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Simple Summary: With the recent advances in the field of artificial intelligence, it has been possible
to develop robust and accurate methodologies that can deliver noticeable results in different health-
related areas, where the oncology is one the hottest research areas nowadays, as it is now possible
to fuse information that the images have with the patient medical records in order to offer a more
accurate diagnosis. In this sense, understanding the process of how an AI-based methodology is
developed can offer a helpful insight to develop such methodologies. In this review, we compre-
hensively guide the reader on the steps required to develop such methodology, starting from the
image formation to its processing and interpretation using a wide variety of methods; further, some
techniques that can be used in the next-generation diagnostic strategies are also presented. We believe
this helpful insight will provide deeper comprehension to students and researchers in the related
areas, of the advantages and disadvantages of every method.

Abstract: Breast cancer is one the main death causes for women worldwide, as 16% of the diagnosed
malignant lesions worldwide are its consequence. In this sense, it is of paramount importance to
diagnose these lesions in the earliest stage possible, in order to have the highest chances of survival.
While there are several works that present selected topics in this area, none of them present a complete
panorama, that is, from the image generation to its interpretation. This work presents a comprehensive
state-of-the-art review of the image generation and processing techniques to detect Breast Cancer,
where potential candidates for the image generation and processing are presented and discussed.
Novel methodologies should consider the adroit integration of artificial intelligence-concepts and the
categorical data to generate modern alternatives that can have the accuracy, precision and reliability
expected to mitigate the misclassifications.

Keywords: breast cancer; mammography; magnetic resonance; ultrasound; thermography; image
processing; artificial intelligence

1. Introduction

According to the World Health Organization, Breast Cancer (BC) represents around
16% of the malignant tumors diagnosed worldwide [1]. In Mexico, BC is the leading death
cause for cancer in the female population [2]. BC develops when any lump begins an
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angiogenesis process, that is, the process that causes the development of new blood vessels
and capillaries from the existent vasculature [3]. Unfortunately, BC has a mortality rate
of 69% in emergent countries, which is greater than the one in developed countries [1].
This increase is explained as the cancer is detected in a later stage, making the treatment a
financial obstacle as its price increases, especially if the disease is detected in an advanced
stage [4]. Hence, the development of strategies that can perform an early detection of BC is
a priority topic for governments, as an early detection increases the survival chances and
lowers the financial burden the disease imposes to families and health systems [4].

A methodology for the BC detection can be composed of 4 steps: (1) image acqui-
sition, (2) Segmentation and preprocessing, (3) feature extraction, and (4) classification.
An illustration of the abovementioned concepts is described in Figure 1.
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From this figure, it can be seen that the first step uses the different technologies
available to acquire the internal tissue dynamics of the breast, so they can be expressed in
an image; the second step is used to execute algorithms that perform basic tasks on the
images (for instance, correcting the color scale), so the segmentation, which is the detection
of Region-of-interest (ROI), can be done; then, the third step quantifies the differences
between images that have abnormalities from the ones that do not have; finally, once the
differences are quantified, it is necessary to classify them to provide a diagnosis. With the
rapid development of novel technologies that can capture more accurately the dynamics
of the breast tissues, numerous advances have been done in all the aforementioned fields;
in this sense, the goal of detecting all the abnormalities without generating false alarms
is still a highly desirable feature for all the proposals [5,6]. Recently, some articles have
reviewed some proposals regarding the feature classification and its interpretation [6–9];
yet, an article that presents the main technologies used to form the breast image as well as
the processing stages required to provide a diagnosis is still missing. This article presents
a state-of-the-art review of both the technologies used to create the breast image as well
as the strategies employed to perform the image processing and classification. The article
is organized as follows: Section 2 describes the main technologies used for the image
generation; Section 3 describes the methods used to perform the segmentation, feature
extraction, as well as the interpretation; next, Sections 4 and 5 present some emerging
techniques that can be used to improve the image formation and the algorithms used for
the interpretation. The article ends with some concluding remarks.

2. Technologies Used to Obtain Breast Tissue Images

One of the steps require to develop a diagnose system is the representation of the
breast tissue dynamics. In this sense, there are several technologies that are commonly
used to represent the tissue by means of images. This section presents the most used ones.

2.1. Mammography

Mammography is a study used to screen the breast tissue in order to detect abnormali-
ties that could indicate the prescience of cancer or other breast diseases [10]. This technique
has a sensibility of up to 85% in the recommended population. Essentially, mammography
uses low doses of X-ray to form a picture of the breast internal tissues [11]. To form the
picture, the breasts are compressed by two plates with the aim of mitigating the dispersion
of the rays, allowing to obtain a better picture without using an X-ray high-dose [11], where
the tissue changes might appear as white zones on a grey contrast [11]. On average, the
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total radiation dose for a typical mammogram with 2 views for each breast is about 0.4 [11].
Figure 2 illustrates the mammography procedure.
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Several works have focused on the processing of the digital mammographies to detect
the most common symptoms that could indicate the presence of cancer: calcifications or
masses [12]. Traditionally, the specialist looks for zones that have a different appearance
(size, shape, contrast, edges, or bright spots) than the normal tissue. With the employment
of segmentation algorithms [13–15], the automatization of this task has been proposed,
where some attempts using neural networks have done [12,16,17], delivering encourag-
ing results.

Recently, the utilization of the Breast tomosynthesis (BT) and the Contrast-Enhanced
Mammography (CEM) [10] have been proposed as improvements to the traditional digital
mammography. The former is a 3D breast reconstruction that allows to further improve the
image resolution whereas the latter improves the image resolution injecting a contrast agent;
in this way, the anatomic and vascularity definition of the abnormalities is exposed. In this
sense, some improvements when dealing with breast-dense tissue patients are obtained;
yet, the detection of clustered micro calcifications is still an issue [10]; on the other hand,
additional screening tests are required to determine if the abnormality detected by CEM is
cancer or not, besides of requiring more expensive equipment.

