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Simple Summary: Large-scale medical data carries significant areas of underrepresentation and
bias at all levels: clinical, biological, and management. Resulting data sets and outcome measures
reflect these shortcomings in clinical, imaging, and omics data with class imbalance emerging as the
single most significant issue inhibiting meaningful and reproducible conclusions while impacting the
transfer of findings between the lab and clinic and limiting improvement in patient outcomes. When
employing artificial intelligence methods, class imbalance can produce classifiers whose predicted
class probabilities are geared toward the majority class ignoring the significance of minority classes,
in turn generating algorithmic bias. The inability to mitigate this can guide an AI system in favor
of or against various cohorts or variables. We review sources of bias and class imbalance and relate
this to AI methods. We discuss avenues to mitigate these and propose a set of guidelines aimed at
limiting and addressing data and algorithmic bias.

Abstract: Recent technological developments have led to an increase in the size and types of data in
the medical field derived from multiple platforms such as proteomic, genomic, imaging, and clinical
data. Many machine learning models have been developed to support precision/personalized
medicine initiatives such as computer-aided detection, diagnosis, prognosis, and treatment planning
by using large-scale medical data. Bias and class imbalance represent two of the most pressing
challenges for machine learning-based problems, particularly in medical (e.g., oncologic) data sets,
due to the limitations in patient numbers, cost, privacy, and security of data sharing, and the
complexity of generated data. Depending on the data set and the research question, the methods
applied to address class imbalance problems can provide more effective, successful, and meaningful
results. This review discusses the essential strategies for addressing and mitigating the class imbalance
problems for different medical data types in the oncologic domain.

Keywords: class imbalance; oncology; machine learning; artificial intelligence; clinical data

1. Introduction

Large-scale medical data carries significant areas of underrepresentation and bias at all
levels: clinical (demographic, disease characteristics), biological (heterogeneity of disease),
management and outcomes [1–4]. Underrepresentation or overrepresentation of one or sev-
eral categories as related to clinical and disease characteristics, management or outcomes,
and resulting imaging studies and biospecimens results in data set bias and class imbalance,
or unequal distribution of features in a provided data set. This is often exemplified in onco-
logic data sets by, for example, overrepresentation of patients with superior performance
status on clinical trials or, for example, underrepresentation of certain demographics such
as the inclusion of certain racial and ethnic groups or patient populations who experience
greater challenges with access to care. These uneven distributions within data sets result
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in a majority class, or the subset of the data that is overrepresented, and a minority class,
or a subset of the data that is underrepresented. Class imbalance in clinical, imaging, and
omics data sets is the rule, not the exception [5]. In the context of clinical data, this may
be the result of the type of practice setting (e.g., publicly funded systems vs. academic vs.
private practice), location (urban vs. rural, affluent vs. limited resources), data acquisition
(manual vs. batch collection from electronic medical records), data curation (handling
missing and inaccurate data). This heterogeneity in “big data” is reflected in publicly
available data sets in all types of medical settings and clinical contexts [6,7]. The number
and importance of publications about the class imbalance problem have increased over
time (see Figure 1) [8]. The variability of data at all levels and its presence in large-scale
data sets of all subtypes is emerging as the single most significant issue inhibiting the
harnessing of data for meaningful and reproducible conclusions. It impacts the transfer of
findings between the lab and the clinic and limits improvement in patient outcomes [9].
However, obtaining balanced data in medical data sets of all subtypes is challenging sec-
ondary to limitations in patient numbers, cost, privacy and security of data sharing, and
the complexity of generated data, resulting in significant efforts to achieve representative
data sets [10,11]. For example, in medical image data sets, the number of one class samples
generally exceeds the number of other class samples, causing class imbalance problems
which are increasingly a hot topic in machine learning and data mining [10]. While the class
with fewer examples represents the minority class, another class represents the majority
class. Machine learning models/ artificial intelligence (AI) systems considering all data,
therefore, produce biased classifiers whose predicted class probabilities are geared toward
the majority class ignoring the significance of minority classes [12,13]. The algorithmic bias
here is defined as the prejudice embedded in the decision resulting from an AI system in
favor or against a person, group, or thing that is taken into account to be unfair [14]. In
other words, algorithmic bias is the difference between the predicted value and the actual
value of our model. If the bias is high, the model cannot capture the pattern (e.g., essential
features) of data, it misses the relations between the features and targets, and the learning
model cannot generate appropriate predictions on testing data. This situation is called
underfitting. The decision boundaries created by traditional machine learning models
tend to be biased toward the majority class; therefore, the minority classes are most likely
misclassified for class imbalanced data sets.
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Figure 1. The number of publications on class imbalance listed in Pubmed by year for years 2012
to 2021 (blue = total publications per year on class imbalance, orange = total publications per year
on class imbalance in oncology, grey = the number of publications on class imbalance pertaining to
oncology as a percent of the total number of publications that year) [8].
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Furthermore, the machine learning models treat minority classes as noise; therefore,
noise may be incorrectly classified [15]. The degree of imbalance is defined as the ratio of the
sample size of the minority class to that of the majority class [11]. The degree of imbalance
in medical image data sets generally can be as low as 1:5, 1:10, 1:100, or 1:1000. We will
review sources of bias in clinical data sets and their current impact on large scale data use,
the effect of data bias and class imbalance on AI methods, and avenues to mitigate these,
generating a set of guidelines aimed at limiting and addressing bias and class imbalance in
large-scale medical data. The organization of this paper is as follows: Section 1: we discuss
sources of data-based class imbalance problems in machine learning as relevant to medical
applications (i.e., oncology). Additionally, we provide explanations for the origins of bias
and class imbalance in large-scale medical data; Section 2: we discuss methods employed
in addressing this problem; Section 3: we present guidelines to mitigate bias and address
class imbalance in oncologic data sets toward transferrable AI; Section 4 concludes this
paper with future directions.

