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Simple Summary: As the technology of the pencil beam scanning system advances, achieving higher
accuracy in converting CT Hounsfield to proton-stopping power becomes imperative. Recently,
the dual-energy computer tomography (DECT) technique has emerged as a superior technique to
single-energy computer tomography in estimating SPR. However, such a technique is not widely
adopted clinically. One of the reasons is that the optimization process on the DECT scanners involves
a wide range of parameters, one of which is spectral pair. It is generally accepted that the larger
separation of the spectra pair could yield a better estimation of SPR. However, it is not validated
under a scenario of scanning objects deviating from calibration conditions. In this simulation study,
we are examining the performance of variations of spectra pairs on SPR prediction.

Abstract: Our study aims to quantify the impact of spectral separation on achieved theoretical
prediction accuracy of proton-stopping power when the volume discrepancy between calibration
phantom and scanned object is observed. Such discrepancy can be commonly seen in our CSI
pediatric patients. One of the representative image-domain DECT models is employed on a virtual
phantom to derive electron density and effective atomic number for a total of 34 ICRU standard
human tissues. The spectral pairs used in this study are 90 kVp/140 kVp, without and with 0.1 mm
to 0.5 mm additional tin filter. The two DECT images are reconstructed via a conventional filtered
back projection algorithm (FBP) on simulated noiseless projection data. The best-predicted accuracy
occurs at a spectral pair of 90 kVp/140 kVp with a 0.3 mm tin filter, and the root-mean-squared
average error is 0.12% for tissue substitutes. The results reveal that the selected image-domain model
is sensitive to spectral pair deviation when there is a discrepancy between calibration and scanning
conditions. This study suggests that an optimization process may be needed for clinically available
DECT scanners to yield the best proton-stopping power estimation.

Keywords: pencil beam scanning; proton therapy; dual-energy CT; stopping power estimation

1. Introduction

Proton therapy’s great advantage of highly conformal dose distribution comes at
the cost of high susceptibility to proton range deviations, especially for the pencil beam
system. As a result, to account for this proton range uncertainty, safety margins are added
to the target (conventionally, 3.5% margin of total range) [1–3], and more recently, robust
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optimization is used to ensure the accurate dose calculation and delivery of prescribed
dose to the target. One major source of the proton range uncertainty is the CT-based
estimation of material density under the beam path, thus stopping power ratio (SPR). The
single-energy CT (SECT) voxel intensity is conventionally translated to stopping power
through a stoichiometric calibration process and empirical linear conversion [3].

Dual-energy computer tomography (DECT) technique has shown great potential to
improve the prediction accuracy of proton SPR [4–9]. DECT-based SPR estimation is built
on the idea that the two parameters needed for estimating stopping power, i.e., electron
density (ρe) and effective atomic number Ze f f , can be extracted from CT scans with two
distinct CT energies [10,11]. Most of the DECT imaging approaches involve scanning the
same object using two different energy spectra. Assuming that the CT numbers of these
two scans differ, the electron density (ρe) and effective atomic number Ze f f of each voxel in
the scanning object can be computed based on equations of photon interaction with the
scanned object for each energy. SPR then can be estimated from ρe and Ze f f via the Bethe
equation [12,13].

Clinically, the above estimation processes are mainly implemented via image-domain
methods [9,14]. These methods comprise the following steps: (i) calibration step that
involves the use of two CT spectral on a calibration phantom with known elemental
composition to determine the calibration parameters; (ii) scanning of the unknown objects
with these two spectra; and (iii) decomposition of the two CT images into maps of two
parameters: ρe and Ze f f based on the image-domain method. Although the image-domain
method is inferior to the projection-domain method in predicting SP accuracy [15,16], the
fast implementation and recent advancements in image reconstruction make the image-
domain method still dominant in the clinical application of DECT imaging.

One of the assumptions used by image-domain methods is that scanning conditions
of calibration phantoms are identical to those of patients to maintain prediction accuracy.
Such scanning conditions include patient size [9,15], region of interest (ROI), variation of
the spectra, etc. It is more common to see patient size, especially for pediatric patients, is at
least 20% smaller than calibration phantom.

Zhang et al. [15] studied the impact of CT number variations due to size scaling and
ROI position changes on the SP prediction accuracy and concluded that since the image-
domain methods depend on the quality of reconstructed images, any variations including
size scaling that can introduce image artifacts can cause SP estimation errors. However,
in the above study, they fail to include the impact of spectra variation of CT scanners on
achieved accuracy for image-domain methods.

