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Simple Summary: Meningioma is the most common primary intracranial tumor. DNA methylation-
based subtyping, while highly useful for diagnosis and treatment planning, is costly and not widely
available. Therefore, the identification of methylation classes based on histological sections would
be highly beneficial as it could greatly support and accelerate diagnostic and treatment decisions.
We developed and systematically evaluated an AI framework to perform the classification of the
most prevalent methylation subtypes based on histological sections. The model achieved a balanced
accuracy of 0.870 for benign-1 vs benign-2 and 0.749 for benign-1 vs. intermediate-A in a narrow vali-
dation set. Combined with the network’s assessed focus on key tumor regions these results provide a
promising proof-of-concept of such an AI-driven classification approach in precision medicine.

Abstract: Convolutional neural networks (CNNs) are becoming increasingly valuable tools for ad-
vanced computational histopathology, promoting precision medicine through exceptional visual
decoding abilities. Meningiomas, the most prevalent primary intracranial tumors, necessitate accurate
grading and classification for informed clinical decision-making. Recently, DNA methylation-based
molecular classification of meningiomas has proven to be more effective in predicting tumor recur-
rence than traditional histopathological methods. However, DNA methylation profiling is expensive,
labor-intensive, and not widely accessible. Consequently, a digital histology-based prediction of DNA
methylation classes would be advantageous, complementing molecular classification. In this study,
we developed and rigorously assessed an attention-based multiple-instance deep neural network for
predicting meningioma methylation classes using tumor methylome data from 142 (+51) patients and
corresponding hematoxylin-eosin-stained histological sections. Pairwise analysis of sample cohorts
from three meningioma methylation classes demonstrated high accuracy in two combinations. The
performance of our approach was validated using an independent set of 51 meningioma patient
samples. Importantly, attention map visualization revealed that the algorithm primarily focuses on
tumor regions deemed significant by neuropathologists, offering insights into the decision-making
process of the CNN. Our findings highlight the capacity of CNNs to effectively harness phenotypic
information from histological sections through computerized images for precision medicine. Notably,
this study is the first demonstration of predicting clinically relevant DNA methylome information
using computer vision applied to standard histopathology. The introduced AI framework holds great
potential in supporting, augmenting, and expediting meningioma classification in the future.

Keywords: computational histopathology; deep neural networks; DNA methylome; meningioma;
multiple-instance learning
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1. Introduction

Medical images and their accompanying metadata contain a wealth of shared and
complementary information. By leveraging computer vision techniques, the shared sub-
space between these modalities can be harnessed, while complementary information can
contribute to the improvement of precision medicine through the integration of different
information modalities. In parallel, computational pathology has gained prominence in the
diagnosis of oncological diseases in recent years, primarily due to advancements in artificial
intelligence (AI) [1–5]. The application of machine- and deep-learning methods to digitized
histopathology images promises unprecedented accuracy, efficiency, and reproducibility
in precision medicine, laying the foundation for the implementation of computer-aided
decision support systems in clinical practice [1–7].

In pioneering studies, deep-learning approaches have been applied to aid histological
diagnosis or predict molecular information from standard HE-stained tissue slides. For
instance, a weakly supervised deep-learning algorithm developed by Campanella et al. [1]
was able to recognize areas of tumor tissue in prostate cancer, basal cell carcinoma, breast
cancer metastases, and lymph nodes with high accuracy. A clinical decision support system
was developed that selects only relevant slides from each case for review by a pathologist.
Recent studies reported deep-learning algorithms capable of predicting the origin of multi-
ple cancer types of unknown primary [2] or classifying histological subtypes in renal cell
carcinoma and lung cancer [3]. Recent AI-driven approaches have successfully linked digi-
tal histopathological and molecular data to identify various genetic alterations or predict
molecularly defined tumor subtypes for some tumor types, including lung, colon, breast,
and gastric cancer [8–19]. These findings suggest that deep convolutional networks can be
employed to predict molecularly defined and prognostically relevant cancer subtypes and
gene mutations from computerized histological images [14,20–23]. Meningiomas, the most
common primary intracranial tumors, originate from the lining of the brain and spinal
cord [24,25]. The current WHO CNS5 classification designates meningioma as a single
tumor type with 15 histological subtypes, 9 of which correspond to WHO grade 1 and three,
each to CNS WHO grade 2 and WHO grade 3 as defined by histology. However, classifica-
tion and grading criteria are continuously being updated and refined due to the growing
knowledge gained through the implementation of molecular markers [26]. Despite some
initial studies in gliomas [11,12,15,27–29], the application of computational histopathology
in neuro-oncology for predicting molecular tumor subtypes remains largely unexplored,
particularly in meningioma research. This gap can be partly attributed to the limited
availability or absence of public datasets containing matched images and molecular data
for this tumor type. For instance, matched DNA methylome and histopathology data from
meningiomas are not available in TCGA, the public database most commonly used for this
type of study. However, recent efforts to support the differential diagnosis of meningioma
by digital histopathology suggest that whole-slide-images (WSI) (without AI-assisted anal-
ysis but evaluated by neuropathologists) are similarly useful as traditional microscopy
slides for diagnosing atypical meningiomas [30] and that automated meningioma grading
using WSI and AI algorithms based on mitotic count is feasible [7]. Methylome profiling
has emerged as a powerful method for classifying CNS (central nervous system) tumors
into relevant predictive classes, including meningiomas [31,32]. By assessing genome-wide
DNA methylation patterns, a study by Sahm et al. [32] distinguishes six distinct classes of
meningiomas: three benign classes (benign-1, benign-2, benign-3), two intermediate classes
(intermediate-A, intermediate-B) and one malignant class. These represent clinically and
biologically more homogeneous groups than the 15 histologically defined subtypes and
allow for more precise segregation of patients with low to high risk of progression [33].
DNA methylation profiling, while highly useful for tumor classification, is costly, time-
consuming, and requires specialized equipment that is not widely available. Consequently,
predicting methylation pattern-derived tumor classes from routinely examined histological
data with analytical performance comparable to molecular analyses holds significant clini-
cal value. Of importance to note is that machine learning algorithms have demonstrated
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their capacity to correlate morphometric features of WSIs with DNA methylome profiles
in glioma and renal cell carcinoma [29], demonstrating that the common subspace of the
two modalities can be exploited with AI-assisted approaches in tumor classification.