2. Sources of Bias and Class Imbalance in Large Scale Medical Data
2.1. Gender and Race Imbalance

There is increasing awareness of bias and class imbalance sources in medical data
sets. Notably, gender [16,17] and race bias [18,19] with class imbalances are increasingly
highlighted in the literature. Both factors have been shown to affect outcomes. They
have also been shown to affect data collected at all levels, clinical [6], imaging [13], and
biospecimen [20], and in turn, analysis of downstream genomic and proteomic data sets
(Figure 2) [8]. Oncologic disciplines where this has been highlighted include large patient
volume oncologic sites such as lung cancer [20], breast cancer [18], and head and neck
cancer [21] but also lower volume sites such as central nervous system malignancies [22,23].

Nonetheless, in complex data sharing performed with limited resources, a significant
proportion of oncologic literature employs large-scale data or uses publicly available data
sets for validation, using a biased data set. The use of “easy data” is highly prevalent
and results in AI often not transferrable or scalable. Many AI approaches do not employ
clinical data or only minimal clinical data, preferring to rely on only imaging or only omic
data analyzed with semi-supervised or unsupervised methods. Validation with larger data
sets with fewer missing data is carried out in an effort to limit bias. This approach can
result in conclusions that have unclear or limited clinical applicability and, due to class
imbalance and overfitting, are not replicated in other data sets. Classification of data can
improve the outcome of AI approaches but is impacted by the employed data with inter
and intra-observer variability.
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Figure 2. Clinical, imaging, omic and outcome based algorithms (left panel) are generated based on data sets
that harbor underrepresentation or overrepresentation of one or several categories as related to demographics
(gender, race, social determinants of health–(right top panel), management (extent of surgical resection, type
of upfront management, management upon recurrence (right middle panel) and disease characteristics
(molecular classification, response to systemic management and radiation therapy (right lower panel).
Class imbalance affects ancillary data sets such as imaging, omics based on biospecimens and outcomes
(middle panel). The resulting algorithms result in limited reproducibility in other cohorts (Study population,
B, C, and a theoretical infinite other population that does not share identical class imbalance). As both the
sources and extent of over and underrepresentation of certain classes and class imbalance are altered in
other populations/data sets (lower panel), defining features reflective of class imbalance and mitigating
these via compensatory methods in all data subtypes, can address the lack of reproducibility and help
identify additional features that can be used to further optimize algorithms allowing for transferrable results
(lower panel).
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2.2. Limited Capture and Inclusion of Social Determinants of Health (SDOH) and Disability

