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Simple Summary: We proposed a deep learning algorithm to detect lymph nodes and classify them
in the head and neck region on computed tomography. We further analyzed the inference result from
the model and found that the size of the lymph nodes may be a characteristic for the model to classify
them. This finding is consistent with current clinical aspects. We will deploy the model in clinical
practice and hope to assist clinicians in finding out the lesions more correctly and efficiently.

Abstract: Background: Head and neck cancer is highly prevalent in Taiwan. Its treatment mainly
relies on clinical staging, usually diagnosed from images. A major part of the diagnosis is whether
lymph nodes are involved in the tumor. We present an algorithm for analyzing clinical images that
integrates a deep learning model with image processing and attempt to analyze the features it uses to
classify lymph nodes. Methods: We retrospectively collected pretreatment computed tomography
images and surgery pathological reports for 271 patients diagnosed with, and subsequently treated
for, naïve oral cavity, oropharynx, hypopharynx, and larynx cancer between 2008 and 2018. We chose
a 3D UNet model trained for semantic segmentation, which was evaluated for inference in a test
dataset of 29 patients. Results: We annotated 2527 lymph nodes. The detection rate of all lymph
nodes was 80%, and Dice score was 0.71. The model has a better detection rate at larger lymph
nodes. For those identified lymph nodes, we found a trend where the shorter the short axis, the more
negative the lymph nodes. This is consistent with clinical observations. Conclusions: The model
showed a convincible lymph node detection on clinical images. We will evaluate and further improve
the model in collaboration with clinical physicians.

Keywords: head and neck cancer; computed tomography; deep learning; semantic segmentation;
image processing

1. Introduction

Head and neck cancers have remained among the ten leading causes of cancer-related
death in Taiwan for a long time [1]. They include oral cavity, oropharynx, hypopharynx,
larynx, and nasopharynx cancers. Most head and neck cancers are associated with life
habits, such as smoking, drinking alcohol, and chewing betel nuts.

The head and neck region has abundant lymphatic drainage [2]. The status of lymph
node metastasis is critical to prognosis [3], including the location and number of cancer-
involved lymph nodes and presentation of extranodal extension (ENE) [4].
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Most head and neck cancers are treated surgically if eradicable, even at an advanced
stage [5]. Tumors with involved lymph nodes that are completely removed have better
prognoses than others [6]. Typically, surgeons conduct a clinical workup before operating
to gather additional information for selecting appropriate surgical techniques, which may
involve dissecting the cervical lymph nodes. The workup also affects the treatment choice
in neoadjuvant, adjuvant, or even definitive treatment settings.

Medical imaging plays a crucial role in the clinical workup, with various tools available,
including computer tomography (CT), magnetic resonance imaging (MRI), and positron
emission tomography (PET) [5,7]. Each imaging tool offers unique advantages. For ex-
ample, CT effectively finds bony invasion, while MRI excels at delineating soft tissue
involvement. In contrast, PET can provide a comprehensive diagnosis of locoregional and
distant metastasis by measuring cell activity using F-18 [8]. The efficacy of using medical
images as clinical diagnostic tools has been evaluated [4,9]. Some features of lymph nodes
related to morphology or enhancement on images may indicate tumor involvement: a
shorter axis of a lymph node of >1 cm, heterogeneous enhancement, or rough border
of a lymph node, which might be a sign of ENE [10]. However, even when interpreted
by well-experienced clinical physicians or radiologists, the sensitivity and specificity of
CT images were 72% and 83%, respectively, while the area under the receiver operating
characteristic curve (AUC) was 0.65–0.69 [11,12]. In contrast, the sensitivity and specificity
with MRI were 0.7–0.8 and 0.5–0.7, respectively [13,14].

Efficient and correct identification and delineation of lymph nodes is crucial for
clinical diagnosis, surgical techniques, and other treatments. Traditionally, radiologists
or clinical physicians such as otolaryngologists would have to view CT images to obtain
information on clinical diagnosis and make treatment decisions. In Taiwan, it is common
for an experienced otolaryngologist to have more than a hundred patients in one outpatient
clinic, and serve more than twenty in inpatient at the same time. Even with the resident’s
assistance, this is still overwhelming. Although not all patients are diagnosed with head
and neck diseases, it creates time pressure for physicians to read images, make decisions,
and discuss with patients. In Hualien Tzu Chi Hospital, head and neck CT examinations are
generally carried out within a week; most of them should be reported and submitted within
2 weeks, which is also exhausting for the staff. For junior residents, it would take more
time and effort to complete image reading. An automated assistant for clinical diagnosis
might relieve the loading.