Here, we present the results of a proof-of-principle investigation, using whole-slide-
images (WSI) and an attention-based multiple-instance learning approach, to predict
methylation classes in meningiomas by employing retrospective in-house datasets. We ap-
plied AI-assisted morphological analysis of standard hematoxylin-eosin-stained (HE) tissue
sections to distinguish the most prevalent methylation classes of meningiomas (benign-1,
benign-2, and intermediate-A) [32]. Notably, pairwise analyses revealed highly accurate
classification within two combinations of meningioma methylation classes using the deep-
learning approach. Our work highlights the potential utility and current limitations of
AI-assisted morphomolecular analysis classification of meningioma. We believe that this
study serves as an initiative to incorporate AI-assisted digital histopathology into the
existing repertoire of diagnostic and prognostic methods for meningiomas and potentially
other CNS tumors.

2. Materials and Methods
2.1. Tumor Samples, Methylome Datasets, and Classification

Tumor samples of patients with confirmed histological diagnosis of meningioma ac-
cording to the WHO 2021 grading scheme [26] were used for DNA methylation analysis
and generation of a WSI dataset (see Section 2.2). DNA was extracted from represen-
tative tumor areas of interest, as highlighted by a neuropathologist, and analyzed with
an Illumina HumanMethylation Infinium EPIC BeadChip (850k) array as specified and
described by the manufacturer. Methylome data were classified with the Meningioma
Classifier [31,32] to retrieve the corresponding meningioma methylation class and the cor-
responding probability score. All samples of this study were collected and analyzed at
the Giessen Institute of Neuropathology in a pseudonymized manner as approved by the
institutional review board.

2.2. Whole-Slide Image Datasets

Standard hematoxylin-eosin staining was performed on 3–4 µm thin formalin-fixed,
paraffin-embedded (FFPE) tissue sections using the Ventana benchmark Ultra (Roche,
Basel, Switzerland) automated stainer. The glass slides were digitized using a Hamamatsu
Nanozoomer S360 (Hamamatsu, Japan) at 40× equivalent magnification resulting in WSIs
with a resolution of 0.23 µm/px. As predictions are intractable at the WSI level due to
memory restrictions, a bag of smaller patches was generated from the WSIs, which are
called tiles. Each tile has a size of 256 × 256 pixels, without overlap between the tiles. This
size was chosen according to the encoder network and the available memory. Tiles were
extracted at native 40× equivalent magnification and from downsampled 20× equivalent
magnification of the WSI for each patient.

2.3. Dataset Curation

Only patients with available WSI and methylation classification data were consid-
ered, and with a methylation classification probability score above 0.5, according to the
Meningioma Classifier [31,32], were used for further analysis. We divided the patients into
two distinct subsets. The larger subset was used for development (development sets: A, C).
The second subset was considered a narrow validation set according to Kleppe et al. [34] as
it is not used during the development of the neural network (narrow validation sets: B, D).
We further used the availability of additional HE slides per patient on which areas of inter-
est (ca. 0.7–69 mm2) corresponding to representative tumor sections that were highlighted
by an experienced neuropathologist (datasets C, D). Areas of interest were marked with
a pencil by clinical professionals during routine diagnostic work prior to the initiation of
our study and were thus performed in a manner blinded to our experiments, preserving
the integrity and impartiality of the process. We subsequently labeled those areas with
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QuPath [35] on the WSI. DNA used for the DNA methylation array and classification
was extracted from these areas. Accordingly, the labeled areas analyzed using AI-assisted
digital histopathology contained the tumor sites that were subjected to molecular analysis.
This allows for additional evaluations regarding tumor heterogeneity (see Section 3.3) and
focus of the network on areas of interest (see Section 3.4). Consequently, we ended up
with 4 datasets: Dataset A and C for development, where C contains labeled slides, and
Dataset B and D for narrow validation, where D contains labeled slides. Any differences
between datasets A and C, as well as B and D, were due to the unavailability of clearly
marked slides. Due to the very different number of tumor cases in the different classes in
our real-life clinical setting (Table 1) and the necessity for a large group size for AI-based
algorithms, we selected the largest methylation classes, namely benign-1 (n = 47), benign-2
(n = 71) and intermediate-A (n = 75), for further analysis. This resulted in three two-class
classification problems namely benign-1 vs. benign-2, benign-1 vs. intermediate-A, and
benign-2 vs. intermediate-A.

Table 1. Overview of patient sample grouping. Numbers denote patient samples from each menin-
gioma methylation class (according to Sahm et al. [32]) in Datasets A–D. Numbers in parentheses
correspond to sample numbers with WHO grade 1/2/3. The samples used for AI-based classification
are in bold.