Additional significant sources of data-related bias involve class imbalance due to the
lack of capture and inclusion of social determinants of health (SDOH) [24] and patient
disability in AI methods. Social determinants of health consist of the geographical and
socioeconomic conditions where people are born, live, and age, and the drivers of these
conditions with cancer outcome disparities reflecting these aspects [24]. Disability affects
the aggressiveness and accessibility of oncologic management but can be challenging to
collect consistently in data sets and is intersectional with other factors noted above, such as
gender and SDOH. Both SDOH and disability have been particularly challenging to capture
robustly in data sets and, as a result, are often not included in AI analysis [24,25]. Class
imbalance carries significant implications concerning these domains, and studies have
looked at computational approaches, including natural language processing in unstructured
data to expand data sets to capture disability as a feature [26].

2.3. Variability in Oncologic Management

Patient management in oncology can vary based on several clinical and disease-related
factors, including features discussed in Sections 1 and 2 above and the evolution of staging
and treatment paradigms in any one condition over time. Notably, demographics and man-
agement can be drastically different between trial populations and the real world [27,28],
resulting in heterogeneous data mirrored in data sets employed for analysis, training, test-
ing, and validation (Figure 2). In real-world settings, oncologic management can be highly
variable based on geographical location, access, and resources, which can significantly
impact training AI algorithms and result in non-transferable products.

2.4. Variability in Oncologic Outcomes Capture

Outcome measures of most studies depend on capturing progression and survival
parameters with patient- and physician-reported outcomes increasingly being implemented.
When patients are treated in clinical trials, these parameters are more rigorously captured
than patient outcome capture in real-world settings. In real-world settings, patient survival
(date of diagnosis to the date of death) is a robust parameter (albeit with the limitation of
the cause of death being inconsistently captured). However, the date of disease progression
is inconsistently available, suffering from difficulties in determining progression (clinical,
radiographic, biochemical) and resource limitations to data annotation. Protocols are also
attempting to address this aspect with adaptive trial designs that are increasingly complex.
Provided the growing cost of developing and testing oncologic management avenues, the
ability to identify subpopulations of patients in whom treatment is effective vs. those
where early intervention or alteration in management may be beneficial is driven by robust
data that originates from highly curated trial populations. Computerized patient-reported
outcome measures and patient-generated data are on the rise [29] in clinical settings,
although such large-scale data are likely to intersect with other sources of data imbalance.
As a result, large-scale medical data are less likely to originate from study patients (which
is a source of class imbalance in and of itself) and more likely to grow using real-world
data (also a potential source of class imbalances).

2.5. Knowledge Translation Bias

While many a conversation involves direct data bias, as described above, it should
be noted that data sets, their analysis, and prediction results, as can be accessed in the
public domain, lead back to published results. However, most published studies report
positive findings and far less report on unsuccessful AI as exemplified in the context
of, for example, skin cancer classification [30,31], sepsis prediction [32], the use of race
correction in clinical algorithms [33], and notably the COVID-19 pandemic [34]. Publication
bias is well described reflecting both the excitement and the fundamental clinical gaps in
aspects of diagnosis, response, or management that need to be overcome with the perceived
advantage of artificial intelligence approaches. Negative studies have the potential to be
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highly instructive but lack publication exposure. The reason for unsatisfactory results may
relate to a lack of capture and adaptation to class imbalance sources, limiting the exposure
of such studies to other investigators, and the development of meaningful solutions to
flawed data.

