
Citation: Singh Tuli, H.; Rath, P.;

Chauhan, A.; Sak, K.; Aggarwal, D.;

Choudhary, R.; Sharma, U.;

Vashishth, K.; Sharma, S.; Kumar, M.;

et al. Luteolin, a Potent Anticancer

Compound: From Chemistry to

Cellular Interactions and Synergetic

Perspectives. Cancers 2022, 14, 5373.

https://doi.org/10.3390/

cancers14215373

Academic Editor: Leonhard Müllauer

Received: 3 October 2022

Accepted: 25 October 2022

Published: 31 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Review

Luteolin, a Potent Anticancer Compound: From Chemistry to
Cellular Interactions and Synergetic Perspectives
Hardeep Singh Tuli 1,* , Prangya Rath 2 , Abhishek Chauhan 3 , Katrin Sak 4 , Diwakar Aggarwal 1,
Renuka Choudhary 1, Ujjawal Sharma 5 , Kanupriya Vashishth 6, Sheetu Sharma 7 , Manoj Kumar 8 ,
Vikas Yadav 9 , Tejveer Singh 10 , Mukerrem Betul Yerer 11 and Shafiul Haque 12,*

1 Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi
Markandeshwar (Deemed to be University), Mullana-Ambala 133207, India

2 Amity Institute of Environmental Sciences, Amity University, Noida 201303, India
3 Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida 201303, India
4 NGO Praeventio, 50407 Tartu, Estonia
5 Department of Human Genetics and Molecular Medicine, Central University of Punjab,

Bhatinda 151001, India
6 Department of Cardiology, Advance Cardiac Centre, Post Graduate Institute of Medical Education and

Research (PGIMER), Chandigarh 160012, India
7 Department of Pharmacovigilace and Clinical Research, Chitkara University, Rajpura 140401, India
8 Department of Chemistry, Maharishi Markandeshwar University Sadopur, Ambala 133001, India
9 Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University,

SE-20213 Malmö, Sweden
10 Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University,

Delhi 110007, India
11 Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
12 Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University,

Jazan 45142, Saudi Arabia
* Correspondence: hardeep.biotech@gmail.com (H.S.T.); shafiul.haque@hotmail.com (S.H.)

Simple Summary: Common flavonoid luteolin 3′,4′,5,7-tetrahydroxyflavone has immense potential
to be utilized as a chemopreventive dietary molecule. According to available data, luteolin interacts
with a number of known cellular targets and prevents the growth of cancer cells by triggering
apoptosis and cell cycle arrest. Inhibiting tumor cell metastasis and angiogenesis is another promising
function of luteolin, according to recent research. Luteolin has also been discovered to be a good
option for synergistic investigations and may be able to reverse cancer cells’ medication resistance.
The current review focuses on the work being done to find molecular targets of luteolin in cancer.
Additionally, the use of luteolin combinations and delivery systems enabled by nanotechnology are
presented. The review is distinctive by offering all potential cellular targets of luteolin in cancer on
one platform. The text is accompanied by excellent visual aids.

Abstract: Increasing rates of cancer incidence and the toxicity concerns of existing chemotherapeutic
agents have intensified the research to explore more alternative routes to combat tumor. Luteolin, a
flavone found in numerous fruits, vegetables, and herbs, has exhibited a number of biological activi-
ties, such as anticancer and anti-inflammatory. Luteolin inhibits tumor growth by targeting cellular
processes such as apoptosis, cell-cycle progression, angiogenesis and migration. Mechanistically,
luteolin causes cell death by downregulating Akt, PLK-1, cyclin-B1, cyclin-A, CDC-2, CDK-2, Bcl-2,
and Bcl-xL, while upregulating BAX, caspase-3, and p21. It has also been reported to inhibit STAT3
signaling by the suppression of STAT3 activation and enhanced STAT3 protein degradation in various
cancer cells. Therefore, extensive studies on the anticancer properties of luteolin reveal its promising
role in chemoprevention. The present review describes all the possible cellular interactions of luteolin
in cancer, along with its synergistic mode of action and nanodelivery insight.
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1. Introduction

The identification of novel and efficient therapies for management of cancer is very
important, considering the continuously increasing incidence of malignant diseases all
over the world. It is expected that during the next two decades the global cancer burden
will reveal about a 50% rise, reaching 28.4 million new cases by 2040 [1]. Prediction of
such a high incidence rate definitely requires more intense implementation of efficient
countermeasures, including the development of novel potent anticancer drugs. The plant
kingdom has already been an abundant resource for natural remedies used in the form
of herbal extracts to treat both benign as well as malignant neoplasms for centuries [2].
Only more recently, the structural features and mechanistic insights of such bioactive
phytochemicals have been made the subject of in-depth preclinical investigations. In fact,
in 1960, the United States National Cancer Institute (NCI) launched the screening program
for anticancer properties of plant-derived products, leading to identification of several
new compounds, such as vincristine, vinblastine and paclitaxel that are currently used as
chemotherapeutic drugs in the clinical settings [3]. These studies laid a strong foundation
for subsequent intensive exploration of natural anticancer agents, clearly demonstrating
that the lead structures provided by nature and synthesized by plants might be highly
valuable for developing novel efficient drugs against cancer. Hence, investigation into such
bioactive phytochemicals represents a very attractive research field.

Among natural plant-derived compounds, one of the most explored plant-derived
chemicals is the flavone luteolin (3′,4′,5,7-tetrahydroxyflavone) that occurs widely in di-
verse vegetables and herbs such as cabbage, kale, lettuce, thyme, parsley, rosemary and
oregano [4]. A number of recent studies have demonstrated the ability of luteolin to
suppress the carcinogenesis process by perturbing the cell cycle progression, inhibiting
proliferation, promoting apoptosis, and restricting migration and invasion of cancerous
cells [5,6]. For example, luteolin can retard malignant progression in breast cancer [7,8], col-
orectal cancer [9,10], lung cancer [11] and prostate cancer models [12], among others. Such
anticancer activities of luteolin are regulated through its ability to interact with different
molecular target sites and modulate a variety of signaling cascades in tumor cells [13,14].

In the current comprehensive review article, the chemical composition and bioavail-
ability of luteolin in human beings are discussed, besides describing the different anticancer
activities of this flavone. Precisely, pro-apoptotic, cell cycle arresting, autophagy, antiangio-
genic and antimetastatic effects of luteolin are considered in diverse experimental models
of different cancer types. In addition, combinatorial activities of luteolin with conventional
anticancer drugs that are currently used in clinical settings are also discussed.

2. Chemistry Associated with Luteolin

Chemically luteolin is a 3′, 4′, 5, 7 tetra hydroxyl flavonoid composed of a C6-C3-C6
carbon skeleton with two benzene rings linked by a heterocyclic ring, and having a yellow
crystalline appearance [15]. It is naturally found in many plants, fruits, and vegetables.
Three enzymes, namely phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase
(4CH), and 4-coumaroyl CoA ligase (4CL), use the phenylpropanoid route to biosynthesize
luteolin in plants (Figure 1). Luteolin can be extracted from plants with the help of modest
extraction techniques [16], but only a small amount of luteolin is available for biological
studies because it is difficult to obtain. In 2014, Ji Zhang et al. disclosed a new green
and convenient approach for the synthesis of luteolin using 1,3,5-trimethoxybenzene via
Friedel–Crafts acylation, demethylation selectively, Claisen–Schmidt condensation with
3,4-dimethoxybenzaldehyde [17]. It was also prepared by using 1,3,5-trimethoxybenzene
and 3,4-dimethoxycinnamic acid as starting materials in the presence of excess of BF3–Et2O
through one-pot (Figure 2) reaction.
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Figure 1. Biosynthetic routes for luteolin formation.
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Figure 2. Chemical Synthesis of luteolin. a, b, c1, c2, d, and e represent the essential conditions for
the completion of reaction: (a) BF3–Et2O, EtOAc, r.t., 2 h, 93%; (b) BCl3, CH2Cl2, 0 ◦C, r.t., 2 h, 87%;
(c1) KOH, r.t., 72 h, 83%; (c2) BF3–Et2O, 100 ◦C, 6 h, 45%; (d) DMSO, I2, 130 ◦C, 4 h, 80%; (e) pyridine
HCl, 180 ◦C, 6.5 h, 88%.
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The primary cause of flavonoids’ biological activity is the presence of their hydroxyl
groups. Luteolin has four hydroxyl groups at the locations of C5, C7, C3′, and C4′ that
provide potent anti-oxidative properties, while the double bond between C2 and C3 is
responsible for its efficient biocidal activity. It is effective against microorganisms, due to the
carbonyl oxygen present at C4 locations (Zhao et al. 2021). Biologically, potent derivatives of
luteolin have also been reported by various authors. In a recent report, Stephen Lo et al. [18]
reported mono-acylated luteolin derivatives (Figure 3) with enhanced antiproliferative
activities against HCT116 and MDA-MB-231 cancer cell lines. Similarly in another report,
Divyashree Ravishankar et al. reported an antiangiogenic [19] 4-thiomethoxy derivative
of luteolin.

