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Simple Summary: The success of cancer immunotherapy is largely associated with immunologically
hot tumors. Oncolytic viruses can transform cold tumors into hot tumors. In this study, we found
that an oncolytic vaccinia virus (oVV) expressing interleukin-9 (IL-9) can transform cold tumors into
hot tumors and that it elicited effective antitumor effects. The antitumor effects can be enhanced
in combination with an immune checkpoint blockade, indicating a potential translation of the
IL-9-expressing oncolytic virus into a clinical trial to enhance the antitumor effects elicited by immune
checkpoint blockades for cancer immunotherapy.

Abstract: The success of cancer immunotherapy is largely associated with immunologically hot
tumors. Approaches that promote the infiltration of immune cells into tumor beds are urgently
needed to transform cold tumors into hot tumors. Oncolytic viruses can transform the tumor
microenvironment (TME), resulting in immunologically hot tumors. Cytokines are good candidates
for arming oncolytic viruses to enhance their function in this transformation. Here, we used the
oncolytic vaccinia virus (oVV) to deliver interleukin-9 (IL-9) into the tumor bed and explored its
antitumor effects in colon and lung tumor models. Our data show that IL-9 prolongs viral persistence,
which is probably mediated by the up-regulation of IL-10. The vvDD-IL-9 treatment elevated the
expression of Th1 chemokines and antitumor factors such as IFN-γ, granzyme B, and perforin.
IL-9 expression increased the percentages of CD4+ and CD8+ T cells in the TME and decreased the
percentage of oVV-induced immune suppressive myeloid-derived suppressor cells (MDSC), leading
to potent antitumor effects compared with parental virus treatment. The vvDD-IL-9 treatment also
increased the percentage of regulatory T cells (Tregs) in the TME and elevated the expression of
immune checkpoint molecules such as PD-1, PD-L1, and CTLA-4, but not GITR. The combination
therapy of vvDD-IL-9 and the anti-CTLA-4 antibody, but not the anti-GITR antibody, induced
systemic tumor-specific antitumor immunity and significantly extended the overall survival of mice,
indicating a potential translation of the IL-9-expressing oncolytic virus into a clinical trial to enhance
the antitumor effects elicited by an immune checkpoint blockade for cancer immunotherapy.

Keywords: oncolytic virus; colon cancer; IL-9; IL-10; tumor microenvironment; modulation; anti-
CTLA-4 antibody; immune checkpoint blockade; combination; immunotherapy

1. Introduction

Cancer immunotherapy has joined surgery, chemotherapy, and radiotherapy as a
successful modality to treat cancers. Immunologically hot or ‘T-cell-inflamed’ tumors
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are more responsive to immunotherapy approaches. Unfortunately, the majority of solid
tumors are defined as cold or immune-desert tumors [1,2]. Therefore, there is an urgent
need to develop new approaches that can improve T cell infiltration and tip the cancer-
immune set point in the TME [3], resulting in immunologically hot tumors, so as to improve
the therapeutic efficacy and application of cancer immunotherapy.

Oncolytic viruses (OVs) can directly kill tumor cells, and this killing can release
tumor-associated antigens (TAAs), neoantigens, damage-associated molecular pattern
(DAMP) molecules, OV-derived pathogen-associated molecular pattern (PAMP) molecules,
and inflammatory cytokines to trigger innate and adaptive antitumor immunity. This
antitumor immune reactivity results in the infiltration of diverse immune cells, including
T lymphocytes, into the TME [4,5]. OVs have positive effects on almost every aspect of
the cancer-immunity cycle and can be further armed with chemokines, cytokines, or other
molecules to modulate the TME so as to harness the immune system to attack and treat
tumors [6–11]. Oncolytic viral therapy can be considered a form of immunotherapy and
has been suggested to be the next remarkable trend in cancer immunotherapy [12,13].

T cells play a pivotal role in antitumor immunity. CD8+ T cells can directly kill
cancer cells [14], while CD4+ T cells usually combat cancers indirectly. CD4+ T cells can
differentiate into various subsets, mainly including Th1 (Type 1 T helper cells), Th2, Th9,
Th17, and regulatory T cells (Tregs). In general, Th1 cells can secret Th1 cytokines such
as IFN-γ and IL-2 to enhance the antitumor efficacy of CD8+ T cells and NK cells, and
Tregs can suppress the antitumor function of T cells [15] and NK cells [16]; while the
function of Th2 and Th17 cells in tumor immunity are inconsistently reported to be either
anti-tumoral [17–19] or pro-tumoral [20–22].

