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Simple Summary: Tumor-infiltrating lymphocytes (TILs) have long been used to predict the prog-
nosis of solid tumors. TIL levels have been reported to be closely associated with the prognosis of
patients with squamous cell carcinoma. In contrast, major histocompatibility complex (MHC) class
I chain-related molecule A (MICA), which acts as a ligand for NKG2D in natural killer (NK) cells
and CD8+ T cells, is related to a higher survival rate in patients with oral squamous cell carcinoma
(OSCC). In this study, we investigated the association of OSCC with TILs and MICA in patients with
OSCC and its potential as a biomarker.

Abstract: Background: Tumor-infiltrating lymphocytes (TILs) have been used to predict the prognosis
of solid tumors. In this study, we investigated which molecules in TILs play a role in the prognosis of
patients with oral squamous cell carcinoma (OSCC). Methods: In a retrospective case-control study,
we immunohistochemically evaluated the expression of CD3, CD8, CD45RO, Granzyme B, and the
major histocompatibility complex class I chain-related molecule A (MICA) of the histocompatibility
complex as predictors of prognosis in 33 patients with OSCC. The patients were classified as TILsHigh

or TILsLow according to the number of TILs for each molecule in the central tumor (CT) and invasive
margin (IM). Furthermore, MICA expression scores were determined based on the intensity of the
staining. Results: CD45RO+/TIL in the nonrecurrent group were significantly higher than those in
the recurrent group in the CT and IM areas (p < 0.05). The disease-free survival/overall survival rate
of the CD45RO+/TILsLow group in the CT and IM areas and the Granzyme B+/TILsLow group in
the IM area was significantly lower than that of the CD45RO+/TILsHigh group and the Granzyme
B+/TILsHigh group, respectively (p < 0.05). Furthermore, the MICA expression score of tumors
around the CD45RO+/TILsHigh group was significantly higher than that of the CD45RO+/TILsLow

group (p < 0.05). Conclusions: A high ratio of CD45RO-expressing TILs was associated with a
disease-free/overall survival improvement in OSCC patients. Furthermore, the number of TILs that
express CD45RO was associated with the expression of MICA in tumors. These results suggest that
CD45RO-expressing TILs are useful biomarkers for OSCC.

Keywords: MHC class I chain-related molecule A; CD45RO; tumor-infiltrating lymphocyte; oral
squamous cell carcinoma

1. Introduction

Tumor-infiltrating lymphocytes (TILs) have long been used to predict the prognosis
of solid tumors because they serve as signifiers of the interaction between the immune
system and cancer cells [1]. The tumor microenvironment plays an important role in tumor
behavior and treatment response. Recently, inflammatory cells have attracted significant
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attention as a prognostic factor and biomarker. Among the many different inflammatory
cell types in the tumor microenvironment, TILs have been extensively studied and have
been reported to be closely related to cancer prognosis [2,3]. Furthermore, clinical studies
have been conducted in breast, colorectal, and other cancers to examine the relationship
between TILs and malignancies, and some pathologists believe that TILs have a higher
predictive value than the traditional staging of TNM [4]. Moreover, for head and neck
squamous cell carcinoma (HNSCC), TIL levels have been reported to be closely associated
with the prognosis of patients with HNSCC. Patients with TIL levels greater than 70%
have a better prognosis, so TIL levels may serve as an independent predictor of HNSCC
recurrence [4].

