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Simple Summary: Breast cancer is a disease that is affected by both the tumor cells and the host
environment. It is well known that the tumor blood vessels are aberrant in structure and function due
to rapid angiogenesis, and this aberrant vasculature plays a major role in drug delivery and therapy
response of breast cancer. Dll4 is a protein that helps control the growth of blood vessels in tumors.
This study used near-infrared optical imaging and a novel machine learning framework to determine
if Dll4 levels can be predicted from simple noninvasive imaging assays. The eventual results of this
study may help physicians decide if a given triple-negative breast cancer patient will benefit from
a Dll4 targeted therapy.

Abstract: Delta like canonical notch ligand 4 (Dll4) expression levels in tumors are known to affect
the efficacy of cancer therapies. This study aimed to develop a model to predict Dll4 expression levels
in tumors using dynamic enhanced near-infrared (NIR) imaging with indocyanine green (ICG). Two
rat-based consomic xenograft (CXM) strains of breast cancer with different Dll4 expression levels
and eight congenic xenograft strains were studied. Principal component analysis (PCA) was used to
visualize and segment tumors, and modified PCA techniques identified and analyzed tumor and
normal regions of interest (ROIs). The average NIR intensity for each ROI was calculated from pixel
brightness at each time interval, yielding easily interpretable features including the slope of initial
ICG uptake, time to peak perfusion, and rate of ICG intensity change after reaching half-maximum
intensity. Machine learning algorithms were applied to select discriminative features for classification,
and model performance was evaluated with a confusion matrix, receiver operating characteristic
curve, and area under the curve. The selected machine learning methods accurately identified host
Dll4 expression alterations with sensitivity and specificity above 90%. This may enable stratification of
patients for Dll4 targeted therapies. NIR imaging with ICG can noninvasively assess Dll4 expression
levels in tumors and aid in effective decision making for cancer therapy.

Keywords: cancer; tumor microenvironment modifier; notch-DLL4; consomic xenograft model;
machine learning; binary classification; dynamic enhanced NIR imaging; indocyanine green; time
series; tumor detection

1. Introduction

Breast cancer heterogeneity has been extensively studied and it has enabled the clas-
sification and categorization of tumors into molecular subtypes depending on the over-
expression of antigens or hormone receptors on tumor cells [1]. Identification of tumor
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subtypes improves cancer patients’ care and prognosis by tailoring therapies to the sub-
types [2–4]. Breast and many other cancers are highly heritable, yet most causative variants
are unknown, and most of the known risk variants are considered tumor-cell-autonomous,
with far less emphasis placed on identifying the role of germline variants impacting the
tumor microenvironment (TME). The TME is a complex and dynamic system that includes
cancer cells, stromal cells, blood vessels, and extracellular matrix [5] and plays a signif-
icant role both in tumor cell proliferation and in chemo- or radiotherapy delivery and
response [5–7]. There is growing evidence that heritable modifiers of the tumor microenvi-
ronment can profoundly impact tumor behavior and response to diagnostic and therapeutic
interventions [8–12].

Tumor blood vessels have abnormal structure and function, which leads to hetero-
geneity in blood perfusion both temporally and spatially [13]. This heterogeneity has
multiple adverse consequences, including limiting the access of blood-borne drugs and
effector immune cells to poorly perfused regions of tumors [14]. As a result, these areas
become hypoxic and have low extracellular pH [15]. Hypoxia has been shown to play
a significant role in tumor progression and metastasis by inducing genetic instability, angio-
genesis, immunosuppression, inflammation, and resistance to cell death by apoptosis and
autophagy [16,17]. Anti-angiogenic drugs are designed to target the vasculature in order to
starve tumors and prevent them from growing. However, recent studies have shown that
the efficacy of these drugs may be limited by specific biomarkers and pathways associated
with resistance [15]. For example, it has been shown that some patients may not benefit
from anti-VEGF therapies if they have elevated levels of plasma sVEGFR1 [18]. Similar
outcomes have been observed with increased levels of SDF1α and anti-VEGF therapies [19].
Further the vascular TME and therapy response differs in primary tumor and metastasis
sites [20] and the anatomic location [21–23]. Thus, characterizing angiogenesis in tumors
holistically may have therapeutic implications.

The process of tumor angiogenesis is closely regulated by a balance between promot-
ing and suppressing angiogenic factors [24,25]. Delta like canonical notch ligand 4 (Dll4) is
a protein-coding gene that provides instructions for making a protein part of a signaling
pathway known as the notch pathway, which is essential for the normal development of
many tissues throughout the body, affecting cell functions [26,27], modulating tumor an-
giogenesis [28], promoting vessel maturation, and inhibiting vessel sprouting by inducing
apoptosis of tip endothelial cells (TECs) [28–30]. Dll4 is overexpressed in various types of
cancer, including breast, ovarian, and colorectal cancer, and has been shown to promote
tumor angiogenesis, growth, and metastasis by interacting with receptors on endothelial
cells (ECs) [31–34]. Blockade of Dll4 activity results in enhanced vessel sprouting and
increased vascular permeability [29,30,35], but anti-Dll4 therapy has not been universally
successful, as Dll4 has been shown to have both pro-tumorigenic and anti-tumorigenic
effects depending on the context of its expression [34,36,37]. We recently reported that Dll4
expression on the host TME rather than on tumor cells determines the EPR or enhanced
permeation and retention effect in breast tumor xenografts and thus governs nanomedicine
delivery and therapy response [38].

Despite the increasing evidence about the function of germline genetic modifiers, such
as Dll4, in TME heterogeneity and enhanced permeability and retention (EPR) effects, the
underlying influencers have mainly remained unexplored because of the lack of a system-
atic approach to studying them. Therefore, we developed the Consomic Xenograft Model
(CXM) as a strategy for mapping heritable modifiers of TME heterogeneity. In the CXM,
human breast cancer cells are orthotopically implanted into consomic xenograft host strains.
These strains are derived from two parental strains with different susceptibilities to breast
cancer. Salt-sensitive (SS) rats were employed as a tumor promoting strain, while Brown
Norway (BN) rats were used as a tumor suppressing strain. A sequence of consomic strains
were generated with chromosomes of SS rats replaced by those of BN rats one at a time and
used for breast tumor xenograft studies [7,38,39]. Because the host backgrounds genetically
differ by one chromosome, whereas the tumor cells are unvaried, any observed phenotypic
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differences are due to TME modifier(s) and can be linked to a single chromosome. These
modifiers can be further localized by congenic mapping (inbred strains containing a given
sub-chromosomal region in their genome). By combining CXM with dynamic epifluo-
rescence near-infrared (DE-NIR) imaging, systemic injections of indocyanine green (ICG)
through a tail vein in tumor-bearing rats, and multiparametric analysis of pharmacokinetic
modeling, we localized and identified the function of the vascular-specific Dll4 allele on rat
chromosome 3 (RNO3) as a heritable host TME modifier of EPR [38]. The SS.BN3IL2Rγ−

CXM strain with low-level expression of Dll4 (referred to as Dll4−) had significant tumor
growth inhibition compared with the parental SSIL2Rγ− strain with higher expression of
Dll4 (Dll4+), despite a paradoxical increase in tumor blood vessel density in Dll4+. Further
analysis revealed that the changes in the Dll4+ tumors were accompanied by altered expres-
sion of Dll4, which was previously linked with nonproductive angiogenesis. Additionally,
Dll4 was found to be co-localized within a host TME modifier locus (Chr3: 95–131 Mb)
identified by congenic mapping and correlated with the phenotypic differences observed
at the consomic level [7,39,40].

The inheritance of functionally different Dll4 alleles can influence the efficacy of
nanoparticle (NP) therapy, and previous results indicate that inherited microvascular
distribution patterns, rather than overall NP uptake, ultimately determine the effectiveness
of NP-mediated photothermal therapy (PTT). Consequently, patients with high endothelial
Dll4 expression can be selected for treatment with anti-Dll4 targeted nanoparticles as
opposed to patients with low Dll4 expression, where PEGylated nanoparticles will provide
sufficient therapy response [38]. Recent advances in dynamic vascular imaging techniques,
such as DCE-MRI and perfusion computed tomography, have facilitated the investigation
of the time kinetics of a contrast agent to extract multiple vascular parameters and have
been successfully applied in clinical trials of anti-angiogenic drugs [41,42]. However, these
techniques have certain drawbacks, including a lack of high temporal resolution and the
need for a heavy hardware system with sophisticated analysis software. Dynamic NIR
fluorescence imaging, on the other hand, offers a sufficient and effective alternative to other
dynamic vascular imaging techniques for characterizing germline-dependent vascular
phenotypes [7,43]. This has led to the combination of these modalities, such as in the paired
agent MRI-coupled fluorescence tomography approach for noninvasive quantification of
paired-agent uptake in response to anti-angiogenesis therapy in vivo [44].

