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Simple Summary: Early and accurate bladder cancer staging is important as it determines the mode
of initial treatment. Non-muscle invasive bladder cancer (NMIBC) can be treated with transurethral
resection whereas muscle invasive bladder cancer (MIBC) requires neoadjuvant chemotherapy
with subsequent cystectomy as indicated. Our hybrid machine/deep learning model demonstrates
improved accuracy of bladder cancer staging by CECT using a hybrid machine/deep learning model
which will facilitate appropriate clinical management of the patients with bladder cancer, ultimately
improving patient outcome.

Abstract: Accurate clinical staging of bladder cancer aids in optimizing the process of clinical
decision-making, thereby tailoring the effective treatment and management of patients. While
several radiomics approaches have been developed to facilitate the process of clinical diagnosis
and staging of bladder cancer using grayscale computed tomography (CT) scans, the performances
of these models have been low, with little validation and no clear consensus on specific imaging
signatures. We propose a hybrid framework comprising pre-trained deep neural networks for feature
extraction, in combination with statistical machine learning techniques for classification, which is
capable of performing the following classification tasks: (1) bladder cancer tissue vs. normal tissue,
(2) muscle-invasive bladder cancer (MIBC) vs. non-muscle-invasive bladder cancer (NMIBC), and
(3) post-treatment changes (PTC) vs. MIBC.

Keywords: bladder cancer; urothelial carcinoma; lymph node metastasis; deep learning; computed
tomography (CT) imaging; machine learning

1. Introduction

Bladder cancer imaging can be misleading. Findings such as perivesical fat stranding,
hydronephrosis, focal bladder wall thickening, or a small bladder lesion may be wrongly
perceived as a more advanced stage of bladder cancer. It is common to see small lymph
nodes in the pelvis post transurethral resection of bladder tumor (TURBT) [1–3] or at the
time of diagnosis [4]. These otherwise non-significant lymph nodes may harbor metastasis,
which in turn might be difficult to decipher relying solely on visual inspection from CT
scans [5,6]. Furthermore, bladder cancer is a heterogeneous disease with an extremely
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varied range of case-specific diagnoses [7,8]. From low-grade tumors such as Ta (noninva-
sive papillary carcinoma) and Tis (tumor in situ or “flat lesion”), which require TURBT or
less aggressive endoscopic intervention [8], to high-grade muscle-invasive tumors, which
require chemotherapy [9,10], bladder cancer diagnosis is highly dependent on the type and
stage of the tumor [4,6,11].

Radiomics can provide tools to significantly improve the accuracy of clinical staging
by analyzing multiple qualitative features, including but not restricted to texture analysis,
raw digital data and deep model-generated embeddings.

Texture analysis helps capture local patterns in images from the intensity informa-
tion contained within them. Such features are very effective in identifying tissue types
from grayscale medical scans. The texture-based features generally used in medical imag-
ing can be broadly categorized into two subdivisions, namely statistical approaches and
transformation-based approaches.

First, we will review some of the most commonly used statistical texture features
for bladder cancer detection and staging from medical scans. Ref. [12] utilized a set of
functional, second-order statistical and morphological features to perform staging between
T1 and T2 types of bladder cancer from MRI scans. The second-order statistical feature
extraction approach included a total of 25 GLCM features and 16 gray level run length
matrix (GLRLM) features obtained from 42 bladder MRIs (21 T1, 21 T2) post ROI segmen-
tation, yielding an accuracy, sensitivity and specificity of 95.24% and an AUC of 98.64%.
Furthermore, the authors also performed an extensive comparison between their proposed
model and two state-of-the-art approaches, namely [13,14]. Ref. [15] makes use of LBP
and GLCM features to perform primary tumor staging of bladder cancer into two groups:
(1) tumor stage and primary tumor located completely within the bladder; (2) tumor stage
and primary tumor extending outside the bladder. The SVM classifier, which was trained
on T2-weighted MRI scans from 65 bladder cancer patients all with stage 1, reported an
AUC of 80.60%. Ref. [16] performs prediction of recurrence and progression of urothelial
carcinoma from a dataset of 42 patients—13 without recurrence, 14 with recurrence but
not progression, and 15 with progression. Features extracted using LBP and local vari-
ance, after classification using the RUSBoost classifier, provided an accuracy of 70% and
sensitivity of 84%. Ref. [17] utilizes LBP and GLCM features to classify the invasiveness
of bladder cancer. The dataset comprised T2-weighted MRI scans from 65 preoperative
bladder cancer patients followed by radical cystectomy. The proposed model reported a
patient-level sensitivity of 74.20%, specificity of 82.40%, accuracy of 78.50% and AUC of
80.60%. Ref. [18] performed survival prediction of bladder urothelial carcinoma (BLCA)
from CECT scans by utilizing LBP, wavelet and GLCM features. The dataset comprised
scans from 62 bladder cancer patients with stages of urothelial carcinoma. The radiomics
features extracted from the CECTs were used in combination with RNA-seq data for a
complete radiogenomics signature, which in turn helped predict the survival of the patients.
This study exhibits the applicability of radiomics and transcriptomics data in predicting
BLCA survival. However, owing to the sheer small size of the dataset, the authors think
that the model needs to be validated on a larger set of samples for a more foolproof analysis.
The literature exhibits that statistical texture analysis is not only fast and easy to implement
but also very effective in performing classification, staging and segmentation of bladder
cancer from medical images.