2.2. Ultrasound

Ultrasound is a non-invasive and non-irradiating technique that uses sound waves to
create images from organs, in this case the breasts, to detect changes in their form. To create
the images, a transducer sends high-frequency sound waves (>20 kHz) and measures the
reflected ones [10]. The image is formed using the wave sound reflected from the internal
tissues. This procedure is depicted in Figure 3.

Ultrasound is used for three purposes: (1) assessing and determining the abnormality
condition, that is, to help doctors if the abnormal mass is solid, which might require further
examination, is fluid-filled, or has both features; (2) as an auxiliary screen tool, which is used
when the patient has dense breasts and the mammography is not the reliable enough, (3) or
as a guide to develop a biopsy in the suspected abnormality [10]. Several computer-aided
diagnose (CAD) systems that analyze ultrasound images have been proposed [18]. One of
the points they note it is necessary to improve is the resolution of the images [19] using
specific-designed filters. Another modification proposed is the utilization of micro-bubbles
that are injected into the abnormalities detected at first sight [20].
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It should be noticed that the mass tends to stay in its position when compressed, i.e.,
they do not displace. Elastography is the technique that is employed to measure the tumor
displacement when compressed using a special transducer [21]. These developments have
led to discover masses that usually require performing a biopsy to determine the mass
nature, which delay the diagnosis confirmation [10,21]; moreover, the image interpretation
requires a well-trained specialist, which is not always available to perform all the studies.

2.3. Magnetic Resonance Imagining (MRI)

Breast MRI (BMRI) uses a magnetic field and radio waves to create a detailed image
from the breast. Usually, a 1.5 T magnet is used along with a contrast, usually gadolinium,
to generate the images of both breasts [22]. To acquire the images, the patient is located in a
prone position, in order to minimize the respiration movement and to allow the expansion
of the breast tissue [10,22]. When the magnet is turned on, the magnetic field temporary
realigns the water molecules; thus, when radio waves are applied, the emitted radiation is
captured using specific-designed coils, located at the breast positions, which transforms the
captured radiation in electrical signals. The coils position must ensure an appropriate field-
of-vision from the clavicle to the infra-mammary fold, including axilla [10]. An illustration
of the patient position is depicted in Figure 4.
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The main objective of getting the images is to assess for the breast symmetry and the
possible changes in the parenchymal tissue, since those changes might indicate the presence
of lesions that can be malignant. In general, malignant lesions have irregular margins (or
asymmetry), whereas the benign ones usually have a round or oval geometrical shape with
well-defined margins (symmetry). To deliver the best possible result, it is necessary to
remove the homogenous fat around the breast and parenchyma since fat can render images
that can be uninterpretable, specially to detect subtle lesions [10,22].
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On the other hand, one of the problems that BMRI has is the false-positive (specificity)
rate, as the technique can detect low-size masses (lesions whose size is less than 5 mm)
that are benign [10,22]. To mitigate the aforementioned issue, nanomaterials have been
developed, so they stick to the cancer masses but not to the benign ones [23] as well as
contrast agents [24]. Recently, it has been proposed that a multiparametric approach has
been suggested as a strategy to improve the specificity rate [10].

2.4. Other Approaches

Recently, microwave radiation has been employed as an alternative to obtain infor-
mation about the breast tissue. The microwaves, whose frequency range varies from 1
to 20 GHz, are applied to the breast and the reflected waves are measured using specific-
designed antennas. To have the best possible results, some works propose that the tissue
must be immersed in a liquid [25]. In this sense, some works have proposed acquisition
systems that deal with this issue [26–29].

When it is necessary to perform a biopsy to confirm, images from the cells that form
the abnormalities are obtained using among other techniques, the fine needle aspiration
citology (FNAC), core or excisional biopsy. Once the cell images are captured, an image
processing technique is applied in order to detect the differences between normal and ma-
lignant cells, which are classified using modern strategies [30–32] such as neural networks,
probabilistic-based algorithms and association rules coupled with neural networks.

It should be pointed out that other alternatives for imaging are employed such as
Computed Tomography (CT) or Positron Emission Tomography (PET). The former employ
X-rays to form images from the chest using different angles; using image processing and
reconstruction algorithms, a 3D image of the chest (including the breasts) is obtained [33,34];
on the other hand, the latter uses a small amount of tracer, that is a specific-designed sugar
with radioactive properties known as fluorodeoxyglucose-18. The main idea of using this
type of sugar is that cancer cells have an increased consume of glucose compared with the
normal cells; in this sense, the tracer sticks in the zones where there is an increased glucose
consume [35,36]. It is worth noticing that these techniques are recommended to determine
the cancer stage rather than first-line diagnosis scheme [10,37]. In this way, they comple-
ment the three main techniques to provide more information from the tissues surrounding
the breasts [37]. Table 1 presents a table that summarizes the abovementioned methods.

Table 1. Summary of the used breast image generation technologies.

Imagining Technique Advantages Disadvantages Recommended
Population

Some Types of
Cancer Detected

Sensitivity and/
or Specificity

Mammography

1. Equipment is widely
available worldwide.
2. Methods, such as
tomosynthesis, can

improve the specificity
and sensibility of the

technique with patients
that have dense

breasts [10]

1. The rate of both false
positive and false

negatives increases
since there is no

possibility to determine
if the masses are benign
2. The procedure used
to obtain the images
could be bothersome.

3. Dense breasts or
young patients are not

indicated to use this
imaging technique.

Women whose age is
greater than 40 years,

have low-dense breast
and an average risk of

contracting the disease.

1. Ductal Carcinoma
in Situ

2. Invasive
Breast Cancer.

Sensitivity up to 85%.

Ultrasound

1. Can be used in young
patients or have

dense breast.
2. The equipment used
is available in most of

the hospitals

1. Calcifications could
not be detected.

2. Sensitivity depends
on the operator ability
to interpret the images

3. False-positivity rate is
an issue.

Women with
heterogeneously or

extremely dense breast
tissue [38,39].

Women that are
pregnant or

lactating [40].

1. Ductal Carcinoma
in Situ.

2. Invasive
ductal carcinoma

Sensitivity ranging
between 40–75% in
younger high-risk

women [40].
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Table 1. Cont.