As the field of artificial intelligence continues to advance, researchers are increasingly
utilizing AI techniques, particularly machine learning, to develop predictive models that
can support effective decision making in various domains including cancer therapy selec-
tion [45,46]. Previous research has investigated the use of machine learning algorithms to
analyze near-infrared (NIR) signal intensity and perfusion patterns to differentiate between
healthy, benign, and malignant tissue [47]. This work demonstrated that the signal intensity
time course of an FDA-cleared near-infrared dye ICG inflow during the wash-in phase
and ICG outflow during the wash-out phase could serve as significant markers for tissue
distinction. This finding offers a new method for noninvasive tissue distinction and has
prognostic potential [48,49]. However, there remains a need for further exploration of
the use of machine learning for classifying host genetic tumor microenvironment (TME)
modifiers and predicting therapy responses based on dynamic contrast-enhanced imaging
of tumors, particularly DE-NIR fluorescence imaging data [47].

2. Hypothesis and Objective

We hypothesize that the observation of subtle differences in vasculature structure and
perfusion patterns characterized by ICG inflow and outflow using DE-NIR imaging could
be used to differentiate between inherited tumor vascular microenvironment differences,
such as Dll4 expression levels. We propose an experimental framework to noninvasively
assess Dll4 expression levels in tumors based on the NIR signal intensity time course
of perfusion patterns characterized by ICG time kinetics to develop a predictive model
to support effective decision making in cancer therapy. Herein, we used two rat-based
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CXM strains of breast cancer, SSIL2Rγ−(Dll4+) and SS.BN3IL2Rγ− (Dll4−) [7,38,50], as
well as eight congenic xenograft strains, CG1–CG8 (Figure 1a,b), to assess the impact of
germline TME vascular heterogeneity on the signal intensity of DE-NIR imaging with
systemically delivered ICG. Principal component analysis (PCA)-based decomposition
of time-dependent epifluorescence videos (image stacks) was used for visualization and
anatomical segmentation of tumors, liver, lungs, and fat pads [7]. In addition, we utilized
modified principal component analysis (PCA)-based anatomical segmentation techniques
to identify and analyze regions of interest (ROIs) representing potential tumors within the
current dataset. To gather further information, we calculated the average NIR intensity for
each ROI by analyzing the brightness of individual pixels at each time interval, resulting
in a series of intensity measurements for each ROI. From this analysis, several easily
interpretable features were extracted, including the slope of the initial uptake of ICG,
the time it takes to reach peak perfusion, and the rate of ICG intensity changes once the
half-maximum intensity is reached (which, to the best of our knowledge, has not been
previously reported in the literature). We then applied a subset of machine learning
algorithms, including Support Vector Machines (SVMs), Naive Bayesian Classifiers (NBCs),
Generalized Additive Models (GAMs), Decision Trees (DTs), Nearest Neighbors (NN),
and Logistic Regression (LR) to select the most discriminative features for classification.
The performance of the model was evaluated using confusion matrix, receiver operating
characteristic curve (ROC), and the area under the curve. To further evaluate our hypothesis
of detecting Dll4 expression levels from DE-NIR imaging and test the generalizability
of our framework, we conducted a secondary performance evaluation method using
congenic groups with high and low Dll4 expression levels. The classification models were
trained based on the selected features, and the performance of the model was tested on
the remaining congenic groups. We demonstrate that robust ML methods can identify the
alterations in host Dll4 expression from the tumor dynamic imaging datasets, and thus
these methods can potentially stratify patients for Dll4 targeted therapies.
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(blue). (b) Schematic representing congenic strains and vascular-specific Dll4 protein expression,
generated by introgressing BN(Dll4−) chromosome 3 (blue) into the SSIL2Rγ− strain (red) via marker-
assisted breeding. Thin black bars represent confidence intervals of chromosomal regions that could
be BN or SS. The horizontal black line indicates the location of vascular-specific Dll4 protein on chro-
mosome. The dotted lines represent the location of SSLP markers. (c) Transgenically labeled human
MDA-MB-231 triple-negative breast cancer cells were orthotopically implanted in the mammary fat
pad of parental, consomic, and congenic rats. (d) Schematic diagram of the dynamic epifluorescence
NIR imaging setup. A bifurcated optical fiber bundle delivers 785 nm excitation light for uniform
illumination of the rat body surface. A 16-bit deep-cooled intensified charge-coupling device camera
was used to image the rats through computer-controlled software.

3. Materials and Methods

All methods have been carried out in accordance with relevant guidelines and regula-
tions. Approved protocols by the Medical College of Wisconsin Institutional Biosafety Com-
mittee (IBC) and Institutional Animal Care and Use Committee (IACUC) were followed.
All live animal experiments are reported per the ARRIVE guidelines’ recommendations [51].
All results were rigorously adjusted for multiple comparisons.

3.1. Animals

All animal protocols employed in this study were approved by the Institutional
Animal Care and Use Committee (IACUC), Medical College of Wisconsin (MCW). The
MCW has an Animal Welfare Assurance (Assurance number D16-00064 (A3102-01)) on file
with the Office of Laboratory Animal Welfare, National Institutes of Health (NIH). Animal
experiments were performed according to the relevant guidelines and regulations and
in compliance with the Guide for the Care and Use of Laboratory Animals published by
the US National Institutes of Health (NIH publication no.85–23, revised 1996). SS.BN3
rats were developed as part of the Consomic Xenograft Model at the Medical College of
Wisconsin (MCW) [40]. SS and SS.BN3 rats were purchased from the Rat Research Models
Service Center at the Medical College of Wisconsin [52]. All rats were provided reverse
osmosis hyper-chlorinated water ad libitum. All animal experiments were performed on
anesthetized animals. The animal was placed in a transparent induction chamber to induce
anesthesia. Isoflurane was delivered through a precision vaporizer and compressed O2 to
the chamber. For induction, the percentage of isoflurane was up to 5%. Once the animal
was unconscious, it was removed from the chamber. The unconscious animal was then
placed on a warm surface and fitted with a nose cone attached to the vaporizer in the
presence of a scavenging system and oxygen source. At this point, the concentration of
isoflurane was reduced to this level that maintained the correct anesthesia plane, usually
between 0.5 and 3%. After the end of the experiment, or when other criteria for animal
protocols were justified, rats were euthanized. Rats were placed in an approved euthanasia
chamber and exposed to CO2 from a compressed gas cylinder until the animal was no
longer breathing. To ensure death in rats, a pneumothorax was created via thoracotomy
for rats weighing more than 200 g. For rats weighing less than 200 g, a pneumothorax was
created, or a cervical dislocation was performed.

As previously described [39,40], consomic strains (SS and SS.BN3 rats) were generated
by sequentially replacing SS chromosomes with the outbred wild-type and tumor-resistant
strain of Brown Norway (BN) rats referred to as SS.BN#, which are reported for their
tumorigenic potential, where # refers to the chromosome number. These parental SS and
consomic SS.BN# strains were genetically ablated by knocking down the IL2Rγ gene to
allow the grafting and growth of human cancer cell lines. Such immunocompromised
strains are labeled as SSIL2Rγ−(Dll4+) and SS.BN#IL2Rγ−(Dll4−).

Previous research has localized inherited modifier(s) of TME vascular heterogeneity
to RNO3 by CXM mapping and further narrowed by congenic mapping to a 36 Mb lo-
cus containing Dll4 alleles with distinct vascular expression patterns in the SS.BN3IL2Rγ−

consomic (Dll4−) and SSIL2Rγ− (Dll4+) rat strains, and verified via species-specific RNA
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sequencing and immunohistochemistry that strains inheriting the SS Dll4 allele on chro-
mosome 3 have higher Dll4 expression on tumor-associated endothelium and that the
blood vessel tortuosity and dysfunction increased in Dll4− strains [38,39]. Since there
are many other candidate alleles on chromosome 3 that could also potentially account for
the observed differences in therapeutic efficacy between the SS.BN3IL2Rγ− and SSIL2Rγ−

strains [38], to further investigate the potential contribution of Dll4 to inherited tumor
vascular heterogeneity, eight novel SS.BN3IL2Rγ− congenic xenograft host strains (CG1 to
CG8) were constructed by introgression of the F1 progeny and F2 generation to capture
different regions of RNO3 by marker-assisted selection, as described previously [50,53].
The exclusion congenic mapping localized a 7.9 Mb candidate region (marked by the SSLP
marker D3Mgh11) that was associated with inherited tumor vascular heterogeneity and
contained the Dll4 locus. As a result, eight new congenic strains CGN(s-e) were generated,
where N (1 to 8) refers to the congenic group, while s and e refer to the starting and end-
ing of Simple Sequence Length Polymorphism (SSLP) marker regions, respectively. This
resulted in generating CG1(D3Rat26-D3Mgh30), CG2(D3Rat222-D3Got42), CG3(D3Rat222-
D3Mco33), CG4(D3Rat164-D3Rat218), CG5(D3Rat26-D3Mco218), CG6(D3Rat86-D3Rat218),
CG7(D3Mgh13-D3Rat218), and CG8(D3Rat160-D3Rat218) congenic groups (Figure 1a,b).