The positive correlation between a high number of CD3+ and CD8+/TILs, and clinical
outcomes indicates its potential as a useful biomarker in HNSCC patients treated with
definitive chemoradiotherapy [5]. Nguyen et al. reported that higher levels of CD4 + and
CD8+/TIL were associated with significantly longer overall survival (OS) and disease-free
survival (DFS) in HNSCC patients [6]. Most previous studies have focused on the predictive
effects of CD3+, CD4+, CD8+, and CD45RO+/TILs on patients’ prognosis [5,7–9]. The high
number of CD68+ macrophages and the expression of CD163 in both macrophages and
cancer cells were correlated with poor overall survival (OS) and had a significant impact
on the prognosis of OSCC [10]. However, it remains controversial which molecules in TILs
better reflect the prognosis in patients with OSCC. Zeromski et al. (1993) showed that cells
with CD8+ and natural killer (NK) cell phenotypes frequently appeared and were present
primarily in the tumor mass of laryngeal SCC [11]. They further reported that the extent
of CD8+ T cells, especially NK cells, in tumor masses is associated with the expression
of major histocompatibility complex (HLA) class I antigens on tumor cells [12,13]. These
findings suggest that the presence of HLA class I on tumor cells facilitates the invasion of
cytotoxic lymphocytes into the tumor mass [12,13]. According to a study[13], patients with
laryngeal cancer whose HLA class I antigens are downregulated as a result of less CD8+ T
cell infiltration have a significantly lower survival rate.

MHC class I chain-related molecule A (MICA) is a glycoprotein normally found on the
plasma membranes of a small number of human epithelial cells. MICA has been implicated
in the pathogenesis of human cancers and may be induced in mucosal epithelial cells and
tumor cells exposed to stresses such as chemical substances, ultraviolet light, microbial
infection, and carcinogenesis [14,15]. MICA is a ligand for NKG2D, an activating cell
surface receptor expressed by NK cells and CD8+ T cells, and NKG2D is essential for NK
cell activation. In fact, it is believed that NKG2D activation signals in NK cells contribute
to the establishment of diverse immune responses [16,17]. In patients with severe tumors,
cellular immunity, including NK cell activity, has been reported to be diminished [18].
MICA is expressed on the surface of cancer cells, inducing the activation of the innate
immune system, which primarily involves NK cells.

We recently reported that OSCC patients with the MICA A5.1 allele have a higher
survival rate than those with other alleles due to NKG2D receptor-mediated NK cell
signaling activation [19]. There have been no reports on the relationship between cancer
cell MICA expression and TILs to date.

This study’s objective was to assess the prognostic significance of various subpop-
ulations of TILs in OSCC patients. Specifically, we investigated the potential influence
of CD3+, CD8+, CD45RO+, and Granzyme B+ TILs in OSCC in relation to disease stage
and treatment modality. Additionally investigated was the relationship between TILs and
MICA expression levels in OSCC.

2. Material and Methods
2.1. Patients and Specimens

This retrospective case-control study included 33 patients diagnosed with OSCC
in the Department of Oral and Maxillofacial Surgery at Hiroshima University Hospital
between August 2003 and November 2006. The following are the criteria for inclusion: the
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availability of archived biopsy samples prior to treatment and clinical data and pathological
diagnosis of SCC. Living patients had at least 6 months of follow-up care. Exclusion criteria
included a history of surgery on the primary tumor, chemotherapy, and radiotherapy.
Before treatment, formalin-fixed, paraffin-embedded (FFPE) tissue samples were obtained.
From the date of surgery, the last day of chemoradiotherapy, and the date of photodynamic
therapy, DFS or OS was computed (PDT). Data collected from the medical chart of the
patients were age, sex, site of lesion, treatment details, and disease classification on the
TNM classification of the International Union for Cancer Control (UICC), 6th Ed.

2.2. Immunohistochemical Analysis

Paraffin-embedded tissues were cut at 4–6 µm thickness and immuno-stained to
evaluate the expression of CD3, CD8, CD45RO, Granzyme B, and MICA in every OSCC
sample [19]. Subsequently, the sections were exposed to protein block 5% normal horse
serum (Thermo Fisher Scientific, Waltham, MA, USA) and 2% normal goat serum (Thermo
Fisher Scientific) and incubated overnight at 4◦C with mouse monoclonal anti-MICA
(Nichirei Biosciences, Inc., Tokyo, Japan), mouse monoclonal anti-CD3 (PS1, Nichirei
Biosciences, Inc.), mouse monoclonal anti-CD8 (C8/144B, Nichirei Biosciences, Inc.), mouse
monoclonal anti-UCHL (UCHL1, Nichirei Biosciences, Inc.) for CD45RO, and mouse
monoclonal anti-Granzyme B (GrB-7, Nichirei Biosciences, Inc.), respectively [20,21]. The
sections were then exposed for 1 h to a peroxidase-conjugated secondary antibody, and 3,3-
diaminobenzidine was used to detect positive staining (DAKO). Slides were counterstained
with hematoxylin (Sigma, St. Louis, MO, USA) and mounted in Mount-Quick (Fisher
Scientific, Houston, TX, USA) [22,23].