Figure 3. Luteolin and its derivatives. (A) 2-(3,4-dihydroxyphenyl)-5,7-dihydroxychromen-4-one
(B) Monoacylated luteolin (C) 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromene-4-thione.

3. Absorption and Metabolism of Luteolin

Luteolin, a naturally occurring flavone, is majorly available in the form of aglycone or
glycosides. Following intestinal absorption, the majority of luteolin is conjugated, leaving
behind a small proportion of free luteolin in the body. Hence, the bioactivity of luteolin can
primarily be attributed to its metabolites [20] catalyzed by UDP-glucuronosyltransferases
(UGTs) and catechol-O-methyltransferases (COMTs) [21]. One report suggested glu-
curonidation and methylation to be two key pathways mediated via the interplay of
UGTs and COMTs involved in the metabolic disposition of luteolin [21]. Another group
confirmed that luteolin glucuronides, especially luteolin-3’-O-glucuronide comprise the
active compound of luteolin, which exhibits its anti-inflammatory effect in vivo [20]. This
was supported by another investigation that examined the intestinal absorption of lu-
teolin and luteolin 7-O-beta-glucoside in rats by HPLC and demonstrated that luteolin
was converted to glucuronides during its passing through the intestinal mucosa. More-
over, luteolin 7-O-beta-glucoside upon hydrolysis into luteolin was absorbed. Hence, the
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major forms of luteolins found in the rat plasma included free luteolin, its conjugates
and methylated conjugates. The presence of free luteolin suggested that some luteolin
could escape the intestinal conjugation or the hepatic sulfation/methylation. This HPLC
analysis validated the presence of free luteolin and its monoglucuronide in human serum
after ingestion of luteolin [22]. This observation was supported by another study which
showed that luteolin, luteolin monoglucoside, and luteolin monoglucuronide may circu-
late in humans [23]. In another study, the oral administration of luteolin glucosides and
luteolin aglycone to rats resulted in the detection of luteolin glucuronides in plasma and
organs [24]. An HPLC-MS/MS analysis of luteolin and its active metabolites (diosmetin,
chrysoeriol, and luteolin-7-O-glucuronide) in rat plasma suggested that the enzymatic
activity of UDP-glucuronosyltransferases had a great influence on its pharmacological
activity or toxicity [25]. In addition, extensive glucuronidation by uridine diphosphate-
glucuronosyltransferases 1As (UGT1As) results in poor bioavailability of luteolin, which
limits its clinical application. Hence, a recent report indicated that resveratrol (RES), an
inhibitor of UGT1A1 and UGT1A9, had a significant effect on the enhanced bioavailability
of luteolin by reducing the major glucuronidation metabolite in rats, which provides a
check-point for manipulation of the LUT/RES axis in liver diseases [26].

4. Mechanistic Insight into the Anticancer Activity of Luteolin
4.1. Apoptotic and Cell Cycle Arrest Mechanisms of Luteolin

Apoptosis induction (natural cell death) and cell cycle arrest are known to be promising
drug targets opted for by a variety of chemotherapeutics and phytochemicals. Luteolin
is found to possess both extrinsic as well as intrinsic mechanisms of apoptotic cell death
in cancer (Figure 4). For instance, Wang et al., 2018 evaluated PARP (poly (ADP-ribose)
polymerase) cleavage and upregulation of Fas and Fas ligand (FasL) along with increased
levels of caspases-8 and -3 [27]. For instance, a recent study has shown that administration
of 25 µM luteolin significantly reduces cell viability by inducing apoptosis in p53-deficient
cell lines by significantly increasing the cell proportion at the sub-G0/G1-phase of cell cycle
and decreasing the cell proportion at S-phase [28]. It increased p53 phosphorylation and
p53-targeted downstream gene expression, initiating apoptosis and cell cycle arrest [29].
Suppression of CDK2 activity in cancerous cells HT-29 and OCM-1 cells is related to
G1 cell cycle arrest [30]. Dose- and time-dependent effects of luteolin were observed on
the cytotoxicity of human colon cancerous LoVo cells with IC50 of 66.70 µmol/L (24 h)
and 30.47 µmol/L (in 72 h). Similar results were observed in the human colon HCT-
15 cell line [31]. This was due to the cell cycle arrest at G2/M phase that ultimately
resulted in cellular apoptosis [32]. Luteolin leads to the inactivation of essential cell-cycle
proteins such as cyclin B, CDC2 (cell division control), procaspase-9 in mice models and
upregulated cyclin A, APAF-1, cytochrome C, caspase-9 and-3, and cyclin-dependent
kinases (CDK) 2 [32]. These proteins play a very essential role in cell division and cell cycle
progression. It effectively suppresses the expression levels of p-STAT3 (signal transducer
and activator of transcription), p-Akt, p-EGFR (epidermal growth factor receptor), and
p-Erk1/2 (extracellular signal-regulated kinase) in cancerous cell lines [30]. Inhibiting
CDC1/CDK2 and cyclin B1/CDC2 proteins successfully arrested the cell at the G2/M
transition. Cytochrome c and APAF 1 (apoptotic protease activating factor1) activates
caspase recruitment domain (CARD) which in turn activates caspase-9 to form apoptotic
bodies. This initiates caspase-3 and other caspase cascade reactions resulting in apoptosis
of the cell [33]. Similar effects were also observed in esophageal cancer Eca109 cell line
and A172 and U-373MG, human glioblastoma cell lines [34,35]. The apoptosis of breast
cancer cell line MDA-MB-231 was observed to be induced by downregulating human
telomerase reverse transcriptase protein (hTERT). It inhibited the phosphorylation of NF-
κB (nuclear factor kappa B) inhibitor α and its subsequent target gene c-Myc (master
regulator of cell cycle) followed by the suppression of hTERT [36]. Treatment of cancerous
cells with luteolin significantly decreased BCL-2 (B cell leukemia/lymphoma 2) and VEGF
(vascular endothelial growth factor) expression, while increasing the expression of BAX
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protein (Bcl-2-associated X protein). This signaling initiated the mitochondrial-modulated
function to cause cell death [37]. A recent study has shown luteolin to suppress tumor
proliferation by inducing apoptosis through MAPK pathway (mitogen-activated protein
kinase) activation. LIM domain kinase (LIMK) 1 protein and its associated proteins (such
as Ki-67, p-LIMK, p-cofilin), which are highly expressed in the lung cancer cell line, are
significantly inhibited by luteolin [38]. It also induced potential mitochondrial membrane
collapse, thereby leading to cytochrome c release, and an increased expression of BAX by
inhibiting the expression of Bcl-2. Furthermore, it also enhanced the expression of death
receptors DR5, which activated caspase-8/-9/-3 cascades in MCF-7 cells [39]. These overall
mechanisms also significantly decreased the tumor size and weight, thereby leading to
cell-cycle arrest and apoptosis [32]. Furthermore, luteolin inhibited the proliferation of
human colon adenocarcinoma cell line HT29 by increasing the expression of Caspase-1,
Gasdermin D and IL-1β, members of pyroptosis, a form of cell death [40].

Figure 4. Intervention of luteolin into apoptotic mechanisms of cancer cells. Luteolin is represented
by a red star, whereas arrows designate up (↑) and downregulation (↓) of the molecules. It modulates
the expression of anti-apoptotic factor (Bcl-2), and apoptotic (Bax, Bak, Cyt c, Caspases and Apaf) for
the progression of natural cell death.
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4.2. Autophagy- Inducing Mechanism of Luteolin

Autophagy is a process that degrades cells and removes toxic substances from cells that
are under stress, and functions as a self-degradation system [41]. The autophagy process is
classified into different types i.e., micro, macro and chaperone-mediated autophagy that
transmits to the lysosome. Macroautophagy is a metabolic process that wraps protein cells
to form autophagosomes with a bilayer membrane, the membrane fuses with the lysosomal
membrane and degrades the wrapped protein by hydrolyzing [42]. Luteolin affects various
pathways, i.e., it is involved in autophagy that includes nucleation and elongation that
prevents the progression of cancer. Luteolin attenuates Wnt signaling (Wingless-related
integration site) pathway for the upregulation of fizzled class receptor to downgrade cancer
cells. Beclin1 plays an important role in autophagy, a process involved in cell survival
that increases during cell stress and decreases over the cell cycle. The Beclin1 regulates
autophagy during the initiation step that suppresses tumors and downregulates the Beclin1
expression in cells. Luteolin affects the ER chaperone binding and activates stress sensors
and induces autophagy [43]. The Beclin1 promotes protein light chain formulation that
effects elongation steps through the downregulation of light chains. Autophagy can also
help in the survival of cells in cancer cells with Beclin1 downregulation [44].