There has been a recent trend toward using digital systems to assist clinical diagnosis.
These systems analyze data from laboratory tests, medical records, and images to generate
results for clinical needs, such as establishing clinical impressions, alerting for emergencies,
or risk stratification. Among these digital systems, deep learning-based computer vision
techniques have made significant progress in analyzing medical images [15].

Convolutional neural networks (CNNs) have been widely used in deep learning for
computer vision tasks, including classification, object detection, and semantic segmenta-
tion [16]. Models derived from ResNet [17] or VGG [18] were used for classifying regions
of interest by human experts. Fully convolutional networks like Unet [19], on the other
hand, can segment the targets from medical images. Such models have been used to study
lymph node status, or segmentation tasks at head and neck region. Using a CNN model,
Kann et al. classified lymph nodes segmented by experts as normal or tumor-involved in
CT images, achieving an impressive AUC of 0.91 [20]. The model was composed of a 3D
model and a size-invariant model and was able to extract features while preventing itself
from overfitting [20]. Another study examined segmentation for head and neck lymphatic
drainage areas [21], which can be applied to contouring in radiotherapy. In this study, a
fully convolutional neural network was proposed to deal with segmentation for head and
neck lymphatic drainage area.

However, lymph nodes’ inconsistent morphology and size make determining their
status and delineation challenging. Lymph nodes can range in diameter from being almost
invisible in medical images to >10 cm. Moreover, their 2D projections can appear with
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similar textures to other structures in image slices, such as vessels, muscles, or salivary
glands. Another challenge in this task is annotation, a time-consuming process for clinical
physicians to segment and label the lymph nodes for classification.

The most challenging issue is deploying a model in the clinical field. While having suf-
ficient data can increase the likelihood of constructing a well-performing model, additional
factors must also be considered for successful deployment. A performance gap between
training and real-world data has been reported [22], and factors such as the examination
settings, presentation of inference results, and the specific needs of clinicians and other
healthcare professionals can all affect the model’s effectiveness.

To address these challenges, we present a novel approach combining deep learning
models, image processing algorithms, and domain knowledge segment and classify lymph
nodes. The proposed method is further evaluated based on clinical knowledge to assess
the reliability of the inference results.

2. Materials and Methods
2.1. Study Cohort

We retrospectively enrolled patients diagnosed with oral cavity, oropharynx, hy-
popharynx, or larynx cancers at Hualien Tzu Chi General Hospital between 1 January 2008,
and 31 December 2018. These patients had confirmed diagnoses from biopsies carried
out at our hospital and should receive surgery as definitive treatment. We collected pre-
surgery contrast-enhanced head and neck CT images and surgical pathology reports. We
collected pretreatment CT images if a patient received definitive concurrent chemoradio-
therapy without surgery. Patients diagnosed or treated due to other cancers before would
be excluded.

Supplement Table S1 shows the patients enrolled in this study. After excluding
CT images with low resolutions or poorly identified targets, the final dataset included
271 patients with 274 CT image series (Figure 1). These patients were randomly divided
into training (n = 213), validation (n = 30), and testing (n = 28) sets. The numbers of patients
and lymph nodes are reported in Supplement Table S1.
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Figure 1. Flowchart of study enrollment. We initially enrolled 374 patients. One hundred and
three cases were excluded due to poor resolution of images. Finally, images from 271 patients were
included, with 243 in the train set and 28 in the test set.

2.2. Image Prepare and Annotations

Two clinical physicians and a radiologist reviewed the CT images, after which the
clinical physicians segmented and classified the lymph nodes on the CT images. The
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radiologist provided advice to the physicians in case of any uncertainty. Two pathologists
reviewed the pathology reports, and annotations were created to classify lymph node status
based on the pathology report, which will serve as the ground truth. We used the DeepQ AI
platform (https://www.deepq.ai/?lang=en, accessed on 20 September 2023) (from DeepQ,
New Taipei City, Taiwan) to annotate images, which were deidentified before upload.

2.3. Model and Training Methodology
2.3.1. Model

The nn-UNet model integrates most state-of-the-art semantic medical image segmen-
tation techniques [23]. It extracts features from images in different spacing in two stages
to prevent the model from losing complete picture information when training in image
patches. Computing resources can be preserved by training in patches. The model is trained
by self-adjusting hyperparameters based on data features (i.e., sample size, image size,
spacing, and modalities). The framework automatically defines the batch size, number of
epochs, model architecture, and learning rate. However, if necessary, the user can manually
modify them based on past experiences or competition on different open datasets. We
constructed a model based on nnUNet to fit our situations.