3. Overview of the Existing Methods for the Class Imbalance Problem

Many studies have been conducted in the literature to address the problem of bias and
class imbalance and increase the learning performance of the model utilized. Although
there is no universal method to deal with the class imbalance problem, researchers have
suggested various methods and approaches for this, according to the size of the data
set they use, data distribution, imbalance ratio, and performance criteria of the model.
According to the methods used, the existing approaches can be mainly divided into a data
level, algorithm level, and hybrid. Additionally, these levels can be grouped into various
techniques (i.e., re-sampling, recognition-based approach, cost-sensitive learning, and
ensemble learning) [11]. An overview of the existing methods for the class imbalance
problem is illustrated in Table 1 and Figure 3. This review summarizes the current technical
tools for handling class imbalance problems, particularly medical image data sets. We
mainly focus on image-centric issues and the strategies for addressing these in this study.
The advantages and drawbacks of the methods employed in the literature are described in
the following sections.

Table 1. Pertinent literature addressing approaches to class imbalance.

Study Technique Setting

Data-level methods

Bose et al. [35]
Convolutional neural networks (CNN),
long short-term memory (LSTM),
over-sampling

Radiation Oncology, incident reporting

Brown et al. [36] Under-sampling Radiation Oncology, prostate cancer

Liu et al. [37] Synthetic Minority Oversampling
Technique (SMOTE) Glioblastoma imaging

Suarez-Garcia et al. [38] Under-sampling Glioma imaging

Li et al. [39] Under-sampling, K-Means++ and
learning vector quantization (LVQ) Liver cancer

Isensee et al. [40] Deep learning, nnU-net Brain tumor segmentation

Algorithm level methods

Goyal et al. [41] Recognition-based, one class
classification

real-world data sets across different
domains: tabular data, images (CIFAR
and ImageNet), audio, and time-series

Gao et al. [42] Recognition-based, one class
classification Medical imaging

Welch et al. [43] Recognition-based Head and Neck Radiation therapy

Leevy et al. [44] Cost-sensitive General

Nguyen et al. [45] Cost-sensitive, comparison of techniques

SMOTE and Deep Belief Network (DBN)
against
the two cost-sensitive learning methods
(focal loss and weighted loss) in churn
prediction problem

Milletari et al. [46] Cost-sensitive Medical image segmentation

Lin et al. [47] Cost-sensitive, Focal loss Medical imaging

Jaeger et al. [48] Cost-sensitive, Focal loss Medical imaging object detection
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Table 1. Cont.

Study Technique Setting

Xiong et al. [49] Cost-Sensitive Naive Bayes
Stacking Ensemble

Various malignancy data sets and
data types

Shon et al. [50] Cost-sensitive Kidney cancer data (TCGA)

Dong et al. [51] Ensemble-Learning General

Sagi et al. [52] Ensemble-Learning General

Tang et al. [53] Ensemble-Learning, bagging-based Transcriptome and functional proteomics
data breast cancer

Le et al. [54] Ensemble-Learning, ResNet50 CNN Skin cancer

Wang et al. [55] Ensemble-Learning, multi-layer
perceptron (MLP)-based Gastric cancer

Hybrid methods

Khushi et al. [15]
Comparative Performance Analysis
of Data
Re-sampling Methods

Various malignancy data sets and
data types

Chen et al. [56] Combination of methods General

Zhao et al. [57] Random Under-Sampling Boost
(RUSBoost) Colorectal cancer, microarray data

Urdal et al. [58] Random Under-Sampling
Boost (RUSBoost)

Urothelial carcinoma,
histopathology data

Other methods and reviews

Mirza et al. [59] Integrative analysis of biomedical big data

Guyon et al. [60] variable and feature selection overview

Hilario et al. [61] Class imbalance in proteomic biomarker studies overview

Tibshirani et al. [62] LASSO (Least Absolute Shrinkage and Selection Operator) overview

Yan et al. [63] Graph- and kernel-based—omics data integration algorithms

Fawcett et al. [64] ROC analysis overview
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3.1. Data-Level Methods