The high amount of luteolin may cause lethal autophagy in lung cancer, proving
induction of caspase-dependent programmed cell death. The major role of luteolin was
reported to increase LC3 (microtubule-associated protein 1A/1B-light chain 3) puncta
and autophagy flux by activating caspases and beclin1 [35,45]. Luteolin also inhibited
cancer cell development via the Wnt β-catenin pathway, and may clearly halt the cell
cycle by decreasing Akt-phosphorylation, which further leads to dephosphorylation and
triggers GSK-3 (glycogen synthase kinase). Upon activation of GSK-3, the level of cyclin D1
phosphorylation rises at Thr-286, with proteasomal destruction [46]. During sensitization of
cancer cells luteolin makes a significant impression on cleaving caspase and inhibits cancer
cells by stimulating autophagy. Luteolin, upon activation of MAPK activation, decreases
the proliferation that leads to the downregulation of P62, leading to autophagy and induces
FADD (Fas-associated death domain)-mediated apoptosis [47]. Therefore, luteolin in cancer
therapy could be beneficial to reduce tumor cell survival and proliferation via autophagy
regulation (Figure 5).

4.3. Antiangiogenic and Antimetastatic Action of Luteolin

It is well established that angiogenesis plays a prominent role in the occurrence, inva-
sion and metastasis of tumors. Significant findings on the antiangiogenic and antimetastatic
properties of luteolin have yielded positive results [48–50]. Studies have demonstrated that
luteolin inhibits breast cancer invasion via inhibiting VEGF production and the receptor
activity, and also it decreases the expression of markers for epithelial–mesenchymal transi-
tion and inclination towards metastasis. Some studies have also demonstrated that luteolin
suppresses angiogenesis by stabilizing hyaluronic acid, an anti-angiogenic barrier. It has
been observed that if hyaluronic acid is catalyzed by hyaluronidase, a cascade of events
results in neo-vascularization. Luteolin, on the other hand, is found to be a potent inhibitor
of hyaluronidase in maintaining the barriers of neovasculature [5,50–53].

The ability to invade surrounding tissue and migrate from the primary site is an
important characteristic of cancer. Varied studies have also shown that luteolin blocks
the expression of MMPs, pro-inflammatory cytokines such as TNF-α (tumor necrosis
factor), IL-6 (interleukin), IL-1, NF-κB, and endothelial migration, the factors involved
in tumor progression and metastasis [54–56]. It has been observed that luteolin acts on
tumor-associated macrophage (TAM) and other associated immune cells which releases
chemokines, e.g., C-X-C chemokine receptor type 4 (CXCR4, a growth factor involved in
the metastasis of cancer [54,55,57].



Cancers 2022, 14, 5373 9 of 30

Figure 5. The role of luteolin in regulation of autophagy. Luteolin is found to modulate the expression
of autophagic molecules including MAPK, Beclin1, and LC3 to initiate autophagy in cancer. Luteolin
is represented by a red star, whereas arrows designate up (↑) and blockage (⊥) of the molecules.

Luteolin not only downregulates the expression of anoctamin 1, a calcium-activated
chloride channel, but also inhibit its functional activity that leads to inhibition of cell
proliferation, migration and invasion in prostate cancer cells [58]. Furthermore, epithelial
to mesenchymal transition (EMT) plays an important role in cancer metastasis. Luteolin
causes repression of EMT via targeting several associated transcription factors, markers
and signaling pathways [5]. Additionally, luteolin treatment resulted in the loss of cell–cell
adhesion and an increased cell invasion via increased expression of E-cadherin by inhibiting
mdm2 through the AKT pathway in prostate cancer PC3 cells [59].

Studies have shown that crucial signal transduction pathways involved in cancer cell
metastasis and progression are blocked by luteolin, for example, EGFR activation. Luteolin
has shown to block the EGFR-signaling pathway, thereby reducing cell invasion and
metastasis. Studies have demonstrated the inhibitory potential of luteolin on focal adhesion
kinase (FAK) activity in cancer thereby halting cell invasion [60,61]. Luteolin has been found
to be effective and exert an inhibitory effect on the proliferation, migration, and invasion
of different cancers via acting on and altering the PI3K/AKT, mTOR (the mammalian
target of rapamycin), ERK, and p38 signaling pathways and their associated molecules [62]
(Figure 6). Despite the availability of many in vitro and in vivo studies, not many clinical
studies have been conducted to explore the beneficial properties of luteolin [6,63]. The need
of the hour is to explore dedicated model studies on the antimetastatic and antiangiogenic
properties of luteolin, along with the delineation of cancer inhibitory pathways.
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Figure 6. Molecular mechanisms of antiangiogenic and antimetastatic activities of luteolin. It
regulates the expression of angiogenic (VEGF/VEGFR), and metastatic proteins (MMPs, CXCR4,
FAK, PI3K/AKT, mTOR, ERK) to inhibit neo-asculature and cancer migration respectively.

4.4. Immunomodulatory Mechanisms of Luteolin

Inflammatory reaction occurs in response to harmful a stimulus such as injury, stress
and microbial invasion. It is carried out by immune and non-immune cells in a well-defined
coordinated manner in order to maintain homeostasis, through activation of signaling
pathways. Numerous flavonoids have been reported for their anti-inflammatory activ-
ity and are under clinical trials to be used for drug development. Luteolin is one of the
flavonoids having anti-inflammatory mechanism at micromolar concentrations and acting
as a promising compound for further development [64]. Luteolin is nontoxic in nature,
but not granted generally recognized as safe status by USFDA. The anti-inflammatory
mechanisms of the action of luteolin relates to its ability to inhibit NO production, nitric
oxide synthase (iNOS) expression, and ROS production. Furthermore, luteolin activates
antioxidant enzymes, scavenge reactive oxygen species (ROS), promotes leukotriene pro-
duction, adhesion- molecule membrane-binding-inhibition, hyaluronidase and elastase
activity, vascular-permeability reduction and cell membrane-fluid modulation, mast cells-
stabilization inhibition, proinflammatory cytokine-expression suppression, NF-κB pathway,
Akt and the mitogen-activated protein kinase (MAPK)-pathway inhibition (Figure 7).

Coordinated activation of a signaling pathway for inflammatory response is crucial to
maintain the balance between pro-inflammatory and anti-inflammatory mediators [65]. By
regulating the inflammatory mediators and cytokine production, luteolin has been shown
to exert its anti-inflammatory effects. Acute and chronic inflammation is modulated by
cytokine by acting as key modulator [66]. The level of IL-10 (anti-inflammatory) increases
by the luteolin, through the interleukin (IL)−1β, IL-2, IL-6, IL-8, IL-12, IL-17, TNF-α,
interferon (IFN)-β, and granulocyte-macrophage colony-stimulating factor inhibition. In
addition to this, luteolin also inhibits the chemokines, along with prostaglandin and
leukotriene which play a crucial role in immune cell migration [67]. Luteolin exerts its
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anti-inflammatory activity through the inhibition of iNOS (inducible nitric oxide synthase)
function, iNOS expression, and NO production, as NO is a labile radical entity and ROS
is regulated by luteolin [68]. It has been reported that luteolin acts as an activator of
antioxidants and ROS scavenger [64]. Lactate dehydrogenase (LDH) production was
decreased and superoxide dismutase (SOD) activity with intracellular level of glutathione
(GSH) was found to be elevated in endothelial cells after the luteolin attenuation of TNF-
α-induced intracellular ROS generation [69]. Luteolin has been found to suppress the
phosphatidylinositide 3-kinases (PI3K)-AKT-NF-κB-extracellular signal-regulated protein
kinases 1 and 2 (ERK1/2) pathway, which leads to a decline in ROS levels in the case of
zinc-induced apoptosis of human neuroblastoma SH-SY5Y cells [70].

Figure 7. Different pathways inhibited and modulated by luteolin for anti-inflammatory activity. For
instance, downregulation of NF-κB, Akt, MAPK, ERK, STAT, (IL)−1β, IL-6, IL-8, and TNF-α, is found
to be initiated by luteolin to inhibit inflammatory microenvironment. Luteolin is represented by a red
star, whereas arrow designate blockage (⊥) of the molecules.