Transformation-based approaches such as Fourier and Gabor wavelet transform are
very effective in learning textural patterns from images and are therefore a popular option
among medical imaging researchers. Ref. [19] utilized Gabor features to perform carcinoma
cell classification from biopsy images associated with 14 distinct cancer types, scanned from
14 different patients. An SVM classifier with a radial basis function (RBF) kernel was subse-
quently trained on these features. The SVM classifier provides the highest cross-validation
accuracy of 99.20% with a Gabor window size of 400 pixels and an image magnification
of 10. Ref. [20] makes use of 2D Fourier-based features to identify cancer from 182 optical
coherence tomography (OCT) scans obtained from 21 patients who were identified as high
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risk of having transitional cell carcinoma (TCC) and from 68 different areas of the bladder.
The task was two-fold: (1) to perform classification between non-cancerous, dysplasia,
carcinoma in situ (CIS), and papillary lesions; (2) to predict the invasiveness of the lesion.
Other than 2D Fourier transform, the authors also extracted four different statistical feature
extraction approaches, resulting in a total of 74 features obtained from the raw OCT images.
A simple cross-correlation-based filter with a correlation threshold of 0.85 was employed
for feature selection, which resulted in a final set of nine selected features. The decision
tree classifier was utilized to finally perform classification on the selected feature set. The
authors reported a non-cancerous versus cancerous classification sensitivity of 92.00% and
specificity of 62.00%. Ref. [21], which has been summarized earlier, reports that GLCM and
GLDM perform better than Fourier transform-based feature extractors in differentiating
between tumors and peritumoral fat tissues.

From the literature reviewed above, it is evident that texture analysis is an effective ap-
proach when performing classification tasks on medical imaging, in general, and histologic
analysis in particular.

Recently, deep learning-based models have emerged and gained popularity among
researchers owing to their automatic feature extraction capabilities. Convolutional neural
networks (CNNs) are the most commonly used type of deep models and a very popular
framework when performing classification tasks on imaging-based applications, in general,
and radiological data in particular. The authors of [22] designed a set of nine CNN-based
models for the classification of MIBC and NMIBC from contrast-enhanced CT (CECT)
images. The dataset comprised 1200 CT scans obtained from 369 patients undergoing
radical cystectomy. A total of 249 out of these patients had NMIBC, while the remaining 120
had MIBC. The CNN model was pre-trained on the ImageNet dataset in order to improve
classification performance. The model with the highest AUC on the test set was obtained
using the VGG16 algorithm—with an AUC of 99.70%, accuracy of 93.90%, sensitivity of
88.90%, specificity of 98.90%, precision of 98.80% and negative predictive value of 89.90%.
In contrast, the authors of [13] made use of Haralick features, which are a variant of GLCM,
to identify muscular invasiveness in MRI scans containing a total of 118 volumes of interest
(VOI) obtained from 68 patients—34 volumes labeled non-muscle-invasive bladder cancer
(NMIBC), and 84 labeled muscle-invasive bladder cancer (MIBC). The final SVM classifier
obtained an AUC of 86.10% and Youden index of 71.92%.

Ref. [21] performs classification between bladder cancers with and without response
to chemotherapy from a set of CT scans obtained before and after treatment. The authors
have reviewed three different models and their capabilities in performing classification:
(1) a deep learning-convolutional neural network-based model (DL-CNN); (2) a more
deterministic radiomics feature-based classifier (RF-SL); (3) an intermediate model that
extracts radiomics features from image patterns (RF-ROI). The training dataset comprised
82 patients having 87 bladder cancers, scanned pre- and post-chemotherapy. The test
set comprised 41 patients with 43 cancers. The radiomics feature-based model (RF-SL)
performed the best with an AUC of 77.00%, while the two radiologists reported AUCs of
76.00% and 77.00%, respectively.

