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Simple Summary: In this study, we investigated FLT3, a protein that plays a vital role in the
development of early blood cells. FLT3 often undergoes changes that contribute to the onset of a
blood cancer known as acute myeloid leukemia (AML). We employed sophisticated computational
techniques to examine how various mutations in the FLT3 protein affect its function and its interaction
with therapeutic drugs. Our analysis covered numerous combinations of potential FLT3 mutations
and drugs to identify the most effective treatments. Specifically, we concentrated on the impact
of a mutation at the Y842 site within FLT3 on the efficacy of drug treatments. Furthermore, we
introduced a novel scoring system designed to enhance the prediction of drug effectiveness. Our
findings highlight the significance of customized medical approaches, considering that individual
mutations can markedly alter a patient’s reaction to AML treatments.

Abstract: The type III receptor tyrosine kinase FLT3 is a pivotal kinase for hematopoietic progenitor
cell regulation, with significant implications in acute myeloid leukemia (AML) through mutations
like internal tandem duplication (ITD). This study delves into the structural intricacies of FLT3,
the roles of activation loop mutants, and their interaction with tyrosine kinase inhibitors. Coupled
with this, the research leverages molecular contrastive learning and protein language modeling to
examine interactions between small molecule inhibitors and FLT3 activation loop mutants. Utilizing
the ConPLex platform, over 5.7 million unique FLT3 activation loop mutants—small molecule pairs
were analyzed. The binding free energies of three inhibitors were assessed, and cellular apoptotic
responses were evaluated under drug treatments. Notably, the introduction of the Xepto50 scoring
system provides a nuanced metric for drug efficacy. The findings underscore the modulation of
molecular interactions and cellular responses by Y842 mutations in FLT3-KD, highlighting the need
for tailored therapeutic approaches in FLT3-ITD-related malignancies.

Keywords: drug sensitivity scores; molecular modeling; molecular docking; four-parameter
logistic curve

1. Introduction

FLT3, also known as Fms-like tyrosine kinase 3, is a receptor tyrosine kinase that plays
a pivotal role in the hematopoietic system. It is predominantly expressed in hematopoietic
progenitor cells, acting as a key regulator of their survival, proliferation, and differentiation.
This significance of FLT3 has been extensively documented and is reviewed by us and
others in several studies [1–9]. In the context of acute myeloid leukemia (AML), FLT3
takes on an even more pronounced role. AML, a malignancy of the myeloid lineage of
blood cells, exhibits a variety of genetic anomalies. Notably, about 30% of AML patients
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carry an activating mutation in the FLT3 gene. This mutation significantly boosts the cell’s
survival and proliferation capabilities, often leading to aggressive disease progression.
The most frequently observed of these mutations is the internal tandem duplication (ITD).
This intriguing mutation involves an in-frame duplication of a sequence within the FLT3
gene. This duplication can vary in length, from just a few amino acids to more than a
hundred. The result of this mutation is a structural alteration where the juxtamembrane
region becomes separated from the kinase domain. Consequently, this change activates
the kinase activity, driving the oncogenic properties of the cell. Clinical observations have
revealed a grim picture: the presence of an ITD mutation in FLT3 often correlates with
poor survival rates and a challenging overall prognosis for AML patients. Diving deeper
into the structure of FLT3, within its kinase domain, there lies a conserved tyrosine residue
located in what is referred to as the activation loop. This loop is a hallmark of kinase
enzymes and is frequently involved in modulating their activity. A wealth of research,
including the study referenced as [10], highlights the importance of activation loops across
various kinases. However, when it comes to type III receptor tyrosine kinases, a group
to which FLT3 belongs, this loop does not play the conventional regulatory role. Our
previous research efforts have unveiled that this particular tyrosine residue in FLT3, while
not crucial for its kinase activity, is indispensable for the transformative capabilities of the
FLT3-ITD mutation [11]. Further complicating the clinical landscape, mutations in codon
842, specifically Y842H and Y842C, have emerged as culprits in mediating resistance to
tyrosine kinase inhibitors, a common therapeutic strategy for AML [12]. Among these, the
Y842C mutation deserves special mention. It has not only been identified as a mechanism
of drug resistance but has also been flagged as an activating mutation in AML patients, as
detailed in the study referenced as [13].