Ideally, for the DECT imaging technique, the less the overlap of the two energy
spectra, the less mutual information from the different spectra can be obtained. This will
consequently boost the ability to discriminate the tissues, and material decomposition will
be more accurate [14]. Thus, most of the CT scanner vendors choose to use additional
filtration, i.e., tin or gold filters, to increase the image contrast or denoise the low-energy
images. However, no current DECT scanner type has a free overlap of spectra pair, and
for some DECT acquisition techniques, a considerable overlap of the energy spectra is
observed. A previous study [14] has found that the spectra gap has a strong impact on
the SPR estimation accuracy. However, it remains a question of whether image-domain
methods have a similar dependence of energy gap on achieved accuracy.

As many newly built proton centers are acquiring DECT scanners, one of the clinically
relevant questions to ask is how we could maximize the efficacy of DECT scanners for
serving clinical needs, given the fact that a decent amount of size differences exist between
calibration phantom and the patient. For instance, a standard Gammex phantom used
for calibration measures 40 cm in diameter. In contrast, the diameter of a pediatric is
approximately 20 cm, as per the CDC [17]. The significant size discrepancy may result in a
residual beam hardening effect remaining in the CT images, which may compromise the
accuracy of SPR predictions [9,18,19].
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Thus far, there is no study on the effect of the separation of spectra, maximizing the
gain of the achieved accuracy for proton SP prediction through image-domain methods.

In this study, we focus on the effect of selecting spectra pair for DECT imaging
on proton-stopping power prediction accuracy. The calibration Gammex phantom is 25%
larger in size than the test phantom. The hypothesis is that the maximum spectra separation
could make image-domain methods less vulnerable to size change; in other words, the
prediction accuracy could be well maintained with less spectral overlap. A series of x-ray
tube voltage and tin filtration combinations on a well-acknowledged DECT two-parameter
model are investigated. To rule out the intrinsic dependence on spectral change, the
sensitivity of DECT model accuracy achieved on spectral variations is also evaluated.

2. Materials and Methods
2.1. Revisit of the Hünemohr Model

The Alvarez–Macovski photon cross-section model [20] considers the energy-dependent
photon linear attenuation coefficient of a known material within the typical photon energy
range as a linear combination of virtual photoelectric and Compton scatter contribution:

µ(E) = ρe

(
aph

Zn
e f f

E3 + bcom fKN(E)

)
(1)

where fKN(E) refers to the Klein–Nishina scatter cross-section. The two proportionality
factors, aph and bcom, are energy-independent parameters.

The effective atomic number can be determined by the modified Mayneord’s equation:

Ze f f =

∑k ωk

(
Zk
Ak

)
Zn

k

∑k ωk

(
Zk
Ak

)


1
n

(2)

where wk, Zk, and Ak are the mass fraction, atomic number, and atomic weight of the
kth element in the material, respectively. An n of 3.2 is used throughout this study [21].
Hünemohr et al. [7] proposed the relationship between two spectrum-averaged CT numbers
and the material properties. The implementations of Hünemohr et al. [7] can be found in
the software syngo.via (8.6) by Siemens.

ρe

ρe,w
= αuL + (1 − α)uH (3)

Ze f f

Ze f f ,w
=

[(
ρe

ρe,w

)−1

(βuL + (1 − β)uH)

] 1
n

(4)

where ρe,w and Ze f f ,w are the electron density and effective atomic number of water, respec-
tively; uL and uH are the averaged HU of low- and high-energy CT images, respectively.
The two calibration parameters, α and β, depend on the specific dual-energy scanning pro-
tocol and can be determined via scanning calibration material other than water. However,
the performance would rely on the choice of the calibration material. In this study, we will
use Gammex RMI 467 phantom with its original inserts as the calibration phantom.