NF-κB transcription factor plays an important role in pro-inflammatory genes ex-
pression and its inhibition mediates the anti-inflammatory activity of luteolin. NF-κB
selective stimulation leads to IκB kinase (IKK) complex-mediated IκB protein degradation
via phosphorylation, which further results in nuclear translocation of NF-κB and induces
the transcription of target genes. Natural compounds such as luteolin inhibit the NF-κB
signaling pathway, which plays an important role in the generation of inflammation [71,72].
Mitogen-activated protein kinases (MAPK) and AP-1 signaling were also modulated by the
luteolin. It was reported that in SW982 cells, luteolin affects the MAPK pathway through
IL-1β-induced c-Jun N-terminal kinase (JNK) suppression and p38 kinase activation. Ad-
ditionally, IL-1β-induced nuclear translocation of AP-1 inhibition was also observed [73].
ROS-scavenging activity of luteolin has also been reported through the inhibition of the
MAPK pathway, which is activated by ROS [64]. It has been reported that ROS-induced
activation of the MAPK pathway is attenuated by luteolin [74]. In addition to this, ERK1/2
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phosphorylation is significantly enhanced by luteolin. In a ROS-activated MAPK path-
way in Sprague-Dawley rats and H9c2 cells, p-p38 MAPK and p-JNK (c-Jun N-terminal
kinases) levels were reported to be decreased [74]. Luteolin was also found to decrease
the STAT-binding activity and STAT1 phosphorylation, which further decreases the IRF-1
(interferon regulatory factor 1) basal levels, which is a transcriptional factor regulating
proinflammatory cytokine expression [75]. Therefore, it can be concluded that the luteolin
exerts its anti-inflammatory activity through different mechanisms, and activity varies with
the signaling pathway.

4.5. microRNA (miRNA) Modulations by Luteolin in Cancer

MicroRNAs (miRNAs) are endogenous, 18–22 nucleotide long noncoding RNAs
that regulate gene expression post-transcriptionally by either translational repression or
degradation of target mRNA [76,77]. Recent research has shown that modification of the
expression of miRNAs that play significant roles in the biology of the tumor, including cell
proliferation, and metastasis can reverse the cancer phenotye [78].

Research to date suggests that phytochemicals can drastically alter a number of miR-
NAs linked to cancer, hence preventing the onset and progression of cancer [79]. Luteolin-
mediated control of miRNAs is an intriguing and growing field. It is exciting to note that a
systematic and sequential accumulation of information has begun to illuminate the complex
control of microRNAs by luteolin in various malignancies. Together, advanced data will
allow us to create a more in-depth comprehension of how luteolin regulates signaling
pathways and miRNAs on multiple levels in various malignancies. According to research
involving several cancer cell lines, miR-34, a crucial tumor suppressor gene, was increased
after treatment of luteolin [80–83]. Along with miR-34, studies have shown that luteolin
treatment of cancer cells upregulated a number of other tumor suppressors, including miR-
9, miR-7-1-3p, miR-181a, miR-5703, miR-195/215, miR-630, let-7c, miR-139, miR-221, miR-
98, miR-107, miR-422a, miR-6809-5p, miR-224, miR-139-5p, miR- 181a, miR-124-3p miR-384,
while downregulating a number of oncogenes, such as miR-340, miR-301, miR-155, miR-21
and miR-224 [84].

Furthermore, in prostate cancer cells, luteolin administration reduced cell growth
and caused apoptosis by downregulating miR 301 and inducing the production of death
effector domain-containing protein 2 (DEDD2), a pro-apoptotic molecule [85]. According
to Zhou et al., luteolin increased the expression of miR 34 in gastric cancer cells, and miR
34 overexpression made cells more susceptible to luteolin [83]. When luteolin was given
at a high dose (200 mg/kg) to a non-small cell lung cancer (NSCLC) animal model by
microarray analysis, miR-34a was found to be highly expressed [81]. By increasing miR-
34a-5p and targeting MDM4, luteolin also reduced carcinogenesis and triggered death in
non-small cell lung cancer cells [81]. Luteolin modulates PTN via the expression of miR-384
to cause anticancer effects on colorectal cancer cells (Yao et al., 2019b). Luteolin exposes
cells of pancreatic ductal adenocarcinoma, attenuates cell proliferation and enhances the
anti-proliferative effect of TRAIL on cancer cells by downregulation of miR-301-3p [86].
Luteolin could significantly inhibit NOTCH signaling by regulating various miRNAs such
as the upregulation of miR-121a, miR-34a, miR-224, miR-246, miR-139-5p and downregu-
lation of miR-155 involved in tumor development and progression in breast cancer [87].
Furthermore, in the breast cancer cell line MCF-7, luteolin considerably increased miR-16
and miR-34a expression while significantly decreasing miR-21 expression and resulted
in decreased cell viability, caused a large buildup of apoptotic cells in the sub-G1 and
G0/G1 cell cycle phases, and triggered apoptosis by upregulating BAX, a pro-apoptotic,
and downregulating Bcl-2, an anti-apoptotic protein [88]. Additionally, luteolin stimu-
lated miRNA-203 expression and targeted Ras and Raf expression in breast cancer cells
(MDA-MB-453 and MCF7). Additionally, it was discovered that breast cancer cells lacking
miR-203 had increased levels of p-MEK and p-ERK, which is also found to be increased in
renal cell carcinoma [89]. This indicates the role of luteolin in inhibiting cancer progression
via miRNA [90]. In gastric cancer cells, luteolin administration dramatically elevated the
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tumor-suppressor miR-34a, miR-139, miR-107 and miR-422a levels, while considerably
decreasing the oncogene miR-155, miR-340, miR-21 and miR-224 levels [82].

One of the studies showed that luteolin treatment resulted in the overexpression of
miR-7-1-3p that leads to inhibition of autophagy and also apoptosis induction [91]. Ad-
ditionally, Yao et al. examined the relationship between miRNAs and luteolin in glioma
cells. The findings showed that luteolin treatment of glioma cells dramatically enhanced
miR-124-3p expression, increasing cellular cytotoxicity. By triggering apoptosis and au-
tophagy through the activation of MAPK in glioma, luteolin may be able to inhibit the
growth of tumors. In U251 cells and LN229 cells, miR-124-3p overexpression may greatly
increase the amount of cleaved caspase-3. Following luteolin administration, cleaved poly
(ADP-ribose) polymerase, caspase-3 and caspase-8 levels significantly increased, and these
are involved in apoptosis via an extrinsic pathway. Furthermore, p38, JNK, and ERK could
all be activated and phosphorylated by luteolin [92].

The anticancer properties of luteolin may be influenced by miRNA-related processes.
The downregulation of oncogenes and/or activation of tumor suppressors, which can
influence proliferation, migration, invasion and apoptosis in cancer cells, may be some of
these methods. These results add credence to the idea that luteolin, a substance derived
from natural products, may be a treatment for cancer (Figure 8). To establish the practical
applicability of these findings and to investigate which miRNAs are crucial for the molec-
ular activities of luteolin in cancer, more research, particularly clinical trials, is required.

Figure 8. Regulation of cancer progression by luteolin through affecting different miRNAs. Luteolin
can increase and decrease the expression of tumor suppressive (MiR34α, miR-1-3-p) and oncogenic
(miR301, MiR155, miR21) miRNA, respectively. Luteolin is represented by a red star, whereas arrows
designate up (↑), downregulation (↓) and blockage (⊥) of the molecules.

