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Simple Summary: Hematopoietic stem and progenitor cells (HSPCs) play a pivotal role in main-
taining the homeostasis of the blood and immune systems. Acute myeloid leukemia (AML) and
myelodysplastic syndromes (MDS) represent heterogeneous hematologic malignancies resulting from
genetic mutations within cells of the hematopoietic lineage, leading to the expansion of leukemic
blasts including leukemic stem cells (LSCs). Using the t-distributed stochastic neighbor embedding
(t-SNE) methodology, we examined the immunological phenotype of HSPCs based on the differential
expression of CD34, CD38, CD45RA, CD123 and programmed death ligand 1 (PD-L1) antigens, and
contrasted it with the immunophenotype of blasts and LSCs in AML and MDS.

Abstract: Using multi-color flow cytometry analysis, we studied the immunophenotypical differences
between leukemic cells from patients with AML/MDS and hematopoietic stem and progenitor cells
(HSPCs) from patients in complete remission (CR) following their successful treatment. The panel of
markers included CD34, CD38, CD45RA, CD123 as representatives for a hierarchical hematopoietic
stem and progenitor cell (HSPC) classification as well as programmed death ligand 1 (PD-L1).
Rather than restricting the evaluation on a 2- or 3-dimensional analysis, we applied a t-distributed
stochastic neighbor embedding (t-SNE) approach to obtain deeper insight and segregation between
leukemic cells and normal HPSCs. For that purpose, we created a t-SNE map, which resulted in the
visualization of 27 cell clusters based on their similarity concerning the composition and intensity
of antigen expression. Two of these clusters were “leukemia-related” containing a great proportion
of CD34+/CD38− hematopoietic stem cells (HSCs) or CD34+ cells with a strong co-expression of
CD45RA/CD123, respectively. CD34+ cells within the latter cluster were also highly positive for PD-
L1 reflecting their immunosuppressive capacity. Beyond this proof of principle study, the inclusion of
additional markers will be helpful to refine the differentiation between normal HSPCs and leukemic
cells, particularly in the context of minimal disease detection and antigen-targeted therapeutic
interventions. Furthermore, we suggest a protocol for the assignment of new cell ensembles in
quantitative terms, via a numerical value, the Pearson coefficient, based on a similarity comparison
of the t-SNE pattern with a reference.

Keywords: hematopoietic stem and progenitor cell (HSPC); acute myeloid leukemia (AML); myelodys-
plastic syndromes (MDS); leukemic stem cells (LSC); CD34; CD38; CD45RA; CD123; PD-L1; flow
cytometry; t-SNE; high-dimensional space analyses; classification; dimensionality reduction;
immunophenotyping
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1. Introduction

Acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are hetero-
geneous disorders originating from hematopoietic stem cells (HSCs) through the progres-
sive and sequential acquisition of genetic and epigenetic alterations. As a result, there
is a clonal expansion of myeloid progenitors/precursors in the bone marrow (BM) and
peripheral blood (PB), associated with impaired cell differentiation leading to hematopoi-
etic insufficiency [1–3]. Drug resistance and dormancy of the leukemic stem cells (LSC)
with a reduced susceptibility to cytotoxic drugs are the main reasons for treatment fail-
ure [4,5]. To tackle the problem of resistance and dormancy, a subtle characterization of the
leukemic blast population including the LSC is a prerequisite for a more efficacious targeting
and eradication.

The search for a better characterization of the various subsets contained within the
bulk mass of leukemic blasts from patients with acute leukemia has prompted a constant
increase in the number of antigens in panels for single-cell cytometry, reaching numbers
from 14 to 28 colors [6–8]. In order to visualize and interpret that kind of multidimensional
marker expression function (MEF), the traditional representation via two-dimensional
scatter plots increases correspondingly and reaches its limits.

Mathematically, these scatter plots represent two-dimensional projections of the multi-
dimensional function, by which some information of the original distribution is inevitably
lost. Consequently, rare or so far unknown leukemic subpopulations of pathophysiological
relevance may be not detected [9,10] or multi-dimensional structural information may
get lost. This prompted the search for two-dimensional, graphical representations of the
MEF, which preserve the full representations [11]. Among such mapping algorithms,
t-distributed stochastic neighbor embedding (t-SNE) [12] is a promising candidate [13–17].
We opted for the t-SNE algorithm as compared to equally valid alternatives like uniform
manifold approximation and projection (UMAP) [18] since it has a long and successful track
record over the past decade and is one of the most widely used for comparable tasks [19,20].
Using this methodology, we aimed at elucidating the CD34+ cell population in more depth
in samples from patients with AML and MDS in comparison to samples from patients in
complete remission (CR) following antineoplastic therapy.