Ref. [23] proposed a CNN-based model for performing classification between low-
and high-stage bladder cancer. The training dataset comprised 84 bladder cancer CR
urography (CTU) images obtained from 76 patients (43 CTUs contained low-stage cancer,
while 41 contained high-stage cancer). The test set consisted of 90 bladder CTUs obtained
from 86 patients. The CNN classifier had a test set prediction accuracy of 91.00%, which the
authors claim is higher as compared to texture-based classification using SVM on the same
dataset (which had a prediction accuracy of 88.00%). In comparison, ref. [21] extracted
GLCM- and histogram-based features from apparent diffusion coefficient (ADC) and
diffusion-weighted images (DWI) to perform bladder cancer grading. A total of 61 patients
were scanned for this study, 32 out of whom were in low-grade and the remaining 29 in
high-grade classes. A combination of 102 GLCM and histogram features were initially
extracted, out of which 47 were finally selected using the Mann–Whitney U-test, and an
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SVM classifier was used to perform classification between high- and low-grade bladder
cancer with an accuracy of 82.90%. Ref. [21] extracted histogram and GLCM features to
perform classification between high-grade and low-grade bladder cancer scans from a
set of diffusion-based MRIs obtained from 61 bladder cancer patients (32 of them having
low-grade and 29 having high-grade bladder cancer), yielding an accuracy of 82.90% and
area under the curve (AUC) of 86.10%. Ref. [24] made use of GLCM, wavelet filter and
Laplacian of Gaussian filter to extract features from a small dataset of 145 patients to
perform grading on bladder cancer CT scans. Out of these 145 scans, 108 were used to train
the model, and the remaining 37 were used to perform validation. The model provided an
accuracy of 83.80% on the validation set.

From the literature reviewed above, it is evident that neural network-based classifiers
are more effective than texture analysis when performing identification and staging of
bladder cancer from medical imaging alone.

The authors of [25] claim that feature extraction when governed by domain knowledge
performs better than CNN-based classifiers that are capable of automatic feature generation.
The task in this case was to classify two early stages of bladder cancer that are histolog-
ically difficult to differentiate, namely Ta (non-invasive) and T1 (superficially invasive).
The dataset comprised a total of 1177 bladder scans—460 non-invasive, 717 superficially
invasive. CNN classifiers achieved the highest accuracy of 84.00%, performing consider-
ably poorer than supervised machine learning classifiers that were trained on manually
extracted features. The aforementioned literature on CNNs comprises end-to-end models,
where both training and testing are performed on the same dataset. The problem with
such an approach is that deep neural networks require large quantities of training data
in order to avoid the pervasive issue of over-fitting. As a substitute to end-to-end deep
models, researchers make use of a concept called “transfer learning”, where the neural
network is first pre-trained on a large dataset such as ImageNet, and the learned weights
are subsequently fine-tuned on the small target data. Since we were using a small dataset
of 200 CT scans for this study, we decided to make use of transfer learning to improve
classification results and alleviate overfitting. A 71-layer ResNet-18 model pre-trained on
the publicly available ImageNet dataset was utilized to extract features from the bladder
scans. The extracted features, after feature selection using a combination of supervised
and unsupervised techniques, were finally used to perform classification by five different
machine learning classifiers, namely k-nearest neighbor (KNN), support vector machine
(SVM), linear discriminant analysis (LDA), decision tree (DT) and naive Bayes (NB).

2. Materials and Methods

Figure 1 provides a pictorial depiction of the entire workflow, starting from the raw
bladder scans to the prediction labels obtained after classification. The proposed methodol-
ogy comprises feature extraction, feature selection, and finally classification. In this hybrid
approach, we extract feature vectors from the images using the trained model weights
from the last pooling layer of the five most widely used pre-trained deep models, namely
AlexNet, GoogleNet, InceptionV3, ResNet-50 and XceptionNet. We subsequently employ
our feature selection algorithm on this feature vector. Finally, we use five machine learning
classification algorithms on the selected feature set, namely k-nearest neighbor (KNN),
naive Bayes (NB), support vector machine (SVM), linear discriminant analysis (LDA) and
decision tree (DT).

2.1. Feature Extraction Using Pre-Trained Deep Models

Five popular neural network-based deep models, namely AlexNet, GoogleNet, Incep-
tionV3, ResNet-50 and XceptionNet, all pre-trained on the ImageNet dataset [26], were
trained using our bladder CT scan data to fine-tune the model parameters. The trained
weights from the last pooling layer of each of these models were extracted and subsequently
used as feature descriptors. Table 1 provides a comprehensive description of each of these
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models—including information regarding the pooling layer and the size of the extracted
feature vector.

Figure 1. A schematic representation of the overall workflow.

Table 1. A description of the five pre-trained models used for feature extraction from the bladder
scans, namely AlexNet, GoogleNet, InceptionV3, ResNet-50 and XceptionNet. The table contains the
total number of layers per model; the last pooling layer from which features were being extracted;
the layer number of the last pooling layer; and the length of the extracted feature vector.