Th9 cells were named for their high levels of cytokine IL-9 secretion [23,24]. IL-9 is a T cell
growth factor [25] and was also characterized to be essential for murine lymphoma growth [26].
IL-9 has been shown to promote the development of multiple human liquid tumors, including
nasal natural killer (NK)/T-cell lymphoma [27], anaplastic large-cell lymphoma [28], and B-cell
non-Hodgkin’s lymphoma [29], and the IL-9 antibody can inhibit the proliferation of these
cells. On the other side, IL-9 has also been shown to have antitumor roles in the development
of melanoma [19,30], lung carcinoma [30], and colon cancers [31]. IL-9 antibody treatment
promoted B16 melanoma lung metastasis [19], while recombinant IL-9 treatment inhibited B16
melanoma and Lewis lung cancer growth in mice. In addition, increased B16 melanoma growth
was observed in IL-9 receptor knockout mice [30]. The overexpression of IL-9 in a murine colon
cancer CT26 model led to the transformation of the tumor microenvironment and delayed tumor
growth [31]. IL-9 was recently demonstrated to inhibit the metastatic potential of breast and
cervical cancers via controlling extracellular matrix remodeling and cellular contractility [32]. To
our knowledge, no studies have been published using OVs to deliver IL-9 for cancer treatment.
In the current study, we asked whether and how the intratumoral expression of IL-9 using an
oVV modulates the TME and what antitumor effects it might have in murine tumor models.

2. Material and Methods
2.1. Mice and Cell Lines

Female C57BL/6 (B6 in short) and BALB/c mice approximately 5–6 weeks old were pur-
chased from The Jackson Laboratory (Bar Harbor, ME, USA) and housed in specific pathogen-
free conditions in the Allegheny Health Network Research Institute Preclinical Facility. All
animal studies were approved by Allegheny Health Network Research Institute Institutional
Animal Care and Use Committee. Mouse colon cancer MC38-luc, CT26-luc, and mesothelioma
AB12-luc cells were generated by the infection of parental tumor cells with firefly luciferase-
carrying lentivirus and antibiotic blasticidin selection. African green monkey kidney fibroblast
CV1, human embryonic kidney 293 (HEK293), HeLa, mouse melanoma B16, and Lewis lung
cancer (LLC) cells were obtained from American Type Culture Collection (Manassas, VA, USA).
HEK293 and HeLa cells were grown in Dulbecco’s Modified Eagle’s medium (DMEM) supple-
mented with 20% calf bovine serum (CBS), 2 mM L-glutamine, and 1 × penicillin/streptomycin
in a 37 ◦C, 5% CO2 incubator. Other cell lines were grown in DMEM supplemented with
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10% fetal bovine serum (FBS), 2 mM L-glutamine, and 1 × penicillin/streptomycin in a 37 ◦C,
5% CO2 incubator (PHCbi, Wood Dale, IL, USA).

2.2. Virus Generation

VSC20, a vgf gene-inactivated Western Reserve strain vaccinia virus, was used
as a parental virus for homologous recombination. Murine IL-9 cDNA was ampli-
fied from pGEM-IL-9 (Sino Biological, Wayne, PA, USA) using PCR (Forward primer:
GGCGGTCGACATGTTGGTGACATACATCC; Reverse primer: CCGCGGCGCGCCT-
CATGGTCGGCTTTTCTGCC). The cDNA fragment was digested with SalI + AscI and
ligated via T4 DNA ligase into a shuttle plasmid pCMS1-IRES-YFP, resulting in a new
shuttle plasmid pCMS1-IL-9-YFP. In this shuttle vector, IL-9 gene expression is driven by
a vaccinia virus promoter pSe/l, and selection marker YFP is expressed from another
vaccinia virus promoter p7.5 in the new shuttle plasmid. The shuttle vector was used
for homologous recombination of murine IL-9 plus yfp marker into the tk locus of the
vaccinia viral genome of VSC20. To make the new virus, vvDD-IL-9, CV-1 cells were
infected with VSC20 at a multiplicity of infection (MOI) of 0.1 for 2 h and then transfected
with the shuttle plasmid pCMS1-IL-9-YFP. The progeny viruses were harvested 3 days
later and used to infect new CV1 cells for the selection of the new recombinant virus
vvDD-IL-9 using fluorescence-activated cell sorting based on the expression of yellow
fluorescent protein 24 h after infection. A double viral gene-inactivated (tk- and vgf-)
vaccinia virus carrying yfp cDNA at its tk locus, vvDD-YFP (vvDD in short), was the
control virus for this work.

2.3. Viral Replication and IL-9 Expression In Vitro

MC38-luc (3.0 × 105/well), AB12-luc (3.0 × 105/well), or CT26-luc (3.0 × 105/well)
cells were seeded in 24-well culture plates on day 0. On day 1, the seeded cells were infected
with vvDD or vvDD-IL-9 at an MOI of 1 in 0.15 mL of 2% FBS-containing DMEM per well
for 2 h and 0.35 mL of 10% FBS containing-DMEM was added into each well. The cells were
cultured and harvested at 24 h after infection. The culture supernatants were harvested to
measure IL-9 using ELISA (enzyme-linked immunosorbent assay) (BioLegend, San Jose,
CA, USA) and the cell pellets were applied to extract RNA to measure the viral gene A34R
to monitor viral replication and transgene IL-9 expression by RT-qPCR, respectively.

2.4. Cytotoxicity Assay In Vitro

Tumor cells were plated at 1.0 × 104 (except B16 cells, which were plated at 5.0 × 103)
cells per well in 96-well culture plates and infected with indicated viruses the next day at
different MOIs. Cell viability was determined at 48 h after infection using Cell Counting
Kit-8 (Boster Biological Technology, Pleasanton, CA, USA), and was performed according
to the manufacturer’s instructions.

