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Simple Summary: Adenoid cystic carcinoma (ACC) is a pathologically distinctive tumor that most
often occurs in major or minor salivary glands, but can also occur in other tissues. We compared
the gene expression profiles of ACC tumor samples from salivary gland, lacrimal gland, breast or
skin. Despite their different tissues of origin, the ACC tumors displayed highly related patterns
of gene expression. Indeed, gene expression patterns could not distinguish ACC tumors from
different tissues, suggesting that genetic and epigenetic regulatory events induce a dominant ACC
‘phenotype’. We also used the new cohort of salivary gland ACC tumors to validate a gene expression
biomarker developed with a previously analyzed cohort. The 49-gene classifier correctly identified
98% of the poor survival patients, validating the biomarker and suggesting that a clinical test
should be developed so patients at highest risk of poor survival can be identified and provided
additional treatment.

Abstract: Adenoid cystic carcinoma (ACC) is an aggressive malignancy that most often arises in
salivary or lacrimal glands but can also occur in other tissues. We used optimized RNA-sequencing to
analyze the transcriptomes of 113 ACC tumor samples from salivary gland, lacrimal gland, breast or
skin. ACC tumors from different organs displayed remarkedly similar transcription profiles, and most
harbored translocations in the MYB or MYBL1 genes, which encode oncogenic transcription factors
that may induce dramatic genetic and epigenetic changes leading to a dominant ‘ACC phenotype’.
Further analysis of the 56 salivary gland ACC tumors led to the identification of three distinct groups
of patients, based on gene expression profiles, including one group with worse survival. We tested
whether this new cohort could be used to validate a biomarker developed previously with a different
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set of 68 ACC tumor samples. Indeed, a 49-gene classifier developed with the earlier cohort correctly
identified 98% of the poor survival patients from the new set, and a 14-gene classifier was almost as
accurate. These validated biomarkers form a platform to identify and stratify high-risk ACC patients
into clinical trials of targeted therapies for sustained clinical response.

Keywords: oral cancer; biomarker; MYB oncogene; transcriptome analysis; bioinformatics;
survival analysis

1. Introduction

Adenoid cystic carcinoma (ACC) is one of the most common salivary gland malig-
nancies, arising mainly in minor and major salivary glands, but ACC also occurs less
frequently in other organs, and the clinical behavior of non-salivary ACC varies widely.
This suggests that the ACC tumors arising in different organs may be biologically distinct
or that they are affected by different host factors. Molecular analyses have shown that most
ACC tumors have recurrent chromosomal translocations that activate the MYB oncogene or
the related MYBL1 gene [1–4], resulting in characteristic gene expression changes [5,6]. The
translocations frequently relocate a distant, salivary gland-specific enhancer in proximity
to the MYB or MYBL1 genes, leading to their overexpression [7]. Many of the transloca-
tions occur within the MYB or MYBL1 genes, leading to truncation and overexpression
of the genes and their gene products [5,6]. The MYB and MYBL1 genes encode the DNA-
binding transcription factor proteins Myb (c-Myb) and A-Myb, which are important for
normal development [8,9]. Relatively small changes in these proteins, such as trunca-
tions of the N- or C-terminal domains, can lead to profound differences in the genes they
regulate [10–13], suggesting that the proteins perform complex regulatory functions. In-
deed, the Myb protein can function as a ‘pioneer’ transcription factor capable of initiating
the formation of new enhancers that can modify the expression of distant genes [14–16].
Thus, Myb or A-Myb proteins activated by C-terminal truncations may induce a specific
ACC tumor phenotype [17], similar to the actions of Myb proteins in other types of cells
and malignancies [18–24]. Identifying the ACC-specific regulatory mechanisms that induce
an ‘ACC phenotype’ could lead to new types of therapies.

ACC patients often have a slow clinical course with a poor long-term prognosis [4,25].
However, clinical outcomes can vary dramatically; unpredictable aggressive and progressive
disease is not uncommon. Post-surgical survival ranges from just a few months to 15 years
or longer. The protracted temporal progression of ACC tumors necessitates using archived
samples at least 5–10 years old for studies linking genomic changes to outcomes. However,
standard genomic methods are largely unsuitable for reliable RNA-sequencing (RNA-seq)
analysis of archived samples, because the recovered RNA is often highly fragmented, ne-
cessitating the use of specialized approaches [5,6,26]. Despite these complications, several
studies have identified subgroups of ACC patients with distinct molecular features linked to
differences in prognosis and survival [5,6,27–30], suggesting that applying these approaches to
well-structured retrospective cohorts of ACC tumors could produce biomarkers for identifying
poor prognosis patients and recommending them for targeted therapy.

In previous studies, we were able to use optimized RNA-seq approaches to successfully
analyze the transcriptomes of archived, formalin-fixed, paraffin-embedded ACC tumor
samples up to 25 years old, which led to the identification of the first ACC tumors with
MYBL1 translocations [5]. Extending those studies to a larger cohort of 68 samples (the
TX cohort) led to the identification of several subgroups of ACC tumors with unique
gene expression signatures, including one subgroup with poor survival and a ‘No Myb’
group that expressed neither MYB nor MYBL1 [6]. Although we identified gene expression
signatures that correlated with poor survival, it was not possible to validate the results using
only one cohort of samples. Here we describe the analysis of a new cohort of ACC tumor
samples, from Denmark and Florida (the DK cohort), primarily from salivary gland but
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also including some ACC tumors from the lacrimal gland, breast, and skin. The availability
of the large cohorts allowed us to designate a training set for defining a gene expression
classifier to distinguish poor survival samples, which we validated using the second cohort.
These results set the stage for using clinical RNA-seq assays for identifying patients who are
likely to be in the poor survival subgroup, so they can be offered clinical trials or additional
treatment to improve their outcomes.