Imagining Technique Advantages Disadvantages Recommended
Population

Some Types of
Cancer Detected

Sensitivity and/
or Specificity

Magnetic
Resonance Imaging

1. Effective for detecting
suspicious masses in

high-risk
population [10].

2. The breast tissue
density is no longer an

issue [38–40].
3. Multifocal lesions can

be detected [10,41]

1. Equipment is only
available in

specialized hospitals.
2. Expensive

3. False positive
findings are an

important concern [41]

1. Women that may
carry mutation in ATM,

BRCA1, BRCA2,
CHEK2, PALB2, PTEN,

TP53 genes.
2. Women that had

radiation therapy in the
chest zone during

the childhood.

1. Ductal in
situ carcinomas

2. Invasive
ductal carcinomas.

3. Invasive
lobular carcinomas

4. Invasive mammary
carcinomas with mixed

ductal and lobular
features [24]

Sensitivity ranging from
83 to 100% [42–44].

As it is seen in Table 1, numerous advances for imagining techniques have been
achieved in the last years; still, there is a necessity of developing strategies that can allow
obtaining sharp images, even for dense breast tissues. In this sense, the obtained images
can be used to perform a focused surveillance on the patients that have a higher risk for
developing the disease, allowing to achieve the cancer detection in the earliest possible stage.
On the other hand, these novel imagining techniques should be able to operate without
requiring additional requirements, such as specific electrical or mechanical conditions, so
they can be easily adopted in hospitals, or in an ambulatory area.

3. Image Processing and Classification Strategies
3.1. ROI Estimation

Once the image is acquired, the next step required is its interpretation. To this purpose,
it is necessary to identify the suspicious regions that might contain masses or calcifica-
tions, where model, region, or counter-based algorithms for the image segmentation are
employed [45]. It should be noticed that these approaches often rely on the manual entries
to refine the segmentation zones, which limits the applicability of the proposals on different
datasets [45], making necessary to develop novel strategies that can automatically detect
all the interest zones. Recently, Sha et al. [46] proposed a convolutional neural network
(CNN)-based method for segmentation. The authors develop an optimization scheme
to determine the best parameters for the CNN in order to segment the suspicious zones.
The results presented show the proposal has a reasonable sensitivity and specificity (89%
and 88%, respectively) to determine if a mammograph presents cancerous tumors or not.
Wang et al. [47] present a CNN-based strategy. They modify the convolutional layer to
increase the detection of multiple suspicious zones. Heidari et al. [48] employ a Gaussian
bandpass filter to detect suspicious zones using local properties of the image. On the other
hand, Suresh et al. [49] and Sapate et al. [50] employ a fuzzy-based strategy to cluster all
the pixels with similar features in order to detect all the zones that have differences. Other
strategies involve the utilization of mathematical morphology [51–55], image contrast and
intensity [56,57], geometrical features [58,59], correlation and convolution [60,61], non-
linear filtering [62,63], texture features [64], deep learning [65–69], entropy [70,71], among
other strategies. It is worth noticing that from the diversity of the employed strategies, some
of them still require an initial guidance to detect the suspicious zones, either by manually
selecting pixels inside of the zone or using the radiologist notes about the localization.
An effective approach for the automatic detection should employ a denoising stage in order
to remove residual noise generated during the acquisition and equalization, so the intensity
pixel disparities associated to the environment light can be mitigated as much as possible.

3.2. Feature Extraction

After the suspicious zones are detected and segmented, it is necessary to extract
features from them to generate the necessary information to classify the detected lesions
as cancer or benign. To this purpose, Fourier Transform-based methods [48,72], wavelet
transform-based strategies [73–76], geometric features [77,78], information theory algo-
rithms [79], co-occurrence matrix features [47,80–82], histogram-based values [46,83–85],
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morphology [86,87], among others. On the other hand, with the increased capabilities
(the number of simultaneous operations that can be done) of the new-generation graphical
processor units, it is now possible to execute high-load computational algorithms faster
than in a multicore processor [88]; in consequence, novel neural networks algorithms that
perform the feature extraction and quantification are now being proposed. For instance,
Xu et al. [89], use a CNN to extract and classify ultrasound images with suspicious areas
in four categories: skin, glandular tissue, masses, and fat. They modify the convolutional
filters to speed up the process. Arora et al. [90] also use an ensemble of CNN architectures
to extract directly the suspicious zones. They only modify the final layers to speed up the
training process. Gao et al. [91] use a deep neural network to generate the features from
mammograms. They employ a modified architecture where the outputs and inputs of the
network are used to update the model parameters during its training. Similar approaches
are described in [92–95].

It should be pointed out that a reduction of the estimated features is often used to
reduce the amount of computational resources used in the training scheme and to mit-
igate the overfitting problem, which reduce the algorithm efficacy. This step is known
as dimensionality reduction [45] and the most employed algorithms are the principal
component analysis (PCA) and linear discriminant analysis (LDA). PCA use eigenvalue-
based algorithms to determine the features that are unrelated between them, that is, they
have the maximum variance between them as this will indicate the maximum variation
of the information contained, whereas LDA perform a projection of the samples to find
out the distance between the classes’ mean. In this sense, the greater the distance between
the means, the more unrelated the features are [96]. Nevertheless, these algorithms use
global properties of the values which might cause to deliver suboptimal results [96]. For
these reasons, hybrid strategies are proposed such as neurofuzzy algorithms [97,98], dif-
fusion maps [99], deep learning [100–102], independent component analysis (ICA) [103],
clustering-based approaches [104], multidimensional scaling [105], among other strategies.
It should be pointed out that hybrid approaches, as abovementioned ones, are particularly
effective when a non-linear relationship between the features exists.

To the best of the authors’ knowledge, there are no papers that compare some of the
abovementioned techniques using the same database to compare the techniques efficacy.
In this sense, it is an interesting research topic, since the results of this comparison can
provide some guidelines about the image used (mammogram, ultrasound, or MRI) and the
technique that has the best performance.

