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Simple Summary: Keratins are the intermediate filament-forming proteins of epithelial cells that
support cell structure and tissue homeostasis. In lung squamous cell cancer, keratins are frequently
used as diagnostic tumor markers. However, several studies have shown evidence of keratin’s roles in
cancer invasion, metastasis, and therapy resistance. In this study, we aimed to identify key regulators
of the cancer-related keratinization process in LUSC. Our findings may help others to gain insight
into the cancer-related keratinization process and to find potential targets for diagnostics and therapy
for LUSC.

Abstract: Keratinization is one of lung squamous cell cancer’s (LUSC) hallmark histopathology
features. Epithelial cells produce keratin to protect their integrity from external harmful substances.
In addition to their roles as cell protectors, recent studies have shown that keratins have important
roles in regulating either normal cell or tumor cell functions. The objective of this study is to
identify the genes and microRNAs (miRNAs) that act as key regulators of the keratinization process
in LUSC. To address this goal, we classified LUSC samples from GDC-TCGA databases based
on their keratinization molecular signatures. Then, we performed differential analyses of genes,
methylation, and miRNA expression between high keratinization and low keratinization samples.
By reconstruction and analysis of the differentially expressed genes (DEGs) network, we found
that TP63 and SOX2 were the hub genes that were highly connected to other genes and displayed
significant correlations with several keratin genes. Methylation analysis showed that the P63, P73,
and P53 DNA-binding motif sites were significantly enriched for differentially methylated probes.
We identified SNAI2, GRHL3, TP63, ZNF750, and FOXE1 as the top transcription factors associated
with these binding sites. Finally, we identified 12 miRNAs that influence the keratinization process
by using miRNA–mRNA correlation analysis.

Keywords: lung cancer; keratin; gene set score; transcriptome analysis; miRNA analysis;
methylation analysis

1. Introduction

Lung squamous cell carcinoma (LUSC) accounts for 20% of all lung cancer diagnoses
and is the second most common subtype of lung cancer [1]. One of the key histological
features of LUSC is keratinization [2]. When epithelial cells are keratinized to form a keratin
layer, a unique program of terminal differentiation and apoptotic cell death follows [3].
Keratinization is an example of epithelial cell adaptation to protect cell integrity from
environmental influences, such as physical damage, infection, or xenobiotic substances [4].
In addition to their role as epithelial cell protectors, keratins have other important roles
as cellular function regulators, such as apical–basal polarization, cell size determination,
protein translation, and organelle position regulation [5].
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In cancer, keratins have been used extensively as immunohistochemical markers [6].
Beyond their role as tumor markers, keratins have active roles in cancer cell growth, migra-
tion, and invasion [5,7]. In LUSC, keratinization is strongly associated with smoking [8].
This is not surprising because keratinization is one of the frontline defense systems that
interact with external harmful substances. Despite the importance of keratin’s roles in
healthy cells and cancer cells, insights into keratinization mechanisms and regulations
remain incomplete.

This study is an extension of our previous work that investigated the gene-methylation
regulation network in LUSC [9]. In our prior investigation, we discovered that the genes
responsible for the keratinization process formed the second largest community, following
the genes related to the cell cycle in the LUSC gene regulation network. Moreover, the
keratinization gene community exhibited close interactions with other processes, such as
detoxification and the cell cycle, suggesting that keratinization is heavily dysregulated in
LUSC and plays a significant role in cancer pathogenesis. However, we did not thoroughly
examine the primary regulators of keratinization in our earlier work.

Therefore, this study aimed to identify the key regulators of the cancer-related ker-
atinization process in LUSC. To address this goal, we performed an integrative analysis
of the transcriptomic, methylomic, and miRNA LUSC profiles from the Genome Data
Common—The Cancer Genome Atlas (GDC-TCGA) LUSC database. We categorized the
samples based on their keratinization signature scores. Then, we compared the groups
using three different workflows: the differentially expressed gene network [9], Enhancer
Linking by Methylation/Expression Relationships (ELMER) [10], and mirTarRNASeq [11]
to identify the important genes, binding motifs, transcription factors, and miRNAs in-
volved in the LUSC keratinization process. The results of our study may provide a basis for
the identification of novel biomarkers and facilitate a deeper understanding of the LUSC
keratinization process.