Data level methods can be re-sampling methods such as over-sampling and under-
sampling (Figure 3). They aim to balance data sets by utilizing re-sampling methods
such as increasing the sample size of the minority classes (over-sampling) or reducing the
sample size of the majority class (under-sampling) [15,65]. In some cases, over-sampling
methods may cause overfitting due to duplicating a minority of samples for the related
data set; under-sampling also may have some disadvantages, such as discarding useful
information for the data distribution [15]. Under-sampling can remove valuable and
significant patterns; therefore, it can cause the loss of useful information [10]. Both over-
sampling and under-sampling methods can be applied separately or as a hybrid (e.g.,
SMOTE-ENN or SMOTE-Tomek [15]) to any learning model for class imbalance problems
to handle these limitations and provide good generalization ability of the model. Both
over-sampling and under-sampling methods can be applied separately or as a hybrid
to any learning model for class imbalance problems. Data-level methods are a type of
data preprocessing stage that redistributes training instances to establish well-balanced
data sets. Data-level methods’ advantages are independent of underlying the learning
model/classifier and can be easily performed [10]. However, under-sampling can remove
valuable and significant patterns; therefore, it can cause the loss of useful information [10].

On the other hand, over-sampling results in a time-consuming process due to extra
computational cost to the learning model used. To automate the incident triage and severity
prioritization process for saving time and cost as well as overcoming errors in the radiation
oncology incident learning system, Bose et al. applied convolutional neural networks
(CNN) and long short-term memory (LSTM) with minority and random over-sampling
strategies to handle high-class imbalanced data [35]. They employed incident reports ob-
tained from Virginia Commonwealth University (VCU) and the US Veterans Health Affairs
(VHA) radiation oncology centers. Brown et al. developed various data-filtering techniques,
including under-sampling methodologies for imbalanced data classification methods, to
provide automated radiation therapy (RT) quality assurance (QA) for prostate cancer treat-
ment. Their proposed approach obtains strong performance results with high classification
accuracy [36]. Liu et al. used Synthetic Minority Oversampling Technique (SMOTE) to
overcome with class imbalance problem for Glioblastoma Multiforme (GBM) brain tumor
images obtained from Moffitt Cancer Research Center and TCGA (The Cancer Genome
Atlas Program) T1-Contrast data set (NIH’s Cancer Imaging Archive Dataset) [37]. Their
method achieved 37.83% AUC (Area under the Curve) improvement for brain magnetic
resonance imaging (MRI) images. In another study, Suarez-Garcia et al. also developed
a basic model for glioma grading based on texture analysis using the under-sampling
method to handle class imbalance data [38].

Furthermore, to predict the occurrence of liver cancer with skewed epidemiological
data and tackle the class imbalance problem, Li et al. introduced two different under-
sampling methods based on K-Means++ and learning vector quantization (LVQ) [39].
Isensee et al. developed a fast and effective deep learning-based segmentation method,
namely nnU-net, which automatically configures all segmentation architecture without user
interventions for arbitrary new tasks/data sets [40]. Their method employs an oversam-
pling strategy by randomly selecting 66.7% of samples from the training data for a robust
handling class imbalance problem. In case the re-sampling methods may not provide
performance improvement of the prediction models, other methods such as ensemble
learning (e.g., boosting) or various feature selection approaches can be employed.

3.2. Algorithm-Level Methods

Researchers can alter traditional machine learning models at the algorithm level,
assigning weight or cost to a classifier to reduce bias towards the majority class. The
learning model is not affected by the class distribution in this process. These methods may
be recognition-based, cost-sensitive, or ensemble learning-based (Table 1 and Figure 3).
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3.2.1. Recognition-Based Methods

One-class learning is an approach that is used in the absence of non-target class
instances for recognition-based methods. Outlier detection and novelty detection are exam-
ples of the one-class classification. This method provides high performance, particularly
on high-dimensional data. Various models, such as support vector machine (SVM) and
isolation forest, can be built by one class learning, while some models, such as decision
trees and Naïve Bayes, cannot [41]. Gao et al. proposed a deep-learning-based one-class
classification approach to handle imbalanced class data for medical images such as breast
MRIs and space-occupying kidney lesion (SOKL) data sets [42]. For head and neck cancer
radiation therapy outcome predictions, Welch et al. (2020) employed the isolation forest
algorithm, an ensemble of isolation trees constructed to deal with the class imbalance and
detect data anomalies [43].