2. Materials and Methods
2.1. Patients

BM samples of 21 patients with MDS (6 patients) and AML (15 patients) were obtained
at the Department of Hematology, Oncology and Clinical Immunology from the University
Hospital Düsseldorf on their regular follow-up visits for routine diagnostics. Our control
population consisted of 12 patients following allografting, cytotoxic chemotherapy or both
who were in CR, with 2 patients (#8 and #21 marked with asterisks in Table 1) still not
having achieved full hematological reconstitution. The characteristics of the entire group of
patients are shown in Table 1.

Table 1. Patient characteristics. The samples are grouped according to whether the patients have
active disease (AD) or are in complete remission (CR). All patients in CR are MRD negative (see
Supplemental Table S2 for the MRD analysis).

Group Pat.
ID Age Sex WHO

Classification
Status of
Disease Initial Mutation Cytogenetic Time **

(Months)

AD 1 61 m MDS-IB2 AD - 46, XY 11

AD 4 58 f AML Mr - 47, XX, +11 10

AD 10 58 m MDS-IB2 Hr - 46, XY 30

AD 11 67 m AML, md-r Mr/p FLT3-ITD, RUNX1,
EZH2 46, XY 5

AD 12 65 f AML, md-r Hr ASXL1 46, XX, del(11)(q21,q24) [21] 26
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Table 1. Cont.

Group Pat.
ID Age Sex WHO

Classification
Status of
Disease Initial Mutation Cytogenetic Time **

(Months)

AD 13 60 m AML Id IDH1 47, XY, +8[22]/46, XY[2] 0

AD 14 69 f AML, md-r Hr JAK2 45, XX, -7 39

AD 16 60 m AML, md-r Hr ASXL1, RUNX1 not initial: 46, XY,
del(3)(q21q25)[23]/47idem+8[5] 53

AD 17 60 f
AML with
minimal

differentiation
Hr IDH2

47, XX, +mar[4]/46, XX [22],
cytogenetic aberration:

7(4;12)
216

CR 2 76 m MDS-IB2 CR ASXL1 46, XY 13

CR 3 67 f
AML with

CEBPA
mutation

CR CEBPA 46, XX 21

CR 5 56 f AML with
maturation CR DNMT3A, IDH1 46, XX 4

CR 6 41 m AML, md-r CR RUNX1 complex karyotype 3

CR 7 54 f AML with
NPM1 mutation CR NPM1, IDH2 46, XX 8

CR 8 51 m

MDS with low
blasts and

SF3B1 mutation
(MDS-SF3B1)

CR * JAK2, SF3B1 complex karyotype 60

CR 9 67 f
AML with

CBFB-MYH11
fusion

CR CBFB-MYH11 46, XX, inv(16)(p13q22)[24]/
46, XX [3] 29

CR 15 28 f AML, md-r CR RUNX1 complex karyotype 47

CR 18 39 f AML, md-r CR FLT3-ITD del(7)(q22[22]/46, XX [3] 2

CR 19 40 m AML, md-r CR ASXL1, c-KIT,
TET2 +8, XXY, add(21p) 32

CR 20 61 f AML, md-r CR ASXL1, RUNX1 46, XX 57

CR 21 70 m AML, md-r CR * ASXL1, RUNX1,
TET2, EZH2 46, XY 11

* Patients who still not having achieved full hematological reconstitution; ** time difference between initial
diagnosis and sample collection; md-r: myelodysplasia-related; CR: complete remission; Hr: hematological
recurrence; Mr: molecular recurrence; Mr/p: molecular recurrence/persistence; Id: initial diagnosis; AD: active
disease; MDS: myelodysplastic syndrome.