5. Synergistic Effects of Luteolin with Conventional Anti-Cancer Drugs

Treatment of cancerous cells with luteolin has proven to be effective; however, there
have been many studies highlighting the synergistic effects of luteolin with other natu-
ral/synthetic drugs, showing new possible treatment options. A recent study analyzed the
combinatorial treatment of luteolin with oxaliplatin, and observed a significant decrease
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in the expression of p21 protein in p53+/+ HCT116 cells. The results showed synergistic
effects as compared to treatment with oxaliplatin or luteolin alone [28]. Luteolin with
hesperidin also effectively downregulated miR21 expression levels while upregulating
miR-16 expression levels in the breast cancerous-cell line MCF-7 [88]. Luteolin-complexed
nanoparticles efficiently decreased the expression levels of mRNA of downstream gene
Nrf2 to a greater extent, as compared to luteolin alone [30]. Synergism of luteolin with
sulforaphane was observed at a molecular level. Reduction in expression levels of proteins
involved in the NF-κB pathway and STAT3 activation was observed [93]. Similar effects
were observed with a combination of celecoxib and luteolin in breast cancer cell lines such
as MDA-MB-231. This combination demonstrated a greater increase in cell apoptosis, which
was attributed to decreased levels of p-Akt [94,95]. Similarly, combination treatment with
luteolin and quercetin on nicotine-treated MDA-MB-231 cells has been shown to enhance
antiproliferative effects by downregulating nicotinic acetylcholine receptors [96]. Recently,
luteolin with oxaliplatin was studied, to suppress the proliferation of gastric cancerous cells
SGC-7901 through modulation of the Cyt C/caspase pathway; this increased the levels
of cyclin D1, arresting the progression of cells at G0/G1 phase [49]. The combination of
luteolin and lapatinib synergistically inhibited the expression of ERBB1, ERBB2 mRNA, and
the phosphorylation level of Akt, ERK1/2 in breast cancer BT474 cells [97]. Cell migration
and the invasion of glioblastoma SNB19 cells as well as glioblastoma stem cells, were
significantly reduced upon treatment with luteolin and silibinin. The combination induced
apoptosis, by inhibiting cell cycle proteins of intrinsic and extrinsic pathways such as
PKC-α, XIAP, and iNOS [98]. Luteolin, along with 5-fluorouracil, was administered to hepa-
tocellular carcinoma cells (HepG2 and Bel7402), showing enhanced expression of Bax/Bcl-2
ratio, p53 protein, and induction of apoptosis through PARP cleavage [99]. Similarly, the
administration of luteolin and 5-FU demonstrated apoptosis induction via increased levels
of p53, p21, and caspase 3 in the solid Ehrlich carcinoma mice model [100]. Additionally,
the combined treatment of luteolin and oxaliplatin significantly increased apoptosis in the
colorectal carcinoma xenograft-mouse model by elevating the expression of cleaved PARP
and p53 via inhibition of the AMPK pathway [101]. Administration of polyphenols such
as (-)-epigallocatechin-3-gallate with luteolin has been observed to synergistically inhibit
TGF-β through RhoA and ERK inhibition pathways, and to decrease the serum levels of
HGF and VEGF in prostate cancer cells [102]. A combination of the Cisplatin drug with
luteolin synergistically inhibited the migration and invasion of the ovarian cancer cell line
CAOV3/DDP in a dose-dependent manner [103]. A recent study has highlighted the sig-
nificant positive effects of a combination of luteolin with three polyphenols i.e., quercetin,
apigenin, and p-coumaric acid, on the antiproliferative activities of MCF-7 breast cancer
cell lines of up to 90% [104]. Such studies signify that the synergistic effects of luteolin with
other natural/synthetic drugs may prove to be more beneficial than luteolin alone.

The results obtained for the synergistic effects of luteolin and conventional chemother-
apeutics such as 5-fluorouracil and cisplatin, clearly show that in the future, treatment
regimens combining this natural flavone with anticancer drugs might be developed to
lower the efficient doses of chemotherapeutics and thereby mitigate also adverse side
effects caused by these drugs. Moreover, the presence of luteolin might even provide
some protective effects against chemotherapeutics-induced toxicities, such as doxorubicin-
induced cardiotoxicity [105] or cisplatin-induced nephrotoxicity [106]. However, more
in vivo studies with the initiation of clinical trials are urgently needed to further evaluate
these attractive insights.

6. Insight into the Nanodelivery of Luteolin in Cancer

Poor solubility of flavonoids has always been a daunting task for scientists, being
widely researched to explore their hidden therapeutic mechanisms. As discussed above,
luteolin is known to inhibit tumorigenesis in a diverse range of cancers by inhibiting the
viability, migration, angiogenesis and invasion [11,12,107–115]. However, the combination
of protein and flavonoids can ameliorate the problems of poor solubility and stability
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of flavonoids for better utilization. In one of the recent studies, a soy protein isolate
pretreated by ultrasonication was selected as the embedding wall material, which was
combined with luteolin to form a soy protein isolate (SPI)-luteolin nanodelivery system.
This SPI delivery system increased the luteolin release rate and the utilization of fat-
soluble active substances [116]. Another recent report investigated the preparation and
evaluation of a non-invasive intranasal luteolin delivery for the management of cognitive
dysfunction in Alzheimer’s disease (AD), using novel chitosan-decorated nanoparticles.
The prepared nanoparticles proved to be a promising safe, effective, and non-invasive
nanodelivery system that improved luteolin delivery which in turn enhanced cognitive
function in AD patients [117]. Luteolin-loaded nanovesicles (LT-NVs) prepared by a
solvent evaporation method using cholesterol, phosphatidylcholine, span 60, and labrasol
in different compositions revealed enhanced drug release as well as permeation profile.
The enhanced permeation from LT-NVs was achieved due to the enhanced solubility of
luteolin in the presence of the surfactant, concluding that LT-NVs are a natural alternative
to the synthetic drug in the treatment of lung cancer [118]. As such sporadic reports have
been documented focusing on nanodelivery techniques of this flavone in cancer, exploring
this area holds potential for therapeutic targeting of carcinogenesis by effective delivery of
luteolin, an effective anti-cancer agent.

7. Safety Studies Related to Administration of Luteolin

As a dietary phytochemical, luteolin is considered to be generally safe. This assump-
tion has been confirmed also in several specific studies. Xiong et al. showed that this
flavone, administered intraperitoneally at 100 mg/kg, displayed no obvious liver or kidney
toxicity in male mice, suggesting a good safety profile. In this work, the LD50 for luteolin
was calculated to be 460 mg/kg [119]. In rats, the intraperitoneal and oral LD50 values for
luteolin were estimated to be 411 mg/kg and >5000 mg/kg, respectively [120]. De Leo
et al. described the favorable safety of luteolin also in zebrafish larvae [121]. However,
the safety profile of luteolin in humans has still remained unclear, and definitely needs to
be evaluated in further clinical trials. Tables 1–4 represent an overview of the anti-cancer
potential of luteolin in various in vitro and in vivo models.

Table 1. Synergistic mechanisms of luteolin with other anticancer agents.

S. No. Combination of
Drug Molecules Type of Cancer Model System

(Cell Lines)
Physiological Effect and
Mechanism(s) Dose Ref.

1 luteolin and
oxaliplatin tumor HCT116 cells reduced the expression of p21

protein - [101]

2 luteolin and
oxaliplatin Tumor

gastric
adenocarcinoma cell
line (SGC-7901)

blocked cell progression in the
G0/G1 phase and induced
apoptosis; increased cyclin
D1 levels

LUT (40µM) and
OXA (30µM);
24 h

[92]

3 celecoxib and
luteolin Malignant tumors

breast cancer cells
(MCF-7 and
MDA-MB-231)

increased cell proliferation,
cell death, apoptosis;
decreased levels of Akt
phosphorylation (pAkt);

10, 25, 50, 75,
100 µM for 72 h [94]

4 quercetin and
luteolin malignant MDA-MB-231 cell

downregulation of nicotinic
acetylcholine receptors and
R9-nAChR expression

0.5 µM [122]

5 luteolin and
silibinin malignant

glioblastoma SNB19
cells and glioblastoma
stem cells

prevented cell migration and
invasion and induced
apoptosis; targeted PKCα
and iNOS

20 µM LUT and
50 µM SIL [35]
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Table 1. Cont.

S. No. Combination of
Drug Molecules Type of Cancer Model System

(Cell Lines)
Physiological Effect and
Mechanism(s) Dose Ref.

6 apigenin and
luteolin malignant MDA-MB231 cell

inhibited CCID,
MMP1-induced calcium
increase and phosphorylation
of FAK essential for FAK
activation; p53 signaling
pathway was activated; NF-κb
pathway inhibition

- [123]

7 luteolin and cy-
clophosphamide Tumor cells human breast

cancer cell

increasing Bcl-2 protein level
and antioxidant activity;
downregulation of Akt
phosphorylation

Lut 30 mg/kg +
cyclophos-
phamide
10 mg/kg

[40]

8 luteolin and
lapatinib - BT474 breast

cancer cells

inhibited expression of ERBB1,
phosphorylation level of Akt,
ERK1/2

- [124]

9 CD55-TRAIL and
luteolin Tumor cells colorectal cancer

(CRC), HT-29 cells

displayed greater chromatin
condensation, nuclear
fragmentation and apoptotic
body formation

CD55-TRAIL
(15 MOI), luteolin
(25 µM), 72 h

[125]

10
epigallocatechin-
3-gallate and
luteolin

- prostate cancer cells

inhibited TGF-β and ERK
inhibition pathways,
decreased levels of HGF
and VEGF

- [101]

11 luteolin and
paclitaxel malignant breast cancer cell lines regulated Caspase 8, 3, Fas - [35]

12 luteolin and
cisplatin malignant ovarian cancer,

CAOV3/DDP cells

induction of apoptosis and
inhibition of cell migration
and invasion, downregulation
of Bcl-2 expression

10–40 mg/kg,
5 days [106]

13 luteolin and
hesperidin malignant breast cancerous cell

line MCF-7

downregulated miR21
expression levels while
upregulated miR-16
expression levels, caused a
significant accumulation of
apoptotic cells into the G0/G1

20, 60, 100 and
140 mg/mL, for
24 h and 48 h.