First, we preprocessed images. We set pixel spacing as 0.89 × 0.48 mm according to
the value obtained from the dicom file. Windowing and intensity were normalized by
window level and width.

We chose a 3D network from clinical aspects. The morphology of lymph nodes may
be confused with other structures around them in 2D projections, such as vessels, glands,
muscles, or other soft tissues, that become distinct in 3D projections. We expected that
the result would be better in a 3D network. The nn-UNet network will automatically
adjust its architecture to handle spacing anisotropy between axes. Specifically, the network
applies convolution and pooling operations to high-resolution axes until the resolution
factor between axes becomes <2. This approach ensures that the model extract feature is
unaffected by the varying resolution between axes. We used a patch size in the network
of 160 × 192 in the first stage and 192 × 224 in the second stage. We inherited the loss
function in nnUNet, which combines Dice loss and cross-entropy. Finally, post-processing
was carried out to filter prediction masks with pixel numbers below the threshold. The
details for model settings were summarized in Supplementary Figure S1.

We evaluated the model’s inference results using two metrics: Dice score and detection
rate. The Dice score (s) was calculated as follows:

s =
2|P + GT|
|P|+ |GT| (1)

where P represents prediction, and GT represents ground truth (label). The detection rate
(d) was calculated as follows:

d =
TP

TP + FP
(2)

where TP represents true positive, and FP represents false positive. Both evaluation metrics
were calculated by each image slice and averaged to represent each study.

2.3.2. Training Method

We trained the model for 300 epochs with a mini-batch size of 2. We used stochastic
gradient descent as optimization with an initial learning rate of 0.01 and gradually decaying
the learning rate as training progressed. An oversample technique was used to address
class imbalances. Specifically, we ensured that >33.3% of the patches contained at least
one positive mask. In addition to using the default data augmentation provided by nnU-
Net [23], we used random translation to ensure the mask was distributed uniformly within
the patches, which can improve model robustness and generalization. All experiments
were trained on a single GeForce GTX 1080 Ti graphics processing unit. The training,
validation, and inference were performed with Pytorch (version 1.11.0) in Python 3.9.

https://www.deepq.ai/?lang=en
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3. Results
3.1. Basic Image Features

This study included 2527 lymph nodes annotated from 271 patients. Supplement Table
S1 shows that most lymph nodes were annotated as negative.

Distribution of Lymph Node Size and Intensity

We analyzed the lymph nodes according to their short axis size (Table 1a), finding
a trend where the shorter the short axis, the more negative the lymph node. The pixel
intensity in lymph node regions showed greater diversity in negative than in other lymph
nodes.

Table 1. (a)The size (represented by a short axis) of lymph nodes by classes on the dataset. (b) The
size of the lymph node by class from the model’s inference result.

(a)

Train (%) Valid (%) Test (%)

<1 cm >1 cm Total <1 cm >1 cm Total <1 cm >1 cm Total

N 1470 (96) 61 (4) 1531 270 (96) 11 (4) 281 221 (96) 10 (4) 231
P 125 (45) 153 (55) 278 14 (45) 16 (55) 30 18 (60) 12 (40) 30

ENE 19 (13) 126 (87) 145 2 (13) 14 (87) 16 0 10 10

(b)

Num (%) <1 cm >1 cm Total

N 167 (96) 9 (4) 176
P 17 (60) 11 (40) 28

ENE 0 9 9

3.2. D Model Performance
3.2.1. Performance Evaluation

First, we examined the relationship between the threshold of the portion overlapped
and the detection rate (Supplementary Figure S3). We found that the detection rate reached
>60% at a threshold of 50%. We then evaluated the model using two settings: >0%
and >50%.

We trained models with different manipulations: combine all three annotation classes,
combine only the positive and ENE classes, and separate classes. First, we evaluated the
ability to detect lymph nodes in three models (Supplement Table S2). The three models
showed consistent Dice scores and detection rates. Then, we evaluated the inference of the
model trained on separate classes (Supplement Table S3). The detection rates for negative,
positive, and positive with ENE lymph nodes were 76%, 73%, and 90%, respectively. The
average lymph node detection rate was 80%, while the Dice score was 0.71.