2. Materials and Methods
2.1. Human Salivary Gland ACC Samples

De-identified adenoid cystic carcinoma tumor samples were obtained from several
institutions: the Department of Otorhinolaryngology and Maxillofacial Surgery, Zealand
University Hospital; the Department of Otorhinolaryngology, Head and Neck Surgery
and Audiology, Rigshospitalet; the Department of Pathology, Rigshospitalet, University of
Copenhagen; and the Department of Ophthalmology, Rigshospitalet-Glostrup, University
of Copenhagen, Copenhagen, Denmark. Some lacrimal gland samples were obtained from
the Dr. Nasser Al-Rashid Orbital Vision Research Center and the Bascom Palmer Eye
Institute, Department of Ophthalmology, University of Miami Miller School of Medicine.
All samples were provided Formalin-Fixed and Paraffin-Embedded (FFPE) as 5-micron
sections baked onto glass slides. Salivary gland samples with survival information had at
least 5-year follow-up. All samples were collected in accordance with the principle of the
Declaration of Helsinki and with Institutional Review Board-approved protocols: Danish
Regional Ethics Committee (H-6-2014-086) and the Danish Data Protection Agency (Journal
no. REG-94-2014).

2.2. RNA Isolation and Sequencing

Total RNA was isolated from one or two 5-micron slide-mounted FFPE sections using
the RNeasy FFPE kit (Qiagen, 19300 Germantown Rd Germantown MD 20874, USA).
cDNA synthesis and library preparation were performed using the SMARTer Universal
Low Input RNA Kit for Sequencing (Takara 1290 Terra Bella Avenue Mountain View, CA
94043, USA) and the Ion Plus Fragment Library Kit (ThermoFisher, 168 Third Avenue,
Waltham, MA 02451, USA), as previously described [5,6]. Ion Torrent sequencing using
Ion S5/XL systems (ThermoFisher) was performed in the Analytical and Translational
Genomics Shared Resource at the University of New Mexico Comprehensive Cancer Center.
Data are available for download from the NCBI BioProject database using study accession
number PRJNA287156. The TX cohort of samples has been described previously [6].

2.3. Data Analysis

Low quality and non-human RNA-seq reads were filtered and removed using the
Kraken2 suite [31–33]. High-quality reads were aligned to the human genome (hg38)
using TMAP (v5.10.11), and gene counts were calculated using HT-Seq, as previously
described [5,6]. Poor quality samples with fewer than 10% of the median number of reads
of all samples were removed. Samples that failed other quality control tests were also
removed. The same parameters were used when the data from the new (DK) cohort were
combined with the previously described samples in the TX cohort [6]. (Software versions
are provided in File S1).

2.4. Unsupervised Hierarchical Clustering

For identifying clusters, analyses were limited to genes that were expressed above
a threshold level in a number of samples (e.g., 250 reads in at least 10 samples). These
thresholds were reduced (e.g., to 50 reads in at least 10 samples) to generate the final
heatmaps, to include as many relevant genes as possible, while retaining the clusters and
the sample order. Multi-dimensional scaling was performed using plotMDS from the
limma package version 3.48.0. Hierarchical clustering was performed using hclust from the
stats package (R/Bioconductor version 4.1.0) [34].
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2.5. Statistical Analysis

Overall survival (OS), defined as time from the date of diagnosis to the date of death,
was the primary endpoint for outcome. Subjects who were lost to follow-up or alive within
the follow-up period were censored at the date of the last contact. OS was estimated using
the Kaplan–Meier method. Differences in OS were examined using the log-rank test. All
the statistical analyses were performed using statistical software R (version 4.1.0) [34]. Gene
Ontology analyses were performed with Bioconductor package GO.db version 3.13.0, as
previously described [5,6,10,26].

2.6. Development and Evaluation of Prognostic Classifiers

Personalized logistic regression with the elastic net and LASSO regulations imple-
mented in R package glmnet [35] was used to develop the classifiers that distinguish
between the poor prognosis group and the remaining samples. ROC curve and the area
under the curve (AUC) were used to evaluate the performance of the classifiers. The
prognostic models were built using the training data set, i.e., the TX cohort, through a
10-fold cross-validation (CV) procedure. An unbiased estimate for each of the final models
was obtained by performing a nested CV procedure that included the full cycle of the
10-fold inner loop CV followed by a 100 × 6-fold outer loop CV using the training set. The
prediction accuracy of each model was further validated using an independent test set, i.e.,
the DK cohort.

3. Results
3.1. ACC Tumors from Different Organ Sites Share a Common Transcriptional Profile

Although they most commonly occur in major and minor salivary glands, ACC tumors
can also arise in lacrimal, bronchial, mammary, or skin adnexal glands. To assess the simi-
larities and differences in gene expression patterns in ACC tumors from different tissues,
we performed RNA-sequencing (RNA-seq) on a cohort of 113 ACC tumors, comprised
of 17 samples from breast tissue, 24 from cutaneous tissue, 16 from lacrimal glands, and
56 from salivary glands (Table 1). Most of the samples came from Denmark (DK cohort),
with the exception of 6 lacrimal gland samples from Florida (FL). We used optimized
methods for RNA analysis and Ion Proton sequencing that we developed previously [5,26].
For the DK cohort, 91 samples (81%) clearly expressed MYB, while 13 (12%) expressed
MYBL1 and 9 (8%) expressed neither MYB nor MYBL1.

Table 1. ACC Tumor Cohorts.