3.2.2. Cost-Sensitive Methods

Cost-sensitive methods are particularly critical for medical applications due to the
importance of false positive and false negative instances. In this approach, the misclassifi-
cation cost is adjusted to balance the majority and minority classes (e.g., a false negative
prediction may be assigned a higher weight (i.e., cost) as compared to a false positive
prediction [44]. This practical solution yields cost-sensitive learning for this problem. There
are various cost-based approaches such as weighted cross-entropy, multiclass dice loss
function, and focal loss to overcome the class imbalance in data in the literature.

The weighted cross-entropy loss equation [45] is defined as Equation (1). Cross-entropy
loss function, called logarithmic loss, or log loss, is based on the Information Theory and
related to the level of uncertainty (i.e., entropy) for the outcome of variables. Cross-entropy
is used for adjusting model weights during the training stage to minimize this loss value,
and this score is calculated by penalizing the probability based on how far the predicted
value is from the true expected value. The smaller the loss indicates, the better the model.

Lw = −
m

∑
i=1

(αyi log(
_
y i) + (1− yi) log(1− _

y i)) (1)

where α represents the imbalance parameter.
Another class loss function to handle class imbalance in data for the medical image

segmentation is the multiclass dice loss function [46]. It is differentiable and can be easily
adapted into various deep learning frameworks. The multiclass dice loss function is
illustrated in Equation (2).

Ldc = −
2
|K|∑k∈K

∑ iui,kvi,k

∑ iui,k + ∑ ivi,k
(2)

where u denotes the softmax output of the network and v denotes a one-hot encoding of
the ground truth segmentation map. u and v have the shape I by K with i ∈ I being the
voxels in the training data and k ∈ K being the classes. ui, k and vi, k represent the softmax
probability output and ground truth for class k at voxel i, respectively [40].

In addition to the weighted cross-entropy loss and multiclass dice loss function, Lin
et al. introduced the focal loss method to add a modulating factor (1-pi)γ to the cross-
entropy loss with tunable focusing parameter γ ≥ 0 [47]. Focal loss is the improved version
of the cross-entropy function. It assigns more weights to misclassified examples (e.g.,
background image) by increasing the importance of correcting. It is defined as Equation (3).
Focal loss is used for semantic segmentation and medical object detection [48].

FL(pt) = −(1− pt)
λ log(pt) (3)

In a study, the embedding cost-sensitive naive Bayes (NB) classifier was used as
a meta-learner to handle class imbalance for cancer gene expression data [49]. In another
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study, Shon et al. proposed a cost-sensitive hybrid deep learning approach for kidney
cancer classification [50].

3.2.3. Ensemble Learning-Based Methods

Ensemble learning combines multiple weak learners to acquire a robust model with
better performance by using various mechanisms such as voting and boosting [51,52].
A decision is typically generated in supervised pattern recognition and machine learning
tasks [52]. Ensemble learning models have a better performance than individual learning
models, and they provide more resistance to noise/outlier. However, the training time for
these learning models is time-consuming, and they can cause over-fitting in some cases [10].

Tang et al. constructed multi-omics data with the transcriptome and functional pro-
teomics data and employed a bagging-based ensemble learning method on breast cancer
to avoid over-fitting problems [53]. Le et al. utilized an ensemble of pre-trained ResNet50
CNN models for the classification of skin cancer to support dermatologists in skin cancer
diagnosis [54]. Their model is based on a class-weighted learning approach for different
classes in the loss function. Meanwhile, Wang et al. introduced a multi-layer perceptron
(MLP)-based ensemble learning architecture for the classification of advanced gastric can-
cer (AGC) [55]. To reduce the class imbalance and keep the network compatible, they
optimized the MLP with cross-entropy loss.