2. Materials and Methods
2.1. Overview

The overall pipeline in our study is depicted in Figure 1. First, we downloaded and
analyzed the messenger RNA (mRNA), methylation, and microRNA (miRNA) profiles
from the GDC-TCGA LUSC database. We utilized the Singscore individual sample gene
set scoring approach [12] for classifying the samples into three groups (low, medium, and
high keratinization) based on their keratinization signature scores. Then, we performed
differential expression analyses (DEA) of the transcriptomic, methylomic, and miRNA
profiles of these groups. Finally, we identified the key regulatory genes, transcription
factors (TFs), and miRNAs using network analysis [9,13], the ELMER algorithm [14], and
miRNA–mRNA correlation analysis [11], respectively.

2.2. Data Acquisition and Preparation

The gene expression, methylation beta value, and miRNA isoform data were obtained
from the GDC-TCGA harmonized database using the Bioconductor package TCGAbi-
olinks [15]. The gene expression data consisted of 502 LUSC primary tumor samples and
49 normal tissue samples. Then, we paired the samples from the methylation and miRNA
expression data with their corresponding samples from the gene expression data. We
removed the data that have no corresponding paired samples in gene expression data.
Finally, we only kept the primary tumor samples’ methylation and miRNA expression data.

Next, we filtered non-relevant data from gene, methylation, and miRNA data for
further analysis. The genes with low counts across most samples were discarded from the
analysis. Here, we retained genes that had a transcript count per million >1 across over 50%
of the samples. We discarded the genes that had identical gene names to enforce unique
mapping. For methylation data, we removed the probes with at least one missing value
and removed the probes in chromosomes X, Y, and NA. We used only mature miRNA
expression data for miRNA analysis.
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Figure 1. Overall pipeline of the analysis in our study. We divided the LUSC samples using single-
sample gene set scoring, Singscore, with keratinization-related gene sets. Then, we performed
differential expression analyses (DEA) of gene, methylation, and miRNA expression between high
keratinization and low keratinization groups. Differentially expressed gene networks, ELMER, and
mirTarRNASeq analysis were performed to identify key regulatory genes, transcription factors,
and miRNA.

2.3. Data Single-Sample Scoring and Clustering

We downloaded the Gene Ontology (GO) gene sets from the GSEA database (https:
//www.gsea-msigdb.org accessed on 6 November 2022) and selected the gene sets related
to the keratinization process or keratinocyte differentiation/development. The gene sets
and their brief descriptions are listed in Table 1.

Table 1. Keratinization GO gene sets and their description.

GO Subset Name GO Description

Biological Process KERATINIZATION The process in which the cytoplasm of the outermost cells of the
vertebrate epidermis is replaced by keratin.

Biological Process CORNIFICATION A unique type of programmed cell death that leads to the formation of
keratin layer.

Biological Process KERATINOCYTE APOPTOTIC
PROCESS Any apoptotic process in a keratinocyte.

Biological Process KERATINOCYTE
DEVELOPMENT

The process whose specific outcome is the progression of a keratinocyte
over time, from its formation to the mature structure.

Biological Process KERATINOCYTE
DIFFERENTIATION

The process in which a relatively unspecialized cell acquires
specialized features of a keratinocyte.

Biological Process
NEGATIVE_REGULATION OF

KERATINOCYTE
DIFFERENTIATION

Any process that stops, prevents, or reduces the frequency, rate, or
extent of keratinocyte differentiation.

Biological Process
POSITIVE REGULATION OF

KERATINOCYTE
DIFFERENTIATION

Any process that activates or increases the frequency, rate, or extent of
keratinocyte differentiation.

Biological Process
REGULATION OF
KERATINOCYTE

DIFFERENTIATION

Any process that modulates the frequency, rate, or extent of
keratinocyte differentiation.

Cellular Component KERATIN FILAMENT A filament composed of acidic and basic keratins (types I and II),
typically expressed in epithelial cells.