We assessed TILs as lymphocytes in the tumor’s center (CT) and invasive margin (IM)
for each sample (Figure 1A). Images were taken with a Nikon Eclipse E800 microscope
at 400× magnification (Nikon Instruments Inc., Tokyo, Japan), and the number of TILs in
each of the three fields was counted. Samples were sorted in order of cell density: the top
50% of cases were designated as the TILsHigh group, and the bottom 50% were designated
as the TILsLow group in both the CT and IM regions.

Subsequently, using an optical microscope, tumor MICA expression was evaluated.
The tumor MICA expression intensity was rated as follows: 0, negative; 1, low; 2, mod-
erate; and 3, high. Then, the total score of positive tumor cells in one field of view
(×400 magnification) was calculated, and the intensity of tumor MICA expression was
determined as the average of the three fields of view.

2.3. Statistical Analysis

JMP 15 statistical software was used for the statistical analysis (SAS Institute Inc., Cary,
NC, USA). Next, using the Mann–Whitney U test, the differences between continuous vari-
ables were analyzed. Using the Kaplan–Meier method and log-rank test, a survival analysis
was conducted. The associations between the examined TIL expressions and DFS/OS rate
were evaluated using Cox proportional hazards model-estimated hazard ratios with a 95%
confidence interval (CI). Cox regression analyses incorporating an interaction term between
CD45RO and Granzyme B expressions and selected patient characteristics (age, tumor
stage, and treatment method) were conducted to determine if these variables impeded the
effect of TIL expression on DFS/OS rate. p < 0.05 was deemed to be significant.

2.4. Ethical Considerations

The Human Genome and Genome Research Ethics Committee of Hiroshima University
approved this study (approval number: epidemiology—2022-0165) in accordance with the
Declaration of Helsinki. The protocol for the study was posted on these websites. Patients
could opt out of the study if they were unwilling to provide consent. The requirement for
informed consent was waived.
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Figure 1. A standardized approach to TIL evaluation for patients with OSCC. The areas of the
tumor where the number of TILs was to be measured were determined for CT and IM (A) (original
magnification center ×40 both sides ×400). Immunohistochemistry was used to identify CD3+, CD8+,
CD45RO+, and Granzyme B+ TILs (B) (original magnification ×400).

3. Results
3.1. Clinicopathological Characteristics

Of the 33 patients with OSCC included in this study, 13 were men, and 20 were female
(Table 1), while the mean age at the initial examination was 66.2 ± 12.9 years. The primary
tumor site varied as follows: tongue cancer, 17 cases; gingival carcinoma of the lower jaw,
10 cases; gingival carcinoma of the upper jaw, 3 cases; carcinoma of the buccal mucosa,
1 case; and plantar carcinoma of the mouth, 2 cases. UICC stage I was 4 cases; stage II
was 14 cases; stage III was 3 cases; stage IVA was 10 cases; and stage IVB was 2 cases,
respectively. For disease management, surgical resection of the tumor was performed in
48.4% of cases, chemoradiotherapy in 36.4%, and PDT in 15.2%; 22 participants exhibited
recurrence, while 11 did not.
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Table 1. OSCC patients and tumor characteristics.

Characteristics N %

OSCC patients 33
Age (Mean ± SD) 66.2 ± 12.9

Sex
Male 13 39.4

Female 20 60.6
Localization

Tongue 17 51.5
Maxillary gingiva 3 9.1

Mandibular gingiva 10 30.3
Buccal mucosa 1 3.0

Plantar of the mouth 2 6.1
UICC stage

I 4 12.1
II 14 42.4
III 3 9.1

IV A 10 30.3
IV B 2 6.1

Treatment
Surgery 16 48.4

Chemoradiotherapy 12 36.4
PDT 5 15.2

Recurrence/Nonrecurrence 22/11 66.7/33.3
OSCC oral squamous cell carcinoma; UICC International Union for Cancer Control; PDT photodynamic therapy.