3.2. Cell Culture and Triple-Negative Breast Cancer Xenografts

As previously described [38], triple-negative breast cancer MDA-MB-231 cells were
maintained in DMEM media (Sigma, Burlington, MA, USA) supplemented with 10%
FBS (Gibco, New York, NY, USA) and 1% penicillin and streptomycin (Lonza, Cohasset,
MN, USA) and incubated in 5% CO2 at 37 ◦C. These cells (6 × 106) in 50% Matrigel
were orthotopically implanted into the mammary fat pads (MFP) of 4- to 6-week-old
female Dll4+ (n = 8) and Dll4– (n = 17) rats and eight congenic strains CG1 (n = 19), CG2
(n = 2), CG3 (n = 26), CG4 (n = 12), CG5 (n = 28), CG6 (n = 12), CG7 (n = 5), and CG8 (n = 4)
(Figure 1c) [54]. Tumors were treated after 10 days of implantation at an approximate size
of 600 mm3, consistent across all rat strains.

3.3. In Vivo NIR Fluorescence Imaging

A customized NIR imaging system was assembled for imaging the rats. A bifurcated
optical fiber bundle was used to deliver 785 nm excitation light (~5 mW/cm2 power at
the surface, diode laser, ThorLabs Inc., Newton, NJ, USA) from two positions for uniform
illumination of the entire rat body surface. A 16-bit deep-cooled intensified charge-coupled
device camera (PIMAX4 ICCD, Princeton Instruments, Trenton, NJ, USA) equipped with
830 nm long-pass filter positioned following a holographic notch rejection filter in the
optical path (ThorLabs Inc.) was used to image the rats through computer-controlled
LightField® software (Teledyne Princeton Instruments, Trenton, NJ, USA) (Figure 1d).

Dynamic contrast-enhanced NIR fluorescence imaging was performed on anesthetized
rats, as reported previously for 800 nm NIR imaging [7]. In this study, the setup was used
for imaging the whole body. A total of 133 rats (Dll4+ (n = 8), Dll4– (n = 17)) and eight
congenic strains CG1 (n = 19), CG2 (n = 2), CG3 (n = 26), CG4 (n = 12), CG5 (n = 28), CG6
(n = 12), CG7 (n = 5), and CG8 (n = 4) were imaged. NIR imaging was performed for
approximately 6 min following ICG injection with the CCD array hardware binned to 256
× 256 with a frame rate of 10.6 fps. A total of 3000 frames were captured for each imaging
case, including about 50 frames for background correction. ICG (MP Biomedicals) was
delivered in an intravenous bolus of 1200 µM ICG/200 g body weight into the tail vein via
a catheter with a 32-gauge needle tip connected to a syringe pump (Harvard Apparatus
PHD 2000 syringe pump, Holliston, MA, USA) operated at a speed of 0.2 mL/s. The
injected volume was calibrated to provide a body-weight-equilibrated dose to each rat.

3.4. Denoising and Motion Correction

Image processing and data analysis were performed in MATLAB (R2021b MATH-
WORKS Inc.) software. The time-dependent image frames were assembled as 3D arrays



Cancers 2023, 15, 1460 7 of 25

(two spatial and one temporal dimensions) for all animals. A custom-designed breathing
correction method with a low-pass temporal filter combined with a 1D wavelet-based
denoising was used to filter the high-frequency jitter generated by the animal’s respiratory
motion from the fluorescence kinetic sequences of each pixel, as described previously [7].
An average of pre-ICG injection frames (acquired in the ~5 s before ICG injection) was used
as background, incorporating contributions from CCD noise and excitation light leakage
from emission filters and subtracted from all the frames. (Refer to Video S1 for respiratory
motion corrected time course images of ICG biodistribution).

3.5. Principal Component Analysis for Extraction of Spatial Patterns of Internal Organs

First, motion correction and background subtraction were performed on the imaging
data described in the previous steps. This was carried out to remove any potential artifacts
or noise that could affect the accuracy of the principal component analysis. Next, the data
were decomposed by PCA along the time dimension using MATLAB software following
the previously published methods [55,56]. This resulted in converting the imaging data to
a k-component vector for each pixel, where k is the number of time-frames in the original
dataset. The PCA on the dynamic fluorescence image was used to extract spatial patterns
of internal organs linked to statistically similar kinetic behaviors. This was carried out by
comparing the k-component vectors for each pixel and identifying those that displayed
similar patterns over time. The contribution of the first six principal components on a time
basis is illustrated in Figure S1.

3.6. PCA Ranking Tumor Detection

The ROI detection module employed three steps in order to identify the tumor area
in images (Figure 2a): (1) spatial alignment, (2) PCA ranking and selection, and (3) ROI
selection and masking. First, images were registered to a reference image using a rigid
body transformation in order to ensure consistent spatial alignment for the detection of
the tumor area in subsequent steps. The variability in the visual appearance of internal
organs or tumors within certain principal components necessitated the adaptation of
existing methods for ranking normalized components based on their two-dimensional
cross-correlation (2DCC) with a reference image containing the tumor. This was achieved
by generating a stack of the first ten normalized principal components and applying
a two-dimensional cross-correlation function (xcorr2 in MATLAB) to each component.
The principal components were ranked according to the correlation scores obtained and
a semi-automatic algorithm was then utilized to carry out the subsequent two steps for
tumor ROI generation.

To select the appropriate principal component for tumor identification, the algorithm
prioritized the PC with the highest likelihood of containing the tumor tissue based on the
ranking from the previous step. Once the proper PC was selected, we used 2DCC to estimate
the tumor’s location in the frame. This was performed by creating a stack of four reference
images using PCs that clearly visualized the tumor and generated a bounding box around
the tumor. Next, we applied basic morphological dilation and image arithmetic operations
to emphasize the tumor’s boundaries. A threshold was then applied to separate the
tumor from the background. Finally, we used Blob Analysis (Computer Vision Toolbox™,
MATLAB, MathWorks, MA, USA) to extract the centroid and exact location of the tumor
in the frame, generating a region of interest (ROI). The use of a graphic user-interface-
enabled semi-automatic platform allowed for real-time evaluation and adjustment of the
algorithm’s performance if necessary.
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Figure 2. (a) Diagram of the process for detecting tumors and generating regions of interest (ROIs).
The ROI detection module consists of three steps: spatial alignment, PCA ranking and selection, and
ROI selection and masking. First, NIR time series data are registered to a reference image using a rigid
body transformation. Next, PC reconstructions are ranked based on their 2D cross-correlation with
a reference image featuring a clearly visible tumor. The tumor’s location and a bounding box (shown
in yellow) are estimated based on the 2D cross-correlation score of the selected PC and reference
images featuring different tumors. The tumor’s boundaries are enhanced and distinguished from the
background through morphological dilation and thresholding. The resulting ROI is used to mask the
NIR time series data. (b) Plot of the mean intensity of ICG biodistribution fluorescence kinetic data
over 300 s for the tumor (red) and four fat pads (blue), normalized to a range of 0 to 1.

3.7. Video Processing

The underlying assumption for the NIR fluorescence intensity video analysis is that
intensity was proportional to the ICG concentration in the tissue, which has been shown in
the literature [57].

From each available video, p, between 4 and 5 fluorescence time series are extracted,
one based on the tumor ROI generated from earlier steps, and between three and four from
mammary fat pads (MFPs) (Figure 2b). For each ROI, r, and each included time step, t, the
mean brightness of the pixels inside that ROI in the NIR video is stored as Ip,r(t). The result
is a collection of time series Ip,r(t), where p ranges from 1 to N (the number of animals in
each group in our dataset), r ranges from 4 to the number of ROIs generated in the specific
animal (up to 5, 1 tumor and 3 or 4 fat pads), and t from 0 to 3000 (Figure 2b).