3.2.2. Inference Analysis
The Model Can Size Classify Lymph Nodes

We analyzed lymph nodes detected by the model in the test set to determine the
clinical characteristics it may capture. Table 1b shows that, of the 176 identified negative
lymph nodes, 167 had a short axis <1 cm. In contrast, all identified positive lymph nodes
with ENE had a short axis >1 cm. Figure 2 shows some of the model’s accurate predictions.
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False Negative/Positive Inferences

We found that Dice scores decreased when inferring separated classes, especially for
the positive and ENE classes. We analyzed accuracy at the pixel level to determine possible
reasons for this. Supplement Table S4 shows the confusion matrix. Most of the misclassified
pixels were recognized as background (Supplement Table S4b). The model also predicted
some background pixels as lymph nodes (Supplement Table S4c).

We also found a correlation between the detection rate and lymph node size (Supple-
mentary Figure S4). The detection rate was 45% for lymph nodes with a short axis <5 mm.
The detection rate increased to >80% for larger lymph nodes.

Misclassification of Positive and ENE Lymph Nodes

Supplement Table S4c shows that the model classified 11% of pixels labeled as positive
lymph nodes as ENE and 11% labeled as ENE as positive lymph nodes. We evaluated the
performance of models on the test set with combined P and ENE classes to determine how
misclassification affected Dice scores (Table 2). The models trained on all separate classes
or combined P and ENE classes showed better Dice scores and detection rates on the test
set with combined classes than on that with P and ENE classes separated.

Table 2. Performance of model on test dataset with P and ENE classes combined. (a) Model trained
in separate classes. (b) Model trained in P and ENE classes combined.

3D Metric(%) (a) (b)

ENE+P N ENE+P N

Detection rate (>0) 87.50 76.58 92.50 75.68

Detection rate (>50) 80.00 59.46 87.50 61.71

FP/image 1.29 4.64 1.11 5.46

4. Discussion
4.1. Applying a Deep Learning Model in Classifying Lymph Mode Metastasis in Head and
Neck Cancer

There is limited research on applying machine learning or deep learning algorithms to
lymph nodes in patients with head and neck cancers. One reason for this is data collection.
There are open datasets for medical imaging, including contouring and classification of
organs and lesions [16], but almost none for head and neck cancers. A dataset is the
basis for training and evaluating a model, and establishing such a novel dataset would be
time- and labor-intensive, especially for clinical practitioners. Our study enrolled more
patients than previous studies [20,21], and the annotated lymph nodes are also comparable.
To our knowledge, this is the first study to identify lymph nodes and statuses using
semantic segmentation. We hope that a model trained using such a volume of data could
be helpful clinically.

4.2. Model Inference
4.2.1. Detection Rate and Dice Score

This study aimed to assist clinicians in detecting lymph nodes from medical images to
make diagnoses and decide on treatments, but not to replace clinicians or screen through
serial images. Clinical physicians should still review the images to check the model’s
suggestions and the primary tumor’s extension. It marks potentially involved lymph
nodes and reminds physicians while reviewing image slices. Therefore, we are more
concerned with classification accuracy than detailed object contouring. However, since
classifying an entire image based on the presence of a tumor-involved lymph node is
meaningless in clinical practice, object detection remains necessary. We assigned the task
to semantic segmentation due to its visual result presentation. A questionnaire survey
in our hospital showed that 82% of physicians preferred lymph nodes to be presented
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as segmentation masks rather than bounding boxes, mainly due to visualization. When
clustered or serial lymph nodes are present, segmentation masks could be easier to read
than stacked bounding boxes.

Evaluating lymph node segmentation is challenging. While tumor-involved lymph
nodes can be >5–6 cm, most objects are <1 cm (Table 1a). In addition, the anatomy and
structure are complicated in head and neck lymphatic drainage regions. They contain many
vessels and glands whose size, texture, and even intensity are similar to lymph nodes,
which can interfere with the model recognizing lymph nodes.

Our model had higher detection rates than Dice scores. These metrics are quite
different: the Dice score considers false negatives and positives, while the detection rate
considers whether the model “captures” the object, meaning its marking of pixels labeled
as ground truth. The detection rate calculation may underestimate the false positive effect.
We evaluated the false positive rate (Supplement Table S3), finding 1–4 false positive
components per case, depending on the class. This false positive rate should be tolerable
for clinical practice, although further evaluation after deployment is necessary.

Some studies have evaluated model performance in identifying lymph nodes from
medical images by detection rate [24,25], reporting a detection rate of 0.7–0.8 and a false
positive rate of 10 per volume. Our study showed a better overall detection rate of 0.8 and
a false positive rate of 2.36 per volume. Among classes, the best detection rate was for ENE
(0.9). Among sizes, there was a better detection rate for lymph nodes with a short axis
>5 mm (>0.7; Supplementary Figure S4), which was also better than in a previous study
(0.62). Our improved results may be due to nnUNet’s comprehensive feature extraction,
especially for spatial information.

