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Simple Summary: The evaluation of breast cancer immune microenvironment has been increasingly
used in clinical practice, either by counting tumor infiltrating lymphocytes or assessing programmed
death ligand 1 expression. However, the spatiotemporal organization of anti-breast cancer immune
response has yet to be fully explored. Multiplex in situ methods with spectral imaging have emerged
to deconvolute the different elements of tumor immune microenvironment. In this narrative review,
we provide an overview of the impact that those methods have, to characterize spatiotemporal
heterogeneity of breast cancer microenvironment at neoadjuvant, adjuvant and metastatic setting.
Multiplexing in situ can then be useful for new classifications of tumor microenvironment and
discovery of immune-related biomarkers within their spatial niche.

Abstract: The tumor immune microenvironment (TIME) is an important player in breast cancer patho-
physiology. Surrogates for antitumor immune response have been explored as predictive biomarkers
to immunotherapy, though with several limitations. Immunohistochemistry for programmed death
ligand 1 suffers from analytical problems, immune signatures are devoid of spatial information
and histopathological evaluation of tumor infiltrating lymphocytes exhibits interobserver variability.
Towards improved understanding of the complex interactions in TIME, several emerging multiplex
in situ methods are being developed and gaining much attention for protein detection. They enable
the simultaneous evaluation of multiple targets in situ, detection of cell densities/subpopulations
as well as estimations of functional states of immune infiltrate. Furthermore, they can characterize
spatial organization of TIME—by cell-to-cell interaction analyses and the evaluation of distribution
within different regions of interest and tissue compartments—while digital imaging and image
analysis software allow for reproducibility of the various assays. In this review, we aim to provide
an overview of the different multiplex in situ methods used in cancer research with special focus
on breast cancer TIME at the neoadjuvant, adjuvant and metastatic setting. Spatial heterogeneity of
TIME and importance of longitudinal evaluation of TIME changes under the pressure of therapy and
metastatic progression are also addressed.

Keywords: immune microenvironment; breast cancer; heterogeneity; longitudinal; multiplex; spec-
tral imaging; artificial intelligence

1. Introduction

The evasion of immune response is considered a hallmark of cancer and efforts
have focused on re-directing immune reaction against malignant cells [1]. The field of
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cancer immunotherapy has been revolutionized by the introduction of immune checkpoint
inhibitors (ICI) that have been successfully used for the treatment of various malignant
neoplasms [2–5]. However, not all patients benefit and ICI are associated with immune-
related adverse effects, which can sometimes be severe [6]. Hence, predictive biomarkers are
needed to identify potential responders and avoid unnecessary toxicities. In breast cancer
(BC), studies have mostly focused on triple negative (TNBC) disease both in metastatic [7–9]
and early-stage settings [10,11]. Predictive biomarkers are still lacking as PD-L1 positivity
did not predict benefit from ICI in the neoadjuvant setting [10,11] and produced discordant
results in metastatic BC patients [7,8].

Nonetheless, anti-tumor immune response is an important player in BC pathophys-
iology [12–14]. In clinical settings, anti-cancer immunity has been mostly assessed by
hematoxylin and eosin (H&E) evaluation of tumor infiltrating lymphocytes (TILs) and im-
munohistochemical (IHC) evaluation of programmed death ligand 1 (PD-L1). For example,
in a pooled analysis of 3771 early BC patients, increased rates of TILs predicted response to
neoadjuvant chemotherapy and was associated with improved survival in HER2-positive
BC (HER2+ BC) and TNBC [15]. In addition, immune-related gene expression profiles have
proven to be prognostic in BC in both early and metastatic settings [13,14]. However, all
the aforementioned immune-related biomarkers are just surrogates of an underlying tumor
inflammation [16,17]. In addition, single biomarker expression demonstrated only mod-
est performance, because of analytical limitations and tumor immune microenvironment
(TIME) biology. In the case of the widely studied biomarker, PD-L1, assessment exhibits
great inter-observer variability, given the different antibodies, platforms and scoring sys-
tems that exist [18]. Besides this, PD-L1 is but one immune checkpoint and interactions
within TIME are way more complex [19]. Furthermore, immune signatures are devoid
of spatial information and the generated signal is dominated by the most abundant cel-
lular population [20], while hematoxylin and eosin (H&E) evaluation of TILs is a bulk
measurement of stromal lymphocytic infiltration (sTILs). Although guidelines have been
established [21,22], some level of interobserver variability still exists [23]. Intriguingly, spa-
tial heterogeneity of TILs is an important factor affecting the interobserver variability [24].
Thus, better understanding of TIME organization and function—which remains limited—is
considered essential for identifying patients with a pre-existing anti-tumor immune re-
sponse [25].

In order the aforementioned challenges to be overcome, evaluation of subpopula-
tions [26,27], functional status [28] and spatial heterogeneity [29] of immune infiltrate
should be taken into consideration. Furthermore, tumor evolution over the course of
treatment or progression to metastatic disease contributes to the complexity by introducing
temporal heterogeneity both in the tumor and TIME [30]. Thus, a promising approach
for assessing TIME is to combine multiple biomarkers evaluation taking into account the
spatial and temporal context [25]. This is supported by a large meta-analysis that included
8135 patients of more than ten different solid tumors, treated with ICI. It was demonstrated
that fluorescent multiplex immunohistochemistry (mIHC/IF) alone, outperforms PDL1
immunohistochemistry, immune signatures and tumor mutational burden in terms of
sensitivity and positive predictive value for prediction of response to ICI [31]. Towards
this end, novel multispectral and spatial technologies should be used. Several multiplex
in situ methods have been recently developed and gaining attention, allowing for the in situ
detection of multiple targets within spatial context [20]. In this review, we aim to provide
an overview of different multiplex in situ assays applied in breast cancer research. Spatial
characterization of breast cancer TIME is also discussed, specifically in relation to longitudinal
evaluation under treatment pressure as well as from primary to metastatic tumors.



Cancers 2022, 14, 1999 3 of 25

2. Multiplex In Situ Methods: A Plethora of Assays Platforms and Analysis Tools

Recent advances in spatial technologies and emerging multiplex approaches have
transformed the landscape of quantitative in situ profiling in cancer, from single to multiple
biomarker assessment. The various protein-based multiplex in situ methods are summa-
rized in Table 1, while an overview, description of their capacity and suitable software is
provided hereunder in detail.

2.1. Antibody Conjugated with Chromogen

Multiplex chromogenic immunohistochemistry (mIHC) is an evolutionary form of
conventional chromogenic IHC that allows the detection of different proteins at the same
tissue section. Its main advantages include the pathological assessment by using conven-
tional brightfield microscopy, whole slide visualization and cost-effectiveness, since no
special equipment is needed. Such approaches are very likely to enter clinical practice in
the immediate future. However, utility can be held back by image analysis limitations due
to chromogens nature, cross-reactivity between primary antibodies from different staining
solutions, slow scanning capacity, visual sight limitations and semi-quantitative nature
of IHC. To date, the two most commonly used mIHC methods coupled with chromogen
are Discovery Ultra [32] (Roche Diagnostics, Rotkreuz, Switzerland) and Multiplexed
Immunohistochemical Consecutive Staining on Single Slide (MICSSS) [33].

2.1.1. Discovery Ultra

Discovery Ultra is a commercially available mIHC platform for formalin-fixed paraffin-
embedded (FFPE) sections [32]. Antibody staining is automated and sequential in a way
that a new antibody is used without removal of the previous one. With this platform, up to
five protein markers can be detected by using new-generation chromogenic dyes. In brief, a
classic chromogen 3,3′-diaminobenzidine (DAB) is utilized, which is a scatterer of light, not
an absorber, and has a very broad spectrum, with characteristics that change depending
of staining intensity [34]. Combination of three such chromogens in one slide can fill the
human-eye visible spectrum; hence, new chromogens can produce staining patterns with
more narrow absorbance spectrum to be distinguished easier. The main disadvantage of
this method is the limited number of co-localized biomarkers, two or three, that can be
visually assessed.