[35]

14 luteolin and
5-fluorouracil

human hepatocellular
carcinoma cells
(HepG2 and
Bel7402 cells)

enhanced bax/bcl-2 ratios and
p53 expressions, and induced
PARP cleavage

dose ratios
(luteolin:
5-fluorouracil =
10:1, 20:1, 40:1)

[100]

Table 2. Apoptotic- and autophagy-inducing effects of luteolin based on in vitro studies. Arrows
designate up (↑), and downregulation (↓) of the molecules.

Type of
Cancer Cell Lines Effects Mechanisms Concentration References

Osteosarcoma MG63 and U2OS Induces apoptosis

↓ chemoresistance to doxorubicin
and cisplatin, ↓ cancer cell
viability and proliferation,
↑miR-384 level, ↓ PTN
expression, ↓ PTN/b-catenin/
MDR1 signaling axis,
↑ doxorubicin response in
doxorubicin-resistant
MG63/DOX cells, ↑miR-384 in
exosomes derived from
luteolin-treated MG63 cells

0, 1, 2, 3, 4, 5 µM [126]
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Table 2. Cont.

Type of
Cancer Cell Lines Effects Mechanisms Concentration References

Colon

HCT116 Induces apoptosis
and autophagy

↓ cell migration,
↓ HIF-1α-dependent
transcription, ↓ G1 and G2/M
cells, ↑ cells in S phase,
↑ apoptotic frequency, ↑ necrotic
cell death, ↑ LC3-II, Luteolin
treatment reversed increase of
CD44 and CD47

2.5–200 µM [127]

SW620 Induces apoptosis
and autophagy

↓ viability and proliferation of
cancer cells, ↑ HO-1, ↑ SOD2,
↓ Bcl-2, ↑ Bax, ↑ Cleaved
caspase-3, ↑ PARP cleavage,
↑ Beclin-1, ↑ Atg5, ↑
LC3B-I/II, ↑ LC3B-I, reversal of
the epithelial-mesenchymal
transition, ↑ FOXO3a, ↑ apoptosis,
↑ TUNEL-positive cells, ↑ p21,
↑ phospho-ERK1/2,
phospho-JNK1/2 and
phospho-p38 expression

0.2, 5, 10, 20, 50, 100 µM [47]

HT-29, SNU-407 Induces apoptosis

↓viability of cancer cells, ↑ Bax,
↑active caspase-9 and 3, ↓ Bcl-2,
↑ protein expression of GCLc,
GSS, catalase and HO-1, ↑ DNA
demethylation, ↑mRNA
expression of Nrf2

0, 5, 10, 20, 30, 40, 50, 60,
70 and 80 µM [128]

Breast

MCF-7 Induces apoptosis

↑ Cytotoxicity for cancer cell lines,
↑ anti-breast cancer activity of
L-ZnONPs was mediated by
polo-like kinase 1 (PLK1) proteins
(In silico studies)

2.5, 5, 10, 20, and 40 µM
concentrations of luteolin,
zinc oxide nanoparticles,
and L-ZnONPs.

[129]

MCF7-TamR Induces apoptosis

Cell cycle arrest at the G2/M
phase, ↓ mitochondrial membrane
potential, ↓ PI3K/AKT/mTOR
signaling pathway, ↑ p27,
↑ cleaved-Caspase 7, 8, 9, and
poly (ADP-ribose) polymerase
(PARP), ↑BAX and BIM, ↓ Bcl-2,
↓ p-p85, p-AKT, and p-mTOR,
↑MLL3 and Mono methylation of
H3K4, ↑ K-Ras, H-Ras, and
N-Ras mRNA

0, 10, 20, and 30 µM [130]

MDA-MB231 Induces apoptosis
and autophagy

↓ cell migration,
↓ HIF-1α-dependent
transcription, ↓ G1 and G2/M
cells, ↑ cells in S phase,
↑ apoptotic frequency, ↑ necrotic
cell death, ↑ LC3-II, Luteolin
treatment reversed increase of
CD44 and CD47

2.5–200 µM [127]

MDA-MB-453 and
MCF-7 Induces apoptosis

↓ cells viability, ↑ apoptosis
frequency, ↑ Bax, ↓ Bcl-2,
↓ Vimentin, ↓ Zeb1 ↓ N-cadherin,
↑ E-cadherin, ↑miR-203 level,
↓ Ras/Raf/MEK/ERK signaling

0, 5, 10 and 20 µM [131]

Lung
NCI-H1975 and
NCI-H1650 Induces apoptosis

↓ proliferation of cancer cells,
↓ LIMK1 activity, ↑ cell cycle
arrest at G1 phase, ↑ apoptosis
frequency, ↓ cyclin D1 and
↓ cyclin D3, ↑ Bax, ↑ cleaved
caspase 3, ↑ cleaved caspase-7,
↑ cleaved PARP expression,
↓ caspase-3, ↓ caspase-7,
↓ p-LIMK1/2 and p-cofilin

0, 5, 10, 20 or 40 µmol/L [38]
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Table 2. Cont.

Type of
Cancer Cell Lines Effects Mechanisms Concentration References

BEAS-2B,
KRAS-mutant
human lung cell lines
H358, H460, H2122,
and A549

Induces apoptosis

↓ growth and proliferation of
cancer cells, ↓MUC1-C and
PD-L1, ↓ p-STAT1 or STAT3,
↑ IL-2, ↓ IFN-γ-induced
PD-L1 expression

Apigenin and luteolin—
0, 10, 20, 30, 40, 50 µM [132]

Non-Small Cell
Lung

A549 and
NCI–H1975 Induces apoptosis

↓ cancer cell viability, ↑ apoptosis,
↑ caspase-8, caspase-3 and
caspase-9, ↑ DR5 expression,
↓mitochondrial length, ↑ Drp1
from the cytoplasm onto
mitochondria, ↑p- Drp1(Serine616
residue), ↑ cytochrome c release
from mitochondria, ↑ cytochrome
c in the cytosolic fraction,
↓mitochondrial
cytochrome c content

0, 5, 10, 20, 30, 40 µM
Luteolin + TRAIL
(25 ng/mL)

[133]

A549 and H460 Induces apoptosis
↓ proliferation of cancer cells,
↑ apoptosis frequency, ↑P53 and
P21, ↓MDM4, ↑ Caspase 3 and 9

0, 5, 10, 20, 30, 40, 60, 80,
and 100 µM [81]

Gastric

NCI-N87 and
MKN28, Hs-746T Induces apoptosis

↓ cell proliferation, invasion, and
migration of cancer cells, reversed
EMT by shrinking the
cytoskeleton, ↑ E-cadherin,
↓N-cadherin, ↓ vimentin, ↓ Snail,
↓ β-catenin levels, ↓ Notch1,
↓ cyclin-D1, ↓ Hes-1

0, 10, 20 and 30 µM [134]

MKN45, MKN28,
BGC823, AGS and
SGC7901

Induces apoptosis

↓ Proliferation and invasiveness
of cancer cells, ↑ apoptosis
frequency, ↓MMP9, ↓ p-cMet,
↓ p-Akt, ↓ p-ERK, ↑ cleaved
caspase-3 and PARP-1

0–80 µM [135]

Pancreatic

MIAPaCa2, PANC1,
BxPC3, KP4, HuPT3,
PK1, PA-TU-8988T,
TCCPAN2
and AsPC1

Induces apoptosis

↓ cancer cell proliferation,
↓ STAT3 activity,
↓ phospho-AMPK (Thr172),
↓ phospho-p38 MAPK
(Thr180/Tyr182),
↓ phospho-STAT3 (Tyr 705),
↑ phospho-GSK3β (Ser 9),
↓ DPYD expression

25 or 50 µM [136]

SW1990 andAspc-1 Induces apoptosis

↓ cell proliferation, ↓ BCL-2,
↑ apoptotic frequency of cells,
↑ loss of mitochondrial
membrane potential, ↑ activation
of pro caspase-3 and PARP

50 µM and 100 µM [137]

Hepatocellular

HepG2 (p53 wild
type) and Hep3B
(p53 null type)

Induces apoptosis

↓ cancer cell numbers, ↑ Protein
levels of PARP cleaved, ↓ PCNA,
↓ catalase protein levels, ↑mRNA
levels of both Bip and spliced
Xbp-1, ↑ p53 protein levels, ↑ p21
gene expression↓ TAp63 mRNA
levels, ↑ LC3-II, ↓ p62

0, 5, 10 µM [138]

SK-Hep-1 and
AML12 Induces apoptosis

↓ viability of cancer cells,
↑ apoptotic cell population,
↑ sub-G1 population,
↑ cleaved-caspase 8, -9 and -3,
cleaved-PARP, ↓ XIAP, ↓Mcl-1,
↓ cleaved Bid, ↓ p- AKT

20, 40, 60 and 80 µM [139]
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Table 2. Cont.