Pre-Trained
Model

Total No. of
Layers in the

Network

Last Pooling
Layer

Layer No. of the
Last Pooling

Layer

Feature Vector
Length

AlexNet 25 Max Pooling 16 9216

GoogleNet 144 Global Average
Pooling 140 1024

InceptionV3 315 Global Average
Pooling 312 2048

ResNet-50 177 Global Average
Pooling 174 2048

XceptionNet 170 Global Average
Pooling 167 2048

2.2. Feature Selection Mechanism

An ensemble feature selection technique was used to select the most important features
from the originally extracted feature vector—which was obtained using five different pre-
trained models, namely AlexNet, GoogleNet, Inception V3, ResNet-50 and XceptionNet, for
performing the classification of normal vs. metastatic lymph nodes. First, we make use of a
“sparsity filter” to remove the features that were not updated by the deep model. Through
this step, we not only exclude features that have low variance but also automatically
remove those that are less likely to have an impact on the classification process. Next, we
utilize the “data imputer” to impute the unchanged values of the remaining columns by the
mean value of the respective column. Subsequently, we made use of the “low coefficient
of variation (CV) filter” to drop features with a CV value of less than 0.01 CV, or standard
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deviation normalized by mean, is a measure of information content; a lower CV indicates
features with a lower normalized variance. Furthermore, in the next step, a correlation
matrix was generated, which contains information regarding the cross-correlation values
between every pair of features. For each pair with >95% correlation, the one with a lower
correlation to the output is dropped. Finally, we employed random forest, a boosted
decision tree algorithm, to train the remaining columns and target variables for feature
importance score generation. The number of trees was set to a default value of 100, and the
Gini index was used as the metric for calculating feature importance. The first four steps
were unsupervised (statistical approaches used to perform selection on features alone, not
labels); the last feature importance calculation step was supervised (relationship between
dependent and independent variables critical in determining feature selection). Figure 2
provides a schematic depiction of the feature selection algorithm.

Figure 2. A pictorial representation of the feature selection procedure.

2.3. Machine Learning-Based Classification

The important features obtained using the feature selection algorithm were used
as inputs into the machine learning classifier. The three classification tasks that were
performed were: (1) normal vs. bladder cancer, (2) NMIBC vs. MIBC, (3) post-treatment
changes (PTC) vs. MIBC. A 10-fold cross-validation was utilized to evaluate the prediction
performance of the proposed model. The samples were randomly re-arranged, then the
dataset was split into 10 equal divisions. Nine of these divisions, at every iteration, were
used for training; and the remaining was one used for testing. This process was repeated
for 10 iterations, each time the test set being a different group. The prediction evaluation
metrics calculated across the ten iterations were averaged and reported. Classification was
performed using five different machine learning classifiers, namely k-nearest neighbor
(KNN), naive Bayes (NB), support vector machine (SVM), linear discriminant analysis
(LDA) and decision tree (DT).

2.4. Evaluation Metrics

In order to evaluate the efficacy of the classification model, the following five metrics
were used:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Sensitivity =
TP

TP + FN
(2)

Speci f icity =
TN

TN + FP
(3)
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Precision =
TP

TP + FP
(4)

F1 =
2 × Precision × Sensitivity

Precision + Sensitivity
(5)

where TP is the # of true positives, TN is the # of true negatives, FP is the # of false positives
and FN is the # of false negatives.

Since our dataset is small and highly imbalanced, accuracy, precision and recall are not
ideal in representing the classification performance of the models. Therefore, the F1-score
was used to determine the overall effectiveness of the classifiers. While accuracy represents
the overall percentage of correctly classified samples, precision represents the percentage of
identified samples where the condition actually exists, and recall represents the proportion
of samples with the condition that have been correctly diagnosed, none of them corrects for
data imbalance. The F1-score, which is the harmonic mean of precision and recall, has been
employed to rank classifiers in terms of diagnostic performance for this particular study.

3. Software and Tools

MATLAB version R2021b (developed by MathWorks, Massachussets USA) was used
for the purpose of feature extraction and machine learning-based classification (The Deep
Learning Toolbox was used to train the five pre-trained deep models, namely AlexNet,
GoogleNet, InceptionV3, ResNet50 and XceptionNet. The Statistics and Machine Learning
Toolbox was used to train the four machine learning-based classifiers, namely naive Bayes,
support vector machine, linear discriminant analysis and decision tree).

ImageJ (developed by National Institutes of Health, Maryland USA) and RadiAnt
Dicom Viewer (open source application) were used to analyze the CT images. BioRender
was used to generate all the illustrations in the paper (Figures 1–4).

Python 3 (open source programming language) was used to program the feature
selection workflow and generate the plots containing the F1-scores per model per classifier
(Figures 5–7).

4. Dataset

A urothelial carcinoma dataset was provided by Mayo Clinic, Arizona. The dataset
contained de-identified grayscale CT scans obtained from patients who were imaged before
radical cystectomy and pelvic lymph node dissection as part of a trial. The location of each
bladder mass was confirmed, and labels of the preoperative CT data were generated. The
labels were “cancer” (meaning malignant cells) and “normal” (normal bladder wall).

