1 expression did not retain significance for association
with both DFS and OS (p = 0.1 and p = 0.18, respectively); the patient metastatic status
remained the only parameter significantly associated with DFS and OS (p = 0.002 and p =
0.03, respectively) (Figure 4A). By removing metastatic status from the analysis, we showed
that high MACC1 expression and high tumor size were independent predictors of reduced
DFS (p = 0.02 and p = 0.03, respectively) (Table S5). For OS, while MACC1 expression
showed a similar trend than for DFS (p = 0.11), only the tumor stage was statistically
significant (p = 0.001).

In Kaplan–Meier and log-rank testing analyses combining both MACC1 SCNA and
mRNA expression, we delineated four subsets of CRC patients with distinct DFS (p = 0.01,
Figure 4B) and for OS (p = 0.05, Figure 4C). Patients with tumors having both MACC1
SCNAs and high mRNA expression presented the shortest outcome with a median DFS
and OS of 40 and 56 months, respectively. Those having high MACC1 mRNA expression
without SCNA had also a short outcome with median DFS and OS of 59 and 62 months,
respectively. Interestingly, we noticed that tumors with MACC1 SCNA and high expres-
sion predict faster disease progression and death when compared to tumors having high
mRNA expression but no SCNA (Figure 4B,C). In contrast, the patients carrying tumors
without MACC1 SCNA and with low mRNA levels had longer DFS and OS of 75 and 100
months, respectively. There was also a subset of tumors with MACC1 SCNA that was not
accompanied by a particularly high mRNA expression. These patients also had a longer

http://firebrowse.org/
https://gdc-portal.nci.nih.gov/legacy-archive/
https://gdc-portal.nci.nih.gov/legacy-archive/
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DFS of 109 months; for OS, the curve did not drop to a probability below 50%, thus the
median cannot be computed.

Figure 4. MACC1 SCNA and expression and CRC patient DFS and OS. (A), Univariate and mul-
tivariate Cox analysis (DFS and OS) in COAD-READ TCGA patients (N = 218). HR: Hazard ratio;
CI: Confidence interval. N represents the number of cases in each group. Wald test was used to
identify the risk factors with patient DFS and OS. Significance setup at p < 0.05. (B,C), Combined
Kaplan-Meier analysis of MACC1 status (SCNA and mRNA). (B), DFS according to the MACC1
status, (C), OS according to the MACC1 status.
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4. Discussion

Here, we report a novel fundamental MACC1 regulatory layer in the context of MACC1-
induced clinical consequences in CRC. We demonstrate (i) that MACC1 gene expression is
strongly dependent on gene SCNA, determining not only MACC1 gene expression levels,
but also MACC1 dependent subsequent metastasis formation. Further, we show (ii) that
elevated MACC1 expression, driven by CIN and gene SCNA, is associated with molecular
subtype, especially with CMS2 and CMS4.

The gene MACC1 is a key regulator of the HGF/c-Met pathway and its overexpression
is causative for cancer cell proliferation, colony formation, dissemination, migration, and
invasiveness in cell culture and for tumorigenesis, tumor progression and metastasis
formation in several mouse models [4,5,19,36]. This gene was discovered first in CRC but
is meanwhile acknowledged as a prognostic and predictive biomarker for more than 20
solid cancer entities [4,6]. MACC1 expression level is the main parameter, determining all
these phenotypes, which can be determined at RNA and/or protein level using different
technologies in tumor tissue and/or patient blood (cell-free RNA, circulating tumor cells).
However, the actual cause of high MACC1 expression in patient tumors or blood has still to
be elucidated.

We started this study with correlation analyses between MACC1 gene SCNA and
mRNA expression levels in independent patient datasets, the Oncotrack cohort and the
Charité cohort. We found strong positive associations of high MACC1 gene copy number
and increased MACC1 expression levels.