Molecular Function KERATIN FILAMENT
BINDING Binding to a keratin filament.

https://www.gsea-msigdb.org
https://www.gsea-msigdb.org
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We used the Singscore method to score individual samples against these 10 keratinization-
related gene sets [12]. In Singscore methods, genes are sorted according to their transcript
levels, with upregulated sets being ranked in ascending order and downregulated sets
in descending order. Subsequently, rank-based statistics are utilized to determine the
scores for each individual sample [12]. Hierarchical clustering with complete linkage was
performed to divide the samples into subgroups with different degrees of keratinization
according to the keratinization signature scores. The optimal number of clusters was
determined using the R package NbClust, which provides 30 indices that determine the
number of clusters.

2.4. Differential Expression Analysis (DEA) of the Genes

We performed DEA of the tumor samples in high keratinization versus low keratiniza-
tion groups for identifying key regulators of the keratinization process in LUSC. We prepro-
cessed the gene expression data using the TCGAbiolinks package and workflow from Silva
et al. [16]. In short, we removed outliers, failed hybridization, or mistracked samples by per-
forming Array–Array Intensity Correlation using the TCGAanalyze_Preprocessing function.
Next, we normalized mRNA transcript samples using the TCGAanalyze_Normalization,
which encompasses the functions of the EDASeq package. Finally, we filtered genes with
low signals across samples using TCGAanalyze_Filtering functions. The function TCGAan-
alyze_DEA was applied to identify the differentially expressed genes (DEG) between high
keratinization and low keratinization groups. We defined the genes with the absolute log
fold change ≥1 and FDR < 0.01 as the significant DEGs.

2.5. DEGs Network Reconstruction and Analysis

We modified the workflow from our previous work to perform DEGs network recon-
struction and analysis [9]. In summary, we performed log(1 + x) transformation to the
significant DEG’s expression matrix before we inputted it into the network reconstruction al-
gorithm. We used the GRNBoost2 algorithm implemented in the Python package Arboreto
to reconstruct the DEG regulatory network [17]. Briefly, this algorithm involves training a
gradient boosting machine model for each differentially expressed gene in the dataset to
predict its expression profile using the expression values of a set of candidate transcription
factors (TFs). Each model produces a partial gene regulation network with regulatory
associations from the best-predicting TFs to the target gene. All regulatory associations are
combined and sorted by importance to finalize the regulatory network output.

Community detection of the network was performed using the Leiden algorithm im-
plemented in the Python package leidenalg [18]. The community Reactome pathway-based
analysis was performed using g:Profiler [19]. Then, we calculated the node betweenness
centrality and degree using the python-igraph package. We performed Pearson’s correla-
tion test between the expression of the genes with high centrality or high out-degree index
and the keratin genes. We adjusted the p-value using Bonferroni correction and considered
an adjusted p-value < 0.05 as significant.

2.6. Methylation Motif and Regulatory Transcription Factor Identification

First, we compared the mean DNA methylation levels across the three groups. We
performed ANOVA test to determine if there was any difference between the means of
different groups. We considered ANOVA test p-value < 0.05 as significant.

Next, we used ELMER analysis workflow to identify the enriched motifs for the probes
that were significantly differentially hypomethylated in the high keratinization samples
relative to low keratinization samples [10]. ELMER workflow consists of 5 main steps:
(1) identifying distal probes on Infinium Human Methylation 450K arrays, (2) selecting
significantly hypomethylated probes by comparing the methylation level of each probe
for all samples in group 1 compared to all samples in group 2, using an unpaired one-
tailed t-test, (3) identifying putative target genes for differentially methylated probes by
performing Mann–Whitney U test for each candidate probe–gene pair, (4) identifying
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enriched motifs of hypomethylated probes using Fischer’s exact test, and (5) identifying
regulatory transcription factors (TFs) whose expression is associated with TF binding motif
DNA methylation by performing Mann–Whitney U test for each candidate motif–TF pair.
A motif was considered significantly enriched if the 95% confidence interval of the odds
ratio was greater than 1.1. The regulatory TFs were ranked by their p-value and those in
the top 5% of the smallest p-value were considered candidates for upstream regulators.