Tissue Number Form Gender Stage Age at Surgery Source Oncogene *

New Cohort (DK)

Breast 17 NA NA NA NA DK MYB: 16
MYBL1: 1

Cutaneous 24 NA NA NA NA DK
MYB: 17

MYBL1: 3
No_MYB: 4

Lacrimal 16 NA NA NA NA DK: 10
FL: 6

MYB: 11
MYBL1: 2

No_MYB: 3

Salivary 56
Solid: 11

Tubulocribiform: 43
NA: 2

F: 29
M: 27

Stage I-II: 30
Stage III-IV: 26

Age: 32–87
NA: 17 DK

MYB: 47
MYBL1: 7

No_MYB: 2

Cohort Total 113
MYB: 91

MYBL1: 13
No_MYB: 9
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Table 1. Cont.

Tissue Number Form Gender Stage Age at Surgery Source Oncogene *

Previous Cohort (TX, Frerich et al. 2018 [6])

Salivary 68 NA F: 30
M: 38 NA NA TX

MYB: 52
MYBL1: 7

No_MYB: 9

Combined 181
MYB: 143

MYBL1: 20
No_MYB: 18

* No MYB indicates no expression of either MYB or MYBL1.

We first performed Multi-Dimensional Scaling (MDS, i.e., principal component analy-
sis) for the ACC samples. As shown in Figure 1A, the dots representing ACC tumor samples
from different organs are shaded with different colors (see legend). For comparison, we
included RNA-seq results from several normal salivary gland tissues (shaded black) and
several from a histologically different salivary gland tumor, acinic cell carcinoma (shaded
gray), that have been described previously [5,28]. All the ACC tumor samples clustered
into a large group at the right, suggesting that the transcription profiles of the ACC tumors
are more similar to each other than they are to normal tissue or other salivary gland tumors,
despite the different tissues of origin.

Next, we used unsupervised hierarchical clustering to group samples that were similar
and generated the heatmap comparing the transcriptional profiles shown in Figure 1B.
Interestingly, as shown by the dendrogram at the top of the heatmap, the ACC tumor
samples formed several large subgroups, but each cluster contained samples from all the
tissue types: salivary gland, lacrimal gland, breast and cutaneous (dark blue, orange, pink
and green in the color bar at top, respectively). Thus, although the ACC samples in this
cohort are heterogeneous and formed distinct subgroups, the groups are not defined by
the tissue of origin. Instead, the subgroups could represent biological differences amongst
the ACC samples, irrespective of the tissue from which they were derived. These results
differ somewhat from a previous report showing that microRNA expression profiles could
distinguish ACC tumors from different tissue types [36], suggesting that the biological
mechanisms leading to the formation of ACC tumors may have a more profound impact on
the overall mRNA transcriptional profile than on microRNAs, which may be more tissue-
specific. Several genes that are known to be important in ACC tumors are highlighted with
black dots at right, including (from top to bottom) EN1, GABRP, MYB, MYBL1 and NFIB,
all of which are expressed more highly in the ACC tumors than in the normal salivary
gland or acinic cell carcinoma samples (at left).

3.2. Many ACC Tumors Fail to Express Tissue-Specific Gene Expression Markers

Since our initial hierarchical clustering did not separate ACC tumors by tissue type,
we reanalyzed the data to see if we could identify tissue-specific gene expression patterns
in the tumors. We specifically selected genes that were differentially expressed in the ACC
tumors originating in different tissues. The heatmap in Figure 2 summarizes the results
when the most tissue-specific genes are chosen for display (and the normal salivary gland
and acinic cell carcinoma samples are left out). This type of analysis led to better clustering
of the ACC samples from lacrimal gland (orange, left), salivary gland (blue), cutaneous
(green) and breast (pink). There were specific genes that were up-regulated in some ACC
samples compared to the others. For example, at the far left of the heatmap (labeled A at
bottom, orange color bar at top) is a group of ACC tumors, mostly from the lacrimal gland,
that overexpress the OPRPN gene, which encodes the Opiorphin Proline-Rich Lacrimal
Protein 1 (previously named PROL1). The next group (labeled B) are salivary ACC (blue
color bar at top) and overexpress several salivary-gland specific genes including MUC19,
CA6, MUC7, SMR3B, LPO, BPIFA2, CST5, CST2, CST1 and CST4 (marked by blue dots at
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lower right of figure). Group C also contains salivary ACC samples with a few from other
tissues, and several overexpress KRT4 and KRT13. Most of the cutaneous samples clustered
in a group (D, green color bar) and are identified by overexpression of FLG, KRT10, FLG2,
KRT6A and KRT1. However, the remaining ACC tumors formed a large cluster (labeled E),
which included most of the breast ACC tumors as well as samples from salivary, lacrimal
and cutaneous adnexal glands. The last group was notable because the samples failed to
express the gland-specific marker genes that defined the other groups, suggesting that they
had a more de-differentiated or perhaps more stem cell-like phenotype. Thus, while we
were able to identify tissue-specific marker genes in some ACC tumors, the specificity was
not absolute and there remained significant heterogeneity in the gene expression patterns
of different samples. Also, since tumor samples always contain some normal cells, the
tissue-specific differences that were detected could be due to the non-tumor cells in the
samples. We conclude that an ACC-specific gene expression pattern dominated the tumors,
apparently overriding the tissue-specific differences.