3.3. Hybrid Methods

Hybrid methods combine data-level methods and algorithm-level methods [15]. Data-
level methods are utilized to process data externally and set the distribution of classes for
instances. Afterward, the learning process is carried out internally with algorithm-level
methods. With hybrid methods, the learning model will not be biased too much towards the
majority class during the classification stage [56]. Detailed descriptions of these methods
can be found in [15].

Random Under-Sampling Boost (RUSBoost) is one example of a hybrid method.
To increase the predictive performance of colorectal cancer with the imbalanced data,
Zhao et al. employed the RUSBoost algorithm for the colorectal cancer diagnosis [57].
A RUSBoost classifier was also used by Urdal et al. to solve and alleviate the class imbalance
problems for the prognosis prediction of superficial urothelial carcinomas [58].

3.4. Other Methods

For omics and proteomic data in bioinformatics, machine learning-based models are
generally faced with the rarity in the target class or class imbalance problem [59]. For exam-
ple, a predictive model trained to predict the location of enhancers (i.e., positive samples)
in the genome suffers from the class imbalance problem due to a large proportion of nega-
tive samples (i.e., non-enhancers) [59]. The prediction of contact-map or post-translation
modifications (PTM) sites in a protein sequence, DNA methylation status/site prediction,
identification of antimicrobial peptides (AMP) functional types, and the mutation incidence
are one of the examples of class imbalance problems [59].

Different feature selection approaches and/or ensemble learning methods are em-
ployed to resolve this data imbalance problem. Feature selection approaches are considered
dimensionality reduction techniques. Due to the high dimensionality of proteomic data,
analyzing, storing, training, and classifying these data may be considered an NP-Hard
problem [53,60]. Feature selection methods to find optimal feature subsets reduce the
computational and storing cost and eliminate redundant and irrelevant information, facili-
tating data visualization. Several studies in oncology have adopted feature selection for
cancer detection or diagnosis. Feature selection methods generally can be grouped into
three categories: Filter, wrapper, and embedded methods (see Figure 4). Filter methods
are independent of the chosen learning model, selecting variables by utilizing various
statistical measures such as correlation. Wrapper methods assess the features according
to the performance of the estimated model and selection criterion [61]. Embedded fea-
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ture selection methods such as least absolute shrinkage and selection operator (LASSO)
regression [62] perform the feature selection process as an integral part of the learning
process, often specific to a provided predictor. Lao et al. proposed a deep learning-based
radiomics model for survival prediction of Glioblastoma Multiforme (GBM) [66], wherein
deep and handcrafted features were extracted from multi-modality MR images employing
the LASSO regression model for the feature selection. Their deep imaging feature-based
biomarker provides a potential for the preoperative care of GBM patients [66]. Tang et al.
employed multi-omics data (transcriptome profiles and functional proteomics data) for
breast cancer diagnosis [53], introducing a novel framework with hybrid feature selection
and bagging-based ensemble learning methods to resolve the class imbalance problem.
Wu et al. demonstrated that dosiomics improves predicting locoregional recurrence for
head and neck cancer cases and should be proposed correlatively. They constructed the
RadModel and RadDosModel for this purpose [67], extracted shape-based, statistical,
texture-based radiomic features using Pyradiomics tool, and subsequently selected relevant
and essential features which were then compressed using principal component analysis
technique (PCA). Ensemble learning technique (EasyEnsemble) was applied to handle class
imbalance problems.
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Apart from these feature selection and ensemble learning methods, various class
imbalance-specific evaluation measures are also being proposed. Conventional evaluation
measures such as accuracy may not yield effective results in solving class imbalance
problems as models may prove insufficiently trustworthy. For example, the accuracy rate
may result in high classification performance in class imbalance problems in the event of
the presence of a few rare samples, but it may not correctly classify these correctly. Thus, it
may be necessary to assign more weight to false positive samples or false negative samples
to improve the performance of the predictor instead of relying only on the accuracy rate.
Class imbalance-specific evaluation measures such as the area under the precision-recall
curve (auPRC), Matthews correlation coefficient (MCC), F-score, and the geometric mean
(Gmean) of sensitivity and specificity [59,63] however may not yield adequate results. The
equations for accuracy (ACC), precision (PRE), recall (REC), and F-score measures [64] are
illustrated in Equation (4).