2.5. Rodent Tumor Models

B6 mice were intraperitoneally (i.p.) inoculated with 5.0 × 105 MC38-luc cancer
cells and divided into required groups on the indicated day after tumor cell inoculation
according to tumor size based on live-animal IVIS imaging performed using a Xenogen IVIS
200 Optical In Vivo Imaging System (Caliper Life Sciences, Hopkinton, MA, USA). Grouped
mice were i.p. injected with indicated viruses or PBS. In some experiments, anti-CTLA-4
Ab (clone 9D9; Ichorbio: #ICH1096; 200 µg/injection) and anti-GITR Ab (clone DTA-1, Bio
X Cell: #BE0063; 200 µg/injection) were i.p. injected into mice alone or in combination with
indicated viruses. In some experiments, mice were euthanized to harvest peritoneal tumor
nodules for further analysis.

B6 mice were subcutaneously (s.c.) inoculated with 5.0 × 105 LLC cells into the right flanks.
Tumor-bearing mice were intratumorally (i.t.) injected with 60 µL PBS or 5.0 × 107 PFU (plaque
forming units) or 60 µL virus per mouse 9 days after tumor cell inoculation. MC38-luc-tumor-
bearing B6 mice receiving the combination therapy of vvDD-IL-9 and anti-CTLA-4 Ab, which
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had survived for more than 120 days and were confirmed to be tumor-free via live-animal IVIS
imaging, were s.c. inoculated with 1.0 × 106 MC38 and 5.0 × 105 B16 tumor cells into their
bilateral flanks, respectively. Naïve B6 mice received the same treatments as controls. Tumor
size was measured using an electric caliper in two perpendicular diameters.

2.6. Flow Cytometry

Collected tumor tissues were weighed and incubated in RPMI 1640 medium con-
taining 2% FBS, 1 mg/mL collagenase IV (Sigma, St. Louis, MO, USA: #C5138), 0.1 mg
hyaluronidase (Sigma, St. Louis, MO, USA: #H6254), and 200 U DNase I (Sigma, St. Louis,
MO, USA: #D5025) at 37 ◦C for 1–2 h to make single cells. In vitro virus-infected cells or
single cells from tumor tissues were blocked with α-CD16/32 Ab (eBioscience, San Diego,
CA, USA: clone 93; #14-0161-85; 1:1000) and then stained with antibodies against mouse
CD45 (BioLegend, San Diego, CA, USA: #103132; PerCP-Cy5.5, clone: 30-F11, 1:300), CD4
(Brilliant Violet 421, BioLegend, San Diego, CA, USA: clone: GK1.5, #100438; 1:300), Foxp3
(BioLegend, San Diego, CA, USA: #118904; PE, clone: QA20A67, 1:100), CD8 (BioLegend,
San Diego, CA, USA: #100714; APC-Cy7, clone: 53-6.7, 1:300), IL-9 receptor (BioLegend,
San Diego, CA, USA: #158806; APC, clone: S18011D, 1:300), CCR6 (BioLegend, San Diego,
CA, USA: #129815; PE-Cy7, clone: 29-2L17, 1:300), CD11b (BioLegend, San Diego, CA, USA
#101216; PE-Cy7, clone: M1/70), and Gr-1 (BioLegend, San Diego, CA, USA: #108406; FITC,
clone: RB6-8C5, 1:300). The intracellular staining kit for Foxp3 staining was purchased
from BioLegend. Samples were collected on MACSQuant® Analyzer 10 Flow Cytometer
(Miltenyi Biotec., Auburn, CA, USA) and the data were analyzed using FlowJo software v10
(Tree Star Inc., Ashland, OR, USA).

2.7. RT-qPCR

Total RNA was extracted from virus-infected cells or tumor tissues using RNeasy Kit (Qia-
gen, Valencia, CA, USA). One microgram of RNA was used for cDNA synthesis, and 25 to 50 ng
of subsequent cDNA was used to conduct mRNA expression TaqMan analysis or SYBR Green
analysis on the Quantagene q225 qPCR System (Kubo Technology Co., Ltd., Beijing, China). All
primers for TaqMan analysis were purchased from Thermo Fisher Scientific (Waltham, MA,
USA). The primers for glucocorticoid-induced tumor necrosis factor receptor family-related
protein (GITR) (p1: GCATATGTGTCACACCTGAGTA; p2: CCGGAAGCCAAACACAATATC)
and HPRT1 (p3: GGATACAGGCCAGACTTTGTT; p4: ACGTGATTCAAATCCCTGAAGTA)
used in SYBR Green analysis were synthesized by Azenta, Inc. (Burlington, MA, USA). Gene
expression was normalized to the housekeeping gene HPRT1 and expressed as fold increase
(2−∆CT), where ∆CT = CT (Target gene) − CT (HPRT1).

2.8. Statistics

Statistical analyses were performed using unpaired Student’s t test (GraphPad Prism version 9).
Data are means ± SD. Animal survival is presented using Kaplan–Meier survival curves and was
statistically analyzed using a log-rank test (GraphPad Prism version 9). Tumor growth cures were
statistically analyzed using two-way ANOVA (GraphPad Prism version 9). Values of p < 0.05
were considered statistically significant, and all p values were two-sided. In the figures, standard
symbols are used: * p < 0.05; ** p < 0.01; *** p < 0.001; and **** p < 0.0001. ns: not significant.