3.3. The New DK Cohort of ACC Tumors Also Contains a Poor-Survival Subgroup of Patients

Previous studies of ACC tumor samples identified subgroups of tumors with distinct
gene expression and survival characteristics [6]. We carefully evaluated the new cohort
of salivary gland ACC tumors for evidence of subgroups with distinct gene expression
patterns. Figure 3A shows a multi-dimensional scaling plot of the 56 DK cohort salivary
gland samples. Most of the tumors (shaded light blue) form a large cluster but a small group
of tumor samples (brown) formed a separate group at the upper left corner of the plot.
Figure 3B shows a Kaplan–Meier survival analysis: the samples in the brown group had a
median survival of only 8 months, compared to the main group (light blue), which showed
a median survival of 80 months (p-value = 0.006). This is reminiscent of our previous results
with the TX cohort, where a subgroup of ACC tumors displayed similarly poor survival [6].
Some ACC tumors display a ‘solid form’ morphology, which has been associated with
worse prognosis [37,38]. Although ‘solid morphology’ ACC tumors were excluded from
the TX cohort, the DK cohort contains 11 such samples: 5 in the poor prognosis group and
6 in other group. This suggests that the poor prognosis group is not defined simply by
solid tumor morphology.

The differential gene expression analysis identified 273 genes at least 2-fold up- or
down-regulated in the brown subgroup (adjusted p-value < 0.05). The results for 85 of the
genes are summarized in the heatmap in Figure 3C (The poor-survival subgroup cluster is
at the left side of the heatmap, marked by the brown color bar at the top). In the heatmap,
all the genes that were regulated in similar directions both in this new DK cohort and also
in the previously described TX cohort (e.g., up-regulated in both poor survival groups)
are marked by bars along the right edge of the figure. Genes that were up-regulated in
both poor-survival subgroups include (from bottom of the heatmap) CD37, SERPINE2,
CDK19, PRLR, and RPL23. Down-regulated genes include AQP3, SCNN1A, LTF, ELL2, and
DKK3. These results further indicate that a subgroup of ACC tumors from patients with
poor survival display a unique gene expression profile that could potentially be used for
prognostication [6].
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summarizes the gene expression differences. The color bar at the top identifies the tissue type and 
tissue of origin. The normal salivary gland and acinic cell carcinoma samples are at the left. Several 
genes important for ACC tumors are marked by dots at the right. (Note: a larger version of this 
heatmap is provided in Figure S1 in the Supplementary Materials). 

Figure 1. Common features of ACC tumors from different tissues. Differential gene expression
analysis was performed on the DK cohort of 113 ACC tumor samples from different tissues, including
breast (n = 17, pink), cutaneous (n = 24, green), lacrimal gland (n = 16, orange), and salivary gland
(n = 56, blue) as well as normal salivary gland (n = 5, black) and salivary gland acinic cell carcinoma
samples (n = 7, gray). (A) Multidimensional scaling shows that the acinic cell carcinoma samples
clustered at the upper left, the normal salivary gland samples in the lower left, and all of the
ACC tumor samples at the right, no matter what tissue they were derived from. (B) The heatmap
summarizes the gene expression differences. The color bar at the top identifies the tissue type and
tissue of origin. The normal salivary gland and acinic cell carcinoma samples are at the left. Several
genes important for ACC tumors are marked by dots at the right. (Note: a larger version of this
heatmap is provided in Figure S1 in the Supplementary Materials).
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Figure 2. Tissue-specific gene expression differences in ACC tumors. The ACC tumors from the DK
cohort were analyzed for tissue-specific gene expression by specifically selecting genes that marked
tumors derived from different tissues. A total of 1089 differentially expressed genes were identified
by comparing all the tissue groups to each other (at least 2-fold up- or down-regulated with adjusted
p-value < 0.05). The heatmap summarizes the gene expression differences for 123 of the most highly
expressed genes. The tissues of origin are indicated in the color bar at top: lacrimal gland, salivary
gland, cutaneous, and breast are indicated by orange, blue, green and pink, respectively. Notable
genes mentioned in the text are marked by dots along the right edge. (Note: a larger version of this
heatmap is provided in Figure S2 in the Supplementary Materials).
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Figure 3. The DK cohort of ACC tumors contains a poor-outcome subgroup. (A) Multi-dimensional
scaling plot of the gene expression data from the DK cohort of salivary gland ACC tumor samples.
(B) Kaplan–Meier survival analysis shows that the samples in the brown subgroup had a significantly
(p-value = 0.006) worse survival. (C) The heatmap summarizes the differential gene expression
analysis comparing the poor survival (brown) subgroup to the rest of the samples. Genes marked by
bars at the right were also identified previously in a poor-survival subgroup from the TX cohort [6].
The color bars at the bottom summarize the available clinical information for gender, solid or
tubulocribiform morphology, tumor stage, margins, vascular invasion, and radiotherapy. A larger
version of the heatmap is provided in Supplementary Figure S3.
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3.4. Combining the TX and DK Cohorts Provides Additional Details about Subgroups of
ACC Tumors