2.7. miRNA–mRNA Relationships Analysis

We used mature miRNA count data to perform DEA of miRNA by TCGAbiolinks pack-
age. We filtered the miRNAs with low signals across samples using TCGAanalyze_Filtering
functions. The function TCGAanalyze_DEA was applied to identify the differentially ex-
pressed miRNA between high keratinization and low keratinization groups. The absolute
log fold change ≥1 and FDR < 0.01 were used as the thresholds to select significantly
differentially expressed miRNAs. We inputted the log fold change of significant differen-
tially expressed genes from previous DEG analysis and miRNAs to the R Bioconductor
package mirTarRnaSeq to identify some significant miRNA–mRNA correlations [11]. The
mirTarRnaSeq approach estimated the difference between the miRNA–mRNA fold change,
followed by the generation of a background distribution that represents random differences
in fold chance. Then, it ranked the difference values against the background distribution to
obtain the p-value, FDR, and test statistics estimates. Finally, we intersected our significant
miRNA–mRNA correlations result with miRanda database binding predictions [20].

2.8. Source Code

The complete source code and the parameter details needed to reproduce our study
have been stored in the public repository (https://github.com/yusri-dh/Keratinization_
LUSC accessed on 19 December 2022).

3. Results
3.1. Hierarchical Clustering Based on Single-Sample Scoring against Keratinization-Related Gene
Set Identifies Three LUSC Phenotypes

Based on the single-sample scores against the 10 keratinization-related gene sets, we
hierarchically clustered LUSC samples into three groups: high keratinization, medium
keratinization, and low keratinization (Figure 2). We selected K = 3 as the optimal number
of clusters based on the result of the NbClust analysis. The high keratinization group was
characterized by the enrichment in cornification and keratinization gene sets. In contrast,
low keratinization samples have an inverse enrichment in cornification and keratinization
gene sets. They also have a lower expression of genes related to keratinocyte differentiation
and the apoptotic process than samples in the high keratinization group. All normal
samples were in the low keratinization group. We compared the samples in high and
low keratinization samples in subsequent analyses for identifying key regulators of the
keratinization process in LUSC.

3.2. DEGs Network Reconstruction and Analysis

We identified 1287 significant DEGs (FDR-adjusted p < 0.01) by comparing the mRNA
expression profiles between the high keratinization and low keratinization groups
(Table S1). To gain a deeper understanding of the functions and interactions of DEGs,
we used the GRNBoost2 network reconstruction implemented in the Arboreto package [17].
The inferred network had 1097 nodes and 9145 edges (Figure 3a). The nodes’ properties
and edge list are provided in Tables S2 and S3, respectively. Using the Leiden algorithm, we
identified 10 major communities in the keratinization DEGs network. We named the largest
community Community 0, the second largest Community 1, and so on. The Reactome
pathway-based enrichment analysis showed that Community 0 and 3 mainly included
keratinization-related genes. Community 1 and 2 networks were enriched in biologi-
cal oxidation and detoxification-related genes; Community 4 contained immune system

https://github.com/yusri-dh/Keratinization_LUSC
https://github.com/yusri-dh/Keratinization_LUSC
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genes; and Community 5 contained genes that were responsible for surfactant metabolism
(Figure 3b). From the centrality analysis, we found that SOX2, FOXE1, and SYNE1 were
the genes with the highest betweenness centrality (Table 2). Meanwhile, TP63, CD53, and
NCKAP1L were the genes with the highest node out-degree index (Table 2). We selected the
genes with the highest betweenness centrality and out-degree index to perform Pearson’s
correlation test with keratin genes. The TP63 genes had a strong and significant positive
correlation (Pearson’s R > 0.5, adjusted p < 0.05) with several keratin genes: KRT5, KRT6A,
KRT6B, KRT13, KRT14, KRT15, KRT16, and KRT17 (Figure S1a). Meanwhile, the SOX2 gene
had a medium and significant positive correlation (Pearson’s R > 0.3, adjusted p < 0.05)
with KRT5, KRT6A, KRT6B, KRT13, KRT15, and KRT19 (Figure S1b).
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Figure 2. The classification of the LUSC samples into three groups, low keratinization, medium
keratinization, and high keratinization, based on the keratinization-related GO gene sets. Each
column represents a sample. Each row represents a keratinization molecular signature from Gene
Ontology. The heatmap units are the Singscore value. Positive Singscore values represent enrichment
of the gene set. In contrast, negative values represent underrepresentation of the gene sets.