3. Results
3.1. IL-9 Expression Does Not Impact Viral Replication and Cytotoxicity In Vitro

We used vvDD, a double viral gene-deficient (tk- and vgf -) oVV, to express murine IL-9, and
this newly constructed virus was called vvDD-IL-9. MC38-luc cells were infected with vvDD-IL-9
or the control virus (vvDD) at an MOI of 1. Twenty-four hours post viral infection, total RNA from
virus-infected MC38-luc cells were isolated and applied for RT-qPCR assay. The results showed
that the viral gene (A34R) mRNA levels were similar between these two viruses, while IL-9 mRNA
levels were significantly higher in vvDD-IL-9-treated MC38-luc cells. A similar pattern was found
in the AB12-luc and CT26-luc cancer cell lines receiving the same treatment (Figure 1A).
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Figure 1. vvDD-IL-9 infection shows significantly higher IL-9 secretion and a similar viral replication
compared vvDD in vitro. Tumor cells of MC38-luc (3.0 × 105 cells), AB12-luc (3.0 × 105 cells), or
CT26-luc (3.0 × 105 cells) were mock-infected or infected with vvDD or vvDD-IL-9 at an MOI of 1. At
24 h post infection, the cells were pelleted and harvested to measure A34R or IL-9 expression using
RT-qPCR (A) and the supernatants were harvested 24 h after infection to measure IL-9 amount using
ELISA (B), respectively.

We further measured the amount of IL-9 in the cell culture supernatants by ELISA. The
mean amounts of IL-9 in the cell culture supernatants from vvDD-IL-9-infected MC38-luc,
AB12-luc, or CT26-luc cells were 34.38 ng/mL, 85.93 ng/mL, or 72.19 ng/mL, respectively
(Figure 1B). These data showed that transgene IL-9 was successfully expressed and secreted
from infection cells via oVV delivery. To investigate the possible impact of IL-9 expression
on virus cytotoxicity in vitro, MC38-luc cells were infected with vvDD-IL-9 or the control
virus vvDD at MOIs of 0, 0.05, 0.1, 0.5, 1, or 5, respectively, and the cell viability was
measured 48 h after infection. The results showed that the cell viability was similar and
dose-dependent after the infection with vvDD-IL-9 or vvDD (Figure 2A).
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(8.0 × 103 cells) (D), were infected with vvDD-IL-9 or vvDD at indicated MOIs. Cell viability was
measured 48 h after viral infection.

A similar pattern was found in the other three cancer cells (AB-12-luc, B16, and
CT-26-luc) with the same treatment (Figure 2B–D). The data suggest that IL-9 expression
has no additional impact on the viral cytotoxicity capacity of vvDD-IL-9.

3.2. IL-9 Expressing oVV Elicits Antitumor Effects in Tumor Models

To evaluate the antitumor efficacy of vvDD-IL-9, B6 mice were i.p. injected with
MC38-luc colon cancer cells and these tumor-bearing mice were i.p. injected with vvDD or
vvDD-IL-9 at a dose of 2.0 × 108 PFU/200 µL per mouse or 200 µL PBS (mock treatment)
5 days after tumor injection. The dates of the spontaneous death or euthanasia of treated
mice meeting the experimental endpoints were recorded. The virus vvDD-IL-9 elicited
significantly more potent antitumor effects compared to PBS or vvDD treatment as shown
by extending the survival of the tumor-bearing mice (Figure 3A).
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Figure 3. vvDD-IL-9 treatment elicits potent therapeutic effects in murine tumor models. B6 mice
were i.p. inoculated with 5.0 × 105 MC38-luc cells and then treated with PBS, vvDD, or vvDD-IL-9 at
2.0 × 108 PFU/mouse five days after tumor cell inoculation. The Kaplan–Meier survival curve is
shown (A). B6 mice were s.c. inoculated with 1.0 × 106 LLC cells in right flank and were i.t. treated
with 60 µL PBS or 60 µL virus (5.0 × 107 PFU) per mouse on day 9 after tumor cell inoculation. The
primary tumor size was measured every two days, and all treated mice were euthanized after the
first mouse with a tumor size over 2 cm in any direction was found to count lung metastatic tumor
nodules. Tumor growth curves (B) and lung metastatic tumor nodules (C) are shown, respectively. A
log-rank (Mantel–Cox) test was used to compare survival rates. A two-way ANOVA test was used to
compare tumor growth cures. *: p < 0.05; ***: p < 0.001; and ****: p < 0.0001.