2.2. Isolation and Phenotyping of White Blood Cells

White blood cells (WBCs) were isolated via red blood cell lysis. For that, BM was
collected in EDTA coated syringes or blood collection tubes and bone fragments were
removed by filtering the BM with a 70 µm cell strainer. The BM was then incubated 1:10
for 10 min with isotonic ammonium chloride solution (155 mM NH4Cl, 10 mM KHCO3
and 0.1 mM EDTA, pH 7.4, purchased from the University Hospital Düsseldorf Pharmacy,
Düsseldorf, Germany). WBCs were pelleted for 5 min at 500 g, supernatant was discarded
and the remaining WBCs were washed twice with DPBS prior to staining. For each sample,
one to four million cells were transferred to a 96 well U-Bottom plate and dead cells were
stained with fixable viability dye (#65-08666-14, Thermo Fisher Scientific, 1:1000 in DPBS),
washed with DPBS and subsequently stained for cell surface molecules. Dead cells and
surface molecules were each stained for 15 min at room temperature in the dark. Antibodies
for cell surface molecules (see Table 2) were diluted in Brilliant Stain Buffer (#566349, BD
Horizon, BD Bioscience, Franklin Lakes, NJ, USA) to prevent staining artifacts due to
polymer dyes. Prior to data acquisition at a BD LSR Fortessa (V/B/YG/R), cells were
washed with DPBS, fixed overnight (IC Fixation Buffer, #00-8222, Thermo Fisher Scientific,
Waltham, MA, USA ) and washed again. Cells were taken up in DPBS and acquired at up
to 3000 events/s. All samples contain more than 105 cells.
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Table 2. WBC staining panel.

Specificity Clone Fluorescence Dye Vendor Cat # RRID Concentration

Fixable viability
dye / eFlour506 TFS * 65-0866-14 / 1:1000

PD-L1 MIH5 PerCP-eFlour710 TFS 46-5983-42 AB_11041815 1:50
CD123 6H6 PE TFS 12-1239-42 AB_10609206 1:100
CD45 HI30 PE-Cy5 BioLegend 304010 AB_314398 1:200

CD45RA HI100 PE-Cy7 TFS 25-0458-42 AB_1548774 1:200
CD34 4H11 APC TFS 17-0349-41 AB_2016604 1:50
CD38 HIT2 APC-eFlour780 TFS 47-0389-41 AB_11217871 1:50

* TFS: Thermo Fisher Scientific.

2.3. Gating Strategy

In the study presented here, we were particularly interested in a detailed, multi-color
flow cytometry-based characterization of the CD34+ cells focusing on a subtle comparison
between the CD34+ cell subsets of patients with active disease (AD) and those of patients
in CR. For that purpose, we used a panel of the following monoclonal antibodies: CD34,
CD38, CD45, CD45RA and CD123, as it provides the basis for defining the various types
of HSPCs (Table 3). In addition, the programmed death ligand 1 (PD-L1) was included,
since it is also expressed on normal hematopoietic cells, exerting a suppressive effect on
the immunological response. We consider this panel suitable and sufficient to demonstrate
strengths and pitfalls of a t-SNE-based analysis.

Table 3. Antigen combinations for HSPC characterization.

Cell Type Label Antigen Combination

Hematopoietic stem cells HSC CD34+ CD38− (CD90+ not included)
Multipotent progenitor cells MPP CD34+ CD38− (CD90− not included)

Common lymphoid progenitors CLP CD34+ CD38− CD45RA+

Common myeloid progenitors CMP CD34+ CD38+ CD45RA− CD123low *
Megakaryocyte/erythroid progenitors MEP CD34+ CD38+ CD45RA− CD123−

Granulocyte-macrophage progenitors GMP CD34+ CD38+ CD45RA+ CD123+

Not identified by this set of antigens Other Various combinations
* By the term “low” we refer to weakly positive.