2.1.2. Multiplexed Immunohistochemical Consecutive Staining on Single Slide (MICSSS)

Multiplexed Immunohistochemical Consecutive Staining on Single Slide (MICSSS)
represents another mIHC method that uses sequential cycles of IHC staining, coverslip
mounting, image scanning, coverslip removal and de-staining performed on a single
slide [33]. A whole-slide scanner is used for scanning after each staining. Up to ten markers
can be visualized with brightfield microscopy and a multiplex image is created by aligning
together individual digitalized IHC images. The main disadvantages of this methodology
are the time-consuming protocol, the inability to assess biomarker intensity, the possibility
of cross-reaction of antibodies and the limitations accompanying chromogenic dyes. Fur-
thermore, the procedure is prone to human error as staining is not automated and careless
coverslip removal can result in tissue damage.
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2.2. Antibody Conjugated with Fluorophore

Multiplex immunofluorescence immunohistochemistry (mIF/IHC) comprises meth-
ods that use antibodies conjugated with fluorophores [35–37]. Fluorophores have narrow
emission and absorbance spectra compared with chromogens and allow distinction of
several proteins in situ [38]. These methods enable protein quantification and immunophe-
notypic interrogation even at subcellular level. Vectra® Polaris™ (Akoya Biosciences,
Marlborough, MA, USA) is a commercially available, automated, multiplex digital pathol-
ogy tool that detects antibodies conjugated with fluorophores [35]. The detection is highly
specific and can capture the expression of up to nine biomarkers at the same protein panel.
Tissue FFPE slides can be stained in a fully automatic way. In brief, a specific primary
antibody recognizes its distinct epitope; a secondary antibody is conjugated with polymers
of horseradish peroxidase (HRP), enabling signal amplification; tyramides, conjugated to
fluorophores, are converted by HRP into highly reactive oxidized intermediates, which bind
covalently to tyrosine residues in the underlying tissue in close proximity to the epitope;
then, primary and secondary antibodies are stripped away and the cycle repeats for the next
target, while the covalently-binded fluorophores remain intact. The spectral imaging allows
for the collection of detailed spectral characteristics of each scanned pixel. The captured
images are processed by the compatible software inForm® (Akoya Biosciences), using
reference library of the emission spectrums of the individual fluorophores and autofluo-
rescence, thus, unmixing the original multi-layer images into several channels. Samples
remain undisrupted and can be reused for future studies. This technology provides spatial
analysis and quantification of phenotypes in situ in a single slide. Vectra Polaris can achieve
spatial resolution at level as low as 0.25 µm, making single cell resolution possible. The
main advantages are the fully automated staining and scanning, and image analysis by the
InForm software. Opal (Roche Tissue Diagnostics, Oro Valley, AZ, USA and Akoya Bio-
sciences, Marlborough, MA, USA) is another iterative, mIF/IHC method [39]. The primary
antibodies are conjugated with Opal fluorophores equipped with tyramide molecules. In
this way, low abundance epitopes are detected, while the risk of antibody cross-reactivity
decreases. Image acquisition is mediated with Vectra Polaris, multispectral unmixing with
inForm, and quantitative analysis with QuPath software [40].



Cancers 2022, 14, 1999 5 of 25

Table 1. Differences and comparisons of the various characteristics among the different multiplex platforms and assays.

Assay D.Ultra [32] MICSSS [33] Vectra/Polaris [35] Opal [39] CODEX [41,42] InSituPlex [43] GeoMx DSP [44,45] MIBI-TOF [46,47] Cy-TOF [48]

Vendor Roche Remark et al. Akoya Biosciences
Roche and

Akoya
Biosciences

Akoya Biosciences Ultivue Nanostring IonPath Bodenmiller et al.

Antibody
Conjugate chromogen chromogen fluorescent Opal

fluorescent
DNA

barcode
DNA

barcode
DNA

barcode
Metal

isotope
Metal

isotope

Tissue
disruption no no no no no no no Yes

(adjustable) yes

Biomarkers 5 10+ ∼9 ∼8 40+ ∼5 70+ 30+ 30+

Staining
cycles Iterative Iterative Iterative Iterative Iterative 1 1 1 1

Scanning camera camera Vectra Polaris Vectra Polaris CODEX fluidics
compatible

with various
systems

GeoMx TOF
spectrometer

TOF
spectrometer

Profiling
area Whole slide Whole slide

adjustable
(660 µm2 →
whole slide)

adjustable
(660 µm2 →
whole slide)

660 µm2 NA
adjustable

(280 µm2 →
800 µm2)

800 µm2 1 mm2

Software NA NA InForm InForm
QuPath

CODEX
analysis
manager
& viewer

compatible
with various

systems

GeoMx
data

analysis
suite

MIBIAnalysis HistoCat,
Cell Profiler

Resolution Human
vision

Human
vision 0.25–0.9 µm 0.25–0.9 µm 0.26 µm NA 10 µm 0.26 µm 1 µm

Spatial
information yes yes yes yes yes yes limited yes yes

Single-cell
information yes yes yes yes yes yes limited yes yes

Disadvantages

Human
Vision
Limits,
Semi-

Quantitative

time-
consuming,

coverslip
removal

errors

costly,
limited marker

numbers

costly,
limited marker

numbers

costly,
time-

consuming,
difficult cell

segmentation,
difficult panel

validation

limited
marker

numbers

costly,
limited spatial
information,

limited single cell
information

special training,
costly,
time-

consuming,
difficult

cell
segmentation,

difficult
panel

validation

special training,
costly,
time-

consuming,
difficult

cell
segmentation,

difficult
panel

validation
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Although fluorophores are generally considered more versatile than chromogens, their
use suffers from three main issues: signal “spectral bleed”, FFPE intrinsic autofluores-
cence and tyramide-based chemistry limitations [38]. Firstly, hundreds of fluorophores
are commercially available but signal “bleed-through” artifact and spectral overlap can
occur if fluorophores with too similar emission wavelengths are used together, resulting in
false positive staining [49]. Secondly, FFPE intrinsic autofluorescence should be taken into
consideration prior to fluorophore selection, as it can lower the sensitivity of fluorescent
staining. Intrinsic autofluorescence is mostly developed during formalin fixation of FFPE
and has peak emission spectrum in the 475–500 nm range [50]. Several approaches can
be used to overcome FFPE autofluorescence, including autofluorescence quenching by
chemical or physical means, avoiding emission spectra near the autofluorescence peaks and
use of multispectral imaging with spectral signal unmixing [51]. Thirdly, methods that use
tyramide based chemistry for signal amplification can suffer from the so-called “umbrella
effect”: binding of tyramide reagents to epitopes can potentially interfere with the binding
of a sequential primary antibody, leading to false-negative results. This is particularly evi-
dent when multiple proteins are located in the same subcellular compartment and can limit
the number of evaluable biomarkers [49]. Overall, mIF/IHC techniques have the potential
to become useful in routine diagnostics. However, before clinical use, standardization and
validation of staining and image analysis protocols are essential.

2.3. Antibody Conjugated with DNA-Barcode

2.3.1. CO-Detection by indEXing (CODEX® ) & InSituPlex®

CODEX® (Akoya Biosciences, Marlborough, MA, USA) is a commercially available
method that uses DNA conjugated antibodies [41,42]. CODEX detects antibodies labeled
with unique DNA-barcodes. The detection is highly specific and can simultaneously capture
the expression of more than 40 biomarkers. Tissue FFPE slides are stained in a single step
with the antibody panel. Consecutive cycles of labeling, imaging and removing barcodes
are performed in a fully automatic way by the CODEX fluidics instrument. The collected
images are then integrated into one, and image analysis is performed by CODEX analysis
manager and CODEX Analysis Viewer software. Tissue samples remain undisrupted and
can be reused for future studies. This technique provides the opportunity for simultaneous
assessment of expression and spatial distribution of multiple biomarkers in situ on a single
slide. CODEX can achieve spatial resolution at a level as low as 0.26 µm, making single
cell resolution possible. It has the advantage of being compatible with existing fluorescent
microscopes for image generation. Although this platform can achieve comprehensive high-
level multiplexing, its use is held back by its high cost, limited throughput and restriction
to only small region of interest (ROI) on the slide available for the imaging. InSituPlex®

(Ultivue, Cambridge, MA, USA) is another multiplex in situ method that uses antibodies
conjugated with DNA-barcodes [43]. Tissue FFPE slides are incubated with the primary
antibody mixture in one step. After barcode amplification, a mixture of complementary,
fluorophore-linked probes hybridizes each barcode, augmenting the signal. The technique
is compatible with various scanning and image analysis systems.