The results described above suggest that the new DK cohort of ACC tumor samples
contains subgroups of patients that are very similar to the subgroups we identified previ-
ously in the TX cohort [6]. To compare the subgroups we combined the RNA-seq results of
the two independent cohorts and performed a unified analysis of 124 salivary gland ACC
samples (56 from DK and 68 from TX). Figure 4A shows the multi-dimensional scaling plot
of the combined data sets, which form three main groups. The largest group, in the middle
of the plot, have been shaded dark blue or cyan to indicate that they overexpress MYB or
the related MYBL1 gene, respectively. A group at the upper left is shaded red and contains
the poor survival samples from both cohorts, all of which express MYB. Finally, a group
of samples at the right, shaded orange, express neither MYB nor MYBL1 (‘no MYB’). This
group was described previously, and the ‘driver’ oncogenes or mutations responsible for
that group remain unknown [6]. Although these cohorts of ACC samples were completely
independent and the patients came from different countries, both cohorts formed similar
major subgroups when analyzed together. A Kaplan–Meier survival analysis of these
groups is shown in Figure 4B. The overall survival for patients in the orange ‘no Myb’
group was similar to the main group of samples expressing either MYB or MYBL1. As
described above, the red group displayed much worse survival compared to the other
patients. While the median survival for most patients exceeded 120 months, including
the orange ‘no MYB’ group, median survival for the red group was only 16.8 months
(p-value < 1 × 10−6). These groups were segregated using only their different gene expres-
sion characteristics, suggesting that biomarkers could be developed to identify the patients
in the poor survival group at the time of surgery. The MDS plot in Figure 4C shows the
large overlap in the DK and TX cohorts, despite being analyzed separately and several
years apart.
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Figure 4. Combined analysis of the DK and TX cohorts of ACC tumor samples. The RNA-seq data
from the new DK cohort was combined with previously described (Frerich et al., 2018 [6]) data from
the TX cohort for a combined gene expression analysis. (A) Combined multi-dimensional scaling plot.
Orange shading indicates ‘No Myb’ samples that express neither MYB nor MYBL1, blue and cyan
indicate MYB- or MYBL1-expressing samples in the main group, red indicates the MYB-expressing
samples with poor survival. (B) Kaplan–Meier survival plot of samples in the four groups of ACC
samples. (C) Multi-dimensional scaling plot similar to panel A, but with samples from DK or TX
cohorts labeled purple or gray, respectively.

3.5. ACC Tumors That Do Not Express MYB or MYBL1 Have a Unique Transcription Profile

Most ACC tumors have recurrent chromosomal translocations that activate the MYB
oncogene or the related MYBL1 gene [1–4], but this raises questions about the underlying
biology and driver genes active in the remaining ACC tumors that do not express MYB
or MYBL1. As shown in Figure 4B, the ‘no MYB’ subgroup of tumors (orange line) had
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survival similar to the bulk of ACC samples (blue and cyan lines). To further explore
the potential driver genes in these samples, we compared them to the rest of the ACC
samples in the combined cohort and performed a differential gene expression analysis. In
the heatmap shown in Figure 5, the dendrogram at the top shows the hierarchical clustering
that was used to arrange the samples from left to right. The ‘no MYB’ samples are at the
far right (marked by orange at the top). The heatmap summarizes the gene expression
differences for 124 of the 881 genes that were differentially expressed (at least 2-fold up- or
down-regulated, adjusted p-value < 0.05) when the ‘no MYB’ samples were compared to
all the others. The top 10 up- or down-regulated genes are listed in Table 2, and the full list
is provided in Supplementary Data (Table S1).
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Figure 5. Differential gene expression analysis: ‘No Myb’ samples. The heatmap summarizes the
differential gene expression analysis using the combined cohorts of ACC samples from DK and TX,
comparing the ‘no Myb’ group (orange color bar at top) to the rest of the samples, all of which express
either MYB or MYBL1. Notable genes mentioned in the text are marked by dots at the right. The
purple and white color bar at the bottom indicates samples from the DK and TX cohorts, respectively.
A larger version of this heatmap is provided in the Supplementary Materials, as Figure S4.
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Table 2. Differentially Expressed Genes in No MYB Samples vs. All Others.

DE Genes Top 10 Up-Regulated FC Adj p-Value Top 10 Down-Regulated FC Adj p-Value

881

TG 136.26 1.41 × 10−32 LINC01833 0.02 1.39 × 10−5

HMGA2 42.11 1.66 × 10−14 MUC7 0.03 1.25 × 10−2

IGFN1 14.91 7.41 × 10−8 LOC643201 0.03 2.04 × 10−3

LYZ 12.38 4.19 × 10−6 MUC19 0.03 1.93 × 10−3

FLG2 12.08 5.87 × 10−5 CTNND2 0.04 6.12 × 10−5

COL1A1 9.62 9.72 × 10−20 FIRRE 0.04 4.73 × 10−10

FLG 8.80 5.38 × 10−6 LOC105378521 0.04 8.12 × 10−6

LTF 8.05 1.37 × 10−6 ART3 0.04 7.41 × 10−8

HSPB8 7.97 5.59 × 10−6 LOC107984390 0.04 1.42 × 10−11

TNNT1 7.74 2.29 × 10−3 SIX3 0.04 5.12 × 10−4

There are several important conclusions from this analysis. First, as described previ-
ously [5,6], the ACC samples that express MYBL1 do not form their own subgroup, but
mix in with the samples expressing MYB, suggesting that the two oncogenes have similar
effects on gene expression patterns [6]. Second, each of the three main groups (orange, red,
blue) contains samples from both the TX and DK cohorts, suggesting that these subgroups
are consistent in ACC tumors and are not a characteristic unique to just one cohort or
one analysis. Several interesting genes are marked along the right side of the heatmap,
including AFF1, EBF1, EMP1, ZFP36, FOXO1, and SFRP2, which are all up-regulated in
the ‘no MYB’ tumors (marked by orange dots). The SHANK2, NFIB, GABRP, MEX3A,
PRLR, and MYB genes were down-regulated in the ‘no MYB’ tumors (marked by blue dots).
A gene set enrichment analysis identified a number of Gene Ontology Cellular Process
categories that were over-represented in the differentially expressed genes. The top six
categories are described in Table 3. The finding that the ‘no MYB’ samples have such
a dramatically different gene expression profile reinforces the conclusion that the ACC
phenotype can be achieved through different regulatory pathways.

Table 3. Gene Ontology Categories of DE Genes from No MYB Group Analysis.