Our gating strategy for the cells of interest, i.e., the CD34+ cells, encompassed six
steps including: (1) an FSC vs. SSC gate, (2) a CD45 vs. SSC gate, (3) an exclusion step for
the elimination of doublets, and (4) a viability check using eF506 dye for the exclusion of
dead cells. As a result, the (5) final gate of interest (GOI) contained CD34+ cells excluding
the population of granulocytes. Afterwards (6), only the CD34+ cells were selected, as
shown in Figure 1A and B for patient 1. The gating was carried out in FlowJo® (FlowJo,
Ashland, OR, USA). The number of CD34+ positive cells of an individual patient varied
between 129 and 207,994 (Figure 1C). To avoid domination of features in the t-SNE plots by
individual patients, a maximum of 1000 cells was randomly selected in patients with high
cell numbers.
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1 

 

Figure 1. In (A) and (B), steps (5) and (6) of the gating strategy are shown. The orange arrow means
that in B only the cells from the gate of interest (GOI, black frame) were analyzed. (A) The exclusion
of the population of granulocytes with (5) a GOI; (B) The final step (6), selection of the CD34+ cells; In
(C), the numbers of CD34+ cells after the gating are shown for each patient as well as the numbers
thereof included in the t-SNE analysis.

2.4. Visualization by t-SNE

In a second step, we applied t-SNE for the visualization of different cell clusters based
on their similarity with regards to the composition and intensity of antigen expression.
The t-SNE algorithm is a nonlinear dimensionality reduction technique which visualizes
high-dimensional data in a two-dimensional scatter plot in such a way that the clustering
in high dimensions is preserved. Cells exhibiting comparable protein-expression patterns
are positioned adjacently on the t-SNE map, facilitating the depiction of distinct cellular
subgroups. The nature of this algorithm is to preserve the local relationships and not the
global structure [21]. This is one of the well-known limitations of t-SNE [22–24]. Thus,
global structures such as the arrangement of the clusters and their distances in the t-SNE
plane provide no basis for interpretation. A principal component analysis (PCA) was
therefore carried out for the initialization to improve the global structure of the plot, as
established in the literature [21,25].

To enable comparability between the t-SNE plots, the gated CD34+ cells from all
patients were first merged into a common data set. The patient ID and the group assignment
were appended to the expression matrix prior to data merger permitting the subsequent
separation according to these characteristics after the t-SNE analysis. The fluorescence data
were scaled biexponentially in a preliminary step [26]. The t-SNE analysis was carried out
using the Barnes–Hut implementation of t-SNE by the Rtsne package (Version 0.16, Open
Source). The code is available in the Supplement (Code S1). For the PCA the predefined
value of 50 for the number of retained dimensions was used. The perplexity as well as
the number of iterations were varied over wide intervals. These variations, shown in
Supplement Figure S1, not only reassure us that the structures to be interpreted are robust,
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but also demonstrate that a perplexity of 70 and 3000 iterations is a reasonable choice
providing visibility of the relevant morphology within an acceptable computation time [27].
The t-SNE coordinates (t-SNE1, t-SNE2) were also appended to the expression matrix as
novel parameters. The entire data set as well as a data set of only patients in CR and
a data set of the patients with AD were then exported as FSC files for further analysis
in FlowJo ®. The t-SNE plot is created as a function of the two parameters (t-SNE1 and
t-SNE2). Since distances within a t-SNE plot cannot be interpreted in a straightforward
way for reasons mentioned above, axis labels are omitted for all t-SNE plots, in agreement
with common practice.

2.5. Defining Gates in the t-SNE Plots

The expression matrix with the t-SNE coordinates of the three data sets (All patients,
only CR, only AD) were imported into FlowJo®. A group was created therein containing
all three data sets. Density-based polygon gates were manually drawn on the common
t-SNE plot of all patients in CR. Afterward, the 27 gates were applied to the FlowJo® group
in order to transfer them to the remaining two data sets.

2.6. Determination of the Immunological Phenotypes of HSPCs

The immunological phenotype of HSPCs was determined using the markers CD34,
CD38, CD123 and CD45RA. For this purpose, the limits for the classification into positive
(+) and negative (−) according to the marker expression were determined in FlowJo® on
the common data set of all patients using scatter plots (Supplement Figure S2). The fluo-
rescence values for the markers used were exported separately for the patients in CR and
patients with AD for all gates and then displayed as boxplots (Supplement Figure S3). The
commonly used limits for the classification were drawn into the boxplots with the antigen
expression levels and the immunological phenotype of the HSPCs was then determined for
the respective gate depending on whether the mean value of the respective marker was
above or below the limit.