We further validated that MACC1 SCNA and high mRNA levels were accompanied
by high protein levels by using the CPTAC-2 prospective cohort [30]. Overall, most tumors
of this cohort having a MACC1 SCNA gain showed also high protein levels. Only a few
samples showed MACC1 gene gain, high mRNA expression but low protein levels. It could
be that for these few tumors, the regulation occurred at another level in addition to the
described ones: A large body of reports describe post-transcriptional regulations of MACC1
expression by miRNA, lnc-RNA and circRNA [5,16]. The identification of the MACC1 gene
promoter enabled the identification of transcription factors and respective transcription
factor binding sites regulating the transcription of the metastasis inducer MACC1 [14,15].

More importantly, we tested for the correlation of MACC1 SCNA with patient metas-
tasis. Additionally, here we found strong positive associations of high MACC1 gene copy
number with increased metastasis frequency and worse patient outcomes. Thus, determin-
ing MACC1 SCNA not only provides a basis for predicting mRNA expression levels, but
also represents a novel criterion to predict CRC aggressiveness, potentially determining
the molecular risk for metastasis, and for selecting intervention strategies. In this regard,
we focus on gene-specific approaches (e.g., [4,33] or pharmacological options inhibiting
transcriptional MACC1 overexpression, e.g., statins, such as lovastatin or potentially rott-
lerin [34]. Taken together, assessment of MACC1 expression by SCNA, or in combination
with the mRNA level, might contribute to augmenting patient stratification strategies, but
may also help to justify and broaden the use of, e.g., anti-metastatic treatment options.

We showed next by using the TCGA COAD-READ cohort, that increased MACC1
SCNA and expression occurred in tumors with chromosomal instability (CIN molecular
subtype) for which CRC patients have, in general, a less favorable outcome compared to
MSI or GS tumor subtypes [37]. The context of copy number gain and overexpression of
MACC1 was also analyzed by Galimi and colleagues [38] in a cohort of 103 consecutive
metastasized colorectal carcinomas. They report a recurrent specific gain of the p-arm
of chromosome 7 (where MACC1 is located) and a positive correlation of MACC1 copy
number gain with unfavorable pathologic features. MACC1 showed preferential expression
in highly aggressive and high-grade tumors, being more expressed in multiple vs. single
metastases, larger versus smaller tumors, and in the presence of intravascular metastatic
cells and metastatic emboli. They conclude that copy number gain and overexpression
of MACC1 correlated with pathologic attributes of tumor evolution in the context of liver
metastases from CRC. Shimokava and colleagues demonstrated this role of MACC1 in
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146 consecutive patients who underwent a complete resection for stage I lung adenocar-
cinoma [39]. They report a median MACC1 copy number of 3.0 in patients with tumor
recurrence and 1.4 in patients without recurrence. This finding supports the link of MACC1
copy number gain and tumor evolution also for lung cancer.

With the analysis of the TCGA COAD-READ cohort, we confirmed the elevated
expression of MACC1 mRNA in tumors as compared to normal tissues. MACC1 high
expression occurred preferentially in colon tumors at the distal sites. As we and others
reported previously [40,41], there is an association between high MACC1 mRNA levels and
clinical markers of aggressiveness, such as higher tumor stages or nodal invasion. Some
variability was, however, seen regarding the strength of the statistical associations. These
differences could be due to different methods for MACC1 assessment and the heterogeneity
of MACC1 expression within the tumors that have an impact on its quantification [40,41].
In our study, MACC1 mRNA levels were also shown to predict the patients’ DFS and OS in
a univariate analysis. In line with our previous observations [40,41], MACC1 levels showed
dependency with the patient’s metastatic status in a multivariate analysis. Its independent
prognostic value was retained only by removing the metastatic status from the variables.