3.2. Comparison of TILs Density between Recurrence and Nonrecurrence Groups

The immunohistochemical detection of CD3, CD8, CD45RO, and Granzyme B expres-
sion was performed (Figure 1B). After treatment, TIL density was compared between the
recurrence and nonrecurrence groups. In the nonrecurrence group, median CD45RO+/TIL
counts (interquartile range [IQR]) were significantly higher in the nonrecurrence group (CT
35.0 [IQR 26.9–38.9] cells/field; IM 115.3 [IQR 91.4–173.2] cells/field) than in the recurrence
group (CT 23.5 [IQR 8.9–28.2] cells/field; IM 55.9 [IQR 33.7–116.0] cells/field) (p < 0.05;
Figure 2). In both the CT and IM regions, the number of other immune cells tended to be
higher in the nonrecurrence group compared to the recurrence group.

3.3. Comparison of DFS and OS Rates between the TILsHigh and TILsLow Groups

The disease-free survival (DFS) rate of the CD45RO+/TILsHigh group was significantly
greater than that of the CD45RO+/TILsLow group in both the CT (low vs. high: mean
64.4 vs. 125.9 months; p = 0.0045) and IM (low vs. high: mean 10.4 vs. 80.9 months;
p = 0.0003) regions (Figure 3). In addition, the DFS rate of the Granzyme B+/TILsHigh group
was significantly higher than that of the Granzyme B+/TILsLow group on IM (low vs. high:
mean 15.9 vs. 73.5 months; p = 0.0091) area (Figure 3).

The OS rate of the CD45RO+/TILsHigh group was significantly higher than that of
the CD45RO+/TILsLow group on both CT (low vs. high: mean 64.4 vs. 125.9 months;
p = 0.0007) and IM (low vs. high: mean 55.4 vs. 158.7 months; p = 0.0031) areas (Figure 4).
On IM, the DFS rate of the Granzyme B+/TILsHigh group was also significantly greater
than that of the Granzyme B+/TILsLow group (low vs. high: mean 75.3 vs. 108.9 months;
p = 0.0155) (Figure 4). Cox regression analyses incorporating an interaction term between
CD45RO+ and Granzyme B+ expressions and particular patient characteristics were con-
ducted. CD45RO+/TILsHigh in the IM area and Granzyme B+/TILsHigh in the IM area
demonstrated a significant correlation for the DFS in multivariate analysis (Table 2). In
addition, the hazard ratio of the CD45RO+/TILsHigh group in both the CT and IM areas
exhibited a significant correlation with the OS in multivariate (Table 2).
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determined using the Mann–Whitney U test. * Statistically significant difference at p < 0.05. * p < 0.05.
** p < 0.01.
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Figure 3. Kaplan–Meier curves of disease-free survival according to the TIL density in OSCC tissue.
Each graph showed disease-free survival (DFS) of OSCC patients with high (red line) and low (blue
line) numbers of CD3+, CD8+, CD45RO+, and Granzyme B+/TILs in the CT (left panels) or IM
(right panels) areas. Kaplan–Meier curves of DFS indicate that patients with CD45RO+/TILsHigh CT
(p = 0.0045) and IM (p = 0.0003) and Granzyme B+/TILsHigh IM (p = 0.0091) exhibited significantly
improved DFS. Differences were determined using a log-rank test. Statistically significant difference
at p < 0.05 (red values).
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Figure 4. Kaplan–Meier curves of overall survival according to TIL density in OSCC tissue. Each
graph showed the overall survival (OS) of OSCC patients with high (red line) and low (blue line)
numbers of CD3+, CD8+, CD45RO+, and Granzyme B+/TILs in the CT (left panels) or IM (right
panels) areas. Patients with CD45RO+/TILsHigh CT (p = 0.0007) and IM (p = 0.0031) and Granzyme
B+/TILsHigh IM (p = 0.0155) had a significantly improved OS, as indicated by Kaplan–Meier curves.
A log-rank test was utilized to determine differences. Statistically significant difference at p < 0.05
(red values).
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Table 2. Results of a multivariate Cox regression analysis for DFS and OS. Cox regression analyses,
including an interaction term between CD45RO+ and Granzyme B+ expressions and patient char-
acteristics, were performed. CD45RO+/TILs IMHigh and Granzyme B+/TILs IMHigh group hazard
ratios showed a significant correlation for the DFS in multivariate. The CD45RO+/TILsHigh group’s
hazard ratio in both CT and IM exhibited a significant correlation for the OS in multivariate. HR
hazard ratio; CI confidence interval; DFS disease-free survival; OS overall survival; CT center of
tumor; IM invasive margin.