2.7. Quantitative Comparison of t-SNE Plots Using the Pearson Correlation Coefficient

For the quantitative comparison of the t-SNE plots, the density matrix for the respective
t-SNE plot was first calculated in R, e.g., for a single patient or for the cumulative image of all
patients with AD. The density matrices were exported and the Pearson coefficients between the
t-SNE plots were determined using Python. The code is available in the Supplement (Code S2).
The density plots of all patients are shown in Supplement Figure S4.

3. Results and Discussion
3.1. Design of a t-SNE-Based Protocol for Multicolor Flow Cytometry Analysis

For the t-SNE analysis, a common data set of all FSC files from all patients was created,
so that the t-SNE plots are comparable between the patients. The t-SNE analysis was carried
out based on the expressions of CD34, CD38, CD45RA, CD123 and PD-L1. In general, the
CD34 antigen permits the identification of hematopoietic stem and progenitor cells, while
CD38 is considered a marker associated with differentiation [28,29]. The combination of
these two antigens with CD45RA and CD123 permits a characterization and quantification
within a BM of the HSC/HPC within a BM sample [30,31].

After the t-SNE run on the combined data set (Figure 2A), the contributions of the
CR and AD patients were visualized separately to recognize their contributions to the
combined t-SNE picture (Figure 2B,C).

By t-SNE, the cells are arranged in five islands (I–V) of different sizes. It becomes
immediately apparent that the CR (in 2B) and the AD (in 2C) samples contribute almost
complementarily to the combined representation (A). While in the CR patients, most of the
cells are in the east part of the main island (I) plus in three of the four separated islands (II,
III, V), the cells from the AD patients accumulate more to the west of the main island as
well as in island IV. However, the populations are not mutually exclusive, as all cell types
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are present in both groups, albeit in some regions with strikingly different prevalence. This
phenomenon is most likely not related to “contaminating” leukemic cells within the CR
samples as the CR patients are MDR negative. In the t-SNE representation, the cells are
distributed according to marker-specific gradients, as shown in the bottom row of Figure 2
D–H for the combined data set, where the black horizontal bars in the color scale column
define the corresponding intensity intervals. The overlay of the different markers is shown
separately for AD and CR in Supplement Figure S5, as well as an example for two patients
from each of the groups in Supplement Figure S6. 

2 

 
   

Figure 2. (A) t-SNE representation of the combined data set (cells of patients with active disease (AD)
and in complete remission (CR)), and the contributions from patients in CR (B) as well as from the
patients with AD (C). The color scale for (A–C) corresponds to the local density of cells in arbitrary
units. In each t-SNE plot, the color scale starts at zero and is normalized to the maximum density in
the respective plot. In (D–H), the prevalence of the various markers entering the t-SNE algorithm are
reproduced, for CD34, CD38, CD45RA, CD123 and PD-L1. The color scale represents the expression
level. The classification in terms of positive (+) and negative (−) expression is indicated by the black
horizontal lines in the color bar.

As far as CD34 is concerned, the corresponding intensities in (Figure 2D) comprise
only positive values since per definition only cells above the threshold of expression were
included. Still, the islands in the t-SNE plot show quite varying CD34 expression levels.
With respect to CD38, the cells are assorted from northwest to southeast of the main island
with increasing expression level, while it is particularly low in island IV. A pronounced
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CD38 gradient is visible in island III and V, indicating a sub-ensemble of cells undergoing
some kind of development. The CD123 concentration, on the other hand, increases from
east to west across island I, is almost zero in island II, and shows gradients within islands III
and V. The CD45RA expression increases strongly from north to south. Finally, the PD-L1
expression, which is not considered in the assignment of the cells according to Table 3, is
non-monotonously distributed across island I and takes characteristic low values in islands
II and III.

We can therefore conclude that the gradients in the intensities of CD38, CD45RA and
CD123 cause the main substructure in island I, while the expression levels of CD34 and
PD-L1 refine this landscape.

3.2. Exemplifying Discussion of t-SNE Gates

For a more detailed study of the five islands, we have defined 27 gates in the t-SNE
plot of the CR samples, each with a characteristic set of expression levels for the markers
used (Figure 3A). This gate pattern was then transferred without modifications to the AD
data as described in Section 2.5, shown in Figure 3B. The percentage distribution of the
cells in the 27 gates for the three datasets (all patients, only CR, only AD) is shown in
Supplement Table S1.