The extracellular domain of type III Receptor Tyrosine Kinases (RTKs) is architecturally
composed of five immunoglobulin-like (Ig-like) domains. Among these, the Ig-like motifs
2 and 3 are specifically involved in ligand binding, providing specificity to the ligand–
receptor interaction. In contrast, domains 4 and 5 have the crucial function of mediating
receptor dimerization, a fundamental step for the signaling capabilities of these receptors.
Anchoring these receptors firmly to the cell membrane is a hydrophobic transmembrane do-
main. This domain acts as a gateway between the extracellular environment and the cell’s
interior. Adjacent to the transmembrane domain lies the intricate intracellular region. This
region starts with the juxtamembrane region and subsequently houses the bipartite kinase
domain, ultimately ending with the carboxyterminal tail. For type III RTKs, the juxtamem-
brane region is not just a mere structural component. It performs a crucial autoinhibitory
function. By strategically binding to the activation loop of the kinase domain, it effectively
locks the kinase in an inactive state, ensuring that signaling is tightly regulated [14]. When
FLT3 is in this inactive state, it remains unphosphorylated. The activation loop adopts a
distinct conformation, often referred to as the ‘DFG-out’ conformation due to its conserved
aspartic acid-phenylalanine-glycine (DFG) sequence. This loop, approximately 27 residues
in length, interacts with the alanine-proline-glutamic acid (APE) sequence, a detail that has
been elaborated upon in various reviews, including [15]. In a scenario where FLT3 remains
unbound to its ligand and thus inactive, the juxtamembrane region interacts with the kinase
domain. This interaction maintains the kinase domain in its inhibited state. Interestingly,
this DFG-out conformation has been exploited therapeutically. Tyrosine kinase inhibitors
that bind to this conformation are termed type II inhibitors. Imatinib, a prototypical tyro-
sine kinase inhibitor (TKI), is a classic example of this category. Conversely, there are Type
I TKIs that differ in their mechanism. Instead of the DFG-out conformation, they interact
with the kinase domain when it is in the “DFG-in” configuration, signifying an active state
of the kinase. Within the scope of the TKIs discussed here, Midostaurin is categorized as a
type I inhibitor. In contrast, both Sorafenib and Quizartinib fall under the type II inhibitors,
emphasizing their distinct binding and inhibitory profiles.

TKIs have shown promise in the clinical treatment of various cancers. However,
mutations in the target proteins can compromise the effectiveness of these drugs [1,11,16].
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It is essential to grasp the detailed interactions between drugs and target proteins and
to pinpoint inhibitors that can selectively target these mutations to mitigate such issues.
While conventional drug discovery processes can be time-consuming when searching for
mutation-specific drugs, recent advances in computational methods offer the potential
for a more expedited approach. One such advanced computational method is molecular
contrastive learning (MCL), which has emerged to meet the unique challenges of drug
discovery. MCL operates on a self-supervised learning model that enhances the process of
representation learning by contrasting aligned pairs (positive) against disparate ones (nega-
tive) [17]. A positive pair includes two variations of the same molecular structure, while a
negative pair involves variations from different structures. The goal of MCL is to refine the
representation so that similar items (positive pairs) are closer in the learned space, while
dissimilar items (negative pairs) are further apart. This process effectively prioritizes the
association of items with similar meanings while distancing those with different meanings.
The strength of MCL lies in its ability to generate nuanced and informative representations
of proteins and ligands. These representations can then be used to calculate similarity
scores, acting as predictors for potential interactions between proteins and ligands [18]. By
facilitating the discovery of new drug–target interactions and aiding in the repurposing
of existing drugs, MCL significantly contributes to the field, potentially accelerating the
identification of drugs suited to target mutation-specific conditions.

In the quest for mutation-specific drugs and the optimization of TKIs for cancer
therapies, molecular dynamics (MD) and molecular docking stand out for their profound
impact on computational drug discovery [19]. MD simulations unravel the complex dance
of atoms and molecules within drug-target complexes over time, revealing the dynamic
nature of their interactions. This dynamic perspective is indispensable when considering
the effect of mutations on the target proteins, as it allows for a nuanced exploration of
how these genetic alterations might influence drug binding and efficacy. MD sheds light
on the nuanced dance of proteins’ conformational changes, assesses the stability of drug
molecules within binding pockets, and unveils the subtleties of how mutations can affect
both drug accessibility and the strength of binding [20]. Complementing the temporal
resolution of MD, molecular docking offers a spatial dimension, predicting how a drug
molecule might orient itself to a target protein to form a stable complex. It allows for the
precise modeling of interactions between small molecules and proteins down to the level
of individual atoms, which is pivotal for a detailed understanding of drug actions and their
potential efficacies [21]. In scenarios where mutations are present, docking becomes an
invaluable tool for sifting through libraries of compounds to pinpoint those that bind most
effectively to altered binding sites, hinting at their selectivity and potency as inhibitors.
When integrated, these computational strategies—MD for capturing the dynamic interplay
over time and docking for visualizing the static potential of interactions—provide a dual
lens through which the interactions of drugs with mutated proteins can be viewed in high
definition [22,23]. This synergy not only enriches our understanding of the molecular basis
for drug efficacy but also streamlines the drug development pipeline. By predicting which
compounds are likely to exhibit strong affinities for particular targets, especially those
with specific mutations, researchers can more efficiently prioritize candidates for further
development. This harmonized approach propels the drug discovery process forward,
enhancing the selection of potential therapeutic agents while conserving valuable time
and resources.