Group A Group B

ben-1 ben-2 ben-3 int-A int-B malig analyzed

A 34 52 4 56 6 4 142
(24/9/1) (42/10/0) (4/0/0) (20/36/0) (1/5/0) (0/4/0) (86/55/1)

B 13 19 5 19 1 6 51
(12/1/0) (17/2/0) (3/1/0) (6/12/0) (0/1/0) (0/5/1) (35/15/0)

C 34 52 4 53 6 4 139
(24/9/1) (42/10/0) (4/0/0) (19/34/0) (1/5/0) (0/4/0) (85/53/1)

D 13 18 5 17 1 6 48
(12/1/0) (16/2/0) (3/1/0) (6/10/0) (0/1/0) (0/5/1) (34/13/0)

Importantly, all three classes belong to methylation Group A, along with the rarely diag-
nosed methylation class benign-3. Group B consists of the methylation classes intermediate-
B and the malignant class. Thus, an analysis of specimens from the methylation classes
benign-1, benign-2, and intermediate-A provides an ideal setup to initially test the analytical
performance of AI-assisted morphological diagnosis for the following reasons: (i) the num-
ber of samples per methylation class allows for an assessment of patient diversity, (ii) the
cohort sizes are similar, and (iii) the relative similarity of methylomes (all Group A) coupled
with differences in predominant histological and genetic features allows for a critical assess-
ment of resolution performance. The number of patient samples in each dataset is shown
in Table 1. Additionally, WHO grades based on histological and molecular features are
given to show the discrepancies between the WHO grading approach and the methylation
classification scheme. Each of these approaches classifies tumors into distinct grades. Due
to the non-overlapping groups, additional information on tumor grade can be obtained
independently from both classification schemes.

2.4. Image Data Preprocessing

As a preprocessing step, the background was filtered out via Otsu’s thresholding [36]
and morphological image operations at the lowest resolution of the WSIs image pyramid.
Morphological image operations were performed to remove smaller fragments and fill
small holes to obtain a consecutive tissue mask. For datasets C and D, everything outside
the pen-labeled area was additionally considered as background. Additional filtering
of blood, based on a fixed cutoff for red values, and background with the original Otsu
value, as well as morphological operations, were performed again on the individual tiles.
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To exclude uninformative tiles, a tile was only used for further analysis if the estimated
percentage of tissue was over 75% without background and blood.

2.5. MIL-Based Slide Diagnosis

To predict the methylation class of a patient, we utilized a two-class weakly supervised
learning setting, with the WSI as input data. As it is infeasible to feed in the high-resolution
image at once, we made use of a multiple-instance learning approach similar to that
proposed by Lu et al. [3]. To extract features of each tile, the first layers of a convolutional
neural network, a ResNet50 [37], pre-trained on ImageNet, were used. This resulted
in a feature vector with a dimensionality of 1024 per tile. ResNet50 was chosen as it
is a well-established baseline for image recognition. This step was necessary to reduce
the dimensionality of the input further. The combination of tiles extracted at 20× and
40× allowed us to aggregate high-resolution local information as well as more global
information retrieved at a lower resolution and, therefore, incorporate possible larger
structures as features. Smaller magnifications were not considered as they may hold too
much background per tile and may not hold significant additional information. As feature
vectors were only generated once before training the attention network, no augmentation
was performed on the tile level besides image normalization as needed for ResNet50. In
our study, every specimen was prepared, sectioned, stained, and digitized in the same
manner within our institute. This meticulous consistency rendered color augmentation
unnecessary. Instead, we used dropout to prevent the neural network from overfitting and
to regularize the model training. In the field of augmentation, it is common to use spatial
in addition to color augmentation. Here, we distinguish between elastic deformations and
rotations or reflections. We have deliberately forgone elastic augmentation to preserve and
not artificially change the characteristic cell shapes, which could compromise and possibly
generate data that does not exist in nature. By default, CNNs are not rotation invariant by
design. Yet, with our dataset encompassing over 7 million tiles with up to 100,000 tiles per
WSI, incorporating rotations and mirroring would have been computationally exhaustive
and considerably lengthened the training process. as the feature vectors would be encoded
in every epoch. Similarly, Lu et al. [3] also waived this step in their model generation.
Another way to perform augmentation could be by augmenting the bag of feature vectors
fed into the attention network. To obtain different bags per patient, we decided to randomly
discard up to 25% of the feature vectors per patient in the training phase. It turned out that
this had no positive effect when testing with five Monte Carlo runs for each classification
task. Therefore, we decided not to include this type of augmentation in our experiments.
Next, all concatenated feature vectors per patient were fed into a multi-branch attention
network with fully connected layers and a gated attention mechanism. This multi-branch
attention network first shares a common branch across all possible classes and afterward
splits it into one branch per class, thus allowing the use of information shared across
classes, as well as learning class-specific features. This network learns an attention value
per feature vector, and weighted feature vectors are aggregated patient-wise with global
average pooling. This resulted in a probability for each class per patient normalized using
the SoftMax activation function. The development dataset was randomly divided at the
patient level into training (70%), validation (10%), and test (20%) sets utilizing Monte Carlo
cross-validation. Testing during the development phase allows us to properly assess the
generalizability of the network while the narrow group remains untouched, and these
patients have no influence on the model development. For splitting, each methylation
class was considered independently to keep the original ratio of the classes. For the final
classification, the maximum class prediction score was taken to avoid error-prone threshold
tuning over those prediction scores. Details on the training of the network (Section 7) and
the hardware and software used (Section 6) can be found in the Supplementary Materials.
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2.6. Visualization of Attention Values

Attention values per tile were stored and visualized using QuPath [35] to enable a
manual and interactive inspection of the relative importance of the individual tiles for
the prediction. For this, attention values were ranked according to the values in the
attention map of the predicted class. We assigned a color value to each of the resulting
ranks according to a red-to-blue continuous color gradient map. Red indicates a tile of
high relative importance, while blue indicates low relative importance (Figure 1). For
visualization purposes, 20× and 40× maps can also be considered independently. Ranks
are then only computed within one map to get a higher resolution within the predefined
color spectrum at one magnification.