Table 2. The top identified regulatory factors that influence keratinization process in LUSC.

Top 20 genes ranked by betweenness centrality
SOX2, FOXE1, SYNE1, SPIB, JMJD7-PLA2G4B, FER1L4, DLX6, ARNT2, GNG11,
VAMP5, ABCC5, ICAM1, ACSL5, TREM1, PKP1, TSPAN18, COL7A1, MICAL1,
ANKRD36BP2, CXCL1

Top 20 genes ranked by nodes out-degree index TP63, CD53, NCKAP1L, KRT6A, PKP1, SOX2, PTPRC, NTRK2, CD3E, GBP6,
CD2, HLA-DMB, GIMAP4, SASH3, GJB5, FAT2, CLCA2, ITK, DOCK2, ABCC5

Top 5% TFs related to hypomethylated probes

SNAI2, GRHL3, TP63, ZNF750, FOXE1, IRF6, BNC1, ZNF385A, PITX1, HES2,
KLF5, SOX15, FOXN1, HOMEZ, OVOL1, NFE2L2, ZBTB7C, GRHL1, RARG,
ZNF488, SOX2, ARNTL2, KLF3, DLX5, IRX4, SOX21, YBX3, BCL11B, ZNF365,
RAG1, PPARA, TCF20, TBX18, MAF, EEA1, TSHZ2, HOXA1, FLYWCH1,
HOXD11, TEF, ZIC5, DMRT2, NR1D1, ZBTB7A, FEZF1, HOXD10, FOXD1,
MXD1, ZNF703, ELF4, KLF4, FOXQ1, TP73, HES1, GLI2, PRRX2, AEBP2,
SHOX2, TFAP2C, FOXF2

Significant regulatory miRNA
hsa-miR-20b-5p, hsa-miR-3074-5p, hsa-miR-375-3p, hsa-miR-194-5p,
hsa-miR-505-5p, hsa-miR-9-5p, hsa-miR-338-3p, hsa-miR-378a-3p,
hsa-miR-192-5p, hsa-miR-708-3p, hsa-miR-203a-3p, hsa-miR-149-5p
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Figure 3. The gene regulation network of the DEGs between high keratinization and low kera-
tinization samples. (a) The gene regulation network reconstructed by GRNBoost2 algorithm. Each
community was labeled with its community number and different color. (b) The Reactome pathway-
based enrichment analysis showed the functional classes of each community that connected to the
keratinization process in LUSC.

3.3. P63, P73, and P53 Were the Top Three Enriched Motifs for Hypomethylated Probes

Through ANOVA analysis, we found no significant differences in overall DNA methy-
lation levels across the three groups (Figure 4a). Then, using an ELMER analysis, we
found 284 gene–probe pairs that were significantly hypomethylated in high keratinization
samples with FDR-adjusted p < 0.001. Figure 4b displays the methylation levels of the
identified significant probes, along with the expression patterns of the corresponding gene
pairs. A list of all significant gene–probe pairs and their p-values is given in Table S4. From
all significant pairs, we could identify enriched motifs for the probes that are significantly
hypomethylated in high keratinization samples relative to low keratinization samples
(Figure 4c). Then, ELMER identified the master regulator TFs corresponding to each of
the motifs enriched in the previous analysis step. From all enriched motifs, we could only
obtain the significant regulatory TFs associated with the top three binding motifs: the P63,
P73, and P53 motifs. The top 5% of TFs associated with the binding motifs are listed in
Table 2.