ACC =
TP + TN

TP + TN + FP + FN
PRE =

TP
TP + FP

(4)

REC =
TP

TP + FN
F−measure =

2
1/PRE + 1/REC

where TP, TN, FP, and FN represent the true positives, true negatives, false positives, and
false negatives, respectively.
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4. Guidelines to Mitigate Bias and Address Class Imbalance in Oncologic Data Sets
towards Transferrable AI
4.1. Clinical Data

(1) Curate data with a view towards aggregation with parallel data sources that include
the possibility to cross-check data collection against other data parameters, e.g., state
or government data sources that can act as data verifiers of SDOH, disability, geo-
graphical location, and access to care.

(2) Collect binary data when collecting more detailed data is not possible or impractical
to obtain.

(3) Collect data electronically with limited manual input and, when possible, automati-
cally limit dependence on clinical provider input to allow for consistent long-term
data collection as alternatives augment bias when some centers/settings collect data
and others less so or not at all.

(4) Implement data curation/clean data and data “health checks” for known sources of
bias and class imbalance.

(5) Implement capture and analysis of SDOH, disability, sex differences, ethnicity, and
race data whenever possible and subject analysis to bias check, which can then be
accounted for in future research and interpretation of data and resulting algorithms.

4.2. Other Data

Data-level, algorithm-level, and hybrid-level methods can mitigate bias and address
class imbalance in oncologic data sets for imaging and omic, proteomic, and genomic data
types. Researchers have at their disposal various feature selection/reduction techniques
or ensemble learning-based methods that can be utilized for various types of bioinfor-
matics data. In addition to this, diverse performance metrics such as the area under the
precision–recall curve (auPRC), Matthews correlation coefficient (MCC), F-score, and the
geometric mean (Gmean) of sensitivity and specificity can yield more effective results for
class imbalance problems and should be considered when class imbalance is apparent. The
most optimal method to be employed for a specific problem will ultimately depend on
the data set characteristics (i.e., imbalance ratio) and the problem domain (e.g., the degree
of importance, the main objective). Several approaches need to be examined to arrive at
the best approach, particularly when a novel hypothesis or novel data set is involved, and
the data supporting the most optimal approach may be lacking. We advise experimenting
with different combinations, including traditional approaches, before arriving at the most
optimal scheme in order to obtain more robust, efficient transferrable results for the related
model and data set. However, if the results do not improve, data augmentation/reduction
techniques can also be applied.

5. Conclusions

Acknowledging the complexity of the technology required to advance AI in medicine,
clinicians represent a set of stakeholders most likely to appreciate potential sources of
information bias in data sets. However, technical resources are most likely to possess the
capability to mitigate algorithmic bias, while both disciplines are invariably involved in rec-
ognizing and addressing pervasive knowledge translation bias. This review examined and
summarized diverse methods to handle class imbalance problems for AI in medical settings,
particularly oncologic data. Some methods rely on accounting for data distribution, while
others relate to modifying the learning model. Because there is no universally accepted
solution for all problems, every approach has advantages and disadvantages related to the
data set, research question, and learning model used. As a future direction of this work, we
aim to improve computer-aided diagnosis (CADx) results and the management of malig-
nancy by employing different and efficient approaches for handling the class imbalance
problems in AI. CADx provides unique opportunities to identify biological triggers for
tumor response and resistance by leveraging large scale data that may connect to existing
scientific knowledge in fascinating and practice changing ways while also posing great
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challenges to understanding a wealth of growing data while filtering meaningful signals
from the noise while conserving and growing crucial pattern recognition to truly positively
alter outcomes.
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