The median survival time of mice receiving vvDD-IL-9 treatment was 43 days, while
the median survival time of mice receiving vvDD or PBS treatment was 31 or 18 days,
respectively. We also explored the therapeutic efficacy of vvDD-IL-9 using a subcutaneous
tumor model. B6 mice were s.c. inoculated with 1.0 × 106 Lewis lung cancer (LLC) cells
into their right flanks and primary tumors were intratumorally (i.t.) injected with PBS,
vvDD, or vvDD-IL-9 when the tumor volumes were 50–60 mm3, typically about 9 days
after tumor cell injection. The virus vvDD-IL-9 treatment significantly retarded tumor
growth compared to the treatments with PBS (vvDD-IL-9 vs. PBS, p < 0.0001 at day 30 after
treatment) or vvDD (vvDD-IL-9 vs. vvDD, p = 0.0002 at day 30 after treatment) (Figure 3B).
All treated mice were euthanized to count the number of lung metastatic tumor nodules
when the first mouse with a tumor whose size was over 2 cm in any direction was found.
The results showed that both viral treatments significantly reduced the lung metastases,
and the vvDD-IL-9 treatment worked slightly better in preventing metastases, though this
difference was not significant when compared to the vvDD treatment (Figure 3C). These
data demonstrated that a potent therapeutic effect was elicited by vvDD-IL-9.
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3.3. IL-9 Expressing oVV Modulates the Tumor Microenvironment

To explore how vvDD-IL-9 elicits antitumor effects, we investigated the TME of
MC38-luc after treatment. B6 mice were i.p. injected with MC38-luc tumor cells and 5 days
later were i.p. injected with PBS, vvDD, or vvDD-IL-9, respectively. Treated mice were
euthanized and tumor nodules were collected on day 5 after treatment. Single cells were
made from tumor nodules and analyzed using flow cytometry. The results showed that the
numbers of tumor-infiltrating CD4+ and CD8+ T cells were significantly elevated after viral
treatment, compared with PBS treatment. vvDD-IL-9 treatment significantly increased the
number of tumor-infiltrating CD4+ T cells and CD8+ T cells, compared to parental virus
vvDD treatment (Figure 4A,B).
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Figure 4. vvDD-IL-9 treatment transforms tumor-infiltrating leukocytes. B6 mice were i.p. inoculated
with 5.0 × 105 MC38-luc cells and treated with PBS, vvDD, or vvDD-IL-9 at 2.0 × 108 PFU/mouse five
days after tumor cell inoculation. Tumor-bearing mice were euthanized five days after treatment and
primary tumors were collected. Tumor infiltrating leukocytes were analyzed using flow cytometry.
The percentage of CD4+ T cells (A), CD8+ T cells (B), CCR6+CD8+ T cells (C), IL-9R+CD45+ cells (D),
MDSCs (E) and Tregs (F) is shown, respectively. * p < 0.05; ** p < 0.01; *** p < 0.001; ns: not significant.

Interestingly, the CCR6+CD8+ T cells were significantly elevated after the vvDD-IL-9
treatment compared to vvDD treatment (Figure 4C). More IL-9 receptor-expressing tumor-
infiltrating leukocytes were observed after the vvDD-IL-9 treatment compared to the vvDD
treatment (Figure 4D), indicating that the IL-9/IL-9 receptor signal pathways are involved in
the antitumor effects elicited by vvDD-IL-9 treatment. We also found that immunosuppressive
myeloid-derived suppressor cells (MDSCs, CD11b+Gr-1+) were slightly decreased after the
vvDD-IL-9 treatment when compared to the vvDD treatment, while vvDD, but not vvDD-IL-9,
significantly increased the percentage of MDSCs in tumors when compared to the PBS treatment
(Figure 4E) [33]. The mean percentage of the tumoral MDSCs after PBS, vvDD and vvDD-IL-9
treatment is 0.78%, 3.1%, and 1.5%, respectively. Immunosuppressive Tregs (CD4+Foxp3+)
were significantly increased after vvDD-IL-9 treatment (Figure 4F), which might weaken the
antitumor effects elicited by the vvDD-IL-9 treatment.

We further investigated the dynamic modulation of the TME after vvDD-IL-9 treat-
ment. The treated mice were euthanized on days 5 and 9, and tumor nodules were collected
and total RNA was extracted for RT-qPCR analysis. We first measured the viral transgene
expression. The vvDD-IL-9 treatment significantly elevated the mRNA of the viral gene
A34R at both days 5 and 9 compared to the vvDD treatment, indicating that IL-9 might
improve the viral replication and/or survival of the virus in vivo (Figure 5A).
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Figure 5. vvDD-IL-9 treatment transforms tumor immunity-associated factors in TME. B6 mice were i.p.
inoculated with 5.0× 105 MC38-luc cells and treated with PBS, vvDD, or vvDD-IL-9 at 2.0× 108 PFU/mouse
five days after tumor cell inoculation. Tumor-bearing mice were euthanized to collect primary tumors five
days or nine days after treatment. The expression of factors (A–L) associated with tumor effects in the TME
was analyzed using RT-qPCR. * p < 0.05; ** p < 0.01 and *** p < 0.001. ns: not significant.