3.8. Peak and Latency Estimation

First, we started with smoothing the data to exclude any potential noise from motion
artifacts. The smoothing was conducted using a Savitzky–Golay filter of order 3 with
window length 31 [58]. The parameters for this filter were determined through manual
annotation of peak and latency in a subset of the data, with the goal of minimizing average
estimation error. Subsequently, we used a MATLAB function to identify the time point
of maximum intensity, which corresponded to the peak of the fluorescence signal. We
employed a custom latency detector script that analyzed the smoothed derivative of the
curves and identified the first “robust” zero crossing as the latency point (Lp,r(t)) [48].
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3.9. Feature Design

The features were chosen in two steps as previously described (Figure 3) [47,48]: first,
the following characteristic numbers were chosen for each normalized time series individually.
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Figure 3. Feature extraction. The normalized mean intensity of ICG taken over ROIs is plotted for
the first 75 s (blue). The time series was smoothed using a Savitzky–Golay filter of order 3 with
window length 31 (red). The insets show enlarged curve regions to visualize the characteristics and
relationships of the features. S = {2, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 23, 25, 30, 35, 40, 50, 60, 70, 80}.

The time to peak (TTPp,r) is simply the time difference between the peak intensity
time point and the latency Lp,r.

The upslope (Up,r) is computed as

Up,r = 1−
Ip,r

(
Lp,r

)
TTPp,r

, (1)

which is the average slope between initial ICG arrival and the peak.
The downslopes (DS) are the downslopes between the peak and S seconds further:

Dp,r = 1− Ip,r(Lp,r+TTPp,r+S)
S ,

S ∈ {2, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 23, 25, 30, 35, 40, 50, 60, 70, 80}.
(2)

The time ratio (TR) is the ratio between TTPp and when Ip(t) reaches half the peak values.
The half intensity forward (HIF) is the average slopes between when Ip,r(t) reaches

half the peak values (T1/2p,r) and S seconds further, so

HIFp,r = 1− Ip,r(Lp,r+T1/2p,r+S)
I ,

S ∈ {2, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 23, 25, 30, 35, 40, 50, 60, 70, 80}.
(3)
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To increase the robustness of estimated downslope-based and HIF-based features, we
introduced a window around Lp,r + TTPp,r + S and Lp,r + T1/2p,r + S time steps taking the
median of those downslopes:

DSp,r,avg = median s ∈Window D(S + s)p,r, (4)

HIFp,r,avg = median s ∈Window D(S + s)p,r,

Window = {−1.5,−1.3, . . . , 1.3, 1.5}seconds.
(5)

These features provide insight into the tumor’s ICG uptake and decay. U and TTP
relate to the initial uptake of ICG, while DS relates to the decay of ICG fluorescence [48].
TR is a measure of the temporal inhomogeneity of the initial uptake, and HIF is a measure
of the temporal inhomogeneity of both the initial uptake and decay of ICG fluorescence.

To address inter-animal variation, we propose a feature design that relates the features
of tumor intensity (Fr=tumor) to the features of healthy tissue intensity (Fr= f atpad) in the
same animal. The median value of a feature across the healthy tissue (fat pad) is chosen as
a reference value, and each feature is defined as its percentage difference to that reference
value. This results in a single normalized feature for each animal. By using the median as an
average that is robust to outliers, our feature design allows for a more accurate comparison
of tumor intensity across different animals.

Fn =
Ftumor −median

(
Ff at pad

)
median

(
Ff at pad

) , (6)

3.10. Classification Algorithms and Feature Selection

The feature extraction and design required specialized knowledge of the tumor mi-
croenvironment (TME) and its impact on near-infrared intensity. However, the classification
based on the inheritances of Dll4 can be considered a standard binary classification problem
with feature selection as a sub-problem: given the features of an animal for which the Dll4
inheritance is unknown, we want to assign the label “Dll4high” or “Dll4low” to it. We
also want to investigate which small subset of features performs best [44]. We restricted
ourselves to a subset of available ML algorithms which were reported to perform best with
intensity time series classification. [48], We excluded neural networks from consideration
and evaluated Support Vector Machines (SVMs), Naive Bayesian Classifiers (NBs), General-
ized Additive Models (GAMs), Decision Trees (DTs), Nearest Neighbors (NN), and Logistic
Regression (LR).

3.11. Primary Classification

DTs and SVMs using the full set of 86 features were trained. Each ML model was
tuned to the training set in an internal cross-validation procedure of 10-fold. This process
was repeated 20 times, and the performance metrics are reported as classifier performance.
One of the key metrics used to evaluate the performance of a classification algorithm is
accuracy, which measures the proportion of correctly classified instances in the dataset.
Other important metrics include sensitivity, which measures the proportion of positive
instances that were correctly classified, and specificity, which measures the proportion of
negative instances that were correctly classified. In our case, we are interested in classifying
animals as either Dll4high or Dll4low, and we use the average metric (Ascore) for each pair
of groups to evaluate the performance of the different classification algorithms.

The Ascore for a given pair of groups is calculated as the average of accuracy, sensitivity,
and specificity, as follows:

Ascore (Dll4high| Dll4low) =
Accuracy + Sensitivity + Speci f icity

3
, (7)
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3.12. Congenic Pair Selection

In this study, we describe a two-step method for selecting congenic pairs with high
and low Dll4 expression levels for feature selection and hypothesis testing. This method
was used to identify well-behaved pairs for binary classification and to identify the pair
with the highest classification performance: The primary selection of congenic pairs is
based on their primary classification scores (Ascore) and their performance against parental
strains using all available features. The secondary selection is based on the classification
performance using the 2 best-performing features.

The congenic pair selection process involved the selection of all possible combina-
tions of congenic pairs with high and low Dll4 expression levels with n > 5, resulting in
a total of 12 pairs: Dll4+|Dll4−, Dll4+|CG3−, Dll4+|CG4−, Dll4−|CG1+, Dll4−|CG5+,
Dll4−|CG6−, CG1+|CG3−, CG1+|CG4−, CG3−|CG5+, CG3−|CG6+, CG4−|CG5+,
CG4−|CG6+. It should be noted that we only included subgroups with n > 5 in our
analysis, to avoid introducing noise into the feature selection process. This is because
smaller sample sizes can be more prone to variability and may not represent the larger
population [59]. Therefore, we focused on more significant subgroups to ensure our feature
selection process was robust and reliable. These 12 pairs have gone through our primary
classification algorithm with a split of 75%–25% for testing and training with seeded ran-
domization and proportional distribution of each group in training and testing datasets.
Each ML model was tuned to the training set in an internal cross-validation procedure
of 10-fold and evaluated by its performance on the test set. This process was repeated
20 times, and the best Ascore was reported as the metric of classifier performance. The result
of this step was used to identify well-behaved congenic pairs for binary classification by
calculating the separation score (Sscore) for each pair of congenic groups with CG#+ and
CG#− as below, which is bound between 0 and 1 and reported in Table 1:

Sscore (CG# + | CG#−) = Ascore (Dll4+| CG#−) + Ascore (CG#+| Dll4−) + 2∗ Ascore (CG#+| CG#−)
4

, (8)

Table 1. Separation score for group pairs.

Groups Average Classification Metrics (Ascore) Separation Score (Sscore)
Dll4+|CG− CG+|Dll4− CG+|CG−

CG1|CG3 0.9 0.74 0.72 0.775
CG1|CG4 0.92 0.74 0.75 0.7875
CG5|CG3 0.9 0.83 0.61 0.7925
CG6|CG3 0.9 0.86 0.778 0.8495
CG5|CG4 0.92 0.83 0.8 0.845
CG6|CG4 0.92 0.86 0.78 0.855

The congenic pairs with Sscore above 80% were selected for secondary congenic
pair selection.

For the secondary selection, we evaluated the classification performance (Ascore) of
each pair determined this time by using the two most effective features as described in
Section 3.13. We used a 75%–25% split for testing and training, with randomization to
ensure a proportionate representation of each group in both datasets.