We examined the relationship between the threshold and detection rate, which is the
fraction of the ground truth mask overlapped by the inference mask (i.e., true positive;
Supplementary Figure S3). We obtained a detection rate of >0.6 even at a threshold of
>0.5. The model could determine the location and size of those detected lymph nodes. We
believe our model will be sufficiently robust as an alarm system in clinical practice.

4.2.2. Effects of Clinical Features on Inference

The model might classify lymph nodes according to their size. Table 1b shows that
smaller lymph nodes tended to be classified as negative, and those with a short axis >1 cm
were more likely to be tumor-involved. The short axis of all identified lymph nodes with
ENE was >1 cm, consistent with current clinical experience that one feature indicating
malignant lymph node changes is size, usually defined as a short axis >1 cm. It can be
referred to as an interpretability of the model from a clinical point of view, and convinces
the clinical physicians when the model alarms at a specific lymph node during practice.

4.2.3. The Potential of a Model Trained on Images Generated Using Different Protocols at
Different Timepoints

We retrospectively collected images over 10 years. During these years, computed
tomography machines, settings for examination, and protocols have changed several times.
Even with image preprocesses such as intensity normalization and clipping, intensity
enhancement, and contrast remained confusing (Supplementary Figure S2). The model
could obtain convincing inferences on test datasets. The images might be heterogeneous in
real-world data from different examination machines and protocols. It is common to see
gaps in model performance between model training datasets and deployment [22,26]. One
reason for this gap is the variance between training and real-world data. Several studies
have examined approaches to address this problem, such as transfer learning [27] or domain
adaptations [28]. However, labeled data are still necessary, and the effect is not always
promising. The model trained on a heterogenous dataset may have better adaptability after
deployment but not reach the perfect performance shown in their original studies.
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4.2.4. P and ENE Class Misclassification

We found the model confused pixels labeled positive and positive with ENE lymph
nodes. Since both classes are tumor-involved, they may share some common features from
a clinical perspective, such as larger size and central necrosis. The status of these two
classes makes a difference in staging and prognosis but not treatment choice. Since they
are clinically suspected of malignancy, dissection during surgery or dose escalation during
radiotherapy will be preferred. Therefore, it can still be valuable to classify lymph nodes as
tumor-involved or not as an alarm system for clinical practice.

4.3. Limitations
4.3.1. No Consistent Image Examination Protocol

A consistent image examination protocol is still necessary to improve accuracy. Those
protocols are established in clinical practice according to modalities, examination aims,
targets, and clinical needs. The aim and target were specific in our case, but image quality
varied over time. Further evaluation and model adjustment showed that brightness and
contrast should be clipped in a range to maintain consistent intensity for corresponding
structures in the images, which may lead to stable inference results.

4.3.2. Improved Classification Ability for P and ENE Classes

Future work will aim to reinforce the model’s ability to classify P and ENE lymph
nodes, potentially by increasing the number of ENE annotations since they were much
fewer than for the other two classes (Supplement Table S1).

5. Conclusions

We present a model trained with semantic segmentation to identify lymph nodes
and their tumor-involved statuses. Our model had a satisfactory detection rate, but its
Dice score could be improved. After deployment, we will evaluate and further improve
our model in collaboration with clinical physicians, including model adjustments and
image examination protocols. Figure 3 shows our expectations for our model’s clinical
contribution after deployment.
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Figure 3. The anticipation of the clinical deployment. We hope the algorithm to fill the gap due to
uneven medical examination resources between medical institutes.

In the future, we would like to explore more about the effect of data heterogenicity on
model performance. The size of the lymph nodes will be recorded to confirm if the trend
that smaller lymph nodes tend to be classified as negative is consistent. We will establish a
protocol for CT examinations to obtain stable images, and analysis about intensity or other
radiomics features could be applied. We hope that the result of further research could make
the model more useful in clinical practice, and most importantly convincible.



Cancers 2023, 15, 5890 10 of 11

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers15245890/s1, Figure S1: Details for training settings, Figure S2: The intensity of
lymph nodes by class, Figure S3: The relationship between threshold (i.e., the portion of ground truth
overlapped by prediction mask) and detection rate, Figure S4: The relationship between detection rate
and size of lymph node, Table S1: patient and lymph node characteristics, Table S2: Inference result
of models on test dataset with all annotation classes combined. The models were trained in different
settings: (a) train dataset with three separated classes, (b) train dataset with positive and extranodal
extension classes combined, (c) all three classes combined, Table S3: Inference result of model trained
in separated classes. Table S4: Pixel-level confusion matrix. (a) Count by pixel. (b) Calculated by
longitudinal axis. Most of the misclassified pixels for ground truth were classified as background.
(c) Calculated by vertical axis. Most of the misclassified pixels for label were classified as background,
but P and ENE have more cross-mistake.