2.3.2. GeoMx® Digital Spatial Profiling

GeoMx® Digital Spatial Profiling (DSP) (Nanostring, Seattle, WA, USA) is a com-
mercially available method that uses DNA-barcode conjugated antibodies [44,45]. In this
platform, two types of antibodies are used: compartment-defining antibodies conjugated
with fluorophores to morphologically select ROIs, and antibodies conjugated with unique
oligonucleotide barcodes for multiplexing. This high-throughput technique provides si-
multaneous assessment of expression of multiple biomarkers in situ and in a compartment-
based manner within selected ROIs, determined by fluorescently conjugated antibodies.
Tissue slides are stained in a single step with the antibody mastermix. Then, UV light
cleaves the barcodes from the antibodies, and the barcodes are collected in a microplate and
quantified by the commercially available NanoString nCounter system. After quantitative
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analysis, the pool of antibodies originate back to their corresponding region of interest to
allow spatial characterization. The detection can capture the expression of more than sev-
enty biomarkers at the protein level, despite considerable amount of non-specific antibody
binding and limited number of validated antibodies, although the various unique Nanos-
tring barcodes. DSP could be useful for evaluating the expression of multiple immune
regulators, since the spatial heterogeneity is addressed by examining stromal and tumoral
compartments, as well as multiple ROIs. However, DSP provides limited spatial characteri-
zation of cell immunophenotypes, due to narrow “morphology-panel” selection, consisting
mainly by three or four markers, such as cytokeratin and CD45 [38]. Hence, within a ROI,
the DSP method could potentially suffer from missing rare cellular subpopulations, as in
bulk-omics methods. Heatmaps of biomarker expression can be used to “visualize” the
ROI but such an approach is costly for a whole slide. Although this platform can achieve
comprehensive high-level multiplexing, high cost and limited spatial information represent
some of its drawbacks.

2.4. Antibody Conjugated with Metal Isotope: Mass Spectrometry Immunohistochemistry (MS-IHC)
Imaging Mass Cytometry with Time of Flight (Cy-TOF) and Multiplex Ion Beam Imaging
with Time of Flight (MIBI-TOF)

Mass Spectrometry Immunohistochemistry (MS-IHC) is an umbrella term for the
next-generation methods combining mass cytometry with IHC aiming to characterize
multiplex cellular immunophenotypes in situ [38]. Two landmark methods have been
recently described, with the ability to detect more than 30 proteins at single cell level:
(i) Imaging Mass Cytometry with Time of Flight (Cy-TOF) [48] and (ii) Multiplex Ion Beam
Imaging with Time of Flight (MIBI-TOF) [46,47]. In both approaches, the FFPE slide is
stained once with a heavy metal-conjugated antibody mastermix. Energy beam mediated,
pixel-by-pixel tissue ablation releases the metallic isotopes that are then quantified by a
TOF mass spectrometer and mapped back to the corresponding ROI [52]. For every marker,
each pixel of the generated digital image depicts protein abundance. Individual images
need then to be merged together for multiplexed imaging. In theory, both methods can
detect more than 100 proteins simultaneously, but face limitations due to the number of
validated antibodies. Although quite similar, the two methods differ in terms of resolution
and level of tissue-ablation. In Cy-TOF, after one scanning, tissue destruction is mediated
by a UV laser beam which achieves resolution at 1 µm. In MIBI-TOF an ion beam—usually
consisted of rasterizing oxygen duoplasmatron—is used which achieves resolution up to
0.26 µm. Hence, tissue destruction can be adjusted depending on the desired resolution
and scanning can be performed additional times. Although this platform can achieve
comprehensive high-level multiplexing, its use is held back by its high cost, long scanning
time, restriction to only small region of interest (ROI) on the slide available for the imaging
and requirement of specially trained personnel.

2.5. Image Analysis Software for Multiplex Profiling Assays

Apart from interobserver variability, visual evaluation of multiplex stainings is limited
to few markers, especially when co-expressed in the same cellular compartment. Thus,
the development and use of relevant software programs in order to facilitate the analysis
of multiplex images is of utmost importance. From a technical perspective, this can be
achieved by leveraging image analysis and artificial intelligence (AI) tools in multiplex
studies, subsequently activating an extensive analysis pipeline comprising of the following
steps: (a) multispectral image decomposition and the unmixing of the different spectral
components (i.e., markers) into separate images, (b) morphological tissue segmentation
into distinct compartments (e.g., tumor, stroma), (c) nuclei and cytoplasm identification
followed by the cellular segmentation, (d) cell phenotyping across the different types, and
(e) spatial analysis on cell images to investigate potential associations between the different
cell types [53]. Nowadays, there is a growing interest to incorporate these tools into TIME
contexture analysis studies. Although a thorough presentation of these tools is far beyond
our scope here and has been previously reviewed elsewhere [37,54,55]. Table 2 summarizes
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some of the most well-known and commercially available software packages [37,40,56–59]
that embed AI technology into their analysis workflow.

Table 2. Available software for multiplex analyses, compatible with the various platforms and assays.

Software
(Company)

Analyses/Capacity

Inform [56]
(Akoya Biosciences)

multispectral unmixing,
tissue and cell segmentation,

cellular phenotyping
MultiOmyx [37]
(Neo Genomics)

quantitative analysis at the cell-level,
spatial analytics

HALO [57]
(Indica Labs)

immune cell population contexture analysis
segmentation and classification

Visiopharm [58]
cellular identification

spatial profiling

RSIPVision [59]
nuclei detection, segmentation

and cellular colocalization
QuPath [40] cell segmentation and classification

In summary, novel methods have expanded the toolkit of translational cancer research
applications and workflow by providing spatial information and multiplexing capacity
in situ. The advantages and hallmarks of multiplexed profiling are depicted in Figure 1.

Figure 1. Hallmarks of multiplexed in situ TIME profiling. Different aspects which can be covered by
the various multiplex assays and techniques enable a comprehensive characterization of the tumor
microenvironment (TIME) in breast cancer.
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3. Applications of Multiplex Methods in Breast Cancer: TIME Composition,
Spatiotemporal Heterogeneity and Prognostic Implications

In the past years, a great interest and intense efforts have been marked for the integra-
tion of the aforementioned emerging methods in breast cancer research. Several studies
have adapted the advantages of such techniques in order to better characterize the TIME
and address important questions in both the early and metastatic setting of the disease. We
discuss hereunder how spatial methods and their aspects have been used to dissect the
composition of TIME in terms of subpopulations and densities as well as in spatiotemporal
heterogeneity in BC patient samples.