Figure 1. Overview of the multiple-instance deep-learning framework. Standard HE-stained
histopathology slides were scanned, and the resulting WSIs were tiled. The tiled images were
encoded utilizing a pre-trained ResNet50 encoder network to obtain a feature vector per image patch
(red bar next to the tile). The attention network was trained using a multiple-instance approach to
weigh and aggregate the patches of a WSI to make a prediction of the methylation class based on the
WSI. The weights from the attention network were used to obtain an attention map, visualizing the
relative importance of the tiles for the prediction. * equals elementwise multiplication.

2.7. Compatibility with Current Reporting Standards

The documentation of this work is compliant with the recommendations and guide-
lines for reporting minimum information about clinical artificial intelligence modeling
(MI-CLAIM) as proposed by Norgeot et al. [38]. Information on sex, age, methylation
classification, and WHO grade of each sample and their assignments in datasets A–D,
as well as a report with minimum information on clinical artificial intelligence modeling
(MI-CLAIM), according to Norgeot et al., are available on request.
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2.8. Informed Consent and Ethics Approval

Informed consent was obtained from all participating subjects, and the experimental
studies were authorized by the ethics committee of Justus Liebig University Giessen
(AZ138/18 and 07/09).

3. Results
3.1. AI-Assisted Determination of Meningioma Methylation Classes in Two-Class Setups from
WSI Data

We assessed the performance of the AI-assisted morphological classification of methy-
lation classes using balanced accuracy values, which also account for class imbalances
present in the data distribution, thus giving more reliable results than simple accuracy
values. Details on computational analyses can be found in the supplement. We conducted
Monte Carlo cross-validation with 50 runs and obtained a 95% confidence interval for bal-
anced accuracy of 0.896 ± 0.151 for the benign-1 vs. benign-2 combination and 0.830 ± 0.146
for benign-1 vs. intermediate-A. For benign-2 vs. intermediate-A, we were not able to
distinguish the classes effectively, achieving a 95% confidence interval of 0.542 ± 0.176, sug-
gesting results close to random guessing. In addition, the diagnostic performance for each
pairwise classification is illustrated by computing the sensitivity vs. specificity as standard
ROC curves. Mean areas under the curve (AUC) ± one standard deviation are provided
for quantitative evaluation. Benign-1 vs. benign-2 (sensitivity for benign-2) with a mean
AUC of 0.95 ± 0.04, and benign-1 vs. intermediate-A (sensitivity for intermediate-A) with
a mean AUC of 0.90 ± 0.07 confirmed the high accuracy of our approach in discriminating
benign-1 from either benign-2 or intermediate-A WSIs. In agreement with the low balanced
accuracy value, benign-2 vs. intermediate-A classification had a mean AUC of 0.58 ± 0.11,
indicating unsuccessful discrimination in our experiments.

3.2. External Cohort Evaluation of the AI-Assisted Meningioma Classification

To further evaluate the diagnostic performance of our approach, we analyzed a second
set of in-house patient data (n = 51, analyzed dataset B) that was not included in the
previous dataset (Dataset A) used for training the deep-learning models. This experimental
setup is considered a narrow validation according to Kleppe et al. [34] The cohort in Dataset B
included benign-1 (n = 13), benign-2 (n = 19), and intermediate-A (n = 19) methylation class
meningioma samples. We conducted testing on Dataset B using n = 50 runs created with the
Monte Carlo cross-validation. Balanced accuracy values and ROC curves were calculated
as before for Dataset A to assess the diagnostic performance and sensitivity of one-class
detection per two-class classification. The results from the external Dataset B analyses were
in good agreement and strongly supported those obtained from the development Dataset
A. Therefore, for the benign-1 vs. benign-2 combination, we achieved a 95% confidence
interval for balanced accuracy of 0.870 ± 0.067, and for benign-1 vs. intermediate-A
0.749 ± 0.058. For benign-2 vs. intermediate-A, results were close to random guessing with
an interval of 0.593 ± 0.124 (Figure 2a). Consistent with these findings, ROC curves showed
a mean AUC of 0.93 ± 0.01 for benign-1 vs. benign-2 (sensitivity for benign-2), mean
AUC of 0.81 ± 0.02 for benign-1 vs. intermediate-A (sensitivity for intermediate-A) and
mean AUC of 0.66 ± 0.07 for benign-2 vs. intermediate-A (sensitivity for intermediate-A)
(Figure 2b–d).
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Figure 2. The deep neural network’s performance on the retrospective narrow validation Dataset B.
(a) Raincloud plots (including probability distribution, box-whiskers plot, and data points from left
to right) show balanced accuracy values representing discrimination power for each classification
problem. Each data point represents one run of the cross-validation. (b–d) ROC curves illustrate the
diagnostic performance of each pairwise classification. Visualized is the mean ROC curve over the
runs. They correspond to the same pairwise combinations as the raincloud plots above. The plots
show the sensitivity of one class per two-class classification problem, as labeled on the y-axis, against
specificity on the x-axis. Transparent areas indicate one standard deviation of the mean curve. ROC
curves represent the model’s prediction at different prediction score thresholds. A larger area under
the curve represents a more confident model. Methylation classes are benign-1 (n = 13), benign-2
(n = 19), and intermediate-A (n = 19).