Author Contributions: D.-W.L., S.-Y.H. and R.-J.H. thought of the concept and designed the architec-
ture of the article. W.-L.H. reviewed and provided comments on material articles. S.-Y.H., E.L.W.,
Z.-T.L. and Y.-S.P. designed the image processing, training process, and data analysis. S.-Y.H. enrolled
patients and annotated images. All authors collected and assembled material articles, wrote, and
made final approval of the manuscript. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foun-
dation, grant numbers TCRD-110-15, IMAR-110-01-08, TCRD112-032, TCRD112-047, and Buddhist
Tzu Chi Medical Foundation, grant number TCMF-IMC 112-02.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Institutional Review Board of Hualien Tzu Chi General
Hospital, number IRB111-070-B.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data were collected from Hualien Tzu Chi General Hospital under
the supervision of the Institutional Review Board, and were not allowed to be available to the public.

Acknowledgments: Special thanks to Yun, Liu for assisting annotations and checking patient lists.
Thanks to Yu-Tang, Chen for offering viewpoints on statistics.

Conflicts of Interest: Edzer L. Wu, Yu-Shao Peng and Zhe-Ting Liao are employed by company
DeepQ Technology Corp. The remaining authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a potential conflict
of interest.

References
1. Health Promotion Administration, Ministry of Health and Welfare, and Taiwan. Cancer Registry Annul Report 2020 Taiwan; Taiwan

Cancer Registry: Taiwan, 2022.
2. Grégoire, V.; Levendag, P.; Ang, K.K.; Bernier, J.; Braaksma, M.; Budach, V.; Chao, C.; Coche, E.; Cooper, J.S.; Cosnard, G.;

et al. CT-based delineation of lymph node levels and related CTVs in the node-negative neck: DAHANCA, EORTC, GORTEC,
NCIC,RTOG consensus guidelines. Radiother. Oncol. 2003, 69, 227–236. [CrossRef] [PubMed]

3. Pisani, P.; Airoldi, M.; Allais, A.; Valletti, P.A.; Battista, M.; Benazzo, M.; Briatore, R.; Cacciola, S.; Cocuzza, S.; Colombo, A.; et al.
107th Congress of the Italian Society of Otorhinolaryngology Head and Neck Surgery Official report. Acta Otorhinolaryngol Ital.
2020, 40 (Supp. S1), S1–S2. [CrossRef] [PubMed]

4. Khan, R. Lymph Node Disease and Advanced Head and Neck Imaging: A Review of the 2013 Literature. In Current Radiology
Reports; Springer New York LLC: Berlin/Heidelberg, Germany, 2014. [CrossRef]

5. Cognetti, D.M.; Weber, R.S.; Lai, S.Y. Head and Neck Cancer an Evolving Treatment Paradigm. Cancer 2008, 113, 1911–1932.
[CrossRef] [PubMed]

6. Bernier, J.; Cooper, J.S.; Pajak, T.F.; Van Glabbeke, M.; Bourhis, J.; Forastiere, A.; Ozsahin, E.M.; Jacobs, J.R.; Jassem, J.; Ang, K.-K.;
et al. Defining Risk Levels in Locally Advanced Head and Neck Cancers: A Comparative Analysis of Concurrent Postoperative
Radiation plus Chemotherapy Trials of the EORTC (#22931) and RTOG (# 9501). Head Neck 2005, 27, 843–850. [CrossRef]

7. National Comprehensive Cancer Network. NCCN Guidelines Version 1.2024; National Comprehensive Cancer Network: Fort
Washington, PA, USA, 2023.