 

3 

 
   

Figure 3. (A) Density-based gate definition on the t-SNE plot of the CR data set, performed by
visual inspection; (B) Application of the gates on the AD data set; In (C), the ratio of the percentage
distribution of the cells for the CR to the AD samples is given for each gate; The gates are inked in
red if this ratio is smaller than 1, i.e., most of the cells in this gate come from AD samples, and blue
for ratios larger than 1. The cell type identification for the gates is represented in (D,E) for the CR
samples and for the AD samples, respectively; (F) Evolution scheme for the relevant cell types; The
ratios of the percentage distribution of cells for the different types in CR samples vs. AD samples are
listed in (G).
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From that kind of visualization, eight gates emerge, namely gates 1, 6, 7, 10–13 and 15,
in which the cells of patients with AD dominate. The remaining gates contain more cells
from the CR patients, while within gate 14 the ratio is very close to 1.

The box plots of the 27 gates (Supplement Figure S3) were used to assign the cells
within each gate according to the classification scheme as detailed in Table 3 and shown
in Figure 3F. As can be extracted from Figure 3, the CR subsets are composed of 0.7%
HSC/MPP, 9.4% CMP, 1.2% CLP, 11.4% MEP and 44.6% GMP. A proportion of cells (32.7%)
could not be allocated according to the classification scheme. On the other hand, the
samples of the patients with AD comprised 14.3% HSC/MPP, 4.7% CMP, 4.1% CLP, 13.7%
MEP and 47.0% GMP with a proportion of 16.2% of the cells which could not be classified.
Clearly, in comparison with the CR samples the AD samples show a significantly greater
proportion of HSC/MPP as well as CLP cells, while there are smaller percentages of CMP
cells as well as of those cells that cannot be allocated. The fractions of MEP cells are
approximately equal for both groups.

Beyond this canonical classification, the t-SNE representation provides a rich substruc-
ture within the regions of particular cellular subtypes, reflecting subtle differences between
the various populations. A complete delineation of all 27 gates would be certainly beyond
the scope of our presentation. We therefore selected gates representing five characteristic
cellular subsets, namely gates 1, 3, 6, 12 and 26, to illustrate the possibilities, but also the
potential shortcomings associated with a t-SNE representation. The corresponding box
plots are shown in Figure 4. 

4 

 
   Figure 4. Box plots of the antigen expression levels (red: CD34, green: CD38, blue: CD45RA, orange:

CD123, purple: PD-L1) within 5 selected gates from the 27 shown in Figure 3. The fluorescence data
were scaled biexponentially in a preliminary step. The light blue and red background indicate the
expression levels classified as negative (blue) and positive (red), respectively. The PD-L1 antigen was
not used for the cell classification.

In general, a clear distinction of one gate from the others originates from a particularly
low expression of one antigen within this gate.
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We begin with gate 1, a well-separated island containing the great majority of HSC/MPP
cells, as defined by the lack, or extremely low expression, of CD38. Since the differentiation
between HSC and MPP is based on the CD90 marker (with CD38 negative in both cases)
which was not included in our panel, we cannot distinguish these two cell types within
our data set. As far as CD45RA and CD123 are concerned, their expression levels show
a broad distribution spanning almost the full intensity range. Since AD cells contribute
88% to this population, this gate represents a predominantly leukemic-related gate and is
compatible with the signature of leukemic stem cells. We note that the patients’ ID and the
group assignment were added to the expression matrix prior to the data merging, which
allows us to determine the contribution of each patient group (CR and AD) to each gate.
To relate these findings to the results of Kersten et al. [32], we looked at the expression
level of CD45RA and CD123 on the CD34+ cells within this gate and found a greater
expression of these antigens on the leukemic cells compared to those from the control
samples. The aforementioned investigators examined the potency of CD45RA to specifi-
cally discriminate LSC and normal HSC for a better LSC quantification and found that in
comparison to other markers such as CLEC12A, CD33 and CD123, CD45RA was the most
reliable antigen. From a clinical point of view, it was interesting to note that CD45RA+ LSC
tended to be associated with a more favorable cytogenetic/molecular marker constellation.
However, it is important to recognize that the expression of CD45RA in AML is not as
straightforward as in the immune system T cell subsets, and the functional implications
can be quite diverse [33]. With regard to CD123, the study by Testa et al. based on the
screening of CD123 expression in various hematopoietic malignancies shows that this
antigen not only frequently expressed at high levels in AMLs but also on B-ALLs [34]. In
an earlier report, they had explored a large set of AML patients and reported that 45% of
these patients overexpress CD123 [35]. Similar to their results, Al-Mawali et al. [36] found
that overall, this antigen was expressed in 37 (97%) out of 38 AML cases analyzed. The
median expression of CD123 was 90% (range 21%–99%). Interestingly, the proportion of
cells co-expressing CD123 on CD34+/CD38− leukemic stem cells was also 37 (97%) out of
the 38 AML patients with a broad range from 0.0262% to 39.7% (median 0.8164, mean 4.45)
at the time of diagnosis. These results are in line with our findings regarding the expression
pattern of the CD34+/CD38− in our gate 1.