3.1. Overview of Multiplex In Situ Evaluation of Immune Response Heterogeneity in BC

Multiplex in situ assays allow for a more comprehensive characterization of BC TIME
composition. On one hand, they can detect different subpopulations by various approaches.
At first, lineage specific markers can be used such as T cell (CD3+, CD4+, or CD8+), B-cell
(CD20+), NK-cell (CD56+), myeloid (MPO+, CD11c+), endothelial (CD31+) or fibroblastic
(FAP+, SMA+, vimentin+), among others. Intriguingly, despite the fact that T cells com-
prise the most abundant immune population in BC TIME, TILs rates by mIHC/IF seem
to modestly to strongly correlate with H&E TILs findings, in part due to panel selection
and the scoring algorithm [60–65]. Furthermore, combinations of different markers have
been used as surrogates for function, and include proliferative cells (CD3+Ki67+ [60],
CD20+ki67+ [66]), tissue resident memory effector T cells (CD8+CD103+) [67], cytotoxic
T cells (GZMB+CD8+) [66], regulatory T cells (CD4+FoxP3+) [68] and follicular helper
T cells (CD4+CXCL13+CXCR5-) [66]. Moreover, multiplexing allows for simultaneous
interrogation of several immune checkpoints such as PD1, TIM3 and LAG3, within their
respective cell of origin [69–71]. On the other hand, all the aforementioned subpopulations
are evaluated in situ within their niche, to better characterize the spatial organization
and intratumoral heterogeneity of anti-BC immune response. Incorporation of different
regions of interest (ROIs) in the analysis, tissue segmentation into tumoral and stromal
compartments as well as distance analysis can reveal different localization patterns and
correlations/co-existences of different subpopulations within BC TIME. Utilizing multi-
plexing across longitudinal analysis, either under the pressure of neoadjuvant treatment,
or during metastatic dissemination, can further capture the temporal heterogeneity of
anti-tumor immune response. In the following paragraphs we summarize the different
aspects of spatial analysis that has been made so far in BC with divergent multiplex in situ
methods and computational algorithms. An overview of the different studies and their
characteristics is provided in Table 3.

3.2. Spatial Heterogeneity of Breast Cancer TIME
3.2.1. Intratumoral Spatial Heterogeneity: Regions of Interest, Tissue Compartments,
Cell-to-Cell Distances

Immune cell infiltration in TIME exhibits spatial heterogeneity [24]; thus, examination
of small or limited number of regions of interest (ROIs) can potentially lead to sampling
bias. Intriguingly, intra-section heterogeneity contributes more to differences in density
of immune cells compared to inter-biopsy heterogeneity [72]. This is more apparent for B
cells, as 75% of density differences is attributed to ROI examination within a slide. Besides
this, B cells seem to be distributed in TIME independently of their stromal density [73].
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Studying the distribution of immune subpopulations in tumoral and stromal compart-
ments may overcome a weakness of the current evaluating systems. In concordance with
H&E sTILs, the vast majority of immune markers is enriched in stromal compartments
of BC [74–76]. Indeed, T cells (CD3+, CD4+ or CD8+), B cells (CD20+) and macrophages
(CD68+) are commonly found in stroma [62,63,73,77]. However, tumoral compartments
seem to be more infiltrated by T cells (CD3+, CD8+) and NK cells (CD56+) [62,73,77,78].

Intriguingly, immunophenotypes correlating with T cell activation (CD8+CD103+
memory effector, CD3+Ki67+ proliferating and GZB+CD8+cytotoxic) tend to be located
intratumorally, or in close proximity to cancer cells [60,66,67]. In addition, tumoral HLA-DR
expression, driven by IFNγ, correlates closely with stromal CD4+ density [74].

Description of cell-to-cell distances, interactions and neighbourhoods’ formation, may
be useful for interrogating anti-tumor immune response spatial organization. Spatial
analysis has demonstrated that presence of T cells (CD4+, CD8+) and B cells (CD20+)
correlates with one another [62,72]. This correlation is highlighted by the presence of
lymphocytic aggregates, consisting of purely T cells or tertiary lymphocytic structures
(TLS) [66,72,73,79]. Besides this, B cells are known to be enriched in TLS, the presence of
which can easily be missed [23,80]. Recently, with mIF/IHC TLS in BC have been described,
characterized by close proximity of follicular helper T cells (CD4+PD1+) and proliferative
B cells (CD20+Ki67+) within follicle-like structures. Functional activity was determined by
a score generated from the combined expression of CD4+PD1+ Tfh, CD20+ki67+ B cells,
and GZMB+CD8+ cytotoxic T cells [66]. Furthermore, immune infiltration seems also to
correlate closely with other stromal cells of TIME. Immune cells are spatially proximal
to endothelial cells (CD31+) [28], while CD25+ T cells have been found interacting with
FAP+PDL2+OX40L+ CAFs [81].

In summary, multiple ROIs assessment, tissue segmentation and distance analysis
are needed to address intra-tumoral heterogeneity of TILs (Table 3). Downsizing the
analysis to a mere report of an average density across all ROIs, although easier, is an
oversimplified approach.

3.2.2. Spatial Heterogeneity of Immune Regulatory Proteins: The PD-L1 Paradigm

Several acellular factors are found within TIME, including positive (e.g., co-stimulatory
molecules) and negative regulators (e.g., immune checkpoints) of immune response [25].
Among other molecules, PD-L1 is perhaps the most studied one with multiplex in situ
methods. PD-L1 can be expressed by a variety of cell types in TIME and its expression is
often associated with presence of TILs and other immune regulators [25,82]. Multiplexing
techniques can be used to simultaneously evaluate PD-L1 within its cell of origin, in combi-
nation with other immune checkpoints and to interrogate its spatial heterogeneity [70].
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Table 3. Breast cancer studies; Characteristics, Prognosis/Prediction, Heterogeneity.

Author Journal Year Tissue
Type

Disease
Setting Treatment BC Type Pts No Assay Panel Scanning Software

ROIs Number,
Area

(per Patient)

Tissue
Segmentation

Prognosis/
Prediction

Spatial
Heterogeneity

Fluorescent Multiplex Immunohistochemistry

Angelis [62] CCR 2019 WTS Neo-adjuvant Lapatinib
trastuzumab HER2+ BC 29 mIF

CD4, CD8, CD20,
FoxP3, CD68,

CK, DAPI
Vectra InForm 5, 2 mm2 (CK+/DAPI+)

(CK-/DAPI+)

Higher
Stromal CD4,

Tumoral
CD4, CD20:
Higher pCR

CD8 enriched
In tumoral,

CD4, CD8, CD20
Positive correlation

Brown [80] CCR 2014 WTS Neo-adjuvant
Taxane,

anthracycline
trastuzumab

all 87 mIF CD3, CD8,
CD20, CK, DAPI PM-2000 hardware (HistoRx) AQUA At least 3 CK enriched (CD3+/DAPI+)

(CD3-/DAPI-)

Higher stromal
CD4, CD8,

CD20:
Higher pCR

TNBC
Higher

CD20, CD8 densities

Graeser [61] JIC 2020 WTS Neo-adjuvant
Paclitaxel,

gemcitabine,
carboplatin

TNBC 66 mIF
CD4, CD8, CD73,

PD1, PD-L1,
CK7, DAPI

Vectra/Polaris InForm Whole slide (CK7+/DAPI+)
(CK7-/DAPI+)

On treatment
CD4+PD1+:
Higher pCR

NA

Griguolo [60] Npj precision
oncology 2021 WTS Neo-adjuvant Lapatinib,

trastuzumab
HER2+

BC 65 MCISSS
CD3, CD4, CD8

Foxp3, Ki67, panCK,
hematoxylin

NanoZoomer 2.0HT
(Hamamatsu Photonics, Japan) VISIOPHARM Whole slide (CK+/HTX+)

(CK-/HTX-)

On treatment
TumoralCD8+

higher pCR

Ki67+CD3+
Higher densities

closer to cancer cells,
enriched in HR-

Kearney [63] SABCS 2021 WTS Neo-adjuvant
Anthracycline
Trastuzumab
pertuzumab

HR+/
HER2+

BC
28 mIF CD3, CD8, CD68,

FOXP3, Pan-CK, DAPI NA HALO NA CK+
CK-

Higher
CD3+CD8-FoxP3-

higher pCR
NA

Yam [71] CCR 2021 WTS Neo-adjuvant
doxorubicin,

cyclo-phosphamide,
paclitaxel

TNBC 102 mIF PDL1, PD1, CD3,
CD68, Pan-CK, DAPI Vectra 3.0 InForm NA CK+

CK-

Higher
CD3+/CD68+ ratio,

CD3-cancer
proximity

higher pCR

PD-L1 expression:
tumor (more common)

and stromal compartments,
CD3+ PD1+ rare population

Janiszewska [83] JCIinsight 2021 WTS Neo-adjuvant
Trastuzumab

emtansine,
pertuzumab

HER2+ BC 20 mIF 20 NA NA NA CK+
CK-

pCR: higher CD8,
RD:GZM+ mf

closer to cancer, immune cells
less proximal
to vimentin+

cells

NA

Egelston [67] JCIinsight 2019 WTS Adjuvant
doxorubicin,

cyclophospamide
hamide, paclitaxel

TNBC 25 mIF CD8, CD103, CD69,
pan-CK, DAPI Vectra 3.0 InForm multiple (CK+/DAPI+)