8. Cerfolio, R.J.; Ojha, B.; Bryant, A.S.; Raghuveer, V.; Mountz, J.M.; Bartolucci, A.A. The Accuracy of Integrated Pet-CT Compared
with Dedicated Pet Alone for the Staging of Patients with Nonsmall Cell Lung Cancer. Ann. Thorac. Surg. 2004, 78, 1017–1023.
[CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/cancers15245890/s1
https://www.mdpi.com/article/10.3390/cancers15245890/s1
https://doi.org/10.1016/j.radonc.2003.09.011
https://www.ncbi.nlm.nih.gov/pubmed/14644481
https://doi.org/10.14639/0392-100X-suppl.1-40-2020
https://www.ncbi.nlm.nih.gov/pubmed/32469009
https://doi.org/10.1007/s40134-014-0058-8
https://doi.org/10.1002/cncr.23654
https://www.ncbi.nlm.nih.gov/pubmed/18798532
https://doi.org/10.1002/HED.20279
https://doi.org/10.1016/j.athoracsur.2004.02.067
https://www.ncbi.nlm.nih.gov/pubmed/15337041


Cancers 2023, 15, 5890 11 of 11

9. Sun, J.; Li, B.; Li, C.J.; Li, Y.; Su, F.; Gao, Q.H.; Wu, F.L.; Yu, T.; Wu, L.; Li, L.J. Computed Tomography versus Magnetic Resonance
Imaging for Diagnosing Cervical Lymph Node Metastasis of Head and Neck Cancer: A Systematic Review and Meta-Analysis.
In OncoTargets and Therapy; Dove Medical Press Ltd.: Princeton, NJ, USA, 2015. [CrossRef]

10. Hoang, J.K.; Vanka, J.; Ludwig, B.J.; Glastonbury, C.M. Evaluation of Cervical Lymph Nodes in Head and Neck Cancer with CT
and MRI: Tips, Traps, and a Systematic Approach. Am. J. Roentgenol. 2013, 200, W17–W25. [CrossRef] [PubMed]

11. Merritt, R.M.; Williams, M.F.; James, T.H.; Porubsky, E.S. Detection of Cervical Metastasis: A Meta-Analysis Comparing Computed
Tomography with Physical Examination. JAMA Otolaryngol. Neck Surg. 1997, 123, 149–152. [CrossRef]

12. Schwartz, D.L.; Ford, E.; Rajendran, J.; Yueh, B.; Coltrera, M.D.; Virgin, J.; Anzai, Y.; Haynor, D.; Lewellyn, B.; Mattes, D.; et al.
FDG-PET/CT Imaging for Preradiotherapy Staging of Head-and-Neck Squamous Cell Carcinoma. Int. J. Radiat. Oncol. 2005, 61,
129–136. [CrossRef]

13. de Bondt, R.; Nelemans, P.; Hofman, P.; Casselman, J.; Kremer, B.; van Engelshoven, J.; Beets-Tan, R. Detection of Lymph Node
Metastases in Head and Neck Cancer: A Meta-Analysis Comparing US, USgFNAC, CT and MR Imaging. Eur. J. Radiol. 2007, 64,
266–272. [CrossRef]

14. Van den Brekel, M.W.M.; Castelijns, J.A.; Stel, H.V.; Golding, R.P.; Meyer, C.J.L.; Snow, G.B. Originals Oto-Rhino-Laryngology
Modern Imaging Techniques and Ultrasound-Guided Aspiration Cytology for the Assessment of Neck Node Metastases: A
Prospective Comparative Study. Eur. Arch. Otorhinolaryngol. 1993, 250, 11–17. [CrossRef]

15. Esteva, A.; Chou, K.; Yeung, S.; Naik, N.; Madani, A.; Mottaghi, A.; Liu, Y.; Topol, E.; Dean, J.; Socher, R. Deep Learning-Enabled
Medical Computer Vision. Npj Digit. Med. 2021, 4, 5. [CrossRef] [PubMed]

16. Huang, S.-Y.; Hsu, W.-L.; Hsu, R.-J.; Liu, D.-W. Fully Convolutional Network for the Semantic Segmentation of Medical Images:
A Survey. Diagnostics 2022, 12, 2765. [CrossRef] [PubMed]

17. He, K.; Zhang, X.; Ren, S.; Sun, J. Identity mappings in deep residual networks. Lect. Notes Comput. Sci. Incl. Subser. Lect. Notes
Artif. Intell. Lect. Notes Bioinform. 2016, 9908 LNCS, 630–645.