The pair with the highest classification performance, Ascore, based on the two most
effective features was selected for the final classification model training. To ensure a high-
quality classification model, we set a minimum threshold for the Ascore of 0.70 for inclusion
in the feature selection process. Congenic groups with an Ascore below 0.70 were considered
to have an insignificant contribution to the classification model and were excluded from
further consideration in the feature selection process. This approach allowed us to focus on
the most informative feature pairs, improving the overall classification performance of our
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machine learning model. Each machine learning model was tuned to the training set using
a 10-fold cross-validation procedure and evaluated based on its performance on the test set.
We repeated this process 20 times and reported the best Ascore as the classifier’s performance.

3.13. Feature Selection and Secondary Classification

We selected the best pair of features in terms of achieved sensitivity, specificity, and
accuracy by a two-step procedure as previously reported: DTs and SVMs using the full set
of 86 features were trained, and recursive feature elimination (RFE) was performed to refine
a much smaller set of best-performing features [60]. RFE is a widely used machine learning
classification algorithm that helps in reducing the dimensionality of feature space and
selecting a small subset of features that yield the best classification performance. This was
achieved through an iterative procedure that uses a ranking criterion to eliminate features
one or more at a time. The RFE algorithm started by selecting a subset of features and
training a model on this subset. The features were then ranked based on their contribution
to the model’s performance, and the least important feature was eliminated. The process
was then repeated with the remaining features, and the best subset of features was selected
based on a model selection criterion [61].

One of the main advantages of RFE is that it helps to reduce the risk of overfitting
when the number of features is large, and the number of training patterns is comparatively
small [62]. This is because the algorithm selects only a subset of features that are relevant
to the classification task, and this helps to avoid the inclusion of irrelevant and redundant
features. RFE can be used in conjunction with other techniques such as regularization and
support vector machines (SVMs) to further improve the performance of the classification
model. In addition, projection methods such as principal component analysis can reduce
the feature space’s dimensionality before applying RFE [55].

We used a k-fold cross-validation strategy to assess the performance of our model.
We also reserved a portion of the training data for primary testing of the model after
hyperparameter optimization. Our experiments were conducted with 20 random splits
of the training and test datasets, and the mean performance metrics were reported for
sensitivity, specificity, and accuracy as Ascore. To facilitate the interpretation of our results,
we limited the number of final features to two. Furthermore, given the small size of our
dataset, there was no justification for using high-dimensional feature spaces.

3.14. Data Augmentation

The use of data augmentation has become a popular technique in machine learning
and deep learning, especially in the field of computer vision. Data augmentation involves
applying random transformations to the training dataset to increase its diversity and
improve the performance of a model. In this study, we used data augmentation on raw
near-infrared (NIR) image stacks to evaluate the robustness of a classification model. We
used a dataset of 3000 frames of the original raw 256 × 256 NIR images for this part of our
study. These images were augmented using TensorFlow and the Keras API, which allowed
us to apply random transformations to the dataset. The transformations included random
rotation followed by a horizontal flipping, and up to 2% rescaling.

3.15. Training and Testing Dataset

The final training and testing dataset for the machine learning models was determined
by the outcome of the congenic pair selection and feature selection steps. This dataset
included all congenic groups except for Dll4+ and Dll4−, as well as the selected CG#+ and
CG#− groups in the previous step. This step was conducted separately for the original
dataset and augmented dataset. The models were trained using 10-fold cross-validation and
a portion of the training data was reserved for testing after hyperparameter optimization,
with 25% for the original dataset and 20% for the augmented dataset. The performance of
the models was assessed using a confusion matrix, receiver operating characteristic curve
(ROC), and the area under the curve.



Cancers 2023, 15, 1460 13 of 25

3.16. Statistical Analysis

Repeated measures models are a powerful tool in statistical analysis that allow re-
searchers to study the effects of different factors on a given outcome while accounting for
the inherent dependence of multiple measurements taken on the same subject. In this study,
a mixed effects model with appropriate time varying covariates was used to analyze the
average fluorescence intensity of indocyanine green (ICG) in the tumor with multiple mea-
surements per subject, with the subject number serving as the repeated measure indicator
and the rat strain serving as a covariate. This allows for flexible time-based modeling when
using multiple measures, likely dependent from the same animal [63,64]. Customized
scripts in MATLAB were used to generate the fitted coefficients, covariance parameters,
design matrix, error degrees of freedom, and between- and within-subjects factor names for
the repeated measures model. The output was then analyzed with a multiple comparison
of the estimated marginal means based on the variable strain, using the Tukey–Kramer
test statistic [65]. This allowed estimation of multiplicity-adjusted p-values for the post
hoc comparisons, which indicate whether the groups significantly differed with respect to
strain. The data were then visualized as a p-value matrix, providing a clear illustration of
the significant differences between groups.

3.17. Data Availability

This study employed the established consomic rat models SS and SS.BN3 as well
as our congenic strains CG1 to CG8. The publicly accessible and NIH-supported Rat
Genome Database (rgd.mcw.edu) catalogs has tools to explore the genotype and pheno-
type information for the SS (Dll4+) and SS.BN3 (Dll4−) and congenic strains under strain
records: Dll4+ (RGDID:61499), Dll4− (RGDID:1358154), CG1 (RGDID:155782881), CG2 (RG-
DID:155782883), CG3 (RGDID:155782884), CG4 (RGDID:155791428), CG5 (RGDID:155791426),
CG6 (RGDID:155791430), CG7 (RGDID:155791429), and CG8 (RGDID:155791427).

4. Results and Discussion
4.1. Dynamic Contrast-Enhanced NIR Fluorescence Imaging and Tumor Detection

Dynamic contrast-enhanced NIR fluorescence imaging has been widely used for tumor
detection in various studies [66–68]. The use of NIR imaging allows for the visualization
of internal organs and tissues without the need for invasive procedures, which can be
particularly useful in detecting tumors due to their vascular heterogeneity compared to
surrounding healthy tissues.

In previous studies, the use of principal component analysis (PCA) on the time domain
of dynamic fluorescence images was utilized to extract spatial patterns of internal organs
linked to statistically similar kinetic behaviors, such as liver, kidneys, lungs, and various
tumors [7,56]. However, this technique required manual inspection and selection of proper
principal components, which was time consuming and prone to human error and bias.

In order to overcome the limitations present in the current dataset, we implemented
a modified method that utilizes near-infrared imaging and principal component anal-
ysis to detect tumors with high accuracy and without the need for manual correction
(Figures 2 and S1). The use of principal component analysis in this context not only allows
for dimensionality reduction and noise removal but also enhances the robustness and
efficiency of the method.

Our study also implemented a novel method of ranking PCA components based on
the 2D cross-correlation of a reference image containing the tumor. This added to the
simplicity and computational efficiency of the framework. However, it should be noted
that this method may not be effective for detecting tumors with random locations. On
the other hand, it could be useful for detecting tumors or tissues of interest with high
localization, such as the lungs, liver, and kidney, and lesions in breast tissue. Overall, our
method shows potential for improving the accuracy and efficiency of tumor detection using
NIR imaging and PCA (Figure 4a). However, further experimentation is needed to expand
the framework to a general tumor detection algorithm.
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Figure 4. (a) Color-coded and merged principal component images were used to anatomically
segment tumors from a single view/projection for rat strains with high (red) or low (black) levels
of Dll4 expression. The top 3 ranked PCs for detecting tumors are merged as red, green, and blue
channels of a true color (RGB) image. Tumors are outlined in yellow. (b–d) Mean intensity of ICG
biodistribution fluorescence kinetic data over 140 s for (b) parental (Dll4+) and consomic (Dll4−) rats,
(c) all Dll4−high and Dll4−low rats, and (d) all strains, plotted and normalized to a range of 0 to 1.
Shaded regions show s.e.m.

4.2. Dll4 and Its Effect on the NIR Time Series

The analysis of the average fluorescence intensity of indocyanine green (ICG) in
the tumor tissue of Dll4+ and Dll4− rats bearing triple-negative breast cancer (TNBC)
tumors revealed that ICG uptake occurred more rapidly in Dll4− tissues and was retained
for longer periods of time compared to Dll4+ hosts (Figure 4b). This indicates systemic
differences in vascular function between the two rat strains. Our previous histological
data showed that Dll4+ tumors have a higher vascular density and tortuosity, indicating
a genetic microenvironment that promotes nonproductive angiogenesis [38]. This is further
supported by the slower ICG wash-out observed in the Dll4+ tumors. These findings
provide insight into the effects of host genetics on tumor angiogenesis and suggest potential
therapeutic targets for TNBC.