3.3. Classifiers

The last step of this stage is the classification of the extracted features to make a diag-
nosis. Broadly speaking, a classifier uses the input data to find out relationships that can be
used to determine the class where the input data belongs to. The evaluation of the classifier
is done using three basic measurements: accuracy, specificity, and sensitivity [106,107].
Accuracy refers to the percentage of images that are correctly classified in their correspond-
ing classes; sensitivity is the percentage of classified images as malignant that truly are
specificity is the percentage of classified images as benign that truly are, and the area under
the curve is a parameter that allows choosing the optimal models. It takes a value between
0 and 1, being a good classifier the one that has a value close to 1 [108]. In this sense,
depending on the training algorithm required by the strategy, classifiers can be divided in
unsupervised or supervised [45,106,107].

3.3.1. Unsupervised Classifiers

An unsupervised classifier aims to find the underlying structures that the input data
has without making explicit the class the input data belongs to [109]. In this sense, input
data that has similar values is assigned to the same class [109]. Dubey et al. [110] studied
the effects that the selection scheme for the size of the number of clusters in the K-means
algorithm has. To this purpose, the random and foggy methods were employed. They
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note that foggy initialization method and the Euclidean-type distances produced the best
results, as a 92%-accuracy is obtained. K-means and K-nearest neighbor classifiers have
been also employed by Singh et al. [58] and Hernandez-Capistran et al. [111]. This family
of classifiers is effective when the distance between the clusters is reasonable; but, when
the aforementioned concept is not possible, the accuracy rate is highly degraded. For this
reason, Onan [112] introduced the concepts of the fuzzy logic to measure the distance
between the set of features used as input and the clusters, where the mutual information,
an information theory algorithm, is the chosen to measure the aforementioned distance.
The author reports an accuracy of 99%, and a specificity and sensitivity of 99% and 100%,
respectively. Similar results are achieved using the fuzzy c-means algorithm [113,114],
fuzzy-based classifier for time-series [115], fuzzy rule classifier [116,117], among others.
Other clustering-based approaches employed for classification are hierarchical cluster-
ing [118] and Unsupervised Test Vector Optimization [119]. It should be pointed out
that unsupervised classifiers require a careful selection of the features used to train the
algorithm, since an incorrect mix of features will degrade the performance of the classifier.

3.3.2. Supervised Classifiers

Supervised classifiers require to know a-priori the class of which the input data be-
longs to, that is, the input data must be labeled. The Decision Tree (DT) is an algorithm
that uses a set of rules to determine the class of the data input. DT has been employed
by Mughal et al. [71], where they perform the detection of masses in mammograms using
texture features in the region of interest. Using a DT, they obtain an accuracy, specificity,
and sensibility of 89%, 89% and 88.5%, respectively. Shan et al. [120] employ geometrical
features to classify abnormalities detected in ultrasound images. The obtained results
show an accuracy, sensitivity, and specificity of 77.7%, 74.0%, and 82.0%, respectively.
An improvement of DT is the Random Forest (RF). During the training stage, RF uses
several DT, where the ones that have the lowest error are chosen; in this way, the accuracy
is enhanced. RF are considered as ensemble classifiers, where some applications have been
reported [121–124]. The accuracy, specificity, and sensitivity reported show an improve-
ment. Another type of ensemble classifier is the Adaptive Boosting (AdaBoost) algorithm.
It consists in the utilization of weak classifiers, which are usually features that can generate
a classification accuracy greater than 50% by themselves; thus, using them in an ensemble
way, the outliers that the features value have are used, improving the classifier accuracy.
AdaBoost applications have been reported [125–127], achieving good results (the accuracy,
specificity, and sensitivity values are greater than 90%); yet, the authors note that extensive
investigation is still required to ensure that these results can be obtained with different
types of images (mammograms, ultrasound, and MRI).

Another classification algorithm widely used for BC detection is the support vector
machine (SVM). SVM finds the hyperplane that divides the zones where the values of
the input features are located. In this regard, Liu et al. [52] use the morphological and
edge features combined with a SVM classifier with a linear kernel, to detect benign and
malignant masses in ultrasound images. They obtain an accuracy, sensitivity, and specificity
of 82.6%, 66.67%, and 93.55%, respectively. It should be noted that most of the revised works
use the term malignant to describe masses or lesions that are cancer regardless its type. To
improve the aforementioned results, Sharma and Khanna [128] use the Zernike moments
as features and a SVM classifier using a non-linear function as a kernel. The authors obtain
a specificity and sensitivity of 99%. Similar approaches have been reported [87,129–133]. It
is worth noticing that if the features have a strong nonlinear relationship, other classifiers
could deliver better results.

3.4. Artificial Intelligence-Based Classifiers

Artificial Intelligence (AI) is the section of the computer science that develops al-
gorithms to perform complex tasks that previously are solved with the human knowl-
edge [134]. Evidently, since classification is a task usually solved by the physician, AI
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can provide automated solutions. In this sense, Artificial Neural Networks (ANN) are a
type of AI algorithms employed to perform the classification in different classes. ANN are
brain-inspired algorithms that store the knowledge that the input data using a training
process [135]. An ANN consists in a three-layer scheme: input, hidden, and output, as
depicted in Figure 5.
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The training process takes the information contained in the input variables and adjust
the values of the variables (weights) that connect all the layers in order to match the input
with its respecting class; in this way, the hidden pattern that share all the input and their
corresponding class is detected and stored. Consequently, it is necessary to use a sufficient
database, with representative scenarios, to train the ANN. Beura et al. [136] present a
methodology that employs mammograms to detect masses (benign and malignant) using
the two-dimension discrete wavelet transform (2D-DWT) with normalized gray-level
co-occurrence matrices (NGLCM). The images are segmented using a cropping-based
strategy to obtain the ROI, which are analyzed with the symmetric biorthogonal 4.4 wavelet
mother and a decomposition level of 2. All the frequency bands are processed to obtain
the features (NGLCM), where the t-test is selected to perform the optimal choice of the
most discriminant features. The obtained results show that the proposal achieves an
accuracy, sensitivity, and specificity of 94.2%, 100%, and 90% respectively, using the ANN
classifier, whereas a RF classifier, using the same database, obtains an 82.4%-accuracy.
Mohammed et al. [137] uses fractal dimension values as features to classify ultrasound
breast images in benign and malignant. They obtain the ROIs using a cropping-based
algorithm, which are processed to obtain multifractal dimension features. They obtain
an accuracy, sensitivity, and specificity of 82.04%, 79.4%, and 84.76% respectively using
an ANN classifier. They point out that the ROI extraction algorithm must be improved.
Gallego-Ortiz and Martel [138] classifies MRI breast images using graph-based features,
the Deep Embedded Clustering algorithm to select the most relevant features and an ANN
classifier. The ROIs are obtained using a graph model, where they obtain an area under the
curve, which is another feature to measure the classifier effectiveness, of 0.80 (the closer to
1, the better). ANN classifiers have been also used in [139–142].