18. Simonyan, K.; Zisserman, A. A Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014,
arXiv:1409.1556.

19. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. Lect. Notes Comput. Sci.
(Incl. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinform. 2015, 9351, 234–241. [CrossRef]

20. Kann, B.H.; Aneja, S.; Loganadane, G.V.; Kelly, J.R.; Smith, S.M.; Decker, R.H.; Yu, J.B.; Park, H.S.; Yarbrough, W.G.; Malhotra, A.;
et al. Pretreatment Identification of Head and Neck Cancer Nodal Metastasis and Extranodal Extension Using Deep Learning
Neural Networks. Sci. Rep. 2018, 8, 14306. [CrossRef] [PubMed]

21. Men, K.; Chen, X.; Zhang, Y.; Zhang, T.; Dai, J.; Yi, J.; Li, Y. Deep Deconvolutional Neural Network for Target Segmentation of
Nasopharyngeal Cancer in Planning Computed Tomography Images. Front. Oncol. 2017, 7, 315. [CrossRef]

22. Beede, E.; Baylor, E.; Hersch, F.; Iurchenko, A.; Wilcox, L.; Ruamviboonsuk, P.; Vardoulakis, L.M. A Human-Centered Evaluation
of a Deep Learning System Deployed in Clinics for the Detection of Diabetic Retinopathy. In Conference on Human Factors in
Computing Systems—Proceedings; Association for Computing Machinery: Melbourne, Australia, 2020. [CrossRef]

23. Isensee, F.; Jaeger, P.F.; Kohl, S.A.A.; Petersen, J.; Maier-Hein, K.H. NnU-Net: A Self-Configuring Method for Deep Learning-Based
Biomedical Image Segmentation. Nat. Methods 2021, 18, 203–211. [CrossRef]

24. Iuga, A.-I.; Carolus, H.; Höink, A.J.; Brosch, T.; Klinder, T.; Maintz, D.; Persigehl, T.; Baeßler, B.; Püsken, M. Automated Detection
and Segmentation of Thoracic Lymph Nodes from CT Using 3D Foveal Fully Convolutional Neural Networks. BMC Med Imaging
2021, 21, 1–12. [CrossRef]

25. Oda, H.; Bhatia, K.K.; Roth, H.R.; Oda, M.; Kitasaka, T.; Iwano, S.; Homma, H.; Takabatake, H.; Mori, M.; Natori, H.; et al.
Dense Volumetric Detection and Segmentation of Mediastinal Lymph Nodes in Chest CT Images. In Medical Imaging 2018:
Computer-Aided Diagnosis; Mori, K., Petrick, N., Eds.; SPIE: Bellingham, WA, USA, 2018. [CrossRef]

26. Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.; Cuadros,
J.; et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus
Photographs. JAMA J. Am. Med. Assoc. 2016, 316, 2402–2410. [CrossRef]

27. Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer Learning. Proc. IEEE
2021, 109, 43–76. [CrossRef]

28. Gabriela Csurka. Domain Adaptation for Visual Applications: A Comprehensive Survey. 2017. Available online: http://arxiv.
org/abs/1702.05374 (accessed on 20 September 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.2147/OTT.S73924
https://doi.org/10.2214/AJR.12.8960
https://www.ncbi.nlm.nih.gov/pubmed/23255768
https://doi.org/10.1001/archotol.1997.01900020027004
https://doi.org/10.1016/j.ijrobp.2004.03.040
https://doi.org/10.1016/j.ejrad.2007.02.037
https://doi.org/10.1007/BF00176941
https://doi.org/10.1038/s41746-020-00376-2
https://www.ncbi.nlm.nih.gov/pubmed/33420381
https://doi.org/10.3390/diagnostics12112765
https://www.ncbi.nlm.nih.gov/pubmed/36428824
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1038/s41598-018-32441-y
https://www.ncbi.nlm.nih.gov/pubmed/30232350
https://doi.org/10.3389/fonc.2017.00315
https://doi.org/10.1145/3313831.3376718
https://doi.org/10.1038/s41592-020-01008-z
https://doi.org/10.1186/s12880-021-00599-z
https://doi.org/10.1117/12.2287066
https://doi.org/10.1001/jama.2016.17216
https://doi.org/10.1109/JPROC.2020.3004555
http://arxiv.org/abs/1702.05374
http://arxiv.org/abs/1702.05374

	Introduction 
	Materials and Methods 
	Study Cohort 
	Image Prepare and Annotations 
	Model and Training Methodology 
	Model 
	Training Method 


	Results 
	Basic Image Features 
	D Model Performance 
	Performance Evaluation 
	Inference Analysis 


	Discussion 
	Applying a Deep Learning Model in Classifying Lymph Mode Metastasis in Head and Neck Cancer 
	Model Inference 
	Detection Rate and Dice Score 
	Effects of Clinical Features on Inference 
	The Potential of a Model Trained on Images Generated Using Different Protocols at Different Timepoints 
	P and ENE Class Misclassification 

	Limitations 
	No Consistent Image Examination Protocol 
	Improved Classification Ability for P and ENE Classes 


	Conclusions 
	References