In this study, we utilized the MCL-dependent protein language model, ConPLex [24],
to identify potential drug candidates targeting FLT3 mutations, specifically at the Y842
position. We employed MD and molecular docking to understand how mutations affect
inhibitor interactions. Finally, we conducted viability and apoptosis assays to validate
our computational findings and developed a tool named Xepto50 to elucidate the wet lab
results (briefly depicted in Figure S1).
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2. Materials and Methods
2.1. Preparation of Native and Mutant FLT3 Structures

The native structure of the FLT3 protein, with a resolution of 3.20 Å, determined
through X-ray diffraction was obtained from the Protein Data Bank (PDB) [25]. The PDB
ID for the dimeric FLT3 structure is 4XUF [26]. In the structural configuration of FLT3, the
fundamental kinase fold comprises a compact N-terminal lobe (N lobe) and an α-helical C-
terminal lobe (C lobe) connected through a hinge segment. The pivotal conserved structural
components crucial for kinase catalytic activity, situated between the N lobe and the C lobe,
encompass the hinge region. For our computational analysis, we utilized only one subunit,
specifically Subunit A. The crystallographic structure displayed two missing loops: one
between residues Lys649 and Asp651, and the other between Glu708 and Val782. These
missing loops were reconstructed using the Modeler plugin within the Chimera software
(version chimera-1.3-tru64). The co-crystal ligand, quizartinib, was excised from the binding
site. Point mutations were then introduced into the native FLT3 protein structure at position
Y842 to produce the Y-to-C and Y-to-F mutant proteins. These mutant structures were
generated using the Dunbrack rotamer library [27], and, among them, structures with the
lowest energy and highest probability scores were chosen for subsequent computational
analyses. The molecular structures of Quizartinib (PubChem CID: 24889392), Sorafenib
(PubChem CID: 216239), and Midostaurin (PubChem CID: 9829523) were sourced from the
PubChem database [28].

2.2. Molecular Docking

The native and mutant FLT3 protein structures were first prepared by removing
water molecules. Subsequently, the structures were converted to the Pdbqt format using
AutoDock in preparation for docking. Docking analysis was executed using AutoDock
Version 4.2 [29] in conjunction with ADT Tools 1.5.6. Intermediate steps, including energy
minimization for protein and ligand structures in the Pdbqt format and grid box generation,
were handled using the graphical user interface of AutoDock Tools. AutoDock added polar
hydrogens, Kollman atomic charges, solvation parameters, and fragmental volumes to the
protein. The prepared structures were saved in Pdbqt format. For grid map file generation,
AutoGrid was employed, utilizing a grid box with dimensions set to 60 × 60 × 60 points
in x, y, and z, and a grid spacing of 0.375 Å. The grid box center was adjusted based on
the position of the co-crystal ligand. AutoDock’s iterative local search global optimizer
was used to generate protein–ligand poses. Complexes with the lowest binding free
energy (greater negative ∆G values) were selected as the starting structures for molecular
dynamics (MD) simulations. In total, nine complexes, namely native-Quizartinib, Y842C-
Quizartinib, Y842F-Quizartinib, native-Sorafenib, Y842C-Sorafenib, Y842F-Midostaurin,
native-Midostaurin, Y842C-Midostaurin, and Y842F-Midostaurin, were chosen as initial
structures for MD simulations.

2.3. MD Simulations

The topologies for both ligand and protein structures were generated using the PRO-
DRG server [30] and the editconf script from the GROMACS software (version 4.6.7), re-
spectively. The protein topologies were derived using the GROMOS96 43a1 force-field [31].
Subsequently, ligand topologies were combined with protein topologies to create a protein–
ligand complex. This complex was situated inside a cubic box populated with the simple
point charge (SPC) water model. To neutralize the system, counter ions (Na+ and Cl−) were
introduced. The neutralized system then underwent 50,000 steps of energy minimization
using the steepest descent algorithm. Position restraints for the ligand and temperature cou-
pling groups were established at this juncture. The energy-minimized systems proceeded
to a two-phase equilibration, each spanning 1000 ps. The initial phase operated within an
isothermal–isochoric ensemble, ensuring a constant number of particles, volume, and tem-
perature. This step aimed to stabilize the system’s temperature. In the subsequent phase,
the system’s pressure and density were equalized under the isothermal–isobaric ensemble,
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maintaining a constant number of particles, pressure, and temperature. The temperature
and pressure during these ensembles were regulated by the velocity rescaling thermo-
stat [32] and the Parrinello–Rahman barostat [33], respectively. Following equilibration, all
position restraints were released, and the systems were subjected to 1000 ns MD simulations.
These MD trajectories facilitated the calculation of thermodynamic binding free energies
through the Molecular Mechanics-Poisson Boltzmann Surface Area (MM-PBSA) method.

2.4. MM-PBSA Calculations

We selected the last 50 ns of the most stable trajectories from MD simulations to
compute the binding free energies of protein–ligand systems using the g_mmpbsa tool [34].
This tool synergizes binding energy calculations with high-throughput MD simulations,
accounting for conformational changes that occur during protein–ligand binding. While
the method does not compute the entropic terms, it is ideal for comparing the relative
binding energies of molecules that interact within the same binding pocket.

The binding free energy for protein–ligand, protein–protein, protein–DNA complexes,
or any biomolecular assemblage can be theoretically expressed by the equation:

∆Gbinding = Gcomplex − (Gprotein + Gligand) (1)

Each component in Equation (1) can further be defined by:

Gx = (EMM) − TS + (Gsolvation) (2)

In this equation, ‘x’ can represent Gcomplex, Gprotein, or Gligand. EMM stands for the
average molecular mechanics potential energy in a vacuum. The term TS symbolizes the
entropic contribution to free energy in a vacuum, with ‘T’ and ‘S’ denoting temperature
and entropy, respectively. Lastly, Gsolvation refers to the free energy of solvation.