Deep neural networks (DNN) are a specific type of AI algorithms based on the ar-
chitecture of an ANN [134]. DNN resembles how the brain stores, in multiple layers, the
acquired knowledge to solve a specific task [8]. The Convolutional Neural Network (CNN)
is a DNN that emulates the visual processing cortex to determine the class that an image
belongs to [8,134]. A CNN typical scheme is depicted in Figure 6.



Cancers 2022, 14, 3442 10 of 24

Cancers 2022, 14, x FOR PEER REVIEW 10 of 26 
 

 

database, with representative scenarios, to train the ANN. Beura et al. [136] present a 
methodology that employs mammograms to detect masses (benign and malignant) using 
the two-dimension discrete wavelet transform (2D-DWT) with normalized gray-level co-
occurrence matrices (NGLCM). The images are segmented using a cropping-based strat-
egy to obtain the ROI, which are analyzed with the symmetric biorthogonal 4.4 wavelet 
mother and a decomposition level of 2. All the frequency bands are processed to obtain 
the features (NGLCM), where the t-test is selected to perform the optimal choice of the 
most discriminant features. The obtained results show that the proposal achieves an ac-
curacy, sensitivity, and specificity of 94.2%, 100%, and 90% respectively, using the ANN 
classifier, whereas a RF classifier, using the same database, obtains an 82.4%-accuracy. 
Mohammed et al. [137] uses fractal dimension values as features to classify ultrasound 
breast images in benign and malignant. They obtain the ROIs using a cropping-based al-
gorithm, which are processed to obtain multifractal dimension features. They obtain an 
accuracy, sensitivity, and specificity of 82.04%, 79.4%, and 84.76% respectively using an 
ANN classifier. They point out that the ROI extraction algorithm must be improved. 
Gallego-Ortiz and Martel [138] classifies MRI breast images using graph-based features, 
the Deep Embedded Clustering algorithm to select the most relevant features and an ANN 
classifier. The ROIs are obtained using a graph model, where they obtain an area under 
the curve, which is another feature to measure the classifier effectiveness, of 0.80 (the 
closer to 1, the better). ANN classifiers have been also used in [139–142]. 

Deep neural networks (DNN) are a specific type of AI algorithms based on the archi-
tecture of an ANN [134]. DNN resembles how the brain stores, in multiple layers, the 
acquired knowledge to solve a specific task [8]. The Convolutional Neural Network 
(CNN) is a DNN that emulates the visual processing cortex to determine the class that an 
image belongs to [8,134]. A CNN typical scheme is depicted in Figure 6. 

 
Figure 6. Convolutional Neural Network. 

From the figure, it is seen that a CNN consists of a kernel, pooling and fully connected 
layers. The purpose of the kernel layer is to detect and extract spatial features that the 
image has, which is usually done with the convolution operator. The output of this layer, 
known as feature map, might contain negative values that might cause numerical insta-
bilities in the training stage; thus, map is processed using a function to avoid the negative 
values. Once the feature map is processed, the pooling layer reduces the amount of infor-
mation contained in order to eliminate redundant information; finally, the output of the 
pooling layer goes to the fully connected layer to be classified. In this sense, several works 
[143–148], have been employed CNN to detect benign and malignant tissues in either 
mammography or MRI images. They note that the depth of the network, i.e., the number 
of layers, the fine-tuning of some of the kernel or pooling layers, as well as the number of 
images, affect the classifier performance. 

Figure 6. Convolutional Neural Network.

From the figure, it is seen that a CNN consists of a kernel, pooling and fully connected
layers. The purpose of the kernel layer is to detect and extract spatial features that the image
has, which is usually done with the convolution operator. The output of this layer, known
as feature map, might contain negative values that might cause numerical instabilities in
the training stage; thus, map is processed using a function to avoid the negative values.
Once the feature map is processed, the pooling layer reduces the amount of information
contained in order to eliminate redundant information; finally, the output of the pooling
layer goes to the fully connected layer to be classified. In this sense, several works [143–148],
have been employed CNN to detect benign and malignant tissues in either mammography
or MRI images. They note that the depth of the network, i.e., the number of layers, the
fine-tuning of some of the kernel or pooling layers, as well as the number of images, affect
the classifier performance.

Ribli et al. [149] add an additional layer to implement specific-designed filters for
mammograms. The CNN they employ has 16-layers and classifies the detected lesions
in benign or malignant, obtaining an area under the curve of 0.85. A similar approach is
proposed in [150]. The modification they propose is that a fully connected layer is placed
as the first layer of the CNN so when the images are noise-corrupted, the feature extraction
process is not degraded. They obtain an accuracy, sensitivity, and specificity of 98.7%,
98.65%, and 99.57% for the detection of benign and malignant lesions in mammograms.
Zhang et al. [151] carry out a test to find out the specific-suited process for the pooling
layer. They found out that rank-based stochastic process is the best-suited algorithm, ob-
taining an accuracy, sensibility, and specificity of 94.0%, 93.4%, and 94.6%, respectively, for
classifying lesions for normal or abnormal using mammograms. Similar approaches have
been proposed [152–155]. Table 2 presents a summary of the classifiers above discussed.
It should be noted that a mix of images from mammograms, ultrasound, MRI are usually
employed. These images usually came from private databases.