(CK-/DAPI+)

Higher
Tumoral

CD8+CD103+:
Better RFS

CD8+CD103+
Enriched closer to cancer cells

Millar [84] Cancers 2020 TMA Adjuvant CMF,
anthracycline all 485 mIF

CD3, CD8, CD20,
CD68, Fox P3, PD-1,

PD-L1, PanCK, DAPI
Vectra/Polaris InForm 1, 780 µm2 (CK+/DAPI+)

(CK-/DAPI+)

Combined
Stromal lower

CD8, CD20:
Shorter OS

NA

Garaud [79] JCIinsight 2019 WTS Adjuvant Chemotherapy HER2+ BC,
TNBC 249 mIF CD4, CD8, CD20,

FoxP3, CD68, CK, DAPI Vectra/Polaris InForm NA NA
Higher CD20:

Favorable
prognosis

Description of
Lymphocytic

aggregates

Costa [81] Cancer Cell 2018 NA NA NA TNBC NA mIF CD25, FAP, PDL2,
OX40L, DAPI HistoFluor microscope manual NA NA NA

FAP+PDL2+
OX40L+:

T cell exhaustion

Wortman [73] Npj Breast Cancer 2021 WTS Adjuvant Chemotherapy TNBC 36 mIF
CD3, CD4, CD8,
FOXP3, CD20,
DAPI, PanCK

Vectra 3.0 InForm NA NA

Higher tumoral
Distribution
CD3, CD20:
Better RFS

CD3, CD20:
Description of

Aggregates

Mani [72] Breast cancer research 2016 WTS NA Surgery NA 31 mIF CK, DAPI, CD3,
CD8, CD20 NA AQUA 6–50 NA NA

Approximately
70% of spatial

Heterogeneity of B cells:
Within same tissue section

O’Meara [85] SABCS 2021 NA NA NA all 132 mIF CD8, FoxP3, PD1,
PDL1, CK Vectra NA NA NA NA

HR+
Immune mark.:
Correlates with

Grade, Recurrence
score

Shimada [86] SABCS 2021 NA NA NA HR+
BC 5 mIF 9-21 proteins CyteFinder microscope MCMICRO NA

Tumor
Stroma

Immune cells
NA

Description
Of cold, hot

Excluded TIME

Noel [66] JCI 2021 WTS Adjuvant Chemotherapy,
HER2 targeted

HER2+ BC,
TNBC 48 mIF CD4, CD20, PD-1,

ICOS, Ki-67, Foxp3 Vectra/Polaris NA NA NA
Active TLS:
Favorable
prognosis

Active TLS:
Combined

CD4+PD1+, CD20+ki67+, GZMB+CD8+
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Table 3. Cont.

Author Journal Year Tissue
Type

Disease
Setting Treatment BC Type Pts No Assay Panel Scanning Software

ROIs Number,
Area

(per Patient)

Tissue
Segmentation

Prognosis/
Prediction

Spatial
Heterogeneity

Bedard [68] SABCS 2021 NA Metastatic
INT230-6

(cisplatin and vinblastine)
pembrolizumab

TNBC 3 mIF CD4, CD8, FoxP3 NA NA NA NA NA

Metastasis
Lower

CD4, CD8
Higher FoxP3

Zhu [87] J.Immun.
Cancer 2019 WTS Metastatic NA all 5 mIF CD8, FoxP3, CD68,

CD20, CK, DAPI NA NA NA NA NA Metastasis
Higher CD68

He [69] Plos One 2020 WTS Metastatic Chemotherapy TNBC 10 mIF
CD4, CD8, FOXP3,
CD20, CD33, PD1,

CK, DAPI
Vectra InForm NA CK+

CK-

Higher
PD1+CD8+
PD1+CD4+

Better
outcome

Metastasis
Lower

Str.
CD8+,

PD1+CD8+
Ultivue InSituPlex

Ahmed [70] CCR 2020 WTS Neo-adjuvant

nab-paclitaxel,
doxorubicin,

cyclophosphamide,
durvalumab

TNBC 45 InSitu Plex CD8, CD68, PDL1,
CK, Sox10, Hoechst

PM2000 microscope
(HistoRx) AQUA NA

CK+,
CK- CD68-,
CK- CD68+

pCR vs RD:
higher baseline PDL1

expression and similar
CD68 densities

PD-L1 expression:
on both stromal

and tumoral compartments

GeoMx Digital Spatial Profiling

Carter [75] SABCS 2020 WTS Neo-adjuvant taxane
HR+/
HER2-

BC
39 DSP 58 proteins GeoMx NA 6, 600 µm2 (CK+/SYTO13+)

(CK-/SYTO13+)

After NAT:
LAG3 expression:
Residual disease

Most immune
Markers:

Stromal enrichment

McNamara [77] Nature
Cancer 2018 WTS Neo-adjuvant Trastuzumab

lapatinib
HER2+

BC 28 DSP 40 proteins GeoMx NA 4, 464–666 µm2 CK+
CK-

On treatment
Expression CD45, CD56

Higher pCR

Compartment
enrichment

Tumoral
CD56, B7H4
PDL1, IDO

Stromal
CD3, CD4,
CD8, CD68

Carter [76] SABCS 2020 TMA adjuvant Chemotherapy TNBC 167 DSP 58 proteins GeoMx NA 1, 600 µm2 (CK+/SYTO13+)
(CK-/SYTO13+)

Stromal LAG3
Higher PFS

Compartment
Enrichment

Tumoral
CD27, HLADR, IDO1

PDL1
Stromal
PDL1

Stewart [74] Scientific
reports 2020 WTS Adjuvant Chemotherapy TNBC 10 DSP 39 proteins GeoMx NA 6, 300 µm2 CK+

CK-

No relapse:
Tumoral

HLA-DR,IDO1,
B2M

Stromal
CD45, CD4, PD-1

Most immune
Markers
Stromal

Kulasinghe [88] Frontiers
In Oncology 2022 TMA Adjuvant Chemotherapy TNBC 24 DSP 68 proteins GeoMx NA 1, NA CK+

CK-

Responders
Tumoral
higher

GZMA, STING,
Fibronectin

Lower CD80
Stromal

Lower 4-1BB

NA

Carter [89] CCR 2021 TMA NA Chemotherapy
untreated TNBC 184 DSP 58 proteins GeoMx GeoMx software

1,
600 µm2

CK+,
CK-/SYTO13+ NA

PD-L1+:
immunologically hotter

(mf, T cells,
checkpoints (IDO-1),
antigen presentation,

STING)
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Table 3. Cont.