GO.ID Term Annotated Signif Expected Adj p-Value

GO:0043062 extracellular structure
organization 218 87 31.6 2.40 × 10−19

GO:0045229 external encapsulating
structure organization 219 87 31.74 3.50 × 10−19

GO:0045765 regulation of
angiogenesis 128 47 18.55 2.40 × 10−10

GO:0022610 biological adhesion 658 166 95.37 3.10 × 10−10

GO:0008284 positive regulation of
cell population prolif. 354 93 51.31 7.80 × 10−8

GO:0009617 response to bacterium 178 54 25.8 2.10 × 10−7

3.6. Poor Survival ACC Samples Have a Unique Transcription Profile

For the combined cohorts, the poor survival subgroup, marked by red at the top of the
heatmap in Figure 5 and in the survival plot in Figure 4B, displayed a median survival of
only 22 months, compared to greater than 123 months for the other patients. This suggests
that a gene expression panel could be developed to identify patients at highest risk of
poor survival.

To characterize the poor survival subgroup in more detail, we performed in depth
analysis of the gene expression patterns of tumors from these patients. The heatmap in
Figure 6 summarizes the results of a differential gene expression analysis comparing the
poor survival subgroup samples to all the other ACC tumor samples in the combined
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cohort. The samples are arranged in the same left-to-right order as in Figure 5, using
the dendrogram generated by hierarchical clustering, and the poor-survival samples are
indicated by the red color bar at the top. The samples from the TX and DK cohorts are
indicated by the gray and purple color bar at the bottom, respectively. The heatmap
summarizes the relative expression of the 124 most differentially expressed genes out of the
729 genes that were at least 2-fold up- or down-regulated (with adjusted p-values > 0.05).
Several notable up- or down-regulated genes are marked by red or gray dots, respectively,
along the right side of the heatmap. The genes that were up-regulated in the poor survival
samples include EZH2, HDAC2, PRLR, SOX8, NFIB, SHANK2, and ADARB1. The down-
regulated genes include CND2, TP63, AQP3, NTRK3, and ADARB2. The top 10 up- or
down-regulated genes are listed in Table 4 and the full list is provided in Supplementary
Data (Table S2). Interestingly, there is no single gene that is specifically up- or down-
regulated only in the poor survival samples, or that could be used to identify either the
poor survival or better survival patients, suggesting that a multi-gene biomarker could be
developed to identify the patients in the poor-survival subgroup.
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Figure 6. Differential gene expression analysis: Poor survival samples. The heatmap summarizes
the differential gene expression analysis using the combined cohorts of ACC samples from DK and
TX, comparing the poor survival group (red color bar at the top) to the rest of the samples. Notable
genes mentioned in the text are marked by dots at the right. Red and blue dots indicate genes up- or
down-regulated in the poor survival samples. The purple and white color bar at the bottom indicates
samples from the DK and TX cohorts, respectively. A larger version of this heatmap is provided in
the Supplementary Materials, as Figure S5.
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Table 4. Poor Survival Samples vs. All Others.

DE Genes Top 10 Up-Regulated FC Adj p-Value Top 10 Down-Regulated FC Adj p-Value

729

ANKRD1 10.28 3.99 × 10−5 CST4 2.2 × 10−04 3.46 × 10−3

LINC02275 8.57 2.77 × 10−5 CST5 3.0 × 10−03 3.82 × 10−3

LINC02515 5.66 4.90 × 10−5 CST2 3.0 × 10−03 8.83 × 10−3

NCAN 5.31 5.79 × 10−3 CST1 3.1 × 10−03 2.66 × 10−3

HPSE2 4.54 4.08 × 10−3 SPRR3 3.3 × 10−03 6.00 × 10−3

NPY5R 4.51 9.50 × 10−7 KRT13 4.2 × 10−03 3.94 × 10−4

LINC01833 4.22 2.95 × 10−3 SPRR1A 5.3 × 10−03 2.05 × 10−3

SOX8 4.04 8.42 × 10−7 KRT6C 5.5 × 10−03 6.69 × 10−4

ASL 3.88 3.82 × 10−5 SMR3B 5.9 × 10−03 2.82 × 10−3

PRLR 3.81 1.99 × 10−8 BPIFA2 7.1 × 10−03 1.67 × 10−2

3.7. A Multi-Gene Classifier to Identify Poor Survival Patients

As shown in Figure 3, the DK cohort of ACC samples contained a subgroup of patients
with poor survival, similar to one that was originally identified in the TX cohort [5,6].
Having patients from two independent cohorts allowed us to use the original TX cohort as
a training set to develop a multi-gene biomarker panel, which could be validated with the
DK cohort. Starting with expression data for 3597 genes expressed above a threshold level
in the training set (TX cohort), we used an elastic net type of penalized logistic regression
model to identify genes that could distinguish the poor prognosis cohort from the rest
of the patients. The model selection was performed with a 10-fold cross-validation and
yielded a 49-gene classifier developed solely with data from the TX cohort (Table 5). The
ROC curve analysis was used to evaluate the classifier’s accuracy.

Table 5. Elastic Net 49-Gene Classifier.

Symbol Value Symbol Value Symbol Value

A2M −0.11 HMCN1 −0.065 PLA2R1 −0.0434

ABCA8 −0.0129 IPO9 0.376 PLAT −0.0448

ACTA2 −0.1264 ITPR1 −0.1121 PLD1 −0.0356

ADAMTS9 −0.0986 KRT14 −0.0359 PPARGC1A −0.0378

ALDOA −0.018 LDLRAD4 0.0354 PRUNE2 −0.0026

ANO1 −0.099 LGR4 −0.0391 RASSF6 −0.1461

APOL6 −0.0977 LIMA1 −0.0793 SEMA3C −0.0582

CARMN −0.0091 LIMCH1 −0.145 SH3D19 −0.0562

CD9 −0.0886 LOC107987158 0.0363 SLPI −0.1399

CFH −0.0226 LTF −0.0048 SVIL −0.168

COL17A1 −0.0151 MAMLD1 0.0339 SYNPO2 −0.0159

COL7A1 −0.0095 MIR205HG −0.0511 TAGLN −0.0321

COL9A2 −0.0072 MLPH −0.013 TNFRSF19 −0.0054

DMD −0.3178 MTUS1 −0.0917 TP63 −0.1442

EFS 0.0074 PARP14 −0.0746 TPM2 −0.0175

EGFR −0.0288 PCYOX1 −0.1327

FRMD4B −0.0279 PIK3R1 −0.0097
Note: Genes used in the 14-gene classifier are shown in bold.