In the analyses it was not possible to validate MACC1 SCNA as a prognostic marker,
using the data from the TCGA COAD-READ cohort. In the study with the Oncotrack
cohort (Figure 1A), MACC1 mRNA levels were directly dependent on the degree of MACC1
SCNA, this most probably related to the degree of polyploidy of the tumors. We found
samples displaying weak SCNA (3N) along with lower mRNA expression whereas some
others (4N or more) with high mRNA expression. Unfortunately, the SNP 6.0 data publicly
available for the TCGA cohorts were analyzed with the GISTIC method which fails to
discriminate between samples exhibiting low to high gene SCNA (samples with low to
high SCNA all categorized SCNA = 1). To use MACC1 SCNA as a biomarker, methods,
such as PICNIC [42] for the SNP 6.0 microarray analysis or a ddPCR assay should be used
to better discriminate between low and high SCNA.

Further, CRC is classified into four CMSs with distinct molecular and biological
features: CMS1 (microsatellite instability immune; enriched for MSI tumors and BRAF-
mutations), CMS2 (canonical; epithelial characteristics with marked WNT and MYC sig-
naling and high CIN), CMS3 (metabolic; epithelial features but less CIN, enriched for
KRAS mutations, evident metabolic dysregulation), and CMS4 (mesenchymal; prominent
TGF-β activation, stromal invasion, angiogenesis, inflammatory, immunosuppressive phe-
notype) [33]. When applied to CRC translational research, these subtypes will impact
disease prognosis, therapeutic treatment options and improve clinical outcomes [43]. Here
we used TCGA data and in silico approaches for a deep and integrative analysis of MACC1
expression modalities in CRCs. We found that elevated MACC1 expression, driven by CIN
and SCNA, is associated with molecular subtype, especially with CMS2 and CMS4.

Deregulation of the Wnt/β-catenin pathway resulting in neoplastic transformation
and tumor progression is associated with overexpression of target genes, such as c-Myc or
cyclin D1. The interplay of MACC1 and Wnt/β-catenin signaling, meanwhile repeatedly
studied, was also supported by Meng et al., where the functional relationship of β-catenin,
MET expression, and MACC1 was shown to be decisive for tumor growth and metastasis
formation in nasopharyngeal carcinoma [44]. MACC1 also promoted carcinogenesis of CRC
via β-catenin signaling pathway [45], suppression of miR-338-3p up-regulated MACC1,
β-catenin and VEGF expression leading to angiogenesis in hepatocellular carcinoma [46].
MACC1 knockdown effectively inhibited proliferation and promoted apoptosis of lung
adenocarcinoma cells by regulating the β-catenin pathway (including c-myc) [47], and
DBC1 (BMP/retinoic acid inducible neural specific (1), which play a key role in CRC
progression through Wnt/β-catenin-MACC1 signaling axis [48]. Results from our group
showed in vil-MACC1/ApcMin transgenic mice the interplay of Wnt signaling and MACC1
action for CRC tumor formation [5]. Transcriptomic analysis demonstrated increased
Wnt and pluripotency signaling and the enhancement of the pluripotency markers Oct4
and Nanog in the tumors of vil-MACC1/ApcMin mice (vs. ApcMin mice). In addition,
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the MACC1 and c-Myc relationship was further substantiated showing a c-Myc increase
by MACC1 overexpression in CRC [45], a correlation of MACC1/c-Myc expression in
endometrial carcinoma [49], and binding of miR-384 and miR-145-3p miRNAs to MACC1-
AS1 thereby altering cell growth phenotype through increased expression of c-Myc mRNAs
and PTN (pleitrophin, secreted heparin-binding growth factor [50]). Taken together, for
tumors of CMS2, combinatorial approaches simultaneously targeting Wnt signaling (β-
catenin, c-Myc) and MACC1 might be beneficial for CRC patients.

The causative connection of MACC1 and CMS4 has been demonstrated by a multitude
of reports, addressing TGF-β activation, stromal invasion, angiogenesis and an inflam-
matory phenotype. For instance, TGF-β1 secretion by mesenchymal stem cells activated
SMAD2/3 through TGF-β receptors and induced lncRNA MACC1-AS1 expression in gas-
tric cancer cells, which promoted stemness and chemoresistance [51], and MACC1-AS1
positively regulated TGF-ß1 expression, resulting in increased invasion and migration rates
in hepatocellular cancer cells [52].