3.3. Network Training on Restricted Area Dataset

WSIs often contain diverse non-tumor tissues such as hemorrhage, bone, brain tissue,
or tissue artifacts that might compromise the diagnostic accuracy of the AI-assisted classi-
fication. In addition, tumor heterogeneity may also be associated with differences in the
DNA methylome that are not fully captured and represented in the methylome profiling
data. We, therefore, tested whether training on preselected tumor areas with available
methylome data from the same region could consequently improve network performance.
We trained our deep-learning model with Dataset C (which contained representative tumor
sections selected by an experienced neuropathologist) and evaluated the model by narrow
validation with Dataset D. In advance, we trained on Dataset C without restricting the
tiles to the representative tumor sections to ensure that the change to Dataset C from
Dataset A as in our previous results did not lead to unwanted side effects. We received
a 95% confidence interval of 0.906 ± 0.143 (compared to 0.896 ± 0.151 from Dataset A)
for benign-1 vs. benign-2, 0.852 ± 0.142 (compared to 0.830 ± 0.146 from Dataset A) for
benign-1 vs. intermediate-A and 0.616 ± 0.199 (compared to 0.542 ± 0.176 from Dataset A)
for benign-2 vs. Intermediate-A. This corroborates the comparable performance of Dataset
C to Dataset A. For the benign-1 vs. benign-2 class combination in Dataset C, we achieved
a 95% confidence interval for balanced accuracy of 0.828 ± 0.220, and for benign-1 vs.
intermediate-A 0.810 ± 0.200. For benign-2 vs. intermediate-A, the results were close to
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random guessing with a balanced accuracy of 0.532 ± 0.215. ROC curves showed a mean
AUC of 0.90 ± 0.09 for benign-1 vs. benign-2 (sensitivity for benign-2), a mean AUC of
0.86 ± 0.10 for benign-1 vs. intermediate-A (sensitivity for intermediate-A), and mean
AUC of 0.56 ± 0.14 for benign-2 vs. intermediate-A (sensitivity for intermediate-A). In the
narrow validation Dataset D, for the benign-1 vs. benign-2 combination, we achieved a 95%
confidence interval for balanced accuracy of 0.813 ± 0.069, for benign-1 vs. intermediate-A
0.751 ± 0.072. For benign-2 vs. intermediate-A, the results were again close to random
guessing with a balanced accuracy of 0.589 ± 0.134 (Figure 3a). ROC curves revealed
a mean AUC of 0.89 ± 0.02 for benign-1 vs. benign-2 (sensitivity for benign-2), a mean
AUC of 0.86 ± 0.03 for benign-1 vs. intermediate-A (sensitivity for intermediate-A), and a
mean AUC of 0.67 ± 0.06 for benign-2 vs. intermediate-A (sensitivity for intermediate-A)
(Figure 3b–d). Thus, training on preselected tumor areas did not improve the performance
of the deep neural network. Taken together, these results suggest that using tumor and
diverse tissue areas located outside the tumor area subjected to molecular profiling does
not substantially affect classification performance in AI-based histopathological analy-
ses. Instead, the restriction to a smaller number of tiles—approximately by a factor of
10—slightly weakens the performance in the best-performing benign-1 vs. benign-2 case
despite a presumably higher data quality.

Figure 3. The deep neural network’s performance on Dataset D of the retrospective development
Dataset. Dataset D WSIs are generated from patient samples of Dataset B, but from independent
tissue sections, on which the cut-out area for methylome analysis is labeled as described in detail in
the Methods section. (a) Raincloud plots (including probability distribution, box-whiskers plots, and
data points from left to right) show balanced accuracy values representing discrimination power for
each classification problem. Each data point represents one run of the cross-validation. (b–d) ROC
curves illustrate the diagnostic performance of each pairwise classification. Visualized is the mean
ROC curve over the runs. They correspond to the same pairwise combinations as the raincloud plots
above. The plots show the sensitivity of one class per two-class classification problem, as labeled on
the y-axis, against specificity on the x-axis. Transparent areas indicate one standard deviation of the
mean curve. ROC curves represent the model’s prediction at different prediction score thresholds. A
higher area under the curve represents a more confident model. Methylation classes are benign-1
(n = 13), benign-2 (n = 18), and intermediate-A (n = 17).
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3.4. Statistical Assessment and Visualization of Attention Maps

To gain insight into the histological tumor areas that the attention network deems
relevant for proper meningioma classification, we evaluated the attention maps generated
from the attention network’s prediction. As attention maps provide a view into the model’s
decision-making process, we evaluated them statistically beyond visual inspection. We
used models trained on Dataset A as they performed better compared to Dataset C. To assess
whether the attention network focuses on structures that an experienced neuropathologist
would also consider relevant, we evaluated the proportion of high-attention tiles inside and
outside areas that were highlighted as highly representative, using Dataset D. As additional
evaluation revealed the higher importance of 20× magnification tiles, we focused on their
attention maps. We calculated the proportion of high and low attention tiles inside and
outside the marked area per patient and per run, averaging over both (Figures 4 and 5 and
Supplementary Figure S1). In both benign-1 vs. benign-2 and benign-1 vs. intermediate-A
combinations, the proportion of high-attention tiles was enriched inside the marked areas.
This was not the case for benign-2 vs. intermediate-A, highlighting a reciprocal relationship
between attention proficiency and classification performance. Additionally, we evaluated
focus robustness and relative importance of 20×/40× magnification in class determina-
tion as described in detail in the supplement (Section 10). We also included additional
analyses of inside/outside attention map statistics differentiated between correctly and
incorrectly classified patients for all three classification tasks (Supplementary Figure S2).
Taken together, the attention network demonstrated its ability to identify regions of interest
that correspond with those highlighted by an experienced neuropathologist. Since the
neuropathologist highlighted areas with a high and representative tumor cell content, these
results indicate that the network can detect such regions and preferentially aggregate its
prediction from them. This suggests that the network can focus on histological features
relevant to accurate classification.