From the data shown in Table 2, it can be seen that it is necessary to standardize
the minimum requirements regarding the number of images that the databases must
have. In this way, the performance metrics that are employed, i.e., accuracy, specificity, and
sensitivity, can be compared in a better way. Moreover, even when the presented approaches
show interesting results, one thing they found out is the necessity of having a considerable
database that contain significant labeled images to obtain the best possible results, which
in many real-life scenarios is not always possible. For these reasons, algorithms that can
work with both labeled and unlabeled images are still a necessity.
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Table 2. Summary of the used image classification algorithms.

Type of Classifier Classifier Advantages Disadvantages Number of Images Performance Metrics

Unsupervised

K-means

• Easiness of implementation.
• Fast implementation.
• Fast computing (distance to the

centroids is only required).

• The initial value of the centroids
length influences the performance.

• Samples must be presented in an
organized and normalized way.

• The centroid distance of the classes
might induce misclassifications.

• Some works have used the
Wisconsin Breast Cancer Dataset
with 569 instances [110,112].

• Accuracy: up to 92% [110]
• Specificity: up to 99% [112]
• Sensitivity: up to 100% [112]

Hierarchical Clustering
• No distance measurement is required.
• Similarity measures could be employed.
• Easy to implement.

• Large datasets increase the time
complexity to deliver a result.

• Outliers degrade the
classifier performance.

• Normalization of the samples values
is required.

• 117 images are analyzed [118].
• Accuracy: 88.0%
• Specificity: 89.3%
• Sensitivity: 85.7% [118]

Supervised

Decision Trees

• Its construction no imposes any
probabilistic distribution to the data.

• Can deal with large datasets.
• Easy to understand.

• They can be too complex if the
training data is not carefully chosen.

• Their performance will decrease if
several classes exist in the data.

• Some works have analyzed from
283 [120] to 722 images [71].

• Accuracy: up to 89%,
• Specificity: up to 89%
• Sensitivity: up to 90% [71,120]

Random Forest

• Non-linear relationships between the
features are well processed.

• Outliers do not degrade the
classifier performance.

• Noisy measurements do not affect
the accuracy.

• Training time increases due to the
number of trees generated.

• The classifier complexity is increased
as the number of trees needed to
be evaluated.

• Several works have used different
number of images from 59 [121],
283 [120] to 512 [122].

• On the other hand, some authors
have used ten different datasets, the
shortest with 155 images and the
largest with 569 images [123].

• Accuracy: up to 80%.
• Specificity: up to 80%.
• Sensitivity: up to 90% [120–123]

AdaBoost

• Base classifiers only need to have an
accuracy greater than 50%.

• They can be from different domains
(spatial, frequency, among others)

• Noise can degrade the classifier
performance, as the weight assigned
to each weakly classifier is increased
to reduce the error.

• Sensitive to the base
classifiers employed.

• Some works have used from
1062 [126] to 2336 [125] images.

• Accuracy: up to 90%.
• Specificity: up to 90%.
• Sensitivity: up to 90% [12,125,126]

Support Vector Machines

• Can deal with high-dimensional
data (features).

• Robust against outliers.
• Overfitting is reduced due to the

training process.

• Accuracy is kernel dependent.
• Large datasets are not

properly handled.
• Overlapping and noise degrade

the accuracy.
• Uncertainty cannot be incorporated.

• Some authors have used different
number of images from 207 [87],
240 [132] to 1187 [131].

• Accuracy: up to 90%.
• Specificity: up to 90%.
• Sensitivity: up to 90% [74,87,131,132]
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Table 2. Cont.

Type of Classifier Classifier Advantages Disadvantages Number of Images Performance Metrics

Supervised

Artificial Neural Networks

• Can deal with highly
non-linear relationships.

• Can deal with noisy data.
• Uncertainty can be incorporated.
• Fine-tuning could be done using

different activation functions.

• High-dimensional data might cause
instabilities to the training algorithms.

• Prone to overfitting.
• Selection of the number of neurons

could be troublesome.

• Other authors have been used
111 [139], 184 [137], and
569 [140] images.

• Accuracy: up to 95%.
• Sensitivity: up to 100%.
• Specificity: up to 90% [134,137–140]

Convolutional
Neural Networks

• Can process the image without any
preprocessing stage.

• They can perform feature extraction
task automatically.

• Moderate noisy images can be
properly handled.

• They require a large dataset to
avoid overfitting.

• They require a high computational
load to their training.

• Some authors have used different
number of images from 87 [144],
221 [143] to 229,426 digital
screening mammography
exams [145].

• Accuracy: up to 99%.
• Sensitivity: up to 99%
• Specificity: up to 99.6% [7,8,143–145,149]
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4. Recent Image Generation Techniques
Infrared Thermography (IRT) Applied to Breast Cancer

Temperature has been documented as an indicator of health [156]. Specifically speak-
ing of breast cancer, when a tumor exists, it makes use of nutrients for its growth (angio-
genesis), resulting in an increase in metabolism, thus the temperature around the tumor
will increase in all directions [157]. To detect the temperature changes, IRT has been used
as it measures the intensity of the thermal radiation (in the form of energy) that bodies
emit, converting it into temperature [158]. The emitted energy can be visualized in the
electromagnetic spectrum, as shown in Figure 7, where it is seen that the infrared (IR)
wave ranges from 0.76 to 1000 µm and in turn is divided into Near-IR, Mid-IR and Far-IR.
The available technology to measure IR allows performing the aforementioned task us-
ing non-invasive, contactless, safe, and painless equipment [159–161], making a suitable
proposal for developing scanning technologies.
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To obtain the best possible images, there are mainly three factors that influence ther-
mographic imaging in humans [162,163]

1. Individual factors: everything that has to do with the patient’s conditions, such as
age, sex, height, medical history, among others. As well as the inclusion and exclusion
criteria. An aspect of vital importance is the emissivity of humans, which is 0.98 [164].

2. Technical factors: it has to do with everything related to the technology used during
the study, such as the thermal imager (considering the distance from the lens to the
patient), the protocol, the processing of the medical thermal images obtained, as well
such as feature extraction and subsequent analysis.