MACC1-induced stromal invasion has been shown in a variety of studies for CRC [4,6],
and in CRC animal models [5]. Elevated ORAI1 and STIM1 expression upregulated MACC1
expression and promoted tumor cell proliferation, metabolism, migration, and invasion in
human gastric cancer.

Further, the causal involvement of MACC1 in angiogenesis was reported in several
studies, e.g., for CRC, cervical, gastric, and hepatocellular cancer, for cholangiocarcinoma,
brain microvascular endothelial cells, osteosarcoma, and oral squamous cell carcinoma [14].
MACC1 and VEGF family members contribute to vasculogenesis, angiogenesis and vascu-
logenic mimicry, and are upregulated in many cancer types, correlating to tumor stage and
progression. MACC1 induced VEGF-C/VEGF-D in gastric cancer, and VEGF-A in gastric
cancer and cholangiocarcinomas [14,53].

Linking MACC1 and inflammation was demonstrated by Harpaz et al. showing
a MACC1 expression increase from inflammatory bowel disease (IBD)-associated coli-
tis to dysplasia to adenocarcinoma suggesting that MACC1 is strongly associated with
conventional tumorigenesis of colitis-associated CRC [54]. For CRC, we reported that
pro-inflammatory TNF-α and IFN-γ promote tumor growth and metastasis via induction
of MACC1 [55]. These examples underline that elevated MACC1 expression is not only
substantially driven by chromosomal instability and SCNA but is also importantly linked
to molecular subtype.

In our study, we also showed that high MACC1 mRNA levels inversely correlated
with the overall content of immune cells in the CRC samples. In contrast with MSI+ tumors,
those with chromosomal instability, such as the ones with MACC1 SCNA are known to
have lower levels of mutations, fewer neoantigens on the cell surface and overall less
inflammatory components and lower response to immunotherapy [56]. Supporting this, we
also observed an inverse correlation between MACC1 levels and levels of CD8+ T cells that
is a marker for sensitivity to immunotherapy [57]. It could suggest that complementary
to already existing methods, MACC1 SCNA or its expression levels could be used as a
decisional marker for immunotherapy treatment in CRC.

5. Conclusions

Overall, here we report novel insights into the contexture of MACC1 expression in
CRC. We demonstrate that high expression levels of MACC1 in CRC tumors, associated
with metastasis and worse patient outcome, is frequently caused by increased gene copy
number. High MACC1 expression, CIN, DNA copy number gains, and CMSs, potentially
define the molecular risk for cancer metastasis and might serve for refined diagnostic and
patient tailored treatment decisions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers14071749/s1. Figure S1: Scatter plot showing the correlation
between MACC1 mRNA and protein levels in CRC patient tumors. Figure S2: Visual representation
of the number of samples and type of data in the analyzed COAD-READ TCGA dataset. Figure S3:

https://www.mdpi.com/article/10.3390/cancers14071749/s1
https://www.mdpi.com/article/10.3390/cancers14071749/s1


Cancers 2022, 14, 1749 15 of 17

Statistical association of MACC1 SCNA and expression levels with CRC sample characteristics. Figure
S4: MACC1 mRNA expression and CIN, CIMP and CMS molecular subtypes in the COAD-READ
TCGA cohort. Figure S5: MACC1 mRNA expression and correlation with immune contexture of
the tumors. Table S1: Overview chart of the cohorts and the different methods used in the study.
Table S2: Patient characteristics of the Charité metastasis cohort (N = 35). Table S3: Primers used for
relative quantification of MACC1 SCNAs. Table S4: MACC1 expression levels and alterations in key
cancer genes. Table S5: Multivariate Cox analysis including MACC1 expression, tumor size, stage
and nodal status.
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