Figure 4. Visualized attention map and attention map statistics of benign-1 vs. benign-2 classifica-
tion. (a,b) For qualitative evaluation the location and attention value as a red-blue color grade of
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20× magnification tiles of WSIs is visualized (b) and the corresponding HE-image is shown (a). The
attention map of a representative tumor section visualizes the relative importance of each tile for
the overall prediction. A low importance is illustrated by dark blue and high importance in dark
red on the color map. High-attention tiles are enriched in tumor areas, which becomes especially
visible when compared to the section area preselected for DNA extraction by the neuropathologist.
(c,d) Attention map statistics to evaluate the relative proportion of high and low attention values
inside (c) and outside (d) the tumor areas, highlighted by a neuropathologist. The color grades were
grouped into 5 discrete classes. Only attention maps at 20× were considered for this evaluation
and proportion was computed per attention map and averaged overall. A higher proportion of
high-attention tiles inside the marked area is in line with a high tumor area percentage inside this
area. Methylation classes are benign-1 (n = 13) and benign-2 (n = 18).

Figure 5. Visualized attention map and attention map statistics of benign-1 vs. intermediate-A
classification. (a,b) For qualitative evaluation, the location and attention value as a red-blue color
grade of 20× magnification tiles of WSIs is visualized (b), Colors can be interpreted as represent-
ing a certain range in percentage of attention. Blue 0–20% (least important), Light blue 20–40%,
Gray 40–60%, Orange 60–80%, Red 80–100% (most important), and the corresponding HE-image is
shown (a). The attention map of a representative tumor section visualizes the relative importance
of each tile for the overall prediction. A low importance is illustrated by dark blue, and a high
importance in dark red on the color map. High-attention tiles are enriched in tumor areas, which
becomes especially visible when compared to the section area preselected for DNA extraction by the
neuropathologist. (c,d) Attention map statistics to evaluate the relative proportion of high and low
attention values inside (c) and outside (d) the tumor areas, highlighted by a neuropathologist. The
color grades were grouped into 5 discrete classes. Only attention maps at 20× were considered for
this evaluation, and proportion was computed per attention map and averaged overall. A higher
proportion of high-attention tiles inside the marked area is in line with a high tumor area percentage
inside this area. Methylation classes benign-1 (n = 13) and intermediate-A (n = 17).
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4. Discussion

In this study, we introduce an AI-assisted image analysis approach that leverages the
visual decoding capabilities of convolutional neural networks (CNN) to identify prognosti-
cally relevant, methylome-defined tumor classes of meningiomas [32,33] using conventional
HE-stained histopathology slides. Our analysis of larger sample cohorts from a real-world
clinical setting demonstrates a high degree of accuracy in classifying two combinations of
meningioma methylation classes (benign-1 vs. benign-2 and benign-1 vs. intermediate-A
groups). These results underscore the growing importance of computational approaches
for image-based predictions of clinically relevant tumor subtypes based on molecular
alterations to support and assist precision medicine in oncology. To our knowledge, this
is the first study to successfully extract clinically relevant DNA methylome information
through computer vision techniques applied to standard histopathology.

Our primary objective was to predict methylation classes in meningiomas using a
deep-learning framework based on histological features—a task not achievable at the
neuropathologist level—as DNA methylation-based molecular classification has demon-
strated higher predictive power for tumor recurrence than histopathological classification
alone [33]. The evaluation of balanced accuracy values and ROC curves showed high accu-
racy in discriminating benign-1 from either benign-2 or intermediate-A WSIs. However, the
benign-2 vs. intermediate-A classification yielded results close to random guessing, suggest-
ing that these classes are not successfully discriminated in our experiments. Intriguingly,
this might be attributed to the closer relationship between benign-2 and intermediate-A
classes on the methylation level, as demonstrated by the unsupervised hierarchical clus-
tering data from Sahm et al. [32], which could also be reflected in the histological tissue
level explaining the poorer diagnostic performance of the CNN in distinguishing these
methylation classes. Interestingly, the classification of intermediate-A class samples using
an updated version of the DNA methylome classifier (V12.5) and a different subspace of
the methylome also suggests a close relationship between intermediate-A and benign-2
classes. This would imply that our AI approach facilitates a more robust definition of
(morphomolecular) meningioma classes than methylome analyses alone. This hypothesis
should be tested in future experiments if the updated methylome-based analyses reach a
consensus in defining new methylation classes.