2.5. Drug Sensitivity Assays

The Ba/F3 cell line was procured from Deutsche Sammlung von Mikroorganismen
und Zellkulturen (DSMZ, Braunschweig, Germany). The cells were cultured in RPMI
1640 medium supplemented with 10% heat-inactivated fetal bovine serum (FBS) (Thermo
Fisher Scientific, Waltham, MA, USA), 100 U/mL penicillin, 100 µg/mL streptomycin
(Corning, Corning, NY, USA), and 10 ng/mL murine IL3 (Thermo Fisher). All inhibitors
were sourced from MedChemExpress, Monmouth Junction, NJ, USA. Ba/F3 cells, after
being stably transfected with FLT3-ITD and activation loop tyrosine mutants, were main-
tained in the same medium as the parental Ba/F3 cells. For the drug sensitivity assays,
10,000 cells were seeded in IL3-free medium and exposed to ten distinct drug concentra-
tions, ranging from 5 picomolar to 10 micromolar, for 72 h. Cell viability was then assessed
post the 72 h period using CellTiter-Glo (Promega, Madison, WI, USA).

2.6. Apoptosis Assay

Ba/F3 cells stably expressing FLT3-ITD, or activation loop mutants were treated with
various drug concentrations for 48 h. Following treatment, the cells were processed, and
apoptotic cells were quantified using the FITC-Annexin-V/7-AAD kit (BD Biosciences,
Franklin Lakes, NJ, USA) as per the manufacturer’s instructions.

2.7. ConPLex Analysis

The kinase domain of FLT3 was identified using the NCBI’s Conserved Domains
Search. For our analysis, we retrieved the Simplified Molecular Input Line Entry System
(SMILES) notations of selected small molecules from the ChEMBL Database. To simulate
mutations, the Y842 residue in FLT3 was replaced with both Cysteine (C) and Phenylalanine
(F). Using a custom Python script, these modified FLT3 sequences were combined with
the small molecules’ SMILES notations, resulting in more than 5.7 million protein–small
molecule pairs. These pairs were then evaluated using the pre-trained ConPLex (conplex-
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dti 0.1.10) model [24] to predict interaction scores, providing insight into potential binding
affinities between the FLT3 variants and the small molecules.

2.8. Xepto50

Xepto50 (version 0.0.2) is designed to handle data ranging from a single experiment to
multiple experiments, encompassing various cell lines and drugs, all within a single Excel
file. The software intelligently detects the number of response columns. When there are
two or more response columns, Xepto50 calculates using the mean response for subsequent
analyses. If there are three or more response columns, the software not only plots the
standard error of the mean (SEM) but also provides functionality to compute and remove
outliers. Xepto50 is versatile in its data input capabilities; it can accept response data in the
form of viability or inhibition, whether presented as a ratio or a percentage. However, for
consistency and ease of analysis, it internally converts all input responses to a format that
represents inhibition in percentage terms. For curve fitting and analysis, Xepto50 applies a
four-parameter logistic regression function.

Response = responsemin +
responsemax − responsemin

1 + 10hillslope(log10(IC50 M)−log10(drug concentration (M)))

Xepto50 offers an integrated solution for analyzing drug response experiments. Ini-
tially, the tool employs the curve_fit function from scipy.optimize to fit the data. To further
refine this fit, the lmfit model is subsequently utilized. In terms of metrics, Xepto50 is
equipped to calculate traditional IC50, interpolated IC50, and area under the curve (AUC).
Additionally, it determines drug sensitivity scores, DSS1, DSS2, and DSS3. Of note is the
unique “Xepto50 score” introduced by the software. This score is derived by determining
the AUC between the interpolated IC50 and the sum of the interpolated IC50 and a constant
value. The baseline response value used for this calculation is 50. The result is then normal-
ized by dividing it by the total area spanning between the IC50 and the aforementioned
sum of the interpolated IC50 and the constant value.

Ensuring data quality and reliability is of utmost importance. To that end, Xepto50
offers a comprehensive suite of quality scores, including R2 Score, Adjusted R2 Score,
standard error of the estimate (Sy.x), root mean squared error (RMSE), Shapiro–Wilk
normality test p-value, explained variance score, maximum residual error, root mean
absolute error (RMAE), and mean absolute percentage error (MAPE), among others. For
user accessibility, Xepto50 features a user-friendly Graphical User Interface (GUI). This
ensures a seamless experience even for individuals who may not be versed in programming.
The tool is also designed for easy setup within a conda environment. Installation is
straightforward: pip install xepto50. Once installed, users can initiate the software by
simply entering the command xepto50.