There were a total of 100 CT scans of the pelvis with intravenous contrast images
visualizing the bladder, obtained from 100 patients (one image captured per patient).
Each scan had 2 masks (normal bladder wall and bladder cancer) manually annotated
by encompassing both the entire region of biopsy-proven malignancy and the normal-
appearing bladder by two radiologists familiar with bladder imaging, which were used to
extract the respective regions of interest (ROI)—therefore resulting in 200 ROIs (100 normal
tissue and 100 abnormal tissue). These ROIs were used as input for classification instead
of the entire image. The patients were distributed across seven bladder cancer stages,
namely Ta, Tis, T0, T1, T2, T3 and T4. Figure 3 provides an axial CT scan with IV contrast,
along with its corresponding region of interest (ROI) on the bladder wall, pertaining to
each of the seven stages. T0 represents a stage where the tissue of interest shows no
evidence of malignancy, possibly but not necessarily following tumor resection and/or
chemotherapy. This indicates carcinoma in situ, where the malignant cells only involves the
innermost lining of the bladder wall. T1 represents a stage where malignant cells involve
the connective tissue beyond the innermost lining without involvement of the bladder
muscle. T2 represents the malignant spread of tumor involving the bladder muscle. T3
represents a stage where malignant mass spreads outside the confines of bladder muscle
with involvement of the perivesical fat. T4 stage indicates the spread of tumor beyond
the bladder with involvement of abdominal/pelvic wall and/or nearby organs. Ta, Tis
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and T1 stages are classified as non-muscle-invasive bladder cancer (NMIBC); T2, T3 and T4
stages are classified as muscle-invasive bladder cancer (MIBC) [4,27]. Figure 4 is a pictorial
depiction of the different stages of bladder cancer. As is evident from Figure 3, the stages
are difficult to distinguish on visual inspection—thereby making it suitable for classification
using AI-based models. Table 2 provides a summary of the number of patients per stage.

Figure 3. One bladder CT scan per stage (along with the corresponding regions of interest that were
used in the various classification tasks) have been provided. The 7 stages of urothelial carcinoma
analyzed in the study are: Ta, Tis, T0, T1, T2, T3 and T4 (T0 has not been shown in the figure because
T0 represents a stage where the tissue of interest shows no evidence of malignancy).

Figure 4. A pictorial representation of the 7 stages of urothelial carcinoma analyzed in the study (T0

has not been shown in the figure because T0 represents a stage where the tissue of interest shows no
evidence of malignancy).
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Table 2. A summary of the number of patients per stage.

Ta Tis T0 T1 T2 T3 T4

6 9 35 9 13 24 4

5. Results

The proposed model was used to perform three different classification tasks during the
course of this study: (1) normal vs. bladder cancer; (2) NMIBC vs. MIBC; (3) post-treatment
changes (PTC) vs. MIBC. In this section, for each of the three tasks, the best classification
performances corresponding to each of the five pre-trained deep model-based features
have been presented. The class-wise number of ROIs used for each of the individual tasks
has also been summarized.

5.1. Normal vs. Cancer

Normal vs. cancer classification was performed with 10-fold cross-validation on a
dataset of 165 ROIs (100 normal, 65 cancer)—35 T0 images were not relevant because they
represent post-treatment changes (PTC) and not cancer. The LDA classifier on XceptionNet-
based features provides the best performance with an accuracy of 86.07%, sensitivity
of 96.75%, specificity of 69.65%, precision of 83.07% and F1-score of 89.39%. Table 3
summarizes the classification performances of the 10-fold machine learning classifiers on
features extracted from each of the five pre-trained deep models (results visualized on the
associated Figure 5 bar plot).

Table 3. Classification performances of the 10-fold machine learning classifiers on features extracted
from each of the five pre-trained deep models.

Feature
Extractor Classifier Accuracy Sensitivity Specificity Precision F1-Score

AlexNet

NB 0.8053 ± 0.0029 0.8936 ± 0.004 0.6694 ± 0.0054 0.8062 ± 0.0025 0.8476 ± 0.0024
SVM 0.7835 ± 0.0058 0.8944 ± 0.0056 0.6128 ± 0.0122 0.7805 ± 0.0055 0.8335 ± 0.0043
LDA 0.7987 ± 0.0037 0.9307 ± 0.0027 0.5957 ± 0.0078 0.7799 ± 0.0034 0.8486 ± 0.0026
DT 0.7373 ± 0.0113 0.8043 ± 0.0120 0.6342 ± 0.0231 0.7724 ± 0.0114 0.7877 ± 0.0089

GoogleNet

NB 0.7642 ± 0.0049 0.8674 ± 0.0058 0.6054 ± 0.0085 0.7718 ± 0.0040 0.8168 ± 0.0039
SVM 0.7661 ± 0.0053 0.8921 ± 0.0068 0.5722 ± 0.0084 0.7624 ± 0.0038 0.8221 ± 0.0043
LDA 0.7899 ± 0.0036 0.9368 ± 0.0038 0.5640 ± 0.0061 0.7678 ± 0.0027 0.8439 ± 0.0027
DT 0.7562 ± 0.0136 0.8056 ± 0.0167 0.6803 ± 0.0231 0.7954 ± 0.0123 0.8001 ± 0.0116

InceptionV3

NB 0.7988 ± 0.0031 0.9016 ± 0.0042 0.6406 ± 0.0052 0.7942 ± 0.0024 0.8445 ± 0.0025
SVM 0.7740 ± 0.0042 0.9036 ± 0.0041 0.5746 ± 0.0080 0.7657 ± 0.0036 0.8290 ± 0.0031
LDA 0.7935 ± 0.0012 0.9096 ± 0.0010 0.6148 ± 0.0019 0.7841 ± 0.0009 0.8422 ± 0.0009
DT 0.7295 ± 0.0127 0.7690 ± 0.0155 0.6686 ± 0.0211 0.7816 ± 0.0114 0.7749 ± 0.0110