3.4. The miRNA–mRNA Relationships Analysis

The mirTarRnaSeq results showed that there were 913 miRNA–mRNA pairs that had
a significant relationship (FDR-adjusted p < 0.05). From these 913 miRNA–mRNA pairs,
there were 78 pairs that intersected with the miRanda database findings. Figure 5 shows
these miRNA–gene pairs and their relationship strength in the unit of absolute log fold
difference. Out of all the miRNAs, hsa-miR-375-3p and hsa-miR-9-5p had the greatest
number of pairs (16 and 13 pairs, respectively). Whereas, NRTK2 and SERPINB13 were the
genes that were affected by the highest number of miRNAs. The regulatory miRNAs are
listed in Table 2.
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the genes that were affected by the highest number of miRNAs. The regulatory miRNAs 
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Figure 4. The methylation analysis of LUSC tumor samples. (a) The mean methylation status across
three groups. (b) The methylation levels of the significant gene-probe pairs. The rows and columns in
DNA methylation heatmap represent the probes and samples, respectively. The rows and columns in
gene expression heatmap represent the corresponding genes and samples. (c) The enriched binding
motifs for the probes that are significantly hypomethylated in high keratinization samples relative to
low keratinization samples.
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Figure 5. High keratinization vs. low keratinization groups heatmap of all significant miRNA–mRNA
interrelations predicted by both mirTarRnaSeq and miRanda. Gray color represents no significant
interrelation identified by mirTarRnaSeq. The heatmap units are the absolute difference between
miRNA and mRNA fold changes.

4. Discussion

Several methods for scoring individual samples against gene sets have been developed,
including ssGSEA (single-sample gene set enrichment analysis) [21], GSVA (gene set varia-
tion analysis) [22], and Singscore [12]. These frameworks have been used for dimensional
reduction, clustering, and condensing information from transcriptomic data [23–25]. In this
study, we used Singscore to classify LUSC samples into three groups (i.e., low, medium, and
high keratinization) based on their keratinization signature scores. The high keratinization
group demonstrated the upregulation of genes involved in the cornification, keratinization,
and keratinocyte apoptotic processes, whereas these gene sets were underrepresented in the
low keratinization group. Using differential analyses of high and low keratinization groups,
we investigated the genes, transcription factors, and miRNA that act as key regulators of
the LUSC keratinization process.

To identify keratinization core regulatory genes, we employed the same network
analysis approach utilized in our prior research [9]. In this approach, we inferred and
reconstructed the DEGs network, which provided us with a blueprint of the gene–gene
interactions in cancer. Here, we calculated the nodes’ out-degree index and betweenness
centrality to investigate the roles of some nodes and their impact on the networks. The
out-degree index of a node is the number of edges that are going out from the node.
Narang et al. showed that the important TFs have a high out-degree index, implying
that TFs usually target a large number of genes [13]. In our study, TP63 had the highest
out-degree index. TP63 is highly expressed in the basal compartment of the lung airways
and is required for progenitor cell development, epidermal stratification, and to maintain
the proliferative potential of basal keratinocytes during homeostasis [26–28]. In the gene
regulation network, the most important nodes are not always the ones with the most edges,
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but the ones that connect groups or have the most control over the flow of information.
The betweenness centrality measures the number of times a node lies on the shortest path
between other nodes. This measure shows which nodes act as bridges between nodes and
have significant control over the information flow in the gene regulatory network [9,13].
We found SOX2 to be the gene with the highest betweenness centrality. Moreover, it is also
in the top six highest out-degree genes, indicating that SOX2 has important roles in the
LUSC keratinization process. SOX2 is a transcription factor that promotes the development
and maintenance of squamous epithelium and is an essential regulator of pluripotent stem
cells [29]. Because of their adjacent chromosomal localization (3q), SOX2 and TP63 are
frequently co-amplified in cancer [29]. TP63 and SOX2 collaborate to regulate multiple
genes involved in squamous carcinogenesis [29]. Our study found that TP63 and SOX2
had significant medium and strong correlations with several keratin genes, such as KRT5,
KRT6A, KRT6B, KRT13, KRT14, KRT15, and KRT17. This finding indicated that TP63 and
SOX2 have a direct influence on the keratinization process by modulating keratinization
genes in LUSC.

The community gene set enrichment analysis of the DEGs network can reveal the
important gene interactions and processes that influence keratinization. We found that the
genes related to detoxification (i.e., biological oxidations and metallothioneins binding to
metals), the immune system, and surfactant metabolism were connected with the keratiniza-
tion process in LUSC. Lung epithelial cells are one of the first lines of defense that interact
directly with potentially harmful substances. Smoking, as the primary LUSC risk factor,
may be responsible for the detoxification–keratinization relationship [8]. Some studies have
highlighted the roles of keratins as regulators of inflammation and immunity in epithe-
lia [30–33]. The keratin 76 downregulation enhanced the accumulation of T regulatory cells,
leading to a drop in the anti-tumor response in oral squamous cell carcinoma [33]. In basal
cell carcinoma, the genetic ablation of keratin 17 decreased inflammation and polarized
the inflammatory response towards T-helper-2-cells. However, the detailed mechanism
of how keratinization and the immune system are interrelated in LUSC remains poorly
understood. To the authors’ knowledge, no papers have investigated the direct relationship
between keratinization and surfactant. In the lung, the surfactant has important roles as
a regulator of the immune system and homeostasis [34,35]. Further study is necessary to
elucidate the relationship between keratinization and surfactant metabolism.