3. Results
3.1. Identification of FLT3 Interacting Small Molecules Using Molecular Contrastive Learning and
Protein Language

Molecular contrastive learning is an emerging technique that has garnered significant
attention due to its ability to leverage vast datasets of small molecules for probing molecular
interactions. A novel integration of this methodology with protein language modeling was
observed in a recent publication [24]. For our analysis, we harnessed an expansive dataset
of more than 1.9 million small molecules sourced from the ChEMBL database. These were
juxtaposed with the FLT3 kinase domain (FLT3-KD) and its mutants, Y842C and Y842F.
Consequently, the analysis involved over 5.7 million unique FLT3-KD-small molecule pairs.
Employing a pretrained model within the ConPLex platform, we discerned that 938 small
molecules manifested interactions with the FLT3-KD, contingent on a ConPLex interaction
score threshold of >0.8. Adopting an identical score threshold, we identified interactions
of 930 small molecules with FLT3-KD-Y842C and 923 molecules with FLT3-KD-Y842F
(Table S1 and Figure 1A). The vast majority of the 930 small molecules from the ChEMBL
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database are experimental compounds and do not have assigned common names. Only
18 of these molecules are currently recognized by a specific name. Interestingly, while
the interaction scores exhibited no significant statistical divergence between the wild-type
FLT3-KD and its mutants, an observable trend emerged. The interaction scores consistently
descended in the order of FLT3-KD > FLT3-KD-Y842C > FLT3-KD-Y842F (Figure 1B). This
trend insinuates that mutations within the activation loop could potentially modulate the
interaction dynamics between inhibitors and the FLT3 kinase domain. Furthermore, the
specific characteristics of these mutations may influence the nature of these interactions
in distinct ways. Notably, established FLT3 inhibitors like quizartinib, ponatinib, and
Sorafenib all had interaction scores surpassing 0.8. Recently, Quizartinib received FDA
approval for use in newly diagnosed AML when administered alongside chemotherapy [9].
Although Sorafenib is currently approved for solid tumors, it has demonstrated significant
promise in AML treatment and may be considered for clinical approval in this context [35].
Midostaurin, which was the first kinase inhibitor to obtain FDA approval for AML [36],
displayed a score below 0.6 (Figure 1C). Despite this, due to its clinical significance, we
included Quizartinib, Sorafenib, and Midostaurin in our further analyses. Gilteritinib,
another kinase inhibitor approved by the FDA for AML [37], had a score below 0.2; hence,
it was excluded from subsequent examination.
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Figure 1. Interaction dynamics of FLT3 kinase domain and its mutants with small molecules.
(A) Distribution of interaction scores for over 5.7 million unique FLT3-KD-small molecule pairs
sourced from the ChEMBL database. ConPLex platform with a threshold score of >0.8 was used
to identify interactions between small molecules and FLT3 kinase domains. (B) Trend analysis of
interaction scores, revealing a descending order from FLT3-KD > FLT3-KD-Y842C > FLT3-KD-Y842F.
(C) Specific interaction scores for FLT3 inhibitors.

3.2. Binding Free Energy Analysis of Native and Mutant FLT3 Structures with Drug Molecules
Using the MM-PBSA Approach

As we observed a trend in ConPLex interaction scores where mutants displayed
slightly compromised interactions, we wanted to use structure-based approaches to mea-
sure the effect of point mutations. We have selected three inhibitors: Quizartinib, Sorafenib,
and Midostaurin, due to their wide use in FLT3 research. We utilized the MM-PBSA
method to compute thermodynamic binding free energies for both native and mutant FLT3
structures interacting with various drug molecules. The native FLT3 protein structure was
sourced from the PDB database [26]. We introduced point mutations at position Y842 to
create models of the Y842C and Y842F mutant structures. The kinase domain of the native
experimental structure, in complex with the inhibitor quizartinib, was chosen as the binding
site for our free energy calculations. We docked the molecules Quizartinib, Sorafenib, and
Midostaurin onto the specified binding pocket of the native and mutant FLT3 structures.
The docked complexes exhibiting the most stable conformations underwent MD simula-
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tions, followed by thermodynamic binding free energy calculations (Table 1). The root
mean square deviation (RMSD) and radius of gyration (Rg) for native FLT3 and mutated
protein structure complexes with Quizartinib, Sorafenib, and Midostaurin had shown stable
trajectories throughout the simulation period (Figures S2 and S3). A significant amount of
hydrogen bonding was also observed for native FLT3 and mutated protein structures with
the respective drug molecules (Figure S4). Over time, the MM-PBSA method has gained
traction and is now a recognized approach for predicting and comparing the binding free
energies of various biomolecular structures [38–41]. Binding free energy inversely relates
to the affinity between proteins and ligands. Our analyses revealed that mutations in
FLT3 structures influenced the binding free energies. Specifically, the binding free energy
dropped for both mutant FLT3 proteins when interacting with Sorafenib, compared to the
native FLT3–Sorafenib complex. It is also evident from the h-bond analysis that in case of
mutant–Sorafenib complexes very consistent pattern of hydrogen bonding was observed
(Figure S4) In contrast, with Midostaurin, the binding free energy for mutant structures was
higher than for the native protein complex. Intriguingly, Quizartinib presented intermediate
binding energy levels in both native and mutant structures. The van der Waals energy was
the most significant contributor to overall binding free energy. However, with midostaurin,
electrostatic energy had a more favorable contribution in both mutant structures compared
to the van der Waals energy. The polar solvation energy component contributions were
generally unfavorable for the total binding free energy across all protein–ligand complexes.