3. Environmental factors: room position (it should be located in the area of the lowest
possible incidence of light), temperature, relative humidity of the space where the
thermographic images are to be taken, as well as the patient’s air conditioning time.

Considering the all the above discussed aspects, a suitable location for developing a
controlled scenario to acquire thermographic images focused on breast cancer is depicted
in Figure 8.

Cancers 2022, 14, x FOR PEER REVIEW 14 of 26 
 

 

using non-invasive, contactless, safe, and painless equipment [159–161], making a suitable 
proposal for developing scanning technologies. 

 
Figure 7. Electromagnetic spectrum. 

To obtain the best possible images, there are mainly three factors that influence ther-
mographic imaging in humans [162,163] 
1. Individual factors: everything that has to do with the patient’s conditions, such as 

age, sex, height, medical history, among others. As well as the inclusion and exclu-
sion criteria. An aspect of vital importance is the emissivity of humans, which is 0.98 
[164]. 

2. Technical factors: it has to do with everything related to the technology used during 
the study, such as the thermal imager (considering the distance from the lens to the 
patient), the protocol, the processing of the medical thermal images obtained, as well 
such as feature extraction and subsequent analysis. 

3. Environmental factors: room position (it should be located in the area of the lowest 
possible incidence of light), temperature, relative humidity of the space where the 
thermographic images are to be taken, as well as the patient’s air conditioning time. 
Considering the all the above discussed aspects, a suitable location for developing a 

controlled scenario to acquire thermographic images focused on breast cancer is depicted 
in Figure 8. 

 
Figure 8. Proposed experimental set up for the breast thermal images acquisition. 

Once the room is conditioned for obtaining the thermographic images, the acquisi-
tion can be done. The reported results make use of the previously discussed image pro-
cessing and classification algorithms. Table 3 shows a brief resume of the most recent pro-
posed works. 

  

Figure 8. Proposed experimental set up for the breast thermal images acquisition.



Cancers 2022, 14, 3442 14 of 24

Once the room is conditioned for obtaining the thermographic images, the acqui-
sition can be done. The reported results make use of the previously discussed image
processing and classification algorithms. Table 3 shows a brief resume of the most recent
proposed works.

Table 3. Summary of the breast lesions detection using infrared thermography.

Authors Number
of Patients

IR System
Image Processing and

Classification Algorithms Accuracy (%) Room
Temperature (◦C)

Acclimation
Time (min)

Features Classification

Ekici and Jawzal [165] 140 FLIR SC-620
Bio-data, image

analysis, and
image statistics

CNNs optimized
by Bayes algorithm 98.95 17–24 15

AlFayez et al. [166] Public dataset DMR-IR Geometrical and
textural features

Extreme Learning
Machine (ELM)
and Multilayer

Perceptron (MLP)

ELM—100
MLP—82.2 Public dataset DMR-IR

Rani et al. [167] 60 FLIR
T650SC

Temperature
and intensity

SVM with
Radial basis

function kernel
83.22 20–24 15

Saxena et al. [168] 32 FLIR A320 ROI thermal Cut-off value 88 22 ± 0.5 Not
specified

Tello-Mijares [169] 63 FLIR SC-620
Shape, colour, texture,

and left and right
breast relation

CNN 100 20–22 15

Garduño-Ramón
et al. [170] 454 FLIR A300 Temperature Difference of

temperature 79.60 18–22 15

Raghavendra
et al. [171] 50 Thermo

TVS200

Student’s t-test
based feature

selection algorithm
Decision Tree 98 20–22 15

Lashkari et al. [172] 67 Thermoteknix
VisIR 640

23 features, including
statistical,

morphological,
frequency domain,

histogram and
Gray Level

Co-occurrence Matrix

Adaboost, SVM,
kNN, Naive, PNN

85.33 and
87.42 18–23 ice test:

20 min

Francis et al. [173] 22 med2000™
IRIS

Statistical and texture
features are extracted
from thermograms in
the curvelet domain

SVM 90.91 25 15

Milosevic et al. [174] 40 images VARIOSCAN
3021 ST

Texture measures
derived from the

Gray Level
Co-occurrence Matrix

K-Nearest
Neighbor 92.5 20–23 Few

minutes

Araujo et al. [175] 50 FLIR
S45

Thermal interval for
each breast

Linear
discriminant

classifier, minimum
distance classifier,

and
Parzen window

- 24–28 At least
10 min

Recently, dynamic infrared thermography (DIT) has been proposed as an alternative
to further improve the image quality and sharpness [64]. DIT is a sequence of thermograms
captured after stimulating the breasts by means of a cold stressor [176]. The objective
of this stressor is to generate a contrast between areas with abnormal vascularity and
metabolic activity with areas free of abnormalities. Therefore, it is possible to analyze the
sinus response after removing this stimulus. In this way, the image sharpness is enhanced.
Silva et al. [177] proposed a technology that analyzes the information from the DIT to
indicate patients at risk of breast cancer, where they segment the area of interest (breast)
and analyze the changes in temperature through the different thermograms acquired.
Saniei et al. [178] proposed a system that segments both breasts to obtain the branching
point of the vascular network, which represents the pattern of the veins; finally, these
patterns are classified to obtain the diagnosis. As it can be seen, the DIT requires robust
systems that allow the analysis of the acquired thermograms over time, which should be
considered in order to generate the next generation of equipment that can allow the early
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detection of the angiogenesis process. By doing this, patients can be properly monitored so
the changes in the patterns of the angiogenesis process be detected.

5. Recent Classification Algorithms

As pointed out in the Classifiers subsection, it is necessary to overcome the lack of a
large database of images (mammograms, ultrasound or BRMI) that have been diagnosed
to generate robust and efficient classifiers. In this sense, semi-supervised methods can
be an attractive choice to explore. They usually combine an unsupervised algorithm
to cluster the images available, so a representation of the dataset is obtained; then, the
supervised classifier assigns the classes that images have [109,179]. The data that is used in
the unsupervised algorithm assumes the unlabeled images are close to the labeled ones in
their input space, so their labels are the same [109]. Some of the most recent developments
that could be applied in the breast cancer detection are presented.