Author Journal Year Tissue
Type

Disease
Setting Treatment BC Type Pts No Assay Panel Scanning Software

ROIs Number,
Area

(per Patient)

Tissue
Segmentation

Prognosis/
Prediction

Spatial
Heterogeneity

Leon-Ferre [90] SABCS 2021 TMA NA Surgery TNBC 111 DSP 58 proteins GeoMx NA 1,
NA

CK+
CK- NA

LAR vs non-LAR TNBC
Lower

Stromal CD45, CD14,
IDO1

Tumoral
CD45, B7H3

Schlam [78] JTM 2021 WTS Metastatic Chemotherapy
HER2 targeted HER2+ BC 8 DSP 70 proteins GeoMx NA 2 CK+

CK- NA

Metastasis
Lower

CD3, CD8
Tim-3, CD27, 4-1BB

Mass Spectrometry Immunohistochemistry

Bianchini [91] SABCS 2021 WTS Neo-adjuvant
atezolizumab,
carboplatin,

nab-paclitaxel
TNBC 243 IMC 43 proteins TOF NA NA NA

Higher pCR:
density

APC PDL1+IDO+,
spatial

correlation of CK+ and CD8+PD1+,
CD8+GZMB+, CD20+

NA

Keren [28] Cell 2018 WTS NA Surgery TNBC 41 MIBI-
TOF 36 proteins TOF NA 1, 800 µm2 NA

Compartmentalized
pattern

longer OS

Hot tumors
Were divided
Into “Mixed”,

“Compartmentalized”
Abbreviations: APC: antigen presenting cell, BC: breast cancer, RD: residual disease, CK: cytokeratin, DSP: digital spatial profiling, HR: hormone receptor, IMC: imaging mass cytometry,
MIBI-TOF: multiplex ion beam imaging with time of flight, mIF: multiplex immunofluorescence, MCISSS: Multiplexed Immunohistochemical Consecutive Staining on Single Slide, OS:
overall survival, pCR: pathologic complete response, PFS: progression-free survival, RFS: relapse-free survival, TLS: tertiary lymphoid structure, TMA: tissue microarray, TNBC: triple
negative breast cancer, TIME: Tumor immune microenvironment, WTS: whole tissue section.
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Similarly for TILs, multiple ROIs are required to capture PD-L1 intra-tumoral het-
erogeneity [72]. In BC, PD-L1 expression is seen on cancer cells, T cells (CD3+, CD4+, or
CD8+) and myeloid cells (CD68+, CD163+ macrophages, CD11+ myeloid derived suppres-
sor cells) [70,71,92]. Tissue segmentation reveals different expression patterns between
tumoral and stromal compartments. In CK enriched compartments, PD-L1 is mostly ex-
pressed by cancer cells or T cells, while in stromal compartments expression is mediated by
macrophages or T cells. In addition, cancer-immune mixing level has a further impact on
PD-1/PD-L1 axis.

In “mixed” tumors, PD-L1 and PD-1 expression are noted in cancer cells and CD8+ T
cells, respectively. In contrast, “compartmentalized” tumors express PD-L1 on CD11+ myeloid
derived suppressor cells and PD-1 on CD4+ T cells [28]. Regarding other immune regulators,
PD-L1 expression in TNBC is associated with both negative (PD1, Lag3, IDO1 and FoxP3)
and positive (HLA-DR and CD40) regulators of immune response [28,89]. Tissue segmenta-
tion shows even distribution of PD-L1 and other checkpoints between stromal and tumoral
compartments [76,77]. However, tumoral compartments seem to exhibit stronger expres-
sion of negative regulator IDO and positive regulators CD127, CD27, B7H4 [75,76]. Recently,
in a large cohort of 184 untreated TNBC cases, PDL1 positivity was associated with “hotter”
TIME compared with PDL1- compartments [89]. Taken together, multiplex methods can be
applied to comprehensively study the expression of immune-related molecules and such
efforts could be of help to re-evaluate the role of PD-L1 as predictive biomarker to ICI.

3.2.3. Inter-Patient Spatial Heterogeneity: Characterization of Spatial Organization of
BC TIME

Inter-patient heterogeneity could also be demonstrated with spatial multiplexing,
especially within the various BC subtypes. For HER2+, BC proliferative Ki67+CD3+ T
cells densities were found to be higher for HR- compared to HR+ disease [60]. TNBC
exhibits the higher TILs rates among BC types, and this has been also observed using
mIF/IHC with CD20+, CD8+, CD8+PD1+, FoxP3+ and PDL1+ densities to be higher in this
subtype [80,85]. Moreover, Leon-Ferre et al. used DSP and demonstrated that LAR TNBC
is immunologically “cold” compared with non-LAR TNBC [90]. Recently, Cy-TOF method
was used to comprehensively classify TIME of BC at single cell level [93,94]. Jackson
et al. concluded that TNBC harbor two types of TIME, either one heavily infiltrated by
cancer cells with only scarce stroma, or another associated with T cell or macrophage
rich infiltration [93]. HR+ tumors are generally infiltrated by a lower number of immune
cells, compared with HER2+ and TNBC. However, a subset of HR+ BC contained higher
densities of immune cells, located in some of the ROIs examined [93]. In another study,
immune infiltration and PDL1 expression positively correlated with pathologic grade and
Recurrence Score [85].

Interactions of TIME with other cell types such as CAFs has also been elucidated. Lumi-
nal BC seems to be mainly enriched in CAFs and divergent CAFs types have been described
with heterogeneous immunophenotypes, including vimentin+, SMA+ or CD68+ [93,94],
with luminal B tumors being infiltrated more from CD68+ CAFs compared to Luminal A
which are infiltrated from SMA+ CAFs [94].

Multiplex in situ methods can be also used to classify tumors as “cold”, “excluded” or
“hot”, based on tumor-immune interaction patterns of immune infiltration. In a landmark
paper, Keren et al. demonstrated that immune cell infiltration of immunologically “hot”
TNBC tumors can be subdivided into “mixed” and “compartmentalized” [28]. “Mixed”
tumors have immune cells mixed with carcinoma cells, while in “compartmentalized”
immune cells are spatially distinct from neoplastic cells. In tumor-immune border of
“compartmentalized” tumors, cancer cells express HLA-DR, B cells are depleted, while
granulocytes (MPO+) are enriched [28]. Intriguingly, spatial distribution of immune cells
can also classify hormone receptor-positive BC (HR+ BC), into “cold”, “restricted” or
“hot” [86].
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Overall, these studies show that high-multiplexing level allows for new classifications of
BC TIME (Table 3), complementary to those introduced by gene expression profiling [29,95,96].
In this way, the biologic relevance of rare subpopulations as well as novel histological
patterns of immune response can be described.

3.3. Temporal Heterogeneity of Breast Cancer TIME
3.3.1. Longitudinal Evaluation under Treatment Pressure at the Neoadjuvant BC Setting

A dynamic, longitudinal evaluation of inflammatory changes within BC TIME is of
utmost importance to better understand anti-tumor immune response. Some studies have
used mIF/IHC and DSP to longitudinally evaluate immune response under the pressure of
neoadjuvant therapy [60,61,75,77]. Treatment with either chemotherapy or HER2 targeted
therapies lead to increase of markers associated with cellular immunity, except for a
study [75], which demonstrated that chemotherapy globally downregulated the expression
of immune markers. Compared with baseline, increased infiltration of CD8+ [60,77],
FOXP3+ [60], CD8+PD1+ [61] and PD-L1+ [61] was noted, while CD3+KI67+ [60] cells
decreased. Interestingly, intra-tumoral spatial distribution of T cells also changed, with
CD3+ and CD8+ T cells being recruited closer to cancer cells, either in tumoral [60,61,77] or
proximal stromal compartments [60]. In summary, these studies demonstrate that multiplex
methods can be used to evaluate the dynamic changes of TIME, under the pressure of
neoadjuvant therapy.

3.3.2. Intra-Patient Heterogeneity: From Primary Breast Cancer to Metastatic Progression

Multiplex methods can also be employed to characterize TIME composition changes
from primary site to metastasis. Metastatic tumor areas have been generally considered
as immunologically “colder” compared with primary disease [78], with low TIL counts
at metastatic tissue [13] and highly discordant PD-L1 expression compared to primary
tumors [97,98]. In two previous reports, a decrease of T cells (CD3+, CD8+) density in both
stromal [69,78] and tumoral compartments [78] was noted, while macrophages seemed
to be increased [87]. Furthermore, functional status of TILs was also affected. In another
study, lower infiltration of dysfunctional (PD1+) T cells was noted and linked to worse
outcomes [87]. Furthermore, a DSP analysis of HER2+ BC showed decreased expression
of checkpoint Tim-3 and co-stimulatory CD27, and 4-1BB molecules [78]. However, even
for advanced disease, combinational treatment of chemotherapy and immunotherapy was
shown to increase CD4+ and CD8+ counts compared to FoxP3+ cells [68]. In summary,
these studies show that dynamic assessment of immune response in the context of temporal
heterogeneity is feasible and informative with multiplex methods (Table 3).