ResNet50

NB 0.8248 ± 0.0039 0.9290 ± 0.0045 0.6646 ± 0.0073 0.8100 ± 0.0034 0.8654 ± 0.0030
SVM 0.7771 ± 0.0051 0.9092 ± 0.0065 0.5738 ± 0.0081 0.7665 ± 0.0036 0.8317 ± 0.0040
LDA 0.7862 ± 0.0028 0.9224 ± 0.0043 0.5766 ± 0.0056 0.7702 ± 0.0022 0.8395 ± 0.0022
DT 0.8079 ± 0.0111 0.8418 ± 0.0135 0.7558 ± 0.0256 0.8424 ± 0.0135 0.8416 ± 0.0089

XceptionNet

NB 0.8395 ± 0.0035 0.8866 ± 0.0048 0.7671 ± 0.0058 0.8542 ± 0.0031 0.8701 ± 0.0030
SVM 0.8322 ± 0.0047 0.9614 ± 0.0034 0.6335 ± 0.0100 0.8015 ± 0.0045 0.8742 ± 0.0033
LDA 0.8607 ± 0.0038 0.9675 ± 0.0027 0.6965 ± 0.0094 0.8307 ± 0.0042 0.8939 ± 0.0026
DT 0.8145 ± 0.0099 0.8453 ± 0.0134 0.7672 ± 0.0173 0.8486 ± 0.0095 0.8466 ± 0.0086
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Figure 5. F1-scores of the 10-fold machine learning classifiers on features extracted from each of the
five pre-trained deep models.

5.2. NMIBC vs. MIBC

NMIBC vs. MIBC classification was performed with 10-fold cross-validation on a
dataset of 65 ROIs (24 NMIBC, 41 MIBC). The LDA classifier on XceptionNet-based features
provides the best performance with an accuracy of 79.72%, sensitivity of 66.62%, specificity
of 87.39%, precision of 75.58% and F1-score of 70.81%. Table 4 summarizes the classification
performances of the 10-fold machine learning classifiers on features extracted from each of
the five pre-trained deep models (results visualized on the associated Figure 6 bar plot).
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Figure 6. F1-scores of the 10-fold machine learning classifiers on features extracted from each of the
five pre-trained deep models.
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Table 4. Classification performances of the 10-fold machine learning classifiers on features extracted
from each of the five pre-trained deep models.

Feature
Extractor Classifier Accuracy Sensitivity Specificity Precision F1-Score

AlexNet

NB 0.7768 ± 0.0067 0.6746 ± 0.0117 0.8366 ± 0.0089 0.7079 ± 0.0112 0.6905 ± 0.0090
SVM 0.7709 ± 0.0143 0.6692 ± 0.0244 0.8305 ± 0.0147 0.6989 ± 0.0214 0.6830 ± 0.0203
LDA 0.7963 ± 0.0065 0.6650 ± 0.0125 0.8732 ± 0.0076 0.7547 ± 0.0114 0.7067 ± 0.0097
DT 0.7160 ± 0.0215 0.6008 ± 0.0445 0.7834 ± 0.0286 0.6223 ± 0.0329 0.6079 ± 0.0324

GoogleNet

NB 0.7480 ± 0.0108 0.5867 ± 0.0202 0.8424 ± 0.0124 0.6864 ± 0.0178 0.6319 ± 0.0166
SVM 0.7238 ± 0.0088 0.4462 ± 0.0158 0.8863 ± 0.0107 0.6984 ± 0.0215 0.5438 ± 0.0154
LDA 0.7758 ± 0.0069 0.6583 ± 0.0157 0.8446 ± 0.0064 0.7127 ± 0.0099 0.6841 ± 0.0120
DT 0.7740 ± 0.0220 0.6925 ± 0.0408 0.8217 ± 0.0239 0.6968 ± 0.0312 0.6925 ± 0.0310

InceptionV3

NB 0.7575 ± 0.009 0.6137 ± 0.0194 0.8417 ± 0.0093 0.6945 ± 0.0139 0.6511 ± 0.0149
SVM 0.7242 ± 0.0069 0.4163 ± 0.0179 0.9044 ± 0.0033 0.7174 ± 0.0114 0.5263 ± 0.0167
LDA 0.7698 ± 0.0060 0.5854 ± 0.0134 0.8778 ± 0.0056 0.7373 ± 0.0098 0.6523 ± 0.0105
DT 0.6909 ± 0.0210 0.5300 ± 0.0409 0.7851 ± 0.0306 0.5963 ± 0.0353 0.5572 ± 0.0306