When applying this method for proton-stopping power estimation via the Bethe
Equation, the I value is derived from Ze f f using the empirical linear relationship that was
first introduced by Yang et al. [13]:

lnI = aZZe f f + bZ (5)

where the parameters az and bz are predetermined for different material groups with highly
similar compositions, e.g., soft and bony tissues from ICRU tables [22], separately. The I
value and ρe can be used in the computation of proton SPR.
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2.2. Study Design

The geometry of the virtual phantoms was designed based on the Gammex RMI 467
phantom, which consists of a cylindrical solid water background of 330 mm diameter with
17 cylindrical inserts of 30 mm diameter (shown in Figure 1). The standard Gammex tissue
substitutes were used as the calibration materials for the Hünemohr [21] method. A total of
34 inserts were simulated in this study; the list of which can be found in ICRU reports [22]
and Table 1. The motivation for choosing the Gammax RMI phantom and associated inserts
is that they are well-accepted as calibration phantom and easy to access in most proton
centers. Also, this phantom is ready to use for our future experimental validation study.
The ground truth of phantom inserts is also available from the ICRU 44 report [22].
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Figure 1. Schematic of virtual Gammex phantom; the insert material can be found in Table 1.

Table 1. The list of insert materials in Figure 1. The original inserts used by Gammex are also
included.

Inserts Gammex Test Phantom Test Phantom

1 CT solid water Adipose Brain
2 CT solid water Blood Cell
3 CB2 50% CaCO3 Breast Lung (deflated)
4 AP6 adipose Eye lens GI tract
5 SR2 brain Heart Kidney
6 SB3 cortical bone Liver 2 Lymph
7 BR12 breast Muscle Ovary
8 Water Pancreas Spleen
9 CB2 30% CaCO3 Red marrow Thyroid
10 CT solid water Skin Red marrow
11 IB3 inner bone Femur Yellow marrow
12 CT solid water Mandible Cartilage
13 LN300 lung Sacrum Cortical bone
14 CT solid water Testis Cranium
15 LN450 lung Spongiosa Humerus
16 B200 mineral bone Vertebral D6/L3 Ribs (2nd, 6th)
17 LV1 liver Vertebral C4 Ribs (10th)

The spectra used in this study are adapted from Evans et al. [23]. The choice of spectra
pair can be found in Figure 2 and Tables 2 and 3 for the mean energy of each spectrum.
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We used noiseless projection data for image reconstruction. Since this study is based on
the image-domain method, a filtered back-projection image algorithm is used for two CT
images reconstruction.
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Figure 2. The 90 kVp and 140 kVp spectra were originally measured from the Philip BigBore scanner
(Philips, Amsterdam, The Netherlands), and spectra of 140 kVp with Sn filter are simulated with
various thicknesses.

Table 2. Spectra paired with different ones examined in the study.

Spectra Pair kVp (Sn Filter Thickness)

1 90/140 (0 mm)
2 90/140 (0.1 mm)
3 90/140 (0.3 mm)
4 90/140 (0.5 mm)

Table 3. Mean energy of each spectrum examined in the study.

Spectrum (kVp) keV

90 56.8
140 71.6

140 (0.1 mm Sn) 83.6
140 (0.3 mm Sn) 91.6
140 (0.5 mm Sn) 97.1

A test phantom that is 25% smaller than the calibration one is also used. It is achieved
by scaling the original calibration phantom and inserts proportionally down to 250 mm
diameter for the test phantom.

The ground truth of stopping power for ICRU standard tissues can be computed based
on the provided material composition data [22]. The root-mean-squared error for 34 tissues
is reported under various dual-energy spectral conditions. To quantify the accuracy of
prediction SP, the relative error is computed for all pixels belonging to the ROI of each insert.
The diameter of ROI is set to 24 mm. An average relative estimation error is calculated for
each tissue’s insert ROI. Then root-mean-squared average error (RMSAE) of all 34 tissues
can be evaluated.

We also study the effect of spectra mismatch on achieved SP prediction accuracy by
keeping the same size of calibration and test phantoms and varying the spectra intentionally
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for DECT measurements. The pair of spectra used are 90 kVp and 140 kVp for calibration;
the adjusted pair of spectra for DECT measurement is achieved by equivalently increasing
or decreasing the aluminum filtration. Since the variation could be arbitrary, a reasonably
large spectral separation is chosen. In this study, a variation magnitude of 3 mm aluminum
thickness is used. The corresponding differences in mean energy are about 1.5 keV and
2 keV for a 3 mm increase in 90 kVp and 140 kVp, respectively. Besides the RMASE of
each tissue, the RMS errors (RMSE) of all ROI pixels within each tissue insert ROI are also
computed. The hypothesis is that if there is no effect of spectral overlap variation on SP
estimation, the accuracy should be maintained from the calibration phantom.