3.4. Prognostic and Predictive Implications of Multiplexed Spatial Profiling in Breast Cancer

The prognostic role of immune infiltrate in BC has been explored during the last
decade mostly via H&E assessment. It is well established, that higher rates of baseline
H&E sTILs confers favorable outcomes in chemotherapy treated, early-stage HER2+ BC
and TNBC, while the same does not apply for HR+/HER2- disease [15]. Regarding clin-
ical significance of immune subpopulations, current knowledge remains limited. In a
pooled analysis of 12439 BC patients, presence of intratumoral or stromal CD8+ T cells,
evaluated by IHC, predicted reduced BC-related mortality in both HR+/HER2+ and HR-
settings [26]. Multiplex in situ methods may cover the gap of clinical significance between
quantity and quality of immune infiltration. Digital enumeration and spatial distribu-
tion analyses, generate divergent prognostic metrics, which can be grouped into lineage-,
spatial- and functional-specific assessments (Table 3). Of note, clinical focus should not be
placed solely on T cells, as studies have shown that B cell evaluation carries prognostic
information [66,79,80]. Similar to H&E sTILs, combined scores of stromal CD4+, CD8+,
CD20+ correlated with better outcome in BC [62,80]. In luminal BC, patients with concur-
rent high levels of CD8+ and CD20+ cells had significantly increased overall survival [84].
In addition, expression of LAG3 correlated with residual disease after chemotherapy [76].
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Regarding HER2+ BC, higher levels of on-treatment T cells (CD8+) [60] and NK cells
(CD56+) [77], correlated with increased pCR with HER2-targeted therapy. Interestingly, in
HR+/HER2+ BC, spatial proximity of CD8+ T cells and helper T cells (CD3+CD8-FoxP3-)
predicted pCR [63]. Furthermore, in a small cohort of trastuzumab emtansine treated
patients, close proximity between GZM+ macrophages and cancer cells was associated
with residual disease [83]. In TNBC, prospective retrospective analysis of 102 cases treated
with standard neoadjuvant chemotherapy, showed that higher CD3+/CD68+ ratio and
CD3+ proximity to cancer cells independently predicted pCR [71]. However, in other
settings, spatial analysis has produced discordant results due to limited sample size and
use of different analysis pipeline [28,73]. On one hand, high spatial dispersion of CD3+
and CD20+ correlated with better RFS [73]. On the other hand, organized “compartmental-
ized” histology, predicted better overall survival compared with a “mixed” pattern [28].
Furthermore, the identification of TLS in BC TIME may be of clinical importance, as, in
various solid cancer types, TLS presence has been associated with better outcomes [99–101].
Intriguingly, the functional status, and not the number of TLS, seems to correlate with
DFS [66]. Evaluation of functional status of immune cells in TNBC revealed that increased
density of tumoral CD8+CD103+ memory T cells correlated with better RFS [67]. Similarly,
concurrent expression of tumoral HLA-DR, B2M, IDO-1, STING and GZMA as well as stro-
mal PD-1 characterized non-recurrent TNBC tumors [74,88]. In addition, higher tumoral
and stromal PD-L1 expression has been associated with response to chemoimmunother-
apy combination [70]. Moreover, baseline stromal LAG3 expression and altered densities
of CD4+PD1+ T cells after three weeks of chemotherapy were favorable prognostic fac-
tors [61,76]. To date, the largest application of imaging mass cytometry has been applied in
243 TNBC of NeoTRIPaPDL1 phase III trial, where high densities of PDL1+IDO+ antigen
presenting cells and spatial correlation of cancer cells with T cell subsets (CD8+PD1+,
CD8+GZMB+) and B cells (CD20+) accounted for higher pCR rates in atezolizumab arm,
independent of sTILs and PD-L1 IHC [91]. In summary, multiplex in situ evaluation of
immune cells’ densities, spatial distribution and functional status may provide the neces-
sary step forward in identification of TIME-related biomarkers (Table 3). Of note, few of
these studies have tested locked-down classifiers against pre-specified hypotheses. This is
a major caveat against the conclusions drawn and independent validation is needed.

3.5. AI-Assisted Evaluation of TIME on H&E Breast Cancer Tissue Images

In the past years, new methods based on image analysis of H&E stained images have
been developed for the assessment of TIME and TILs so that the setbacks of morphology-
based TILs evaluation could be also overcome. Such methods are based mostly on deep-
and machine-learning algorithms coupled with artificial intelligence approaches [102].
Recently, recommendations have been published from the international immuno-oncology
group to aid towards clinical validation [103]. In BC, the clinical significance of digital
TILs enumeration has been explored [65,104–107]. In a recent study by Bai et al., a semi-
supervised neural network was developed for the scoring of digital TILs in 920 early TNBC
patients and demonstrated that increasing digital TILs density was a favorable prognostic
factor [104]. Furthermore, retrospective analyses of prospective cohorts that recruited a
large sample of BC patients, concluded that digital TILs counts independently predicted
pCR [105,106]. The favorable prognostic significance of digital TILs was also validated
in a cohort of 146 BC, especially for HER2+ BC and TNBC [107]. All the aforementioned
studies including large number of patients, suggest that digital TILs densities could be of
clinical importance. However, since H&E manual TILs scoring remains the “gold standard”,
the concordance of digital and manual evaluation needs to be further assessed. Indeed,
significant correlations between the algorithm’s TILs scores and the pathologist’s read sTILs
assessments have been reported [64,104]. Intriguingly, multiplex methods can also digitally
assess lymphocytic subpopulations densities and the interplay between TILs and CAFs in
H&E-stained images has been also studied with the use of digital pathology. A recent study
evaluated the spatial relations of CAFs and TILs within TIME of HR+ BC. Using AI-based
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analysis on H&E slides, the cellular densities and spatial proximity of TILs and CAFs were
calculated. Hierarchical clustering revealed five TIME types, with one type/cluster being
associated with IFNγ gene expression, high TILs and CAFs densities mixing with each
other. Of note, mixing histology was a favorable prognostic factor, independently of other
clinicopathologic factors, TILs and CAFs densities [108]. Overall, digital evaluation of TILs,
in terms of enumeration and spatial distribution is likely to become an invaluable tool for
cancer research. Incorporation of immune subpopulations in the analysis of multiplexed
data will expand further TIME understanding.

4. Discussion

Over the past few years, immunotherapy has generated promising results in the
treatment of patients with TNBC. However, the mechanisms that govern response and
resistance to checkpoint inhibition are poorly understood. A deeper understanding of the
underlying complex biology of the TIME may pave the way for the discovery of novel
immune-related biomarkers. Multiplex in situ methods seem to be powerful tools towards
this effort, overpowering or complementing other TIME evaluation techniques, especially
when only small tissue specimens are available for analysis [16]. On one hand, they can
identify patterns not detected by conventional H&E or IHC histopathological techniques.
They enable the simultaneous detection of densities, subpopulations and functional states
of immune cells as well as different immune stimulators or suppressors within their cellular
context. On the other hand, they can effectively capture spatial heterogeneity of anti-
tumor immune response, complementing on sequencing-based methods. Gene expression
signatures and single cell-omics are devoid of spatial information [109]. In bulk-omics,
the signal is dominated by the predominant cellular population and rare, yet important,
populations are missed. Although single cell-omics can identify rare populations, their
biologic relevance is not fully characterized as their spatial interrelations are lost [109].