As expected, the vvDD-IL-9 treatment also led to a significant increase in the mRNA
of IL-9 at both days 5 and 9 compared to the vvDD treatment (Figure 5B). Since the
immunosuppressive cytokine IL-10-expressing oVV was reported to have a prolonged viral
persistence [34], we measured IL-10 mRNA levels in the tumor nodules. On day 5, the
level of IL-10 mRNA was similar after both virus treatments. However, the vvDD-IL-9
treatment significantly elevated the levels of IL-10 mRNA in the tumor on day 9 (Figure 5C),
suggesting that secondary IL-10 upregulation might enhance the persistence of vvDD-IL-9
in the tumor. The mRNA of the IL-9 receptor in tumors was significantly increased on
day 9, but not on day 5 (Figure 5D). It was reported that the CCL20/CCR6 pathway is
involved in the IL-9-mediated leukocyte infiltration into tumors [19], so we measured
the mRNA levels of CCL20 and CCR6 in tumors. The results showed that the mRNA
levels of CCL20 and CCR6 were significantly elevated on day 9, though not on day 5,
after the vvDD-IL-9 treatment compared to the vvDD treatment (Figure 5E,F). We further
measured the expression of Th1 chemokines and other mediators associated with anti-/pro-
tumor immunity in the TME. On day 5 after treatment, the vvDD-IL-9 treatment induced
a similar expression of the Th1 chemokine CXCL9 compared with the vvDD treatment;
however, the vvDD-IL-9 treatment induced a significantly higher CXCL9 expression on
day 9 after treatment compared to the vvDD treatment (Figure 5G). A similar pattern was
found for the expression of two other Th1 chemokines: CXCL10 (Figure 5H) and CXCL11
(Figure 5I). The antitumor-immunity-associated factors IFN-γ, granzyme B (GzmB), and
perforin had similar expression patterns as Th1 cytokines (Figure 5J–L). The expression
pattern of immune checkpoint molecules PD-1, PD-L1 and CTLA-4 were similar on day
5 after both viral treatments, but the vvDD-IL-9 treatment induced a significantly bigger
increase in these immune checkpoint molecules on day 9 after treatment (Figure 6A–C)
compared to the vvDD treatment, which might also weaken the antitumor effects induced
by the vvDD-IL-9 treatment.
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Figure 6. vvDD-IL-9 treatment elicits superior antitumor effects in the combination of anti-CTLA-4 an-
tibody, but not DTA-1 antibody. B6 mice were i.p. inoculated with 5.0 × 105 MC38-luc cells
and, 5 days later, treated with PBS, vvDD, or vvDD-IL-9 at 2.0 × 108 PFU/mouse. Tumor-
bearing mice were euthanized to collect primary tumors five days or nine days after treat-
ment. The expression of immune checkpoint molecules PD-1, PD-L1, CTLA-4 in tumors was
analyzed using RT-qPCR (A–C). B6 mice were i.p. inoculated with 5.0 × 105 MC38-luc and
treated with PBS, anti-CTLA-4 antibody (200 µg/injection), vvDD (2.0 × 108 PFU/mouse) plus
anti-CTLA-4 antibody (200 µg/injection), vvDD-IL-9 (2.0 × 108 PFU/mouse) plus anti-CTLA-4 anti-
body (200 µg/injection), vvDD (2.0 × 108 PFU/mouse) plus DTA-1 antibody (200 µg/injection),
vvDD-IL-9 (2.0 × 108 PFU/mouse) plus DTA-1 antibody (200 µg/injection), or vvDD-IL-9 at
2.0 × 108 PFU/mouse five days after tumor cell inoculation (D) and the survival curves are shown
(E). B6 mice were i.p. inoculated with 5.0 × 105 MC38-luc cells and treated with PBS, vvDD, or
vvDD-IL-9 at 2.0 × 108 PFU/mouse five days after tumor cell inoculation. Tumor-bearing mice
were euthanized to collect primary tumors five days or nine days after treatment. The expression of
immune checkpoint molecule GITR was analyzed using RT-qPCR. (F). Naïve B6 mice or MC38-luc-
tumor-bearing B6 mice treated with vvDD-IL-9 plus anti-CTLA-4 antibody mentioned above, which
had survived for more than 120 days, were s.c. challenged with MC38 tumor cells (1.0 × 106) in the
left flanks and irrelative B16 tumor cells (5.0 × 105) in the right flanks. The tumor-bearing mouse
ratio is shown in (G) and the tumor growth curve is shown in (H). * p < 0.05; ** p < 0.01; *** p < 0.001;
and **** p < 0.0001; ns: not significant.