3. Results

The relative SP prediction accuracy of tissues under different spectra settings is shown
in Figure 3. All ICRU tissues’ accuracy remained within 3%. Figure 3 also shows that ρe
prediction errors for all investigated spectra are within 3%. The tissue of the lung inflated
is excluded from the analysis due to its inclusion of a large volume of air. Specifically, if
the tin filter is not used to increase the separation, the soft tissues (Ze f f < 9) can have an
SP accuracy within 0.5%, for bony tissues, while the SP accuracy can be as high as 3% for
cortical bone (Ze f f = 13). When a 0.1 mm filter is used to harden the spectrum, the SP
accuracy of bony tissues responds to the spectra change promptly, i.e., the accuracy can
be improved to around 1%, while for soft tissues, similar accuracy compared to the case
of filter-free is maintained. When the spectra are more hardened with thicker tin filters,
the most accurate SP estimation occurs around 0.3 mm thickness of the tin filter, not at
0.5 mm. The electron density estimation accuracy dictates the SP accuracy based on the
Bethe equation. Although the estimation accuracy of atomic number is not good, among all
tin filter thicknesses, the accuracy of electron density at 0.3 mm filter is the best.

The SP RMSAE errors are summarized in Table 4. It shows that with an added tin
filter, the SP prediction accuracy is improved compared to the one with no filter used.
The theoretical RMSAE for 90/140 kVp and 0.3 mm is 0.12%, and it is about 10 times
more accurate.

Table 4. RMSAE for SP prediction accuracy of ICRU standard tissues.

kVp (Sn Filter Thickness) RMSAE (%)

90 + 140 kVp (0 mm) 1.35
90 + 140 kVp (0.1 mm) 0.62
90 + 140 kVp (0.3 mm) 0.12
90 + 140 kVp (0.5 mm) 0.4

Although spectra overlap has a role in affecting the SP accuracy when the calibration
phantom differs from the test phantom, the DECT model evaluated in this study has
minor dependence on the mismatch of spectra if the calibration phantom is identical to the
test phantom. Figure 4 shows that with a −3 mm aluminum spectral mismatch between
calibration and measurement, i.e., measurement spectra are harder than that of calibration,
the SP accuracy of all 34 ICRU tissues is slightly more than 0.6%. If such spectral mismatch
is a 3 mm difference, the RMSAE of all tissues for SP prediction is slightly larger than 0.8%,
which is shown in Figure 5.

Figures 3 and 4 show that the proton SP accuracy could be up to 2% at maximum
between mismatched spectra.
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Figure 5. The RMSAE of electron density, mean excitation energy, and SPR prediction accuracy for
ICRU standard tissues under the condition of 3 mm spectral mismatch of calibration and DECT
measurements. The numbers in the square represent the maximum relative errors.

4. Discussion

As DECT can improve the accuracy of SPR estimation, here, we examined the ro-
bustness of a well-accepted DECT model of proton SP accuracy on two spectral overlaps
under a reasonable clinical condition, i.e., a 25% size difference of calibration and test
phantoms. Contrary to our prior knowledge that the largest spectra separation can improve
the material differentiation and enhance the prediction accuracy of SP, the minimal RMSAE
is seen for moderate energy separation, i.e., 90 kVp and 140 kVp with 0.3 mm tin filter. One
contributing factor is the vulnerability of the image-domain method to image formation
uncertainties. These uncertainties may include non-linear effects of beam-hardening effect,
scatter, etc., which may not be accounted for by linear CT image reconstruction algorithm.
The calibration procedure can mediate these uncertainties but only if the calibration scan is
identical to the test environment. If any variation occurs, for instance, changes in size, as
we focused on in our study, it can lead to CT number variations. Image-domain methods
are unable to fully compensate for these variations, and thus, it may result in systematic
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errors in SP prediction. Our study also shows that for a large beam quality variation, in the
scenario of identical phantoms, the impact on SP estimation could be as large as 2%. This,
in return, can corroborate our hypothesis that if there is a mismatch between the calibration
and test phantoms, spectral separation can play a role in the proton SP estimation.