Table 1. The thermodynamic binding free energy and its constituents calculated by the MM-PBSA
approach.

FLT3
Protein

FLT3
Inhibitors

van der Waals
Force (kJ/mol)

Electrostatic
Energy (kJ/mol)

Polar Solvation
Energy (kJ/mol)

SASA Energy
(kJ/mol)

Binding Energy
(kJ/mol)

Native
Quizartinib −190.70 ± 15.48 −110.75 ± 24.56 206.74 ± 34.49 −17.72 ± 1.28 −112.45 ± 21.08
Sorafenib −42.12 ± 78.17 −7.15 ± 14.10 28.66 ± 48.37 −3.65 ± 7.00 −24.27 ± 60.15

Midostaurin −326.70 ± 49.07 −199.75 ± 40.48 372.96 ± 58.41 −25.37 ± 3.19 −178.85 ± 43.74

Mutant I
(Y842C)

Quizartinib −258.69 ± 74.61 −12.69 ± 29.22 186.68 ± 26.86 −19.79 ± 3.54 −104.49 ± 79.30
Sorafenib −140.86 ± 107.91 −13.04 ± 16.37 54.82 ± 53.67 −11.69 ± 6.83 −110.76 ± 77.65

Midostaurin −116.65 ± 66.32 −132.48 ± 106.74 209.11 ± 177.76 −12.02 ± 6.89 −52.04 ± 19.61

Mutant
II

(Y842F)

Quizartinib −179.77 ± 134.54 −53.30 ± 43.73 139.41 ± 109.23 −14.19 ± 9.53 −107.85 ± 96.60
Sorafenib −329.85 ± 12.03 −70.41 ± 9.66 162.84 ± 11.38 −23.24 ± 0.87 −260.67 ± 12.46

Midostaurin −120.79 ± 113.89 −121.86 ± 115.33 228.13 ± 196.64 −10.12 ± 9.78 −24.643 ± 57.03

3.3. Differential Apoptotic Responses in FLT3-ITD Expressing Ba/F3 Cells Harboring
Y842 Mutations

We next aimed to compare the apoptosis responses among different Y842 mutants.
We have previously demonstrated that the murine Interleukin 3 (IL3)-dependent 32D cell
line harboring the FLT3-ITD-Y842F mutation exhibits comparatively decreased viability
and increased apoptosis when compared to cells containing the FLT3-ITD mutation upon
withdrawal of IL3 [11]. In this study, we generated Ba/F3 cells that stably express FLT3-ITD,
FLT3-ITD-Y842F, and FLT3-ITD-Y842C. These cells were cultured in the presence of murine
IL3, but we removed IL3 prior to adding drugs for the apoptosis assays. Cells were treated
with either 1 nM or 5 nM of Quizartinib, Sorafenib, Midostaurin, or the equivalent volume
of DMSO, which was used to prepare the drug solutions. Our observations revealed that
while the expression of FLT3-ITD alone was sufficient to support the survival of Ba/F3
cells in the absence of IL3, cells expressing FLT3-ITD alongside Y842F or Y842C mutations
had approximately four times more apoptotic cells (as shown in Figure 2A). Regardless of
the Y842 mutations, the treatment with inhibitors enhanced the apoptosis response. Given
that different drug–mutant combinations showed varied binding energies (Figure 2B),
we calculated the relative apoptosis by subtracting the number of apoptotic cells in the
DMSO-treated samples from the total (Figure 2C). A similar trend was observed in the
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samples treated with Quizartinib and Sorafenib, whereas an opposite trend was evident
in the Midostaurin-treated samples (Figure 2C). This finding underscore the role of the
Y842 mutations in modulating apoptotic responses in Ba/F3 cells expressing FLT3-ITD.
Specifically, cells harboring FLT3-ITD alongside Y842F or Y842C mutations demonstrated
a heightened apoptotic response, approximately four-fold greater, in comparison to cells
expressing only FLT3-ITD. This suggests that the presence of these mutations may render
cells more susceptible to apoptosis in the absence of IL3. Interestingly, while drug treatment
amplified apoptosis across the board, different drug–mutant combinations exhibited varied
responses. The differential binding energies observed for each drug–mutant pair may offer
insights into the mechanistic differences in drug efficacy and specificity. Importantly, while
Midostaurin followed the general trend, Sorafenib behaved oppositely. This highlights the
nuanced interplay between specific mutations and drug treatments, emphasizing the need
for personalized therapeutic strategies in targeting FLT3-ITD associated malignancies.
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Figure 2. Differential apoptotic responses and binding energy analyses of FLT3-ITD Y842 mutants
under drug treatments. (A) Measurement of apoptotic cells using the annexin V-7-AAD kit after
treating cells with specific inhibitors for 48 h prior to processing and analysis (n = 5). (B) Binding
energy, represented as negative values, is plotted against various drug–mutant pairs. (C) Calculation
of relative apoptotic cells by subtracting the number of apoptotic cells observed in DMSO-treated
controls from those treated with specific inhibitors.
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3.4. Evaluation of Drug Sensitivity Metrics and the Introduction of the Xepto50 Scoring System
for Enhanced Drug Efficacy Analysis