ResNet50

NB 0.6878 ± 0.0103 0.8013 ± 0.0135 0.6215 ± 0.0149 0.5539 ± 0.0105 0.6547 ± 0.0098
SVM 0.7240 ± 0.0065 0.3167 ± 0.0115 0.9624 ± 0.0074 0.8343 ± 0.0279 0.4584 ± 0.0138
LDA 0.7748 ± 0.0098 0.5375 ± 0.0221 0.9137 ± 0.0130 0.7874 ± 0.0220 0.6373 ± 0.0173
DT 0.7665 ± 0.0159 0.6088 ± 0.0300 0.8588 ± 0.0189 0.7190 ± 0.0287 0.6575 ± 0.0242

XceptionNet

NB 0.7240 ± 0.0094 0.6667 ± 0.0001 0.7576 ± 0.0149 0.6182 ± 0.0146 0.6411 ± 0.0079
SVM 0.7597 ± 0.0094 0.5258 ± 0.0219 0.8966 ± 0.0085 0.7489 ± 0.0167 0.6170 ± 0.0182
LDA 0.7972 ± 0.0058 0.6662 ± 0.0100 0.8739 ± 0.0058 0.7558 ± 0.0094 0.7081 ± 0.0086
DT 0.7403 ± 0.0243 0.6733 ± 0.0379 0.7795 ± 0.0286 0.6446 ± 0.0344 0.6567 ± 0.0313

5.3. Post-Treatment Changes (PTC) vs. MIBC

PTC vs. MIBC classification was performed with a 10-fold cross-validation on a dataset
of 76 ROIs (35 PTC, 41 MIBC). LDA classifier on XceptionNet-based features provided
the best performance with an accuracy of 74.96%, sensitivity of 80.51%, specificity of
70.22%, precision of 69.78% and F1-score of 74.73%. Table 5 summarizes the classification
performances of the 10-fold machine learning classifiers, on features extracted from each of
the five pre-trained deep models (results visualized on associated Figure 7 bar plot).
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Figure 7. F1-scores of the 10-fold machine learning classifiers on features extracted from each of the
five pre-trained deep models.
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Table 5. Classification performances of the 10-fold machine learning classifiers on features extracted
from each of the five pre-trained deep models.

Feature
Extractor Classifier Accuracy Sensitivity Specificity Precision F1-Score

AlexNet

NB 0.6695 ± 0.0097 0.5323 ± 0.0172 0.7866 ± 0.0114 0.6806 ± 0.0133 0.5969 ± 0.0139
SVM 0.6880 ± 0.0139 0.6894 ± 0.0216 0.6868 ± 0.0168 0.6530 ± 0.0145 0.6702 ± 0.0157
LDA 0.7100 ± 0.0070 0.6934 ± 0.0116 0.7241 ± 0.0121 0.6826 ± 0.0091 0.6877 ± 0.0076
DT 0.6503 ± 0.0187 0.6160 ± 0.0290 0.6795 ± 0.0270 0.6226 ± 0.0215 0.6180 ± 0.0214

GoogleNet

NB 0.7176 ± 0.0101 0.5689 ± 0.0139 0.8446 ± 0.0149 0.7589 ± 0.0180 0.6497 ± 0.0124
SVM 0.6592 ± 0.0085 0.5366 ± 0.0128 0.7639 ± 0.0111 0.6602 ± 0.0122 0.5917 ± 0.0110
LDA 0.7276 ± 0.0072 0.6129 ± 0.0126 0.8256 ± 0.0082 0.7502 ± 0.0094 0.6743 ± 0.0097
DT 0.6725 ± 0.0237 0.6471 ± 0.0321 0.6941 ± 0.0345 0.6464 ± 0.0288 0.6450 ± 0.0252

InceptionV3

NB 0.6495 ± 0.0150 0.5280 ± 0.0207 0.7532 ± 0.0205 0.6475 ± 0.0214 0.5808 ± 0.0182
SVM 0.6907 ± 0.0100 0.6094 ± 0.0169 0.7600 ± 0.0121 0.6846 ± 0.0122 0.6444 ± 0.0129
LDA 0.7083 ± 0.0068 0.6554 ± 0.0086 0.7534 ± 0.0109 0.6945 ± 0.0096 0.6742 ± 0.0070
DT 0.6589 ± 0.0260 0.6583 ± 0.0383 0.6595 ± 0.0327 0.6238 ± 0.0270 0.6391 ± 0.0287

ResNet50

NB 0.6688 ± 0.0085 0.8689 ± 0.0138 0.4980 ± 0.0125 0.5965 ± 0.0066 0.7072 ± 0.0079
SVM 0.6197 ± 0.0157 0.5600 ± 0.0251 0.6707 ± 0.0232 0.5930 ± 0.0186 0.5750 ± 0.0189
LDA 0.6895 ± 0.0094 0.7903 ± 0.0306 0.6034 ± 0.0169 0.6298 ± 0.0069 0.7000 ± 0.0144
DT 0.6161 ± 0.0207 0.5891 ± 0.0298 0.6390 ± 0.0313 0.5838 ± 0.0239 0.5851 ± 0.0229