Gate 3, on the other hand, has been selected as an example for a cell cluster mainly
encompassing CD34+ normal progenitor cells of GMP subtype, as the great majority of
cells show a strong CD38 expression in the presence of CD45RA and CD123. Different from
this normal signature, the few CD34+ cells falling onto this gate from patients with AD are
lacking or only faintly expressing CD38 while the intensity for CD45RA and CD123 tends
to be stronger in comparison to their normal counterparts.

Gate 6 resides at the edge of the main island with a proportion of 93% of cells from
AD samples. Since the expression levels of all antigens are above the threshold of detection,
they are formally classified as GMP. Still, a specific property of gate 6 in comparison to other
gates containing GMP-like cells is that the PD-L1 expression level is relatively high—well
above the levels in all other gates—and the levels of CD45RA and CD38 are also above
the average observed for GMP cells. Furthermore, it is remarkable that these cells have
a relatively low CD34 antigen expression and that all antigens display a relatively sharp
intensity distribution with relatively low standard deviations. This suggests that there is
no ongoing evolution among the cells in this gate. The CD34+ cells of this cluster were to
some extent CD38+, indicating a kind of “late” HSC on its way towards an abnormal stage
of differentiation. As far as PD-L1 is concerned, our t-SNE-based data confirm the results
obtained previously in a study focusing on the immunophenotype of T cells in patients
with MDS and AML [37]. The mechanisms underlying T cell evasion to immune checkpoint
inhibitors in acute myeloid leukemia have been recently elucidated by Gurska et al. [38].

We now take a closer look at the cells in gate 12, where two-thirds of the cells originate
from AD samples. This gate represents a kind of borderline cell pool regarding the AD
samples. In general, the expression level of CD45RA is very low, and the CD34 level is



Cancers 2024, 16, 1320 11 of 18

extraordinarily high with a relatively broad distribution of CD38 expression. While the
cells in this gate from the CR patients are unequivocally classified as CMP, this is not
possible for the AD samples, as they rather appear to be a mixture of CMP with HSC/MPP.
This gate is, therefore, distinct from most other gates due to its internal shift of the t-SNE
intensity between AD and CR samples. Accordingly, the AD cells with a lack or very low
expression of CD38 reside more at the left side of this gate, whereas the cells of the CR
samples preferentially group around its center. This indicates that the cells undergo an
evolution from HSC/MPP when the disease is active, towards CMP during remission. The
cluster contained within gate 12 is thus a nice example for the discriminative strength of
t-SNE. In comparison to gate 1, the CR group shows a positive CD38 signal, while the AD
group in this gate is CD38 negative, even though these values are significantly higher than
in gate 1.

Gate 26 is dominated by a proportion of 68% of CR cells. It is a kind of enigmatic cluster,
as this subpopulation of CD34+ cells could not be allocated unequivocally according to the
classification scheme as described in Figure 3F. Their characterization certainly requires an
extended labelling for the lymphoid progenitor cells including antigen markers like CD10,
CD7 or CD19. With regard to the leukemic cells contained within this cluster, aberrant
marker constellations not related to the canonic scheme are also conceivable. Therefore,
starting from our proof-of-principle marker panel, modifications including new monoclonal
antibodies are necessary taking into account the steadily evolving knowledge and discovery
of leukemic-related antigens and their co-expression patterns. Within this process, our
efforts should be geared towards linking the phenotypical characterization to the molecular
signature of the leukemic cells in the sense of a phenotype–genotype linkage. In the context
of an antigen-targeted therapy, this could be helpful in defining the most relevant subset,
i.e., leukemic stem cell, within the bulk mass of leukemic cells.