As apoptotic responses demonstrated a partial correlation with in silico data, our
subsequent objective was to assess cell viability to determine drug sensitivity indices.
Initially, we quantified the interpolated IC50 by employing a four-parameter logistic curve-
fit model (Figure S5A) and area under the curve (AUC) employing GraphPad Prism 9.
Notably, there were no significant disparities in terms of IC50 (represented as −log10IC50,
Figure 3A) or AUC (Figure 3B), with the exception that the Y842C mutant exhibited reduced
responsiveness to Sorafenib. To further assess various metrics, we introduced Xepto50, a
robust tool capable of determining IC50, interpolated IC50, AUC, and drug sensitivity scores
(DSS1, DSS2, and DSS3) in batch mode from an Excel file input. Xepto50, a Python-based
application with a graphical user interface (GUI), exhibited interpolated IC50 and AUC
values consistent with those of GraphPad Prism 9 (Figure S5B,C). Additionally, the trends
observed in DSS1 (Figure 3C), DSS2 (Figure S5D), and DSS3 (Figure S5E) paralleled those
of IC50 and AUC metrics, implying that these drug sensitivity metrics might not fully
encapsulate theoretical observations. The four-parameter logistic regression curve remains
a prevalent model for gauging drug sensitivity. A lateral shift in this curve denotes reduced
potency (Figure S5E), whereas a diminished slope indicates compromised cooperativity
(Figure S5F). Conversely, a vertical shift of the maximum value alludes to heightened
efficacy (Figure S5G). Beyond these, multiple other curve manifestations can be discerned
(Figure S5H–J). Given that a drug’s impact is an amalgamation of these factors, deriving
conclusions from a singular parameter could obscure true drug efficacy. For instance,
drugs with identical IC50 values might display stark differences in cooperativity and
efficacy (Figure S5G,H). However, a perusal of the logistic regression curve could elucidate
these nuances. It is crucial to underline that a drug exhibiting low potency might be
highly efficacious at elevated concentrations, a nuance potentially overlooked by prevailing
scoring techniques. Thus, we advocate for an alternative metric—the Xepto50 score—that
gauges the normalized area under the curve at the 50% interpolated value within a specified
range. Distinctly, the Xepto50 score remains unaffected by the logistic regression curve’s
position but is acutely responsive to its shape, rendering it ideal for discerning drug efficacy.
Importantly, our findings revealed that the Xepto50 score better mirrors apoptosis response
and theoretical values (Figure 3D).
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Figure 3. Assessment of various drug sensitivity metrics. (A) IC50 values were determined using
GraphPad Prism 9 (n = 5), derived from interpolated values at 50 and subsequently transformed to a
negative log10 scale. (B) The area under the curve (AUC) was computed from the same dataset, with
a baseline response set at 10. (C) Drug Sensitivity Score 1 (DSS1) was determined using the Xepto50
software (version 0.0.2). (D) The Xepto50 score was derived from the normalized AUC at a specific
interval on a logarithmic concentration axis.
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4. Discussion

The advancements in molecular modeling, combined with the rise of machine learning
in drug discovery, are poised to bring transformative changes to pharmacology. Among
these innovations, molecular contrastive learning stands out as a burgeoning technique,
demonstrating its aptitude in deciphering vast molecular interactions with remarkable
accuracy. In line with findings from prior studies [24], our research capitalizes on the
extensive dataset of small molecules sourced from ChEMBL, shedding light on interac-
tions within the FLT3 kinase domain. We observed a distinct trend in interaction scores,
descending in the sequence of FLT3-KD > FLT3-KD-Y842C > FLT3-KD-Y842F. This pat-
tern indicates that mutations within the activation loop might be instrumental in altering
inhibitor interactions with the FLT3 kinase domain. Additionally, the protein language
model discerned variations resulting from amino acid alterations in the protein sequences.
Given the established knowledge that protein mutations can profoundly impact therapeutic
outcomes [1,11,16], it is crucial to recognize and comprehend these nuanced genetic shifts
when considering therapeutic strategies.

The RMSD trajectories from MD simulations for native and mutant protein complexes
with three drug molecules remain converged throughout the simulations and suggested
the stability of the complexes. Thereafter, all the complexes were subjected to MM-PBSA
analysis. Moreover, the application of the MM-PBSA method, a widely acknowledged
technique, reaffirmed the impact of point mutations on binding free energies [42,43]. The
variable free energy readings between native and mutant structures, in the presence of dif-
ferent inhibitors, might elucidate some mechanistic underpinnings of the observed efficacy
differences. This could help inform inhibitor selections based on specific mutation profiles.
Furthermore, our empirical findings in Ba/F3 cells highlighted the functional implications
of the Y842 mutations. Their increased apoptotic responses, especially in the absence of
IL3, suggest that these mutations might render the cells more vulnerable to therapeutic
interventions. These data further advocate for the development of personalized therapeutic
regimes. Drug-specific responses, especially the contrasting behavior of Midostaurin and
Sorafenib, serve as an important reminder of the intricate and multifaceted interactions
between drugs and their molecular targets.