XceptionNet

NB 0.6849 ± 0.0087 0.7726 ± 0.0142 0.6100 ± 0.0094 0.6284 ± 0.0075 0.6929 ± 0.0094
SVM 0.6868 ± 0.0105 0.7931 ± 0.0170 0.5961 ± 0.0102 0.6263 ± 0.0085 0.6998 ± 0.0112
LDA 0.7496 ± 0.0119 0.8051 ± 0.0193 0.7022 ± 0.0133 0.6978 ± 0.0113 0.7473 ± 0.0131
DT 0.6253 ± 0.0219 0.5806 ± 0.0320 0.6634 ± 0.0298 0.5967 ± 0.0251 0.5872 ± 0.0254

6. Discussion

Optimal management of bladder cancer requires a multidisciplinary approach, with
tumor staging an important prognostic factor that determines the mode of initial treatment.
Cystoscopy examination, together with a biopsy, remains the primary mode of tumor
detection and clinical staging in patients with suspected bladder cancer. CT is often the
first exam modality for bladder cancer detection due to its wide availability and minimal
associated complication. However, the CT findings are nonspecific with limited accuracy.
At least one article [28] reported the accuracy of CT evaluation for bladder cancer as low
as 49%.

Differentiating non-muscle-invasive bladder cancer (NMIBC), consisting of Ta, Tis,
and T1 stages, from muscle-invasive bladder cancer (MBIC), consisting of T2-T44 stages,
is important as MIBC is more likely to spread to lymph nodes and other organs requiring
radical cystectomy with or without systemic chemotherapy [29]. In contrast, NMBIC has
low risk of recurrent disease but can be effectively treated with intravesical chemotherapy,
immunotherapy, and transurethral resection of bladder tumor (TURBT) [30]. Early differ-
entiation of two bladder cancer stages is critical for the appropriate utilization of medical
resources and optimization of targeted treatment. Therefore, accurate initial staging on the
CT exam is crucial for therapeutic decision-making [31].

While histopathologic cancer detection using pre-trained neural network-based mod-
els is mainstream, in this project, we were faced with the additional issues of imbalanced
data and limited sample size. In comparison to [32], where the number of image samples
was 1350, and the number of classification categories was 2 (1200 bladder cancer tissues,
1150 normal tissues), we had a total of only 100 tissue scans distributed across 7 stages of
urothelial carcinoma (6 Ta, 9 Tis, 35 T0, 9 T1, 13 T2, 24 T3, 4 T4). The issue of class-imbalanced
samples could not be solved using SMOTE because the sheer lack of samples in some of the
categories (especially Ta and T4) meant that the synthetically generated samples were very
similar to the few original ones, and contributed towards decreased variance in the training
dataset—therefore resulting in overfitting. Next, the issue of overfitting, which we faced
while performing end-to-end classification using pre-trained networks, was tackled by:
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(1) making use of a combined deep learning-machine learning approach where the trained
weights from the pre-trained neural network were then classified using statistical machine
learning approaches. (2) An ensemble statistical- and supervised learning-based feature
selection approach that helped remove features that were unimportant. Ref. [32], which
focused on bladder cancer detection from cytoscopic images alone, reported an accuracy
of 86.36% with deep learning-based classifiers and 84.09% with human surgical experts;
however, no significant difference was found between the two (p-value greater than 0.05).

The LDA classifier on XceptionNet performed best in terms of the F1-score for all
three experiments in our study—namely, normal vs. cancer, NMIBC vs. MIBC and PTC
vs. MIBC. For normal vs. cancer classification, LDA on XceptionNet had an F1-score of
(89.39 ± 0.26)%, which will facilitate clinicians in better detection of lesions because, for
histopathologic images in general, and bladder scans in particular, flat and subtle lesions are
often missed on visual inspection. For NMIBC vs. MIBC classification, LDA on XceptionNet
had an F1-score of (70.81 ± 0.86). For PTC vs. MIBC classification, LDA on XceptionNet
had an F1-score of (74.73 ± 1.31)%, which is especially encouraging because there is an
unmet demand to develop new non-invasive techniques to assess accurate prediction of
recurrence and response to chemotherapy. Currently, patients with bladder cancer require
repeat cystoscopies and biopsies of the bladder to assess the response and recurrence of the
disease. This procedure is very costly and invasive, with several associated complications,
including bladder perforation.

Our study has certain limitations. It is a retrospective design based on a single-center
small dataset that may overestimate the diagnostic performance of our model. Therefore,
our next step is to extend the diagnostic model on prospective, multi-center datasets with
external validation.

7. Conclusions

Our model showed a high F1-score, which means that our model indicated a high
value for both recall and precision. We used the F1-score to compare our classifiers. We
opted for the ResNet-50, whose F1-score was higher among others and ResNet-50 showed
the best classification based on the F1-score for all three experiments.

Radiomics-assisted interpretation of CT by radiologists may help more accurately
diagnose bladder cancer. This can allow the timely utilization of medical resources and con-
sultation with oncologists and urologists, ultimately improving patients’ clinical outcomes.
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