5.1. Autoencoders

An autoencoder is a neural network that has one or more hidden layers that is used to
reconstruct the input compactly, as the hidden layers have few neurons. The autoencoder
is depicted in Figure 9.
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From the figure, it is seen that it has two parts: the encoder, that represents the input
into its compact representation, and the decoder, which performs the inverse operation,
that is, use the compact representation to recover the original data. The most common
training scheme consists in employing a loss function that aims to reduce the error between
the original and reconstructed data. For breast cancer detection, autoencoders can be used
feature extraction stages, as the encoder part obtains the compact representation or features
of the input image, that are followed by a supervised classifier. Recently, this approach has
been explored [79,94,180–183] showing promising results to generate robust methodologies,
where accuracies values above 95% are obtained.

5.2. Deep Belief Networks (DBF)

They are based on the usage of restricted Boltzmann machines (RBMs). RBMs only
use two layers: input and hidden, to represent, as in the case of the autoencoders, the
most important features that can represent the input data but in a stochastic way [99]. This
ensure that the outliers do not affect the network performance. Detailed information can be
found in [184,185]. The main idea in employing DBF is that the image segmentation can be
done without external guidance; thus, a totally automated methodology can be proposed.
Recent works have been explored this idea to perform the liver segmentation [186], lung
lesions detection [187], and fusion of medical images [188]. Its use could deliver promising
results to detect BC.
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5.3. Ladder Networks

Ladder Neural Network, proposed by Rasmus et al. [189], uses an autoencoder as
the first part of a feedforward network to denoise the inputs; further, by determining the
minimum features that represent the inputs, the classification can be done using simple
algorithms. The network uses a penalization term in the training algorithm to ensure the
maximum similarity between the original and reconstructed inputs.

5.4. Deep Neural Network (DNN)-Based Algorithms

Recently, DNN-based classification strategies have been proposed to maximize the
accuracy that the classifiers achieve while reducing the computational resources required
to perform its training and execution, being the physics-informed neural network or more
recently, the Deep Kronecker neural network [190] are one of the most recent algorithms
that have been proposed. In particular, these NNs are designed to take full advantage of
the adaptive activation functions. Traditional activation functions, such as the unipolar
and bipolar sigmoid and the ReLU, might have problem when dealing with low-amplitude
features as the training algorithm fails to achieve the lowest point in the error surface, thus
generating classifiers prone to have generalization issues [190].

In this sense, by introducing a parameter into the activation function equations that
can be modified during the training process, it can be avoided that the gradient function
does not stall in a local minimum on the error surface [191]; thus, the highest accuracy can
be obtained since the global minimum is reached [192]. The results presented [190–192]
suggest that the utilization of this type of activation function might increase the classifier
accuracy without increasing the computational burden required to train the network as the
geometrical shape that the activation function defines can be adapted during the training
time to the boundary decision zone where classification is required. It should be noted that
the proposed Rowdy family of activation functions could be an interesting research topic
for designing classification algorithms, as the presented results demonstrate that the lowest
error is achieved in a prediction task.

6. Concluding Remarks

This paper presents a state-of-the-art review of the technologies used to acquire
images from the breast and the algorithms used to detect BC. To the best of the author’s
knowledge, this is the first review article that deals with all the required steps to propose a
reliable methodology for the BC detection. This is important as the earliest detection of the
disease can save a considerable amount of money in the required treatments, and the most
important, potentially saving numerous lives.

The analyzed papers are focused on the research on the processing of images obtained
using non-invasive methods: X-ray, ultrasound, or magnetic resonance, as they are the
most accessible technologies in hospitals. The strategy used in most of the papers has
4 steps: image acquisition, ROI estimation, feature extraction, and interpretation. For the
ROI estimation, the strategies proposed are based on radiologist annotations or require
external help in order to be executed. This is an opportunity area to develop automatic
algorithms that can detect the abnormalities. The feature estimation is used to quantify the
detected zones in numerical values. In this sense, texture-based and geometrical-based
features are by far, the most employed due to its estimation simplicity; still, frequency or
spatial features have recently begun to be explored and can lead to detect minimal changes
that might increase the sensitivity required to further improve the classification accuracy.
It should be noticed that feature reduction strategies are commonly employed in order to
reduce the training time or avoid potential misclassifications, where the most popular are
LDA and PCA. On the other hand, classification strategies employ either supervised or
unsupervised algorithms. The selection of the type of classifier heavily depends on the
nature of the features extracted. If they are highly discriminant between them, then an
unsupervised classifier is usually selected. On the other hand, when the features used
have an overlap zone, then it is necessary to employ a supervised classifier. It should be
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noticed that AI-based algorithms, especially those based on deep learning, have the edge
in terms of the performance they get at the expense of being very expensive in terms of the
computational resources employed.

Emerging imaging technologies such as the microwave and thermography are being
explored recently. In particular, the latter has recently obtained the attention of researchers
as it is easy-to-use, and, with a proper cooling protocol, can reach an interesting level
of accuracy to detect, at least, suspected masses that might evolved into malignant ones.
With the development of semi-supervised strategies, some of the stages employed can be
integrated into one, allowing the development of effective feature extraction, selection and
classification strategies that have the same performance of supervised classifier, with lower
computational resources employed, even in the presence of limited labeled images, which
is a major obstacle to the training of the classifiers.

Modern BC detection strategies should rely using artificial intelligence(AI)-based
algorithms that can use both on the information of the images acquired and categori-
cal data [193–195], i.e., information about the daily life of the patients, with the aim of
proposing algorithms that can determine if the patient has malignant lesions with a higher
certainty and with the lowest false alarm at the earliest stage possible in order to get an
effective treatment that can prevent the disease propagation. To achieve this goal, it is
necessary to develop a database that contains the aforementioned features and whose size
can reflect the main scenarios that can be found in real-life. Further, having algorithms that
can deal with the aforementioned information, it can be possible to design personalized
surveillance and clinical screening strategies that could offer the best health outcome for
every patient.
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