In order to further investigate the role of Dll4 in vascular function in tumors, we
divided chromosome 3 into regions with and without the Dll4 gene in congenic rat strains
(Figure 1b) and then examined the ICG fluorescence intensity of tumors in Dll4-high and
Dll4-low rats (Video S2) (Figure 4c). Our findings reveal significant systemic differences
in vascular function between tumors in Dll4+ and Dll4− rats (parental strains), indicating
the critical role of the Dll4 gene in tumor angiogenic response [38]. However, analysis of
the ICG fluorescence intensity of tumors for individual strains (Figure 4d) reveals more
complex behavior than the obvious differences in wash-in and wash-out patterns observed
between Dll4+ and Dll4−. This supports the need for further investigation into the impact
of Dll4 on NIR time series signatures and the potential use of Dll4-directed therapies for
cancer treatment.
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It is worth noting that although there are significant differences in Dll4-low vs. Dll4-
high rat strains (when all the strains of Dll4 expression levels are combined), they are
inconsistent with the observations made in Dll4+ and Dll4− rats. These results have
significant implications for developing novel therapies that target Dll4 and other host TME
modifiers involved in angiogenesis, as they demonstrate the critical role of these genes in
tumor vascular function and angiogenic response.

Additionally, our research further highlights the capricious nature of the NIR signal,
which is influenced by various heritable tumor microenvironments across different groups,
as shown in Figure 4b,c. We aim to illustrate and categorize the impact of the Dll4 expression
level on the NIR signal through this erratic behavior.

We used a repeated measures model to analyze the average fluorescence intensity of
ICG in the tumor over time, with the rat strain serving as a covariate. Figure 5a,b show the
estimated response covariances matrix, which is the covariance of the repeated measures.
The higher values in this matrix indicate the time points at which groups experience the
greatest differences. By projecting the diagonal of the covariance matrix onto the time axis
(Figure 5c), we were able to visualize the amount of difference between groups over time.
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Figure 5. (a,b) The covariance parameter of a mixed-effects model for 1400 timesteps with appropriate
time-varying covariates, used to analyze the average fluorescence intensity of ICG in the tumor with
multiple measurements per subject, with the subject number serving as the repeated measure indicator
and the rat strain serving as a covariate. (c) Projection of the diagonal of the covariance parameter on
the time axis. (d) Multiplicity-adjusted p-value matrix showing significant differences between groups
based on multiple comparison of estimated marginal means using the Tukey–Kramer test statistic.
(e) Sankey diagram showing differences in strains with high and low levels of Dll4 expression based
on the Ascore (mean of accuracy, sensitivity, and specificity in the primary classification of each pair);
0.65 was subtracted from all the Ascore values for better visualizations of differences.

This projection, when compared to the average fluorescence intensity of ICG in the
tumor (Figure 4b,d), showed the strongest differences between groups at the points where
the NIR signal regions from half of its peak value to the peak value and at the tail of the
curve, which are measures of the temporal inhomogeneity of the initial uptake and the
decay of ICG fluorescence, were found to be particularly useful in discriminating between
groups with different levels of Dll4 expression. This projection of the diagonal of the
estimated response covariances matrix on the time curve can be used in feature design
to focus on regions with the maximum amount of useful information for discriminating
between groups and, subsequently, between classes with different levels of Dll4 expression.
This could potentially improve the accuracy of tumor classification and ultimately improve
therapy outcomes.

Our repeated measures model, which included responses as measurements and strains
as predictor variables, allowed us to conduct multiple comparisons of estimated marginal
means between groups. The resulting p-value matrix (Figure 5d) revealed significant
differences in estimated marginal means between the Dll4+ and Dll4− groups, with
a p-value of 4.71 × 10−7. In addition, we observed significant differences between Dll4+ and
CG3, CG4, and CG8, with p-values of 1.67× 10−5, 7.03× 10−7, and 2.18× 10−3, respectively.
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For each group pair with high and low Dll4 expression levels, the separation score
was calculated. First each of Dll4+|CG#−, CG#+|Dll4−, and CG#+|CG#− went through
our classification algorithm with 10-fold cross-validation using Nearest Neighborhood,
Linear SVM, RBF SVM, Decision Tree, Naive Bayes, and Logistic Regression models.
The highest average classification metrics (Accuracy + Specificity + Sensitivity)/3 for
Dll4+|CG#−, CG#+|Dll4− and CG#+|CG#−) was used to calculate the separation score
(Score Dll4+|CG#− + Score CG#+|Dll4− + 2 × Score CG#+|CG#−)/4.

Furthermore, our analysis showed significant differences between Dll4− and CG5
and CG6, with p-values of 8.70 × 10−3 and 2.58 × 10−4, respectively. This supports the
hypothesis that Dll4 expression levels can act as a heritable TME modifier on NIR time
series intensity. However, the smallest p-value between Dll4+ and Dll4− suggests that
there are other factors on chromosome 3, in addition to Dll4, that contribute to the observed
differences in the NIR time series signature between these groups.

In contrast, no significant differences were found between Dll4− and the congenic
strains with low levels of Dll4 expression (CG2, CG3, CG4, CG7, and CG8). This further
supports the notion that Dll4 plays a crucial role in determining tumor vascular function
and NIR time series intensity.

Among the congenic groups, the most significant differences were observed between
CG5, CG6, and CG3, CG4 from the Dll4-high and Dll4-low groups, respectively. Notably,
the differences were most significant between CG4 and CG6, with a p-value of 0.0003. This
suggests that very narrow regions of differences on chromosome 3 between these two
groups, one containing Dll4 and the other lacking it, have a significant effect on the NIR
time series signature.

4.3. Primary Classification and Congenic Dissimilarity

The relationship between Dll4 expression and classification performance was ana-
lyzed using a total of 12 congenic pairs with n > 5 based on their levels of Dll4 expression
(Dll4+|Dll4−, Dll4+|CG3, Dll4+|CG4, Dll4−|CG1, Dll4−|CG5, Dll4−|CG6, CG1|CG3,
CG1|CG4, CG3|CG5, CG3|CG6, CG4|CG5, and CG4|CG6). The pairs were then sub-
jected to a primary classification algorithm and their mean performance metrics, the Ascore,
were calculated and reported in Table 1. The congenic pairs with low levels of Dll4 ex-
pression showed a mean Ascore of 0.91 +/− 0.01, indicating a high level of classification
performance when compared to the Dll4+ parental strain. In contrast, the congenic pairs
with high levels of Dll4 expression showed a mean Ascore of 0.8 +/− 0.05 when classified
against the Dll4− consomic strain. Among the congenic pairs, the CG5|CG4 pair demon-
strated the highest Ascore of 0.8, followed by the CG6|CG4 and CG6|CG3 pairs with Ascore
values of 0.78 and 0.77, respectively. The results of the Ascore calculation are visualized in
Figure 5e through a Sankey diagram.

To account for potential differences between the congenic pairs and the parental pairs,
the Sscore was calculated. The CG5|CG4, CG6|CG3, and CG6|CG4 pairs showed the
highest Sscore values of 0.84, 0.84, and 0.85, respectively, and were selected for the feature
selection step. These results align with the multiple comparison of estimated marginal
means between groups, indicating that CG5|CG4, CG6|CG3, and CG6|CG4 show the
strongest differences in classification performance.

4.4. Feature Selection

RFE is a wrapper method that evaluates the entire classification algorithm and has
shown improved classification accuracy and reduced overfitting compared to other feature
selection methods [69]. However, RFE can be sensitive to noise and irrelevant features,
leading to suboptimal feature subsets and reduced classification performance. Additionally,
RFE is computationally intensive, which can pose a challenge for large datasets with a high
number of features. Despite these limitations, RFE remains a valuable tool for selecting
an optimal subset of features that maximizes classification performance [70,71].
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To address these limitations, we performed feature selection in two steps to optimize
the selection process and improve the performance of the classifier. First, we used RFE to
select only two features out of the 86 available features for congenic pairs Dll4+|Dll4−,
Dll4+|CG4, CG5|Dll4−, CG5|CG4, CG6|Dll4−, and CG6|CG4. The CG3 and its combi-
nations (CG6|CG3, CG5|CG3, and Dll4+|CG3) were dropped from the feature selection
process as the performances of the classifiers, the Ascore, using only two features were below
0.70, and lower than the other strains. The congenic pairs CG5|CG4 and CG6|CG4 as
well as the parental and consomic group Dll4+|Dll4− went through our feature selection
algorithm, and for each pair the two best-performing classification algorithms based on
Ascore and associated feature pair were reported (Table 2).

Table 2. Primary validation and feature selection.