Our study suggests that the choice of spectra for DECT scanners should be carefully
validated and justified for maximizing the stopping power accuracy, which can help to
mitigate the range uncertainties of protons. Moreover, the achieved SP accuracy is sensitive
to phantom size variation for the image-domain method. This is mainly due to the reason
that CT number variations can introduce artifacts in images that cannot be accounted for
by calibration procedure. Our findings align with the previous finding that any introduced
image uncertainties can cause systematic SP errors. However, the achieved high accuracy
for the image-domain method can be maintained by optimizing the spectral overlap if the
phantom size is deviating from the calibration phantom, in other words, if beam-hardening
correction is not fully accounted for by calibration. More in-depth studies are ongoing at
our New York proton center.

Almeida et al. [14] compare the ρe and Ze f f prediction performance of twin-beam
spectra (120 kVp with tin and gold filters) and dual-source scanner. Their results indicate
that the prediction errors for Siemens EDGE twin-beam scanners are noticeably higher than
dual-source scanners. For Gammex RMI 467 phantom, EDGE scanners have prediction
errors of ρe up to 15.3%, while for dual-source equipped scanners (FLASH and FORCE),
the corresponding errors are within 1.3% and 0.5%, which is similar to our results of
added Sn filter. Our study confirms their findings that sufficient spectral separations are
needed to achieve a reasonable prediction accuracy. The EDGE twin-beam scanner has the
advantage of using a single x-ray tube to realize DECT scans with 0.05 mm Au and 0.6 mm
Sn filters on 120 kVp spectrum; however, the consequence of this technique is that poor
CT number separation may be produced, leading to the inaccuracy of determining ρe and
Ze f f quantitatively. Our study, on the other hand, shows that an optimal spectra separation
may exist to achieve maximum accuracy. Thus, to improve the quantitative performance of
EDGE twin-beam scanners, it may be advisable to customize the scanner settings to apply
the filters to other spectra, which may involve more investigations.

The theoretical quantified impact of each component of uncertainty, except spectral
choice, has been summarized and presented in other studies [9,24]; nevertheless, a sys-
tematic and comprehensive clinical investigation that includes spectral optimization is
warranted. Thus, it would be crucial for any proton centers to conduct uncertainty in-
vestigations on their own DECT scanner and determine the strategy to mitigate these
uncertainties. Our study can serve as an example of such an investigation, which is one
of the novelties of this study. Additionally, it is well-established that the largest spectral
separation could yield the most accurate SPR prediction, assuming of size consistency of
the calibration and test phantom is maintained [9,14,24]. However, it is commonly found
that size deviation can introduce CT number variations. The role of the chosen spectral pair
in minimizing these variations remains an open question, demonstrating another novelty
of our research. While modification of spectra would greatly involve the engineering effort
from the vendor and is often deemed impractical, an alternative approach could involve
sequential scans with a combination of optimal choice of two single-energy spectra.

We are aware that our study may have a few limitations. First, among the available
DECT models, the one proposed by Hünemohr et al. [21] is implemented. Although
our results may be model-dependent, as indicated by Bär et al. [6] this model may yield
similar theoretical accuracy compared to other DECT non-linear models. It would be
clinically meaningful to conduct inter-model comparisons for the effect of modeling on
the SPR prediction accuracy, especially, in the context of size discrepancy and spectra pair
optimization. Second, in our study, a pair of sinogram data without noise is employed for
image reconstruction and data analysis. Although it is beyond the scope of this study, the
noise effect on the performance of estimation accuracy has been discussed elsewhere [9].
However, the combined effects including noise and choice of spectra warrant future study.
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Third, only a few discretized Sn filter thicknesses are considered to show the proof-of-
principle; our conclusions do not change if the continuous variations of Sn thickness are
used. And the robustness study of the continuous variations is needed for future study. Last,
the FBP reconstruction algorithm is used in this study; as more advanced reconstruction
algorithms play a role in the image-domain methods, more investigations are warranted.

5. Conclusions

In conclusion, we performed a series of spectral overlap scenarios to assess the vulner-
ability of the image-domain method of predicting SP accuracy under the clinical condition
of phantom variations between calibration and measurement. We found that the 90/140
kVp with 0.3 mm tin filter energy pair can yield the most accurate SP prediction and can
account for variations of phantom size. Our study indicates that the choice of energy pair
can be optimized to achieve the most quantitative accuracy for predicting SP, which can
promote the clinical application of proton therapy in managing devastating diseases, such
as pancreatic cancer.
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