3.4. CTLA-4 Blockade Enhanced the Antitumor Effects Elicited by vvDD-IL-9

As described above, vvDD-IL-9 treatment can elicit potent antitumor effects, but can also
induce more Tregs and a higher level of immune checkpoint molecule CTLA-4 expression.
Considering that CTLA-4 can mediate the immunosuppressive function of Tregs [35] and
the anti-GITR antibody (clone DTA-1) can deplete the number of Tregs which express
high levels of GITR [36], we asked whether the antitumor effects elicited by the vvDD-IL-9
treatment can be enhanced by the blockade of either CTLA-4 or GITR. B6 mice were injected
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i.p. with MC38-luc cells and these tumor-bearing mice were treated 5 days after tumor cell
inoculation (Figure 6D). The mice which received the combination therapy of vvDD-IL-9
and anti-CTLA-4 antibody survived significantly longer than the mice which received
monotherapies of vvDD-IL-9 or anti-CTLA-4 antibody or the combination therapy of vvDD
and anti-CTLA-4 antibody. The median survival time of the mice receiving combination
therapy of vvDD-IL-9 and anti-CTLA-4 antibody was 60 days, while the median survival
time of mice receiving vvDD-IL-9 or the combination of vvDD and anti-CTLA-4 antibody
was 43 or 45 days, respectively, suggesting a non-redundant role of the CTLA-4 blockade
and virally delivered IL-9 leading to improved antitumor effects being elicited by the
combination therapy (Figure 6E). It is interesting that the combination of vvDD-IL-9 and
anti-GITR antibody did extend the overall survival when compared to vvDD and the anti-
GITR antibody but did not when compared to the vvDD-IL-9 treatment, suggesting that
the anti-GITR antibody had a limited role in the combination therapy (Figure 6E). We tried
to seek the reason for the failure of the combination therapy of vvDD-IL-9 and anti-GITR
antibody. We investigated the GITR mRNA expression in tumors via RT-qPCR analysis.
The data showed that the GITR expression in tumor was significantly down-regulated
after viral treatments with either vvDD or vvDD-IL-9 compared to PBS, whereas there
was no significant difference between the two viral treatments. This might explain the
failure of the DTA-1 treatment in the current experiment (Figure 6F). The MC38-luc tumor-
bearing mice which were cured by the combination therapy of vvDD-IL-9 and anti-CTLA-4
antibody were re-challenged with a high dose of MC38 (1.0 × 106 per mouse) in the left
flank and challenged with irrelevant tumor control B16 (5.0 × 105 per mouse) in the right
flank. Naïve B6 mice were used as controls. Both tumors grew well in the naïve B6 mice,
indicating the good transplantability of both tumor cell lines. All MC38-luc tumor-cured
mice rejected the re-challenge with MC38 but not that with the irrelevant tumor cells B16
(Figure 6G,H), suggesting an established systemic tumor-specific antitumor immunity in
these mice. Collectively, these data demonstrate that the combination therapy of vvDD-IL-9
and the anti-CTLA-4 antibody, but not the anti-GITR antibody, elicited potent systemic
tumor-specific antitumor effects in a murine colon cancer model.

4. Discussion

Cancer immunotherapy has been proven to be a successful modality to treat cancer.
However, its responsiveness is mostly limited to hot, inflamed tumors. As most human solid
tumors are cold [1,37], new approaches are urgently needed to improve T cell infiltration
and tip the cancer-immune set point in the TME [3] to improve the therapeutic efficacy
and application of cancer immunotherapy. Replication-competent OVs can transform
cold tumors into hot tumors and exert antitumor responses beyond their oncolytic nature,
especially when these viruses are armed with genes such as cytokines, chemokines, and
costimulatory molecules in order to augment antitumor immunity [4,10,11,38–48]. OVs
can be applied as cancer immunotherapy agents either alone or in combination with other
cancer therapies [6,38–40,42–56].

The parental OV, vvDD, with the inactivation of both the thymidine kinase (TK)
and vaccinia growth factor (VGF) genes, has been proven to be safe in phase 1 clinical
trials [57–59]. The intratumoral expression of the chemokine CXCL11, cytokine IL-15Ra,
or IL-23 using vvDD has been shown to efficiently transform the TME and induce potent
antitumor effects [8,42,60]. Membrane-bound IL-2- or IL-12-expressing vvDD avoided the
severe toxicity associated with systemic exposure while modulating the TME and induced
superior antitumor effects, especially in combination with the PD-1 blockade, curing all
or most of the mice with a high tumor burden [48]. In this study, IL-9 was delivered
into tumor beds via vvDD and strong antitumor effects have been demonstrated in two
non/low immunogenic tumor models. To explore the mechanisms of the antitumor effects
elicited by vvDD-IL-9, we first investigated the TME using a murine colon cancer model.
Our data showed that vvDD-IL-9 treatment significantly increased CD4+ and CD8+ T cells
in the tumors, compared with vvDD treatment. Our data also showed that CCR6+CD8+ T
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cells with the characteristics of early effector memory cells [61] were increased in tumor
after vvDD-IL-9 treatment, suggesting that IL-9 might promote CCL20/CCR6-dependent
recruitment of CCR6+CD8+ T cells into tumor beds, in agreement with the phenomena
previously described in a lung metastatic B16 melanoma model [19]. The virus vvDD,
but not vvDD-IL-9, promoted MDSC accumulation in tumors, suggesting that IL-9 might
down-regulate MDSC accumulation since MDSC was demonstrated to rapidly accumulate
at the site of vaccinia virus infection [33]. We then investigated the key immune profile
in the TME using RT-qPCR. We found that both viral replication and IL-9 expression are
significantly elevated after vvDD-IL-9 treatment at either day 5 or day 9 after treatment.
IL-10 expression in tumors receiving vvDD-IL-9 treatment was significantly elevated at
day 9 after treatment, compared with vvDD treatment, indicating a possible role of IL-10
in vvDD-IL-9 persistence. Previously, an IL-10-expressing oVV was reported to achieve
extended viral persistence [34]. Consistent with CCR6+CD8+ T cell accumulation in tumors,
the expression of CCL20 and CCR6 in tumor were significantly increased at day 9 after
vvDD-IL-9 treatment, compared with vvDD treatment, suggesting a role of CCL20/CCR6-
dependent T cell recruitment in the antitumor effects elicited by vvDD-IL-9 treatment. It
is interesting that vvDD-IL-9 receptor expression in tumors was significantly different at
day 9. In fact, IL-9 receptor has been reported to be expressed on non-hematopoietic cells
such as epithelial cells of the respiratory system and smooth muscle cells [62]. The vvDD-
IL-9 treatment further elevated Th1 chemokines including CXCL9, CXCL10 and CXCL11,
and antitumor factors such as IFN-γ, granzyme B and perforin. The vvDD-IL-9 treatment
increased infiltrating T cells (both CD8+ and CD4+), down-regulated MDSC, together with
the elevated intratumoral expression of Th1 chemokines and antitumor factors, leading
to the transformation of an immune-suppressive TME to an immune-favorable one, and
potent antitumor effects.