As shown in Figure 7, the elastic net classifier could distinctly separate the poor
prognosis samples from others in the training set (TX cohort, left panel) as AUC = 1. An
unbiased estimate for the AUC (AUC = 1) was also achieved through a double loop nested
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cross-validation, which showed a perfect classification performance. However, the accuracy
achieved was expected because the same gene expression data were used to develop and
test the classifier. Importantly, the classifier developed with the TX cohort also gave nearly
perfect (AUC = 0.984) separation on the independent DK cohort test set (right panel). We
also generated a 14-gene subset of the classifier using a Least Absolute Shrinkage Selection
Operator (LASSO) approach. The 14-gene classifier containing genes A2M, ACTA2, ANO1,
APOL6, DMD, IPO9, LIMCH1, MAMLD1, MIR205HG, PLAT, RASSF6, SEMA3C, SLPI,
and TP63 (shown in bold in Table 4) was only slightly less accurate, with AUC = 0.976.
These results suggest that a gene classifier can be used to identify ACC patients with
poor prognosis.
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Figure 7. Elastic net ROC curves. The elastic net classifier developed with the TX cohort training set
(A, Left) produced an Area Under the Curve (AUC) of 0.984 in the DK cohort test set (B, Right).

To illustrate their usefulness, we tested the genes in the classifiers on the combined DK
and TX cohorts of salivary gland ACC samples. We limited the data sets to only the 49-gene
or 14-gene lists (except that MYB, MYBL1, and NFIB were added back for comparison),
and performed hierarchical clustering, which identified the two major clusters shown in
the dendrograms in Figure 8A,B. The heatmaps display the differences in gene expression.
Interestingly, most of the classifier genes were down-regulated in the poor prognosis
tumors compared to the other samples. As an example, the TP63 tumor suppressor gene
is significantly down-regulated in the poor prognosis group. The poor prognosis tumors
appear to lack the expression of specific genes that are expressed by the other ACC samples.
Notably, only 4 of the 11 ‘solid form’ morphology samples from the DK cohort were in
the poor prognosis subgroup, suggesting that solid morphology is insufficient to classify
samples as poor prognosis [37,38].

As shown by the color bar at the top of each heatmap, some of the samples that were
in the poor prognosis subgroup described in Figure 4 (marked red) did not cluster with
the poor survival samples identified by the gene classifiers, and a few samples that were
not included above did cluster in the poor survival group in this analysis. However, as
shown in the Kaplan–Meier survival plots in Figure 8C,D, the classifiers did identify a
poor-prognosis group with median survival of less than 20 months, compared to a median
of 125 months for the rest of the samples. In addition, none of the poor-prognosis patients
identified by the classifiers survived 10 years, while more than half of the other patients
survived at least 10 years. Thus, the multi-gene classifiers identified using the TX cohort
samples were able to identify a subset of ACC patients in the independent DK cohort,
which validates the classifiers and suggests that adapting them to the clinic could be useful.
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Figure 8. Classifier Groups. The 49-gene (A) or 14-gene (B) classifiers were used to separate ACC
samples into groups by hierarchical clustering, as illustrated in the dendrograms at the top of each
heatmap, which compare the gene expression profiles of the two groups. (The MYB, MYBL1, and
NFIB genes were added to the analysis for comparison. They are marked by black dots at the right).
The samples from the original poor survival group (see Figure 4) are marked by red in the color
bars. At the bottom, Kaplan–Meier plots compare the survival of patients in the groups defined by
the 49-gene (C) or 14-gene (D) classifiers. Larger versions of these heatmaps are in Supplementary
Figure S6.

To examine whether the gene classifier provides more information for survival out-
comes beyond that contained in the clinical covariates, we performed univariate and
multivariate Cox regression analyses, with the gene classifier and clinical covariables
deemed to be the risk factors as predictors. (Details of the analysis are in File S1). The
available clinical covariables include Margins (free or close), Vascular Invasion (yes or
no), Radiotherapy (yes or no), Cribriform (tubular or solid), and Stage (I-II or III-IV). The
analyses were restricted to 56 samples; a union of the subsets to which the data of each
variable are available. However, the number of samples used by each Cox regression
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analysis varied subject to data availability. The univariate and bivariate analyses are in the
Supplementary Materials, and the multivariate analysis is reported in Table 6.

Table 6. Multivariate Cox Regression Analysis.

Clinical Covariates & Gene Classifier Values Hazard Ratio 95% Confidence Interval p-Value

Vascular Invasion
No 1

0.097
Yes 2.703 0.83–8.76

Stage
I–II 1

0.271
III–IV 1.601 0.69–3.70

Gene Classifier
Group 1 1

0.010
Group 2 26.01 2.19–309.3

The univariate analysis (see Supplementary Materials) showed that the two variables,
Vascular Invasion and Cribriform, were significantly associated with survival outcomes
(p < 0.05), while the variable Stage was marginally significant (p = 0.084). We compared
these three variables with the gene classifier through bivariate Cox regression (see Sup-
plementary Materials). The result showed a remarkable association between our gene
classifier and survival after adjusting for each clinical covariate’s effect. We further per-
formed a multivariate Cox regression (Table 6), and our gene classifier was still significantly
correlated with the survival outcomes after adjusting for Vascular Invasion and Stage
effects. Note that the Cox regression with three or more variables will not converge if we
include Cribriform in the model, which limits our ability to conduct further investigation
in this respect. However, the results have given sufficient statistical evidence that our
gene classifier provided more information about the survival outcome than the available
clinical parameters.