Groups Feature Best Average Best Accuracy Best Sensitivity Best Specificity
Alg. Value(std) Alg. Value(std) Alg. Value(std) Alg. Value(std)

Dll4+|Dll4−
HIF10_avg,
HIF12_avg DT 0.8666

(0.2309) DT 1 (0) DT 0.6
(0.5026) DT 1 (0)

HIF6_avg,
HIF50_avg LR 0.7597

(0.1412) LR 0.8682
(0.1468) LR 0.6

(0.5026) DT 0.9391
(0.116)

Dll4+|CG3

HIF300_avg,
HIF200_avg RBF SVM 0.6415

(0.3196) RBF SVM 0.5914
(0.0983) L SVM 1 (0) KNN 0.9166

(0.1147)
HIF300_avg,

TR_rel LR 0.6453
(0.1036) LR 0.6176

(0.1624) LR 0.85
(0.2665) KNN 0.9083

(0.1147)

Dll4+|CG4

HIF30_avg,
D16_avg DT 0.9175

(0.0303) DT 0.9125
(0.0915) L SVM 0.95

(0.0888) NB 1 (0)
HIF8_avg,

D6_avg RBF SVM 0.88125
(0.1254) RBF SVM 0.89375

(0.1174) L SVM 1 (0) NB 0.85
(0.2016)

CG5|Dll4−
HIF5_avg,
HIF16_avg DT 0.8251

(0.0698) DT 0.8292
(0.1093) L SVM 1 (0) NB 0.845

(0.1952)
HIF8_avg,
HIF25_avg KNN 0.8044

(0.1505) KNN 0.8201
(0.0919) L SVM 1 (0) NB 0.7925

(0.2014)

CG5|CG3

HIF300_avg,
HIF400_avg L SVM 0.5683

(0.4037) LR 0.5292
(0.1507) L SVM 1 (0) KNN 0.85

(0.1613)
HIF300_avg,
HIF50_avg LR 0.5919

(0.4037) LR 0.5626
(0.1652) L SVM 1 (0) KNN 0.8333

(0.1324)

CG5|CG4

D18_avg,
HIF4_rel KNN 0.7811

(0.0485) KNN 0.7948 (0) L SVM 0.8928 (0) DT 0.7272 (0)

D18_avg,
HIF4_avg KNN 0.7811

(0.0485) KNN 0.7948 (0) L SVM 0.8928 (0) DT 0.7272 (0)

CG6|Dll4−
D40_avg,
D2_avg KNN 0.8685

(0.0404) KNN 0.8755
(0.1180) L SVM 0.95

(0.1574 KNN 0.905
(0.1422)

D40_avg,
HIF5_rel KNN 0.8482

(0.01263) KNN 0.8440
(0.1386) RBF SVM 0.9375

(0.1293) KNN 0.8383
(0.1643)

CG6|CG3

HIF300_avg,
HIF350_avg L SVM 0.5729

(0.3995) KNN 0.5318
(0.1215) L SVM 1 (0) NN 0.8583

(0.1733)
HIF300_avg,
HIF180_avg RBF SVM 0.5890

(0.2399) RBF SVM 0.5570
(0.1259) L SVM 1 (0) KNN 0.85

(0.2222)

CG6|CG4

HIF8_avg,
HIF23_avg KNN 0.7278

(0.1917) KNN 0.7437
(0.0904) RBF SVM 1 (0) NB 0.7285

(0.2853)
HIF6_avg,
HIF50_avg NB 0.7280

(0.2263) NB 0.7468
(0.0982) L SVM 1 (0) DT 0.6071

(0.1846)

For each group pair with high and low Dll4 expression levels, 2 sets of feature pairs and best-performing
algorithms listed. For each algorithm, accuracy, sensitivity, specificity metrics, and average metric (Accuracy +
Specificity + Sensitivity)/3 shown. Alg.: classifier algorithm, KNN: Nearest Neighborhood, L SVM: Linear SVM,
RBF SVM: Radial Basis Function kernel SVM, DT: Decision Tree, NB: Naive Bayes, LR: Logistic Regression models.

The highest Ascore for the two best-performing models for CG5|CG4 was 0.78 ± 0.04
compared to CG6|CG4 with an Ascore of 0.72 ± 0.19 and 0.72 ± 0.22, resulting in the
selection of CG5|CG4 for final congenic pair selection.

Finally, from each pair of Dll4+|Dll4−, Dll4+|CG4, CG5|Dll4, and CG4|CG5, four of
the best performing features regardless of the ML model were chosen and were used as
a collection of features for the final feature selection (Table 2). A combination of parental
and consomic groups and the final selected congenic pair (Dll4+, Dll4−, CG5, and CG4)
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was used to select the final feature pair out of the 16 selected features, resulting in the
selection of HIF5_avg and HIF50_avg as the best-performing features.

4.5. Performance of the Classification Models Based on the Selected Features

To evaluate the performance of the selected features, we trained datasets consisting
of all the remaining congenic groups excluding the Dll4+, Dll4−, CG4, and CG5 (CG1 to
CG3 and CG5 to CG8) using 10-fold cross-validation and keeping 25% of the dataset for
testing the trained models. This allowed us to assess the generalizability of our model and
test it on previously unseen datasets. The results of this step are reported as a confusion
matrix, ROC curve, and AUC (Figure 6), as well as general classification metrics (Table 3).
The best-performing models based on the selected features were SVM and KNN, with
sensitivity and specificity of 1.00 and 0.81 and 1.00 and 0.75, respectively.
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Figure 6. Performance of selected features on original dataset. The confusion matrix and ROC plots
for training and testing of best-performing models based on HIF5_avg and HIF50_avg features with
10-fold cross-validation. The dataset includes all rat strains except Dll4+, Dll4−, CG4−, and CG5+.
An amount of 25% of the dataset was used for holdout testing. Top row: SVM model. Bottom row:
Nearest Neighborhood.

In order to further assess the effectiveness of our model, the selected features, and the
generated congenic pair, we generated an augmented dataset consisting of all remaining
congenic pairs excluding Dll4+, Dll4−, CG4 and CG5 (CG1 to CG3 and CG5 to CG8, with
random variations in rotation, horizontal flip, and limited scaling (up to ±2%) to increase
the diversity of the dataset. This resulted in a total of 606 data points. The performance of
the models was evaluated using 10-fold cross-validation and a 20% hold out. The results
of this step were reported as a confusion matrix, ROC curve, AUC (Figure 7), and overall
classification metrics (Table 4). The best-performing models based on the selected features
were SVM and KNN, with sensitivity and specificity of 0.97 and 0.91, and 0.97 and 0.92,
respectively. These results align closely with the performance of the models over the
original dataset, indicating the generalizability of our framework.
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Table 3. Performance of selected features.

SVM KNN
Measure Training Testing Training Testing

Sensitivity 0.9310 1.0000 0.8108 1.0000
Specificity 0.8182 0.8182 0.9286 0.7500
Precision 0.8710 0.7500 0.9677 0.6250

Negative Predictive Value 0.9000 1.0000 0.6500 1.0000
False-Positive Rate 0.1818 0.1818 0.0714 0.2500

False Discovery Rate 0.1290 0.2500 0.0323 0.3750
False-Negative Rate 0.0690 0.0000 0.1892 0.0000

Accuracy 0.8824 0.8824 0.8431 0.8235
F1 Score 0.9000 0.8571 0.8824 0.7692

Matthews Correlation Coefficient 0.7600 0.7833 0.6758 0.6847
The training and testing metrics of the best-performing models based on the selected features HIF5_avg and
HIF50_avg with 10-fold cross-validation are shown. The training dataset includes features extracted from the
original NIR time series data of all congenic groups except CG5+ and CG4−, and 25% of the dataset was used for
holdout testing of the models. SVM: Support Vector Machine, KNN: Nearest Neighborhood.
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Figure 7. Performance of selected features on augmented dataset. The confusion matrix and ROC
plots for training and testing of best-performing models based on HIF5_avg and HIF50_avg features
with 10-fold cross-validation. The dataset includes all rat strains except Dll4+, Dll4−, CG4−, and
CG5+. 25% of the dataset was used for holdout testing. Top row: SVM model. Bottom row:
Nearest Neighborhood.

Table 4. Performance of selected features on augmented dataset.