One limitation of our study is the small cohort size for some methylation classes,
which precluded multi-class comparisons. This situation reflects the real-life clinical setting,
as approximately 90% of patient samples in our retrospective dataset belong to only three
methylation classes (benign-1, benign-2, or intermediate-A). Consequently, the other three
methylation classes (benign-3, intermediate-B, and malignant) were not included in the
deep-learning framework due to their small cohort size. To enhance the applicability of
our framework in a clinical setting, we are currently gathering samples for the underrepre-
sented meningioma methylation classes to enable multi-class comparisons and incorporate
additional molecular methylome-based meningioma classifications [33,39,40]. This will
help determine which molecular stratification offers the most accurate translation between
histological and molecular data and evaluate the potential of integrating both modalities to
improve meningioma stratification in clinical settings. Overall, our study demonstrates the
ability of CNNs to identify prognostically relevant methylome-defined tumor subtypes,
substantially advancing previous findings on integrating DNA methylation and morpholog-
ical data, e.g., in glioma and renal cell carcinoma [29], as well as in breast cancer [8]. Several
multiple-instance learning approaches have been published in the past to predict molecular
features from histology data. The approach presented here extends these to uniquely
enable methylation-based tumor classification of meningiomas, a previously unexplored
combination of molecular features and tumor type. Recent approaches tackled different
molecular questions in (neuro-)pathology. Jiang et al. [12] predicted prognosis and IDH
status on LGGs using a ResNet18 for feature encoding and fully connected layers for final
classification. They achieved an AUC (area under the curve) of 0.667 for IDH status predic-
tion. Liu et al. [15] also predicted the IDH status in LGGs and GBMs, using a ResNet50 for
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the prediction and additionally utilizing GANs (Generative Adversarial Network) for data
augmentation. They achieved an accuracy of 0.853. Zheng et al. [29] identified differential
methylation states in glioma and renal cell carcinoma using morphometric features and
classical machine learning. They achieved an average AUC of 0.74 in glioma samples. Simi-
lar to other AI-assisted approaches for molecular stratification of histopathological samples,
we also adopted a multiple-instance strategy. Notably, Cui et al. [11] utilized CNNs as well
to obtain a patch-level score and aggregated those into a classification using MIL pooling.
They achieved an AUC of 0.84 for IDH1 status prediction in glioma. Campanella et al. [1]
classified positive and negative samples in prostate cancer, basal cell carcinoma, and breast
cancer metastases, using a combination of ResNet34 for feature encoding and an RNN to
aggregate the information in a multiple-instance learning manner. They achieved an AUC
above 0.98 for all their classification tasks. Courtiol et al. [6] used a ResNet50 to obtain a
score per tile and aggregated them using a multi-layer perceptron to predict the patient
outcome in mesothelioma. They achieved a c-index of 0.643.

By showcasing the feasibility of predicting methylome-based tumor subtypes in menin-
giomas through computational approaches, our research contributes to the broader under-
standing of AI’s potential in tumor classification and diagnosis.

Interestingly, training the network on a preselected and highly representative tumor
area Dataset C—at the same time excluding non-tumor tissue, tissue artifacts, and potential
tumor heterogeneity, which is not captured during DNA methylome profiling—did not
improve its performance. In contrast, in Dataset A, the training on a higher amount
of tiles—approximately by a factor of 10—and with higher variance in tissue diversity
resulted in improved performance while allowing the network to ignore irrelevant tissue
sections. This finding indicates that restricting the dataset to a smaller number of tiles
and a reduced variance in relevant tissue/tumor areas during training (Dataset C) may
slightly reduce the performance and weaken the generalization ability of the network. This
is in concordance with previous findings [3] showing that the performance of networks
improves with increased sample size. The attention maps generated from the attention
network’s predictions allowed us to assess which histological tumor areas the network
considered relevant for proper meningioma classification. The results indicate that the
network is capable of detecting regions with a high and representative tumor cell content
and preferentially aggregates its prediction from these regions, aligning with the areas
highlighted by an experienced neuropathologist. This finding supports the notion that
AI-based histopathological analyses can effectively learn and focus on relevant histological
structures, increasing the transparency and interpretability of deep-learning models in
medical applications as previously reported in gliomas [9,11,12,15,27–29].

5. Conclusions

Overall, our study serves as an important proof-of-principle for integrating AI-assisted
digital histopathology into existing diagnostic and prognostic methods for meningiomas
and possibly other CNS tumors. We demonstrate the potential of CNNs to extract clinically
relevant methylation patterns from histological features. As we continue to refine these
techniques and expand their application to different molecular classifications, as discussed
above, we can expand their utility and move closer to more accurate and clinically relevant
meningioma stratification, ultimately improving patient care and outcomes. It will be
interesting to see whether, in the future, these features can also be made apparent to the
human (neuropathologist’s) eye. Our approach could expand the repertoire of existing
methods for the diagnosis and prognosis of meningiomas, and possibly other tumors, in
keeping with the idea put forth by Rudolf Virchow that “each anatomical change must
have been preceded by a chemical one” [41].

6. Hardware and Software

All computations were performed on a single Linux Ubuntu (version 20.04.3 LTS)
Client with an Nvidia RTX3090 24 GB as a graphics card with CUDA (version 11.2)
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for network training and evaluation. The code is written in Python (version 3.8). We
used OpenSlide [42] (version 1.1.2) and Json (version 2.0.9) to access the WSIs on the fly.
For preprocessing and data loading NumPy [43] (version 1.19.2), pandas [44] (version
1.2.4), pillow [45] (version 8.1.2), albumentations [46] (version 1.0.0), and OpenCV [47]
(version 4.5.2) were used. For network training, we used PyTorch [48] (version 1.8.1) and
progress (version 1.5) for console information. For plots matplotlib [49] (version 3.4.2),
scikit-learn [50] (version 0.24.2), ptitprince [51] and seaborn [52] (version 0.11.1) were
used. For further inspection of WSIs and visualization of attention maps on full WSIs,
QuPath [35] (version 0.2.3) was applied.