Apart from the established theoretical values, our exploration into comparing drug
sensitivity both at apoptosis and viability levels unveiled some inconsistencies with the-
oretical predictions. Specifically, while Quizartinib and Midostaurin exhibited higher
congruence with theoretical values, the cellular response to Sorafenib did not align with its
predicted theoretical binding energy. This disparity may either highlight the limitations of
our theoretical models or suggest that Sorafenib interacts at different sites within the kinase
domain, especially given that we utilized the Quizartinib association site for docking.

Moreover, our findings indicate that traditional drug sensitivity metrics might not
consistently represent real-world outcomes. The assessment of drug sensitivity metrics,
punctuated by the introduction of the Xepto50 scoring system, has addressed a longstanding
challenge in drug discovery. Although widely used metrics like IC50 provide invaluable
perspectives, they occasionally miss capturing the entire spectrum of drug efficacy. This
gap becomes pronounced in situations where drugs have similar IC50 values but divergent
mechanisms of action. Given the Xepto50 score’s emphasis on curve shapes rather than
mere positions, it promises a more comprehensive insight into drug mechanisms. By
leveraging such advanced metrics, the drug development process could be refined, paving
the way for therapies that are both potent and adaptive to diverse mechanisms of action.

4.1. Limitations

The study encountered several limitations, starting with the ConPLex platform’s inef-
ficiency in accurately scoring certain clinically relevant FLT3 inhibitors like Gilteritinib and
Midostaurin, indicating the need for improvements in the pretrained model. Discrepancies
between theoretical predictions and actual cellular responses to drugs also pointed to poten-
tial shortcomings of the computational approaches adopted. One contributing factor could
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be the uniform docking strategy employed for all inhibitors, where a flexible approach
might yield more accurate results. Additionally, the complex biological interplay observed
in wet lab experiments, including off-target activities of kinase inhibitors, could further
explain the variance from theoretical expectations. The study’s reliance on traditional drug
sensitivity metrics such as IC50, while standard, may not adequately reflect the intricacies
of drug efficacy. This is especially evident in scenarios where drugs with similar IC50 values
have diverse mechanisms of action, underscoring the limitations of using IC50 values as
the sole measure of drug effectiveness. Although the Xepto50 scoring system represents
progress in addressing these issues, it is not without its potential shortcomings, which
require more extensive investigation. The Xepto50 metric, being relatively new, has aspects
of drug response it might not cover, and its comparative effectiveness remains to be fully
assessed. Moreover, extrapolating the empirical findings from Ba/F3 cells, particularly
regarding Y842 mutations, to other cellular contexts or in vivo conditions, is not straight-
forward, highlighting the divide between laboratory and clinical settings. These limitations
underline the importance of future research directed at refining computational models,
developing alternative drug sensitivity metrics, expanding the range of genetic mutations
studied, and bridging the gap between in vitro results and clinical applications.

4.2. Advantages and Disadvantages

The study presents a comprehensive approach to drug discovery in the context of
AML, specifically targeting FLT3 activation loop mutants, utilizing the ConPLex platform
for a large-scale analysis of millions of inhibitor combinations. The application of advanced
computational tools, such as molecular contrastive learning and protein language model-
ing, provided a deep dive into the interaction dynamics between inhibitors and the FLT3
structure. A significant advantage of this research is the introduction of the Xepto50 scoring
system, which offers a refined metric for assessing drug efficacy. This is particularly benefi-
cial when traditional metrics like IC50 fall short of capturing the intricate effects of drug
interactions. Furthermore, the study extends its relevance through empirical assessments,
linking structural insights to cellular responses under drug treatments. However, the
research also acknowledges its limitations, such as the less-than-optimal scoring of certain
clinically relevant FLT3 inhibitors by the pretrained ConPLex model. The discrepancy
observed between theoretical predictions and cellular responses signals a potential gap in
the models used, suggesting a need for more adaptable docking strategies and considera-
tion of the complex nature of kinase inhibitors’ off-target activities. The focus on specific
mutations, primarily the Y842 mutations, may not encompass the full spectrum of genetic
variations pertinent to FLT3-ITD malignancies. Moreover, the promising new Xepto50
scoring system still requires further validation, and there is a recognized challenge in
extrapolating in vitro findings to in vivo conditions and clinical effectiveness. Thus, while
the study may contribute to the areas of FLT3 research, it also paves the way for future
work to refine computational models, broaden the scope of genetic mutations studied, and
better translate laboratory findings into clinical therapies.

5. Conclusions

In conclusion, our findings underscore the potential of leveraging advanced molecular
modeling techniques, reinforced with empirical validations, to enhance our understanding
of drug–target interactions. The discerning insights obtained from such analyses, when
combined with innovative metrics like Xepto50, can pave the way for more informed and
effective therapeutic strategies. Future studies could further delve into the mechanistic
intricacies of these interactions, potentially revealing novel therapeutic targets or strategies
to combat FLT3-ITD-associated malignancies.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers15225426/s1, Figure S1: Methodology flowchart; Figure S2:
Time evolution of backbone RMSDs; Figure S3: The radius of gyration; Figure S4: Hydrogen bonding
profile; Figure S5: Drug sensitivity scores; Table S1: ConPLex scores with a cut-off of 0.8.
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