SVM KKN
Measure Training Testing Training Testing

Sensitivity 0.9253 0.9756 0.9702 0.9762
Specificity 0.9132 0.9125 0.9211 0.9241
Precision 0.8564 0.8511 0.867 0.8723

Negative Predictive Value 0.9562 0.9865 0.9832 0.9865
False Positive Rate 0.0868 0.0875 0.0789 0.0759

False Discovery Rate 0.1436 0.1489 0.133 0.1277
False Negative Rate 0.0747 0.0244 0.0298 0.0238

Accuracy 0.9175 0.9339 0.9381 0.9421
F1 Score 0.8895 0.9091 0.9157 0.9213

Matthews Correlation Coefficient 0.8254 0.8625 0.8705 0.8793
The training and testing metrics of the best-performing models based on the selected features HIF5_avg and
HIF50_avg with 10-fold cross-validation are shown. The training dataset includes features extracted from the
original NIR time series data of all congenic groups except CG5+ and CG4-, and 25% of the dataset was used for
holdout testing of the models. SVM: Support Vector Machine, KNN: Nearest Neighborhood.
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It is noteworthy that of the 16 most contributing features used to select the final feature
pair, 12 were the newly proposed HIF features, and the other 4 were DS features, which we
previously reported [48]. Additionally, the HIF features were amongst the best features for
identifying genetic TME modifiers.

The relationship between covariance of the repeated measures and optimal feature
design in machine learning classification algorithms is an essential factor in developing
effective classification algorithms. Combined with our recent report [47], our analysis found
that the DS and HIF features, which are generated in regions where the NIR signal varies
from half of its peak value to the peak value and at the tail of the curve, were particularly ef-
fective in discriminating between benign/malignant tumors (DS features) and groups with
different levels of Dll4 expression (HIF features). Furthermore, the projection of the covari-
ance matrix onto the time axis revealed similar regions, indicating a relationship between
this projection and optimal feature design. These findings have significant implications for
feature design in machine learning classification algorithms. By focusing on the regions
with the greatest amount of useful information for discrimination, we can design features
specifically to capture these differences and improve the accuracy of tumor classification.
This can ultimately lead to better therapy outcomes for patients. It is worth noting that this
relationship between the covariance of the repeated measures and optimal feature design is
not limited to HIF features and the specific context of our analysis. In general, considering
the covariance of repeated measures can provide valuable information for identifying key
regions and designing effective features for machine learning classification algorithms.

5. Conclusions

Dynamic vascular imaging techniques such as DCE-MRI and perfusion CT are used to
extract multiple vascular parameters and have been used in clinical trials of anti-angiogenic
drugs. However, these techniques have limitations, such as low temporal resolution and
the need for specialized hardware and software [41,42]. To overcome these limitations,
dynamic near-infrared (NIR) fluorescence imaging can serve as an effective alternative for
characterizing germline-dependent vascular phenotypes. It can be combined with other
modalities, such as in a paired-agent or multimodal MRI and fluorescence tomography
approaches for noninvasive quantification of response to anti-angiogenesis therapy and
classifying in vivo vascular phenotypes [7,43,44,67]. Furthermore, DE-NIR imaging, as
a potential alternative for characterizing germline-dependent vascular phenotypes in
preclinical models, can be extended to clinical modalities upon validation with cross-
sectional dynamic contrast enhanced imaging.

The present study proposes that by combining DE-NIR imaging and machine learning
algorithms with consomic xenograft models with human tumors, the role of inherited notch
protein Dll4 (rat variant of delta like canonical ligand 4) expression specifically in the host
vascular microenvironment can be studied. Specifically, in the context of breast cancer,
where different genetic subtypes can impact treatment outcomes, identifying patients with
high or low DLL4 (human variant of delta like canonical ligand 4) expression levels through
noninvasive imaging could assist in selecting personalized treatment options. Nonetheless,
the study authors acknowledge notable differences between the rat model utilized in the
study and the human system, which could affect the generalization of the findings to
human cases, as in human tumors DLL4 expression maybe be both on tumor cells and
host vasculature, whereas in our CXM model, we focused specifically on the inherited
variation in rat-derived host vasculature Dll4 expression in human xenograft tumors. Such
differences may result in amplification or suppression of vascular phenotype responses if
both tumor cells and the host microenvironment express high levels or contrasting levels of
DLL4. However, even in that case, dynamic imaging will be useful in identifying patients
likely to respond better to DLL4 targeted therapies.

Future studies will be necessary to validate this study’s findings, to assess the reliabil-
ity and validity of the developed imaging and machine learning algorithms in a large and
diverse patient population to determine if contrast agent kinetic profiles observed in human
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DCE-MRI or dyna-CT imaging datasets for primary and/or metastatic disease differ in
human patients with high vs. low DLL4 expression. In the metastatic setting, where surgery
is no longer an option, a machine-learning-enabled analysis of dynamic contrast-enhanced
imaging will be valuable to assess the expression levels of DLL4 and guide therapy selection,
especially in cases where a biopsy is not taken or if biopsy results are inconclusive [72,73].
Human anti-DLL4 antibodies have been reported for cancer treatment [54,74–76]. In one
study, immunotoxin DLL4Nb-PE was developed, potentially as a cell cytotoxic agent and
angiogenesis maturation inhibitor [76]. Another study successfully developed a bispecific
monoclonal antibody that targets both human DLL4 and VEGF and showed efficacy in
inhibiting proliferation, migration, and tube formation of human umbilical vein endothelial
cells (HUVEC) [74]. In a phase 1a trial, navicixizumab, a bispecific antibody that inhibits
DLL4 and VEGF, was tested in refractory solid tumor patients and showed the potential
to inhibit tumor growth [75]. While DLL4 blockade is an attractive therapy, long-term
extended use of DLL4 mAbs has demonstrated concerning off-target effects [77,78]. Phar-
macokinetic modulation of DLL4 mAbs may reduce off-target effects [77], such as via
short-term administration or by focusing on patients where dynamic contrast imaging
indicates a high DLL4 vascular phenotype. As we have shown in prior work, high vascular
DLL4 expressing tumors may also be susceptible to DLL4 targeted nanomedicine [38] or
as combination therapy with anti-DLL4 monoclonal antibodies with nanomedicine drugs
such as nab-paclitaxel (Abraxane) or Liposomal Doxorubicin (DoxilTM).

The use of noninvasive DE-NIR imaging to detect heritable TME modifiers is sig-
nificant for several reasons. First, this method allows for the identification of potential
modifiers without the need for invasive procedures, reducing the potential for discomfort
and complications for patients. Second, the use of machine learning and DE-NIR imaging to
develop a predictive model for cancer nanomedicine therapy can support effective decision
making in the treatment process. While data processing and preparation and algorithm
training can be complex, the resulting algorithms are simple and allow for the prediction of
heterogeneity in a single step using ROI brightness measurements. Interestingly, traditional
features such as time-to-peak and upslope do not appear in our selection of the most
discriminative features. However, two novel features derived from HIF (HIF5_avg and
HIF50_avg), which is a measure of the temporal inhomogeneity of both the initial uptake
and decay of ICG fluorescence, were identified.

It is important to note that the training and testing sets used in this study are minimal,
and therefore the high accuracy rates obtained should be interpreted with caution. Further
research with larger datasets will be necessary to assess the reliability and validity of these
findings with confidence.

We have reported novel dynamic enhanced near-infrared (NIR) fluorescence imaging
and machine learning algorithms to noninvasively assess Dll4 expression levels in tumors.
Our results showed that observation of subtle differences in vasculature structure and
perfusion patterns characterized by ICG time kinetics could be used to differentiate between
inherited tumor vascular microenvironment differences, such as Dll4 expression levels.
Additionally, our analysis demonstrated the importance of considering the covariance of the
repeated measures in the design of features for machine learning classification algorithms.
By utilizing this information, we can improve the accuracy of tumor classification and
ultimately improve therapy outcomes for patients.

To summarize, based on our recent study, we investigated the impact of genetically
heterogeneous notch-Dll4 inheritance on the contrast agent uptake and clearance in triple-
negative breast cancer xenografts. The differences in Dll4 inheritance have been shown
to impact nanomedicine biodistribution, pharmacokinetics, and therapy response in our
prior work. Thus, our results indicated that imaging can be potentially employed for
selecting patients for Dll4-directed therapies by identify host microenvironments with high-
or low-expressing Dll4 inheritance. This further suggests that the success of nanomedicine
might depend on hereditary tumor microenvironment genes, regardless of tumor type.
Additionally, host genes such as Dll4 can affect individual differences in NP uptake and
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response to NP-mediated therapies, providing the potential for more effective personalized
Dll4 targeted nanomedicine for therapy-resistant hosts. Further studies are needed to
validate these findings and explore the potential clinical applications of this approach.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15051460/s1, Figure S1: Principal component analysis;
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