7. Network Training

In each iteration, one patient with its entire set of tiles was used, and the attention
part of the network was optimized using categorical cross-entropy loss and Adam [53]
optimizer with a learning rate of 1 × 10−4 and decay of 1 × 10−5. In each epoch, an equal
number of patients per class was used, randomly sampled from the training set. To account
for class imbalances between the classes, the number of patients used per epoch is limited
by the class with the lower number of patients. The network was trained for 400 epochs
with early stopping after a minimum of 100 epochs (patience 25 epochs), and the best
network according to validation loss is stored. Validation loss is computed on a random
subset of the validation set with an equal number of patients per class per epoch.

8. Computational Analyses and Statistics

Computational analyses were performed in matplotlib [49], ptitprince [51], and seaborn [52]
using default parameters to generate raincloud [51] and box plots. Raincloud plots show the
probability density as well as raw data points overlaid with box plots. Standard box plots
visualize the five-number summary (minimum, lower quartile, median, upper quartile, and
maximum) of the indicated data sets. ROC (receiver (or relative) operating characteristic) curve
plots were computed using scikit-learn, and the mean was computed per threshold step. In the
standard ROC curve plots, sensitivity values are plotted against specificity values. Balanced
accuracy (BA) values are calculated as BA = (Sensitivity + Specificity)/2.

9. Methylation Class Determination from WSI Data Does not Depend on Tumor Grade

Although methylation classes share similar clinical behavior and transcriptomic pro-
files, different CNS WHO grades are represented to varying degrees within each class. For
instance, grades 2 and 3 are overrepresented in intermediate and malignant subclasses. The
uneven distribution of tumor samples with different grades within individual methylation
classes and the corresponding differences in tissue structure could serve as a distinguishing
feature primarily in the pairwise classification of benign versus other methylation classes.
This could potentially affect AI-based histopathologic classification. In our narrow valida-
tion Dataset B, the grade 1/grade 2 distributions are 12/1 for benign-1, 17/2 for benign-2,
and 6/12 for the intermediate-A cohorts (Table 1). The high diagnostic performance and
their similar WHO grade distribution exclude possible grade-based class prediction in
the benign-1 vs. benign-2 case. To exclude the possibility that the performance of the
AI-assisted morphological diagnosis of benign-1 vs. intermediate-A methylation classes is
influenced by tumor grade, we calculated and compared the diagnostic performance of
sample sub-cohorts belonging to the same WHO grade. As this is infeasible for benign-1
subtypes, we compared sensitivities of intermediate-A CNS WHO grade 1 and 2 subtypes
(i.e., computed the sensitivity for intermediate-A with CNS WHO grade 1 and sensitivity
for intermediate-A with CNS WHO grade 2 and computed their differences per run). The
result clearly showed that the sensitivity of the classification is independent of the tumor
grade, as their difference for each run was closer to zero. A classification that relies on
the WHO grade would result in a difference of sensitivities closer to one, with different
sensitivities of the subtypes due to a misclassification of one (i.e., classifying likely most
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intermediate-A CNS WHO grade 1 as benign-1 and most intermediate-A CNS WHO
grade 2 as intermediate-A).

10. Statistical Assessment of Attention Maps

We evaluated the robustness of the attention network’s focus on different areas over
multiple runs of the Monte Carlo cross-validation and assessed the proportions of high-
attention tiles in 20× magnification vs. 40× magnification. We were able to observe that
high and low attention tiles remained particularly important across runs, implying that the
focus of the network and, therefore, the attention assignment remained fairly stable across
multiple runs even with changing training data. Interestingly, the network seemed to focus
more on 20× magnification tiles as their high-attention proportion increased compared
to 40× magnification. Information from 20× magnification includes more global tissue
structures, which seemed to be more relevant for the classification.

Supplementary Materials: The following supporting information can be downloaded at: www.
mdpi.com/xxx/s1, Figure S1: Attention map statistics of benign-2 vs. intermediate-A classification.
(a,b) Attention map statistics to evaluate the relative proportion of high and low attention values
inside (a) and outside (b) the tumor areas, highlighted by a neuropathologist. The color grades were
grouped into 5 discrete classes. Only attention maps at 20× were considered for this evaluation, and
proportion was computed per attention map and averaged overall. Methylation classes are benign-2
(n = 18) and intermediate-A (n = 17). Figure S2: Attention map statistics of all three classification
tasks to evaluate the relative proportion of high and low attention values inside the tumor areas.
(a,b) Attention map statistics of benign-1 vs. benign-2, with (a) considering only incorrectly classified
samples and (b) considering only correctly classified. (c,d) Attention map statistics of benign-1 vs.
intermediate-A, with (c) considering only incorrectly classified samples and (d) considering only
correctly classified. (e,f) Attention map statistics of benign-2 vs. intermediate-A, with (e) considering
only incorrectly classified samples and (f) considering only correctly classified. The color grades were
grouped into five discrete classes. Only attention maps at 20× were considered for this evaluation,
and proportion was computed per attention map of incorrectly classified samples (a,c,e), respectively
of correctly classified samples (b,d,f), and averaged over all samples. Methylation classes are benign-1
(n = 13), benign-2 (n = 18), and intermediate-A (n = 17).
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Abbreviations

The following abbreviations are used in this manuscript:

AI artificial intelligence
AUC area under the curve
BA balanced accuracy
CNN convolutional neural networks
CNS central nervous system
HE hematoxylin-eosin-stained
WSI whole-slide image
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