4. Discussion

We compared the transcription profiles of ACC tumor samples that arose in very
different tissues: salivary gland, lacrimal gland, breast, and skin. Despite being from
different tissues, all ACC tumors had markedly similar gene expression profiles. Indeed,
the ACC samples were much more similar to each other than they were to normal salivary
gland tissue or another type of salivary gland tumor, acinic cell carcinoma [28]. These
results demonstrate that ACC tumors arising in different tissues are highly related and
are difficult to distinguish using gene expression patterns alone. Interestingly, different
types of ACC tumors were shown previously to have distinct patterns of microRNA
expression [36]—a result that we could not reproduce using gene expression results. This
suggests that the activated MYB or MYBL1 oncogenes may induce an ACC-specific gene
expression pattern that affects protein-coding genes much more than microRNAs. This is a
fascinating biological difference that could be important for explaining tumor phenotypes
and some aspects of tissue differentiation.

Having RNA-seq data from a new set of ACC samples provided us with the opportu-
nity to perform a validation cohort analysis. Despite the challenges that exist for translating
RNA sequencing (RNA-seq) results into widely used clinical assays [39], several types of
gene expression signatures have been developed for clinical use [40–42]. In this study, we
used RNA-seq data from a previous cohort of 68 salivary gland ACC samples to develop a
49-gene expression classifier for identifying a subgroup of patients with poor survival. We
then validated the result using results from the new cohort of 56 salivary ACC samples,
finding that the biomarker was able to distinguish 98% of the poor survival patients. A
smaller 14-gene classifier achieved similar results with slightly less accuracy. Salivary gland
ACC patients display widely variable outcomes, with some patients surviving decades
after surgery and others succumbing after only a few months [5,30,43]. It seems clear that
the development of new clinical trials should be targeted to the ACC patients that are most
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likely to have a recurrence and die from the disease. The validated biomarker we have
described should have important utility, if it can be developed into an assay suitable for
clinical laboratory use. Although our results do not suggest a new or modified treatment
for ACC patients, they do suggest that developing a suitable biomarker assay to identify the
worse prognosis patients is worthwhile so a new therapeutic strategy could be developed
for them. Clinical RNA-seq is fast becoming a routine assay for cancer patients, so these
biomarkers should be adaptable to clinical laboratories.

Some ACC tumors display a ‘solid form’ morphology, which has been associated with
worse prognosis [37,38]. Other clinical features, such as advanced tumor stage, lack of
clean margins during surgery, or vascular invasion, might also be used to identify higher
risk patients. However, in our analysis, none of these other markers were able to identify
the poor prognosis group of patients that we identified using gene expression patterns.
Therefore, we conclude that the gene classifiers provide a novel and independent means of
distinguishing poor prognosis ACC patients that should be pursued and studied further.
The next step will be to develop assays that work in clinical laboratories so that these
classifiers can be used to identify patients that should be targeted for clinical trials or more
aggressive therapy to improve their survival.

In addition to identifying and validating a multi-gene classifier for ACC patients,
analyzing a new cohort of 56 salivary gland ACC samples from Denmark (DK) also
validated important biological results that we described previously using 68 ACC patient
samples from the Salivary Gland Tumor Bank in Texas (TX) [5,6]. The main result is that
ACC patients can be divided into at least three distinct groups based on gene expression
signatures. These groups are easily discernable in the multi-dimensional scaling plots (e.g.,
see Figure 4). The samples in the main group, comprising 76% of the total, express either
MYB or MYBL1 and have a median survival of more than 10 years after surgery. A second
group, about 10% of the samples with survival similar to the main group, express neither
MYB nor MYBL1. These samples have a unique gene expression signature, suggesting a
different mechanism driving the malignancy. The samples in the final group, about 14% of
the total, are the focus of the multi-gene classifier because they have much worse survival
than the rest of the ACC patients.

Although the detailed transcriptome analyses that we performed were able to dis-
cern distinct subgroups of ACC tumor types, the bulk RNA-sequencing does not provide
information on cell lineage composition within tumors. Thus, it is not clear if the differ-
ent subgroups result from the unique features of different types of ACC tumor cells or
whether the subgroups are due to differences in cellular composition in the tumors. Ad-
dressing those questions will require using single-cell genomics assays or spatial genomics
approaches that can discern different cell types in the tumors.

5. Conclusions

Our somewhat surprising result is that ACC tumors arising in different tissues or
organs have remarkably similar transcriptional profiles. Indeed, we were unable to identify
gene signatures that distinguished the ACC tumors from different organs. This may point
to an important underlying biology in ACC tumors that makes them so similar. Since
the majority of ACC tumors overexpress the MYB or MYBL1 genes, the dominant ACC
phenotype may be induced by the activated Myb transcription factors.

A second, but very important finding is that RNA sequencing analysis can be used to
identify a subgroup of MYB-expressing salivary gland ACC patients with poor prognosis.
We were able to use the new DK cohort of ACC samples to validate a biomarker developed
with an earlier (TX) cohort. This is especially important for diseases like ACC, in which
many patients survive more than 10 years post-surgery. Our results provide a tool for
identifying the patients that should be enrolled in clinical trials of targeted therapies to
improve their outcomes.
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