Type of
Cancer Cell Lines Effects Mechanisms Concentration References

SMMC-7721 Induces apoptosis

↑ G0/G1-phase arrest, ↓ % age of
cell s in G2/M-phase, ↑ %age of
early apoptosis, late apoptosis,
and total apoptosis, ↑ caspase 8,
↓ Bcl-2, ↑ intracellular
autophagosomes, ↑ LC3B
↑ BECN1 mRNA, ↑ conversion of
LC3B-I to LC3B-II, ↑ Beclin1

0, 12.5, 25, 50, 100, and
200 µM [140]

HepG2, HLF, and
HAK-1B Induces apoptosis

↓ cancer cell proliferation,
↑ cleaved caspase-8, caspase-3,
caspase-7 and PARP, ↑ Fas/CD95
expression, ↓ p-STAT3s,
↓ Tyr705-phosphorylated STAT3,
↓ Ser727-phosphorylated STAT3,
↓ cyclin D1, ↓ survivin, ↓ Bcl-xL,
↓ VEGF, ↓ Tyr-phosphorylated
CDK5

0, 10, 20, 50 µM [141]

Liver

HepG2 Induces apoptosis

↑ frequency inhibiting HepG2 cell
proliferation than free luteolin,
↑ enhance the uptake of drugs by
cells, ↓ Bcl-2 and ↑ LDH

Luteolin-loaded PD-L1
targeted stealth
PLGA/Liposomes
(5.0 mg luteolin)

[142]

MHCC97-H,
HepG2,PLC/PRF/5,
Hep3B, HEK293

Induces apoptosis

↑ inhibitory impact of VVIL-24 on
liver cancer cells viability, ↑ IL-24
gene expression, ↑ apoptosis
frequency, ↑ cleaved PARP,
cleaved caspase-3, cleaved
caspase-8, ↓ procaspase-3 and
procaspase-8, ↓ XIAP

VV-IL-24 (4 MOI) and
Luteolin (5 µg/mL) [143]

Huh7 andHep3B Induces apoptosis
and autophagy

↓ cell viability, ↑ apoptotic bodies,
↑ LC3-II, ↓ p62, ↑ DR5, ↑ cleaved
caspase-3 and cleaved caspase-8

0, 5, 10 and 20 µM [144]

Bladder
T24, 5637 with a p53
mutation and RT-4
with wild-type p53

Induces apoptosis

↑ G2/M arrest, ↑ p21Waf1/Cip1,
↑ p27Kip1, ↓ cyclin A and D1,
↓ phospho(p)-Akt,
↓ phospho(p)-p70S6K,
↓ phospho(p)-S6, ↑ TRX1,
↓ Intracellular ROS

0, 1, 10, 25, 50, 100 µM [145]

Colorectal HCT 116 and SW 620
(Oxaliplatin resistant) Induces apoptosis

↑ Nrf2, ↑ NQO1, ↑ HO-1, ↑ GST
α1/2, ↓ reduced glutathione,
↑ chemotherapeutic potential of
cisplatin, oxaliplatin
and doxorubicin

1, 5 and 10 µM [146]

Choriocarcinoma JAR and JEG-3 Induces apoptosis

↓ Proliferation and viability of
cancer cells ↑ apoptosis frequency,
↑ loss of mitochondrial membrane
potential, ↓ p-AKT, ↓ p-P70S6K,
↑p-GSK3β, ↓ AKT, ↑ERK1/2,
↓ PI3K/AKT and ERK1/2
signaling pathways ↓ SREBP1,
↓ SREBP2, ↓ SCAP mRNAs,
↓ p-mTOR, ↓ lipogenic genes

0, 5, 10 and 20 µM [147]

Cervical HeLa Induces apoptosis

↓methylation of crucial tumor
suppressor genes like APC, BRCA1,
CDH13, CDKN2, MGMT, MLH1,
RARB, RASSF1 and TIMP3, ↓ global
DNA methylation, ↓ DNMT
activity, ↓Histone deacetylation
activity, modifies the expression of
various chromatin-modifying
enzymes, ↓ histone methyl
transferases such as ASH1L,
WHSC1, SU2V40H1,
↓ HAT activity

5, 10, and 20 µM [148]
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Table 3. Anticancer effects of luteolin via modulation of metastatic proteins and miRNAs. Arrows
designate up (↑), downregulation (↓) of the molecules.

Type of
Cancer Cell Line Effects Mechanism Concentration References

Melanoma

C918 and OCM-1 Suppress metastasis

↓ proliferation, adhesion,
migration and invasion, ↓MMP-2,
↓MMP-9, ↓ PI3K/Akt signaling
pathway, ↓ fluorescence intensity
of F-actin, ↓ inhibit cellular
F-actin aggregation, ↓ p-PI3K P85,
↓ p-Akt expression

0, 2.5, 5, 10, 20, 40 µM [105]

A375 Suppress metastasis
↓MMP-2, ↓MMP-9, ↑ TIMP-1
and TIMP-2, ↓ p-AKT1, ↓ p-PI3K,
↓ PI3K/AKT pathway

0, 10, 15 and 20 µM [124]

A375 and B16-F10 Suppress metastasis

↓migratory, invasive, adhesive,
and tube-forming potential,
↓ EMT, ↑E-cadherin,
↓ N-cadherin and vimentin,
↓ p-Akt, ↓ HIF-1α, ↓ VEGF-A,
↓ p-VEGFR-2, ↓MMP-2,
↓MMP-9

5, 10, and 20 µM [63]

Glioblastoma U-87 MG and T98G Inhibits migration

↓ Cdc42 (cell division cycle 42),
↓reduced PI3K/AKT activation,
↓ proteaosome pathway,
↑ Cdc42 proteolysis

15 and 30 µM [123]

Breast

MDA-MB-231,
MDA-MB-486, 4T1
and BT-549

Inhibits metastasis

↓ proliferation and metastasis,
↓ AKT/mTOR signaling pathway,
reversed the epithelial-
mesenchymal transition (EMT),
↓MMP9, ↓ AKT/mTOR,
↑ H3K27Ac and H3K56A,
↑ p-AKT and p-mTOR proteins

0, 10, 20, and 30 µM [149]

MDA-MB-231,
MCF10A, 4T1

Inhibits metastasis,
and recurrence

↓ cell migration proliferation and
colony formation, ↓ YAP/TAZ
transcriptional activity and
nuclear localization, ↓ EMT,
↓ fibronectin, N-cadherin, and
vimentin, ↑ E-cadherin, ↓ CTGF
and CYR61

0, 5, 10, 20, 40, 80 µM [150]

MDA-MB-231 Suppress metastasis ↓C-X-C, chemokine receptor type
4 (CXCR4), ↓MMP-2, ↓MMP-9 – [122]

MDA-MA-231
and BT5-49 Suppress metastasis

↓ cell invasion, ↓ β-catenin
expression, reorganization of
cytoskeletal protein F-actin in the
cytoplasm, ↑ E-cadherin,
↑ claudin, ↓ N-cadherin
↓ vimentin, ↓ Snail, ↓ Slug,

0, 10, 30 and 100 µM [61]

Lung A549 Inhibition of cell
migration

↓ cell motility and migration,
suppression of MEK-ERK
pathway by PD98059 significantly
reversed luteolin-inhibited cell
migration, ↑ E cadherin,
↓ N-cadherin

0–100 µM [151]

Oesophageal TE-1 Suppress metastasis

↓ stem-like properties of
PTX-resistant cancer cells,
↓ SOX2, ↓ PI3K/AKT,
↓p-AKT(S473), ↓ UBR5
expression (ubiquitin E3 ligase
that promotes SOX2 degradation),
↓ PTX-resistant cancer cell
migration and invasion by
blocking epithelial-mesenchymal
transition (EMT)

– [152]
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Table 3. Cont.