Tregs were significantly increased after vvDD-IL-9 treatment, compared with vvDD
treatment, and IL-9 has previously been reported to enhance the suppressive function of
Tregs [29,63], which might weaken the antitumor effects elicited by vvDD-IL-9 treatment.
As CTLA-4 plays a pivotal role in the immunosuppressive function of Tregs [35] and the
intratumoral expression of CTLA-4 was significantly elevated after vvDD-IL-9 treatment,
we asked whether a CTLA-4 blockade can enhance the antitumor effects elicited by vvDD-
IL-9 treatment. GITR is highly expressed on Tregs and the anti-GITR antibody (clone
DTA-1) can deplete Tregs in vivo [36]. We also asked whether DTA-1 treatment can enhance
the antitumor effects elicited by vvDD-IL-9 treatment. Our data demonstrated that the
anti-CTLA-4 antibody, but not the anti-GITR antibody DTA-1, can induce significantly
improved tumor-specific antitumor effects in combination with vvDD-IL-9 treatment. The
dramatically down-regulated GITR expression after viral treatment might be a possible
reason for the failure of the combination therapy of vvDD-IL-9 and the DTA-1 antibody.

There are a number of limitations with the OV in our current study, some of which
are shared with other OVs. First, IL-9 can act as a double-edged sword in cancer develop-
ment [64]. IL-9 always plays an antitumor function in most solid tumors while it promotes
tumor progression in hematological neoplasms and in some solid tumors. Therefore,
caution must be exercised when targeting an IL-9-armed OV towards a specific type of
cancer. Our study has used murine models representing colon and lung cancer. Before
its translation into a human clinical trial, more careful studies with multiple tumor mod-
els are needed in which it is to be translated into human patients with certain types of
cancer. Second, OVs, especially when armed with an interleukin, can usually increase
immune checkpoint molecule expression in tumors. These immunosuppressive effects can
be reduced with an antibody blockade at immune checkpoints. We have recently shown
that immune checkpoint molecules such as PD-1/PD-L1 are significantly upgraded after
vaccinia virus treatment, and the combination treatment of a vaccinia virus and an anti-PD-
1/PD-L1 antibody can elicit superior antitumor effects [42,44,48,50,51]. In the current study,
vvDD-IL-9 treatment also enhanced the expression of PD-1/PD-L1 in addition to CTLA-4.
We have shown that a CTLA-4 blockade can enhance vvDD-IL-9-elicited antitumor effects,
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but we have not investigated the combination treatment of vvDD-IL-9 and a PD-1/PD-L1
blockade. Prior to the clinical translation of these findings, it is worth investigating the
antitumor effects elicited by a combination of vvDD-IL-9 and a PD-1/PD-L1 blockade,
or vvDD-IL-9 and the blockade of PD-1/PD-L1 plus CTLA-4. OVs can be delivered by
intratumoral, intraperitoneal, and intravenous injections. The vaccinia virus JX-594, which
is TK-inactivated and expresses human GM-CSF, has been effective at a high dose delivered
by intravenous injection [65]. vvDD has previously been demonstrated to be safe for both
intravenous and intratumoral injection [58,59]. For the further development of the systemic
delivery of an OV, the PI3Kδ inhibitor was reported to transiently inhibit macrophage
activities and promote the efficiency of the intravenous delivery of an oncolytic virus to the
tumor [66]. This approach deserves further exploration in combination with our novel OV
in preclinical studies and potentially applies to cancer patients in clinical trials.

The clinical translation of our cytokine-armed OV is challenging due to the rapid immune
clearance of the virus and the hurdle of infecting tumors throughout the body using a systemic
injection. While intratumoral injection has limited utility in managing metastatic tumors, using
the local viral infection to induce a systemic immune response is possible [50]. We and others
have reported in situ therapeutic cancer vaccination strategies using a local injection of OV
in combination with systemic immune agents. A local injection of OV can also be used as a
pre-treatment to enhance tumor infiltrating lymphocyte harvesting for adoptive cell therapy [67].
Many other translational opportunities exist, including regional delivery for the treatment of
peritoneal or pleural based metastatic tumors [68–70].

5. Conclusions

In summary, our current study demonstrates that vvDD-IL-9 treatment can deliver
IL-9 into the tumor bed and elevate IL-10 expression. The accumulated IL-10 may, in turn,
prolong viral persistence and enhance IL-9 accumulation. The viral-induced immunogenic
cell death and IL-9 accumulation might work together to transform the immunosuppressive
TME and elicit potent antitumor effects in colon and lung cancer models. The combination
therapy of an anti-CTLA-4 antibody and vvDD-IL-9 significantly improves overall survival.
In conclusion, an IL-9-expressing OV alone or in combination with anti-CTLA-4 antibody
should be considered for a clinical trial.
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