In addition to genetic changes, many DNA methylation alterations are associated with
the LUSC pathophysiology process. We found that the P63, P73, and P53 binding motifs
were enriched for hypomethylated probes in high keratinization samples. P73 and P63 are
two homologs of P53 and have a high degree of structural symmetry with P53. Thus, P73
and P63 can bind to most of the p53-responsive binding sites, and vice versa [36]. SNAI2,
GRHL3, TP63, ZNF750, and FOXE1 were the top TFs associated with the P63, P73, and P53
binding motifs in our study. These transcription factors have important roles in epithelial
differentiation and keratinization [37–41].

MicroRNAs, or miRNAs, are small non-coding RNAs that play important roles in
post-transcriptional gene regulation [42,43]. These miRNAs may directly regulate keratin
proteins. For example, hsa-miR-3074-5p, which targets KRT13 and KRT6B, or hsa-miR-9-5p,
which targets KRT6C, KRT13, and KRT5. Other miRNAs regulate keratinization-related
processes, such as hsa-miR-149-5p, hsa-miR-192-5p, and hsa-miR-378a-3p, which target
SERPINB13, or hsa-miR-3074-5p, which target KRTDAP. Downregulation of the SERPINB13
protein was significantly associated with keratinocyte/epithelial cell differentiation and
apoptosis [44]. Meanwhile, KRTDAP is a gene that plays important roles in the epithelium
stratification process [45]. In our analysis, we found that hsa-miR-375-3p and hsa-miR-9-5p
had the greatest number of pairs with other DEGs. This suggests that the regulation of
the LUSC keratinization process is vastly influenced by hsa-miR-375-3p and hsa-miR-9-
5p. The expression of hsa-miR-375-3p has been shown to have potential as a promising
diagnostic marker in oral cancer [46], breast cancer [47], and head and neck cancer [48].
Additionally, a study showed that hsa-miR-375-3p may have a suppressor role in bladder
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cancer via the Wnt/beta-catenin pathway [49]. In the case of hsa-miR-9-5p, some studies
have demonstrated that hsa-miR-9-5p has potential as a biomarker of therapy response
in nasopharyngeal carcinoma [50], cervical cancer [51], and leukemia [52]. To the best of
the authors’ knowledge, there have been no experimental studies conducted to explore
the involvement of hsa-miR-375-3p and hsa-miR-9-5p in the keratinization process or to
evaluate their potentials as diagnostic biomarkers, making it an interesting subject for
future studies.

5. Conclusions

The single-sample scoring approach was used in our study to classify the sample
into three groups based on their keratinization signatures. Through a comparison of high
keratinization versus low keratinization samples using DEA, we were able to identify
several transcription factors (TFs), binding motifs, and miRNAs that are likely involved in
regulating the keratinization process of lung squamous cell carcinoma (LUSC). Specifically,
we emphasized the importance of the TP63 and SOX2 genes, the P63, P73, and P53 DNA
binding motifs, and the hsa-miR-375-3p and hsa-miR-9-5p miRNAs as potential key regula-
tors of keratinization in LUSC. Further studies of these regulators might help researchers
acquire a deeper understanding of the keratinization process in LUSC and find potential
novel biomarkers.
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www.mdpi.com/article/10.3390/cancers15072066/s1, Table S1: The list of significant DEGs between
high keratinization group and low keratinization group. Table S2: The node properties of DEGs
network. Table S3: The edge list of DEGs network. Table S4: The significantly hypomethylated
gene–probe pairs in tumor samples with high keratinization. Figure S1: Pearson’s correlation between
the TP63/SOX2 and keratins genes.
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