Type of
Cancer Cell Line Effects Mechanism Concentration References

Hepatocellular HepG2, Huh7 miRNA regulation

↑miR-6809-5p (miR-6809-5p
targets flotillin 1 (FLOT1) in
HCC), ↑ FLOT1 prevented
miR-6809-5p-mediated growth
suppression. Multiple signaling
pathways including Erk1/2, p38,
JNK, and NF-κB/p65 were
inactivated by miR-6809-5p
overexpression or
FLOT1 downregulation

10 µM [153]

Gastric

MKN45 and BGC823 Inhibits metastasis

↓ cell migration and invasion, ↓
lung metastasis, ↓ Cyclin D1, ↓
Cyclin E, ↓ Bcl2, ↓MMP2, ↓
MMP9, ↓ N-cadherin, ↓ Vimentin
↓ Notch1, ↓p-PI3K, ↓ p-AKT, ↓
p-mTOR, ↓ p-ERK, ↓p-STAT3 ↑
p-P38 signaling, ↑ p21, ↑ Bax,
↑ E-cadherin,

20 and 40 µM [82]

MKN45 and BGC823 miRNA regulation

↑ miR-139, ↑ miR-34a, ↑ miR-422a,
↑miR-107 (tumour suppressor),
↓miR-21, ↓miR-155, ↓miR-224,
↓miR-340 (oncogenes)

20 and 40 µM [82]

Colorectal

HT-29, SW480,
SW620 and LoVo Suppress metastasis

↓cells migration and invasion,
↓MMP-2, ↓MMP-3, ↓MMP-9,
↓MMP-16

0, 10, 50 and 100 µM [92]

HT-29, SW480,
SW620 and LoVo miRNA regulation

↑ miR-384 and ↓ PTN expressions,
miR-384 inhibitor partially
reversed the inhibition of cells
migration and invasion induced
by luteolin

0, 10, 50 and 100 µM [92]

Table 4. Anticancer effects of luteolin based on in vivo studies. Arrows designate up (↑), downregu-
lation (↓) of the molecules.

Type of Cancer Animal Models Effects Mechanisms Dosage Duration References

Osteosarcoma
BALB/c nude mice
xenografted with MG
63 5 × 106 cells

Inhibited tumor
growth

↓ tumor size and
growth, ↑ anti-tumor
effect in combination
with doxorubicin,
↑miR-384, ↓ PTN,
β-catenin and
P-glycoprotein

2 mg/kg doxorubicin +
30 mg/kg luteolin 28 days [126]

Breast
BALB/c nude mice
xenografted with
4T1 cells

Inhibited the
tumor growth

↓ final tumor volume
and weight,
↓ YAP/TAZ
expression

40 mg/kg 18 days [150]

Lung

Patient-derived
xenograft mouse
model with
SCID mice

Inhibited tumor
growth

↓ tumor growth and
weight, ↓ Ki-67,
↓ p-Limk1/2 and
p-cofilin expression

100 mg/kg 59 days [38]

Nude mice model
with H358 xenografts

Inhibited tumor
growth

↓ tumor volume and
size, ↓ tumor weight,
↓ lunglesions, ↑ %age
CD8+ T cells in blood,
spleen, or tumor was
increased, ↑ IFN-γ,
TNFα, and
Granzyme B

30 mg/kg of apigenin
or luteolin 21 days [132]
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Table 4. Cont.

Type of Cancer Animal Models Effects Mechanisms Dosage Duration References

Lewis lung carcinoma
model with
C57BL/6J mice

Inhibited tumor
growth

↓ tumor volume and
size, ↓ tumor weight,
↓ lung lesions, ↑ %age
CD8+ T cells in blood,
spleen, or tumor was
increased, ↑ IFN-γ,
TNFα, and
Granzyme B

30 mg/kg of apigenin
or luteolin + anti-PD-L1
mAb (10 mg/kg)

21 days [132]

KRASLA2
mice model

Inhibited tumor
growth

↓ tumor volume and
size, ↓ tumor weight,
↓ lunglesions, ↑ %age
CD8+ T cells in blood,
spleen, or tumor was
increased, ↑ IFN-γ,
TNFα, and
Granzyme B

30 mg/kg of apigenin
or luteolin 21 days [132]

Nude mice model
with H460 xenografts

Suppressed
tumor growth

↓ tumor volumes and
tumor weights,
↑ inflammatory cell
infiltration, ↑ clear cell
death characteristics
and phenotype,
↑ TUNEL-positive
cells were,
↓ Ki67-labeling index,
↑miR-34a-5p, ↑ P53
and P21, ↓MDM4

50, 100, and
200 mg/kg/day) 15 days [81]

C57BL/6 Nrf2+/+
and Nrf2/ mice
xenografted with
A549 tumor cells
(1 × 107 cells)

Inhibited tumor
growth

↓ NQO-1 expression,
↓ protein level of
NQO1 AKR1C, HO-1,
and GSTm1

cisplatin only
(5 mg/kg), luteolin only
(40 mg/kg), or a
combination of
cisplatin (5 mg/kg) and
luteolin (40 mg/kg).

35 days [154]

Gastric

BALB/c male nude
mice xenografted
with MKN28 cells

Inhibited the
tumor growth

↓ tumor volume and
tumor eight,
↓ β-catenin, ↓ Notch1,
↓ Ki-67 expression,
↑ TUNEL staining

– 4 weeks [134]

Human tumor
xenograft (PDTX)
models of gastric
cancer (BALB/c
nude mice)

Inhibited the
tumor growth

↓ cMet protein,
↓MMP9, ↓ p-cMet 10 mg/kg 30 days [135]

Hepatocellular

BALB/c nude mice
xenografted with
4 × 106 MHCC97-H
cells

Inhibited tumor
growth

↓ tumor growth,
↑ IL-24 protein,
↓ CD31, ↓ Ki67
staining, ↑ protein
level cleaved
caspase-3,
↑ cytopathic effect

luteolin (50 mg/kg)
alone, intraperitoneal
injection; VV-IL-24
(2 × 107 plaque-forming
units) and their
combination

35 days [143]

BALB/c athymic
nude mice injected
with HAK-1B cells

Inhibited the
tumor growth

↓ tumor volume,
↓ Tyr705-
phosphorylated
STAT3, ↓ Ser727-
phosphorylated
STAT3, ↓ cyclin D1,
↓ VEGF, ↑ Fas/CD95,
↑ cleavage in
caspase-7

50 or 200 ppm 6 weeks [141]
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Table 4. Cont.

Type of Cancer Animal Models Effects Mechanisms Dosage Duration References

Pancreatic

Female Syrian golden
hamsters injected with
subcutaneousinjections
of BOP

Inhibited
pancreatic
carcinogenesis

↓total cholesterol,
↑ amylase,
↓ incidence and
multiplicity of
PDACs, ↓ progression
of neoplastic lesions,
↓ Ki-67 labeling index
↓ lesions, ↓ DPYD
↓ pSTAT3 signaling

100 ppm 6 weeks [136]

SCID mice xenografted
with 1.65 × 106 SW1990
cells

Inhibited tumor
growth

No pathological
changes in these
normal tissues
compared with the
vehicle-treated group,
did not produce
remarkable weight
loss of mice

75 mg/kg and
150 mg/kg 2 weeks [137]

Bladder
KSN nude mice
xenografted with
5 × 104 BC31 cells

Inhibited the
tumor growth

↓ toxic effect, tumor
volumes,
↓ Ki67-labeling index,
↑ TUNEL-positive
cells, ↓ proliferation
of cancer, ↑ apoptosis
frequency,
↑ p21-positive cells

100 ppm 5 weeks [145]

Colorectal C57BL/6 Nrf2+/+
and Nrf2−/−mice

Inhibited the
tumor growth

↑ Nrf2 and NQO1,
HO-1, GST α1/2,
↓ reduced glutathione

40 mg/kg 14 days [146]

8. Conclusions

The data discussed in the current review article clearly show that luteolin might be consid-
ered a potent molecular lead for the further design of anticancer agents. This natural flavone
alleviates inflammation, inhibits proliferation, migration and invasion of cancer cells, and
promotes the death of malignant cells through different mechanisms (apoptosis, autophagy).
Luteolins has also been shown to potentiate the anticancer activity of conventional chemother-
apy, when administered together. Therefore, further studies with luteolin to improve its targeted
delivery to cancer tissues by nanotechnological approaches, as well as establishing its safety
profile in humans, are urgently needed, to utilize more intensively the anticancer potential of
this attractive phytochemical. Different strategies, including the application of structure–activity
relationship studies, might be helpful to make progress in this path.
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