Parameter (Reference) DFS OS

HR 95% CI p Value a HR 95% CI p Value a

Age < 60 years 0.318 0.110–0.918 0.034 * 0.58 0.186–1.814 0.349
Tumor stages 3–4 1.423 0.529–3.832 0.485 1.26 0.436–3.621 0.673
Surgical therapy 0.672 0.231–1.957 0.466 0.316 0.090–1.112 0.073

CD45RO+/TILs CTHigh 0.456 0.156–1.334 0.152 0.247 0.062–0.982 0.047 *
CD45RO+/TILs IMHigh 0.319 0.112–0.911 0.033 * 0.175 0.047–0.646 0.009 *

Granzyme B+/TILs IMHigh 0.385 0.155–0.957 0.039 * 0.687 0.233–2.024 0.496
a Cox proportional hazards model.; * p value < 0.05.

3.4. Comparison of Tumor MICA Expression Score between TILsHigh and TILsLow Groups

We performed an immunohistochemical analysis on OSCC tissues to examine the
expression of MICA in tumor cells and TIL density. Furthermore, MICA was observed in tu-
mor tissues, including the nucleus, membrane, and cytoplasm of cancer cells (Figure 5A,B).
Similarly, we found that CD3+, CD8+, CD45RO+, and Granzyme B+ TILs were present in
both the CT and IM areas. Additionally, we compared the MICA expression score in OSCC
between TILsHigh and TILsLow groups. Tumors with high expression of MICA exhibited
significantly increased immune cell densities with CD45RO+/TILsHigh in both CT and IM
areas (p < 0.05; Figure 5C).
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Figure 5. Comparison of the tumor MICA expression score between the TILsHigh and TILsLow groups.
Differences in tumor MICA expression score in the TILsHigh and TILsLow groups were examined.
Whole tumor cells were stained, showing representative examples of low (A) and high (B) expression
(original magnification A and B ×400). The graph indicated the difference in tumor MICA expression
scores in the CD3+, CD8+, CD45RO+, and Granzyme B+/TILsHigh and TILsLow groups in the CT and
IM regions. In comparison, the tumor MICA expression scores in the CD45RO+/TILsHigh group were
more significantly elevated than those in CD45RO+/TILsLow group (C). Differences were determined
using the Mann–Whitney U test. * Statistically significant difference at p < 0.05.

4. Discussion

Several studies have demonstrated that a high density of TILs (particularly CD8+ T
cells) is associated with a more favorable prognosis for many cancer patients [22–24]. A
positive correlation has also been reported between the increase in CD8+/TILs and the
prognosis of patients with head and neck cancer [25,26]. Moreover, it has been demon-
strated that an increase in CD8+/TILs increases chemoradiosensitivity in oropharyngeal or
nasopharyngeal cancer [27]. In breast cancer, CD45RO+/TILs were associated not only with



Cancers 2023, 15, 2221 11 of 13

an antitumor effect but also with the prevention of tumor recurrence [28]. In this study, to
determine which molecules expressed by TILs are associated with the prognosis of OSCC
patients, we performed a comprehensive immunohistochemical analysis on pre-treatment
FFPE tissue sections.