Protein-based multiplex methods remain of utmost importance, since protein ex-
pression is a direct estimation of functionality. However, RNA-based methods (spatial
transcriptomics) have also been established and complement protein-based studies. To
date, two types of spatial transcriptomic approaches exist and they have been extensively
reviewed in elsewhere [110,111]. At first, sequencing approaches include: laser capture
microdissection, mRNA capture, microfluidics (DIBIT-sequencing), in situ sequencing,
fluorescence in situ sequencing (FISSEQ) and GeoMx DSP, which could also be employed
to assess mRNA expression in situ, apart from protein evaluation. Secondly, fluorescent
in situ hybridization (FISH) approaches include: single-molecule FISH (smFISH), Spec-
tral barcoding, Spatial barcoding, osmFISH, multiplexed error-robust fluorescent in situ
hybridization (MERFISH), sequential FISH (seqFISH, seqFISH+) and RNAscope. To our
knowledge, limited studies have used such approaches to evaluate breast cancer TIME
heterogeneity [112].

Overall, multiplex in situ assays represent an invaluable tool for dissecting breast can-
cer TIME at a spatial resolution, going beyond H&E TILs and PDL1 IHC. The combination
of longitudinal and spatial analysis at ROI, tissue compartment and cell-to-cell interaction
level, allows for in situ evaluation of divergent, and even rare, immune subpopulations
as well as immune checkpoints within their cell of origin. This paves the way for spatial
interrogation anti-tumor immune response organization, hypothesis generation regarding
immune cells’ function as well as identification of novel immune related biomarkers. Fur-
thermore, novel taxonomies of BC TIME emerge and allow for improved identification of
BC patients with “inflamed”, “excluded” and “cold” breast tumors [28,93,94].

Before introducing multiplex in situ methods into clinical practice, several analytic
challenges need to be overcome. It was recently demonstrated that different methods
yield discrepancies for immune infiltrate assessment [113]. This observation is of utmost
importance, since previously non-reproducible results have compromised the potential
clinical significance of explored biomarkers [7,8,18]. In this direction, efforts have been
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undertaken to standardize recommendations for mIHC/IF [38,114] and DSP [115] but
several questions still need to be addressed.

Firstly, the optimal number of markers within a panel is not known. Multiplex IHC/IF
approaches use narrow, easier to validate panels, which makes them more relevant in
the context of a clinical trial. In addition, cost, scanning times and image analysis labor
are significantly lower compared with CODEX, or MS-IHC based approaches. However,
narrowing down analysis to a limited number of biomarkers studied can potentially
lead to an oversimplification of the underlying biology. Smaller antibody panels may
overlook specific subpopulations and may be unable to characterize the whole spectrum of
immune cell dysfunction or the interplay between different immune regulators [116]. In
contrast, high-plex methods may provide a more global characterization of TIME; however,
increased complexity generates difficulties regarding panel validation, intensity profile, cell
segmentation and phenotyping [39,117]. In addition, the sensitivity of MS-IHC approaches
compared with single IHC is yet to be determined [38].

Secondly, the optimal number and selection method of regions of interest needs to be
determined. Ideally and in order to effectively tackle spatial heterogeneity, examination
of whole tissue section is required, but this significantly increases both cost and image
analysis labor. As multiplexing level increases, the available ROI is often limited to less
than 1 mm2. Multiplex IF/IHC allows for evaluation of larger (even whole slide) ROIs,
while mass cytometry-based approaches are limited to one small (800 µm2) ROI. Selecting
ROIs generates another challenge, as manual selection is arbitrary and is susceptible to
selection bias. On the other hand, image curation by a pathologist can exclude artifacts,
fibrotic or necrotic areas that can potentially confound image analysis results. Considering
that spatial heterogeneity is the cardinal factor of interobserver variabilities during H&E
TILs evaluation, ROI selection is a critical step for quality research. In order to circum-
vent this issue, it is generally recommended to evaluate as many ROIs as possible [38,65].
Berry et al. addressed this question by comparing random with hot-spot, deep-learning
sampling and demonstrated that hot-spot sampling was not inferior in terms of predicting
immunotherapy benefit [27]. Thirdly, regarding the image analysis workflow, guidelines
for standardization are an unmet need. Several technological limitations exist for scanning
speed, image generation, resolution level, measurements, and software performance. Fur-
thermore, several challenges exist across the pipeline of multiplex (multispectral) images
analysis. The first challenge regarding multiplex data and whole slide imaging in general
is related to the acquisition and curation of such data. Due to their large size, storing,
retrieving and processing such images requires careful planning and optimization of the
storage infrastructure [27,110]. Another challenge concerns the analysis of the multiplex
images (e.g., cell phenotyping), including cell segmentation and classification. Incorrect
segmentation of cells, either by splitting individual cells or by merging multiple ones can
result in over/under-estimation of specific types of cells [27]. Balanced representation of
cell populations within the training and testing sets is of paramount importance, since
training on unbalanced datasets can lead to model overfitting to the over-represented
class, while validating on such datasets produces unreliable performance results. Cellular
segmentation can be laborious and challenging, especially when cells with different shapes
and sizes are mixed [118–120]. The level of complexity increases further when multiple
biomarkers need to be assessed, as cell borders can be poorly defined [49]. To overcome
such challenges, new approaches are being developed to assess biomarker expression at
pixel-level instead of cellular-level [49]. Moreover, results from proximity studies between
cancer cells and immune cells may be affected by difference in cell densities. Towards this
end, performing proximity analysis between compartments with similar levels of cellular
infiltration has been suggested [121]. Other challenges could be posed within the image
analysis pipeline, such as the development of good-quality data, existence of inter-center
and inter-vendor variability, as well as intra- and inter-observer variability either during
tissue sample preparation or during image acquisition. Controlling these analytical check-
points is a significant factor for the development, validation and interpretation of robust
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and accurate models and image analysis tools. To ensure reproducibility, an extensive and
detailed report of image analysis workflow is warranted. All the aforementioned analytical
challenges are summarized in Table 4.

Table 4. Analytic challenges of multiplex in situ methods.

Multiplexing Level

High Challenging panel validation, increase in image analysis la-
bor/difficult cell phenotyping

Panel Validation
Section thickness Affects staining intensity and tissue autofluorescence

Staining sequence of
primary antibodies

Can deal with epitope instability and cross reaction of primary
antibodies

Fluorophores,
Co-localization in the

same cellular compartment,
Low abundance epitopes

Selection of spectrally separated fluorophores; selection of more
intense fluorophores

Staining pattern For each antibody, staining pattern in multiplex image should
be identical to single-plex immunohistochemistry

Regions of interest

Number Whole tissue section resemblance: as many as possible evalua-
tion

Prior selection Potential selection bias
Statistical analysis

Optimal statistical method Hierarchical linear modeling: statistical power improvement
over t-test.

Cut-off Biomarkers expressed by various cell types: establishment of
single positivity threshold is difficult

Image Analysis
Storage Extreme data sizes

Cell phenotyping Difficult cellular segmentation: 1. Mixed cells with different
shapes and sizes 2. High multiplexing level

Distance analysis
Densities can be confounding factor: Possible solution prox-
imity analysis between areas with similar levels of cellular
infiltration

Bias
Inter-center and inter-vendor variability, as well as intra- and
inter-observer variability either during tissue sample prepara-
tion or during image acquisition.

5. Concluding Remarks

Multiplexing methods are very likely to revolutionize our view of breast cancer TIME.
All the aforementioned analyses have been implemented on breast cancer research for
dissecting TIME at a spatial and multiplex resolution. Scarce data have been reported so
far in a few descriptive studies, while others report on prognostic implications, sometimes
with discordant results. From a clinical perspective, despite the promising initial data,
prospective validation within adequately powered clinical trials is required. Longitudinal
evaluation of tissue samples would be of high interest since inflammation and immune phe-
notypes are dynamic and change over time. Validation, optimization, standardization and
detailed reporting is needed to achieve reproducible results. Therefore, the establishment
of “multiplex/multi-omics tumor boards” including oncologists, pathologists, molecular
biologists/immunologists, computational scientists and bioinformaticians could serve as
a future perspective in order to better integrate and interpret multi-omics data/results in
clinical benefit and practice.
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