First, a comparison of the number of TILs in the recurrence and nonrecurrence groups
revealed that the number of TILs tended to be higher in the nonrecurrence group in both
CT and IM areas and that the number of CD45RO+/TILs was significantly greater. Several
studies have demonstrated that TILs at different locations in the tumor, in CT, or IM areas,
have various functions in distinct prognostic prediction and tumorigenesis [5,29]. Our
results were almost identical to those of previous reports [5,25]. The impact of four types of
TILs on DFS/OS rates was then investigated. Our results showed that both DFS/OS rates
in the CD45RO+/TILsHigh were significantly higher than that in the CD45RO+/TILsLow

in both CT and IM areas. In the IM area, DFS/OS rates in the Granzyme B+/TILsHigh

group were also significantly higher than in the Granzyme B/TILsLow group. Multivariate
analysis revealed that CD45RO+/TILs and Granzyme B/TILs in the IM area were the
independent prognostic factors for DFS/OS in OSCC patients. These results are similar to
a recent report which shows that CD45RO+/TILs is a significant prognostic factor for DFS
but not OS in HNSCC patients [30]. With respect to TIL localization, the CD8+/TILsHigh

group has a better prognosis than the CD8+/TILsLow group in the IM area; however,
there have been no previous reports on CD45RO+/TILs [29]. Yajima et al. concluded that
CD45RO+/TILs may not only help eradicate local tumors, but also prevent metastasis in
breast cancer patients [28]. CD45RO+/TILs may prevent OSCC recurrence and metastasis
based on our findings. However, additional clinical research is required because studies on
CD45RO+/TILs are scarce [5].

MICA is a ligand for NKG2D, an activation receptor for NK cells and certain cytotoxic
T cells, and contributes to the establishment of diverse immune responses. In cancer
immunity, NKG2D-mediated NK cells attack target cancer cells expressing MICA and
comprehensively activate the entire immune system through the production of cytokines
such as interferon-γ (IFN-γ) [14,15]. In this study, differences in MICA expression scores
between TILsHigh and TILsLow groups were examined. CD45RO+/TILsHigh showed a
significant increase in the MICA expression score, according to the results. We believe that
when MICA expression is high in tumor cells, CD45RO+ memory cells expressing NKG2D
directly exert cytotoxic activity by recognizing MICA.

We recently reported that OSCC patients with the MICA A5.1 allele have a higher
survival rate than those with other alleles as a result of the NKG2D receptor-mediated
activation of NK cell signaling. Additionally, we demonstrated that the prognosis for
patients with the A5.1 homozygous genotype was significantly better than that for patients
with the other MICA genotypes [19]. Consequently, genetic polymorphisms of MICA
and CD45RO+/TILs may serve as potential prognostic factors for OSCC patients. To our
knowledge, this is the first study to examine the association between TILs and MICA in
OSCC; the results of this study are the first to be reported.

This study has several limitations that must be considered. First, because this is a
single-center, retrospective case-controlled study with a small sample size, regional bias
may occur. Second, intratumoral heterogeneity may affect the evaluation of TILs and MICA
expression, resulting in insufficient detection of immune cells in tumoral tissues. Thirdly,
fundamental factors such as smoking history, drinking history, depth, and thickness of
cancer invasion were not taken into account.

Nevertheless, this study revealed that the infiltration dynamics of TILs, particularly
a high ratio of TILs expressing CD45RO, were associated with DFS/OS improvement in
OSCC patients. Additionally, the number of TILs expressing CD45RO was associated with
tumor MICA expression. Consequently, our findings suggest that CD45RO+/TILs and
MICA are useful biomarkers for OSCC.
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5. Conclusions

This study revealed that the infiltration dynamics of TILs, particularly a high ratio of
TILs expressing CD45RO, were associated with DFS/OS improvement in OSCC patients.
Additionally, the number of TILs expressing CD45RO was associated with tumor MICA
expression. Consequently, our findings suggest that CD45RO+/TILs CD45RO-expressing
TILs are useful biomarkers for OSCC.
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