We proceed by drawing some general conclusions from these characteristic examples.
First, carefully selected additional markers can discriminate the cells to a deeper

level. In that respect, we found a strong correlation between the expression level of
the PD-L1 antigen and the percentage of predominantly leukemic cells in a particular
gate. Considering that PD-L1 is an immunoprotective antigen, one may speculate that by
increasing the PD-L1 expression during the evolution from healthy towards malignant, the
cells protect themselves with respect to the immune system.

On the other hand, disregarding a relevant marker can leave the cell population within
some of the gates unspecified, as has been seen from the example of gate 26. Moreover,
since the markers used tend to show a continuous expression on this cell ensemble, only
a few distinct islands became apparent in the t-SNE plot. This means that with manual
density-based gating, the areas sometimes do not have a distinct border, which is reflected
by the variability of the box plots for the respective gates. By using more markers that
ideally exclude each other, better separation within the t-SNE plot [39] may improve
subsequent gating or also enable the use of more automated density-based gating, such as
DBSCAN [40] or HDBSCAN [41].

Furthermore, in our control samples of patients (CR), the composition of the cell
ensemble was similar to our previous findings in normal donors showing a predominance
of the GMP followed by the CMP, HSC and the MEP [42]. Subtle differences may be
explained by the fact that in our study, BM samples of patients in CR served as normal
controls, as BM from normal volunteers were not available. More specifically, normal
hematopoietic cells that express high levels of CD34 lacking CD38 are considered stem
cells, whereas those that express low levels of CD34 and high levels of CD38 represent
more differentiated progenitor cells [43]. The lack of CD38 on leukemic blast cells is also
characteristic for the leukemic stem cell [4].

3.3. Quantification of the t-SNE Representation

We proceed by asking to what extent a t-SNE-based assessment can be quantified.
Based on quantitative evaluations already proposed [44,45], we suggest an analysis in
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terms of the Pearson correlation coefficient r (A, B), a well-established measure for the
similarity of two pictures labelled A and B. The two pictures are composed of N pixels each,
with pixel density Aj and Bj, respectively. The Pearson coefficient is defined as

r(A, B) =
cov(A, B)

σAσB
(1)

with the covariance of the two pictures given by

cov(A, B) =
∑N

j=1 AjBj −
(

∑N
j=1 Aj

)
·
(

∑N
j=1 Bj

)
N

(2)

and the standard deviation of the pixel densities of picture X (X = A, B) given by

σX =

√√√√∑N
j=1 X2

j −
(

∑N
j=1 Xj

)2

N
(3)

For r (A, B) = 1, the two pictures are identical, and they are maximally different, i.e.,
their sum picture has a density of zero at all sites, for r (A, B) = −1.

The comparison of the two representations of the combined data sets, Figure 2B,C
gives r∑ CR,∑ AD = 0.46. Here, ∑AD and ∑CR denote the sum pictures of all AD and all CR
samples, respectively.

Based on this value, we evaluate a classification protocol in which the t-SNE represen-
tation of a new sample is generated by first merging it with a reference plot composed of a
sufficient number of samples, which is split up again into the two reference pictures ∑AD
and ∑CR plus the contribution from the new sample labelled as N.

When we refer to the sample N including its classification, we label it by NCR or NAD,
respectively. In the next step, the Pearson coefficients of N with the two reference pictures
r∑ AD,N and r∑ CR,N are computed.

We have implemented this protocol with the present data set as follows. From our
data set, we have removed each sample separately and considered the remaining combined
pictures as reference pictures. We now treat the individual sample N as unknown and
compute r∑ AD,N as well as r∑ CR,N. This implementation is represented schematically in
Figure 5.

The results are the values without parentheses listed in Table 4. For all but one of the
twelve control samples, we measure r∑ CR,NCR > r∑ AD,NCR, with differences up to 0.47 for
sample 20. Therefore, only in the case of N = 18, the sample would have been classified
as AD in contrast to the correct classification. We will elucidate the reasons for the wrong
classification below.

Regarding the identification of an AD sample, the situation is less clear. While samples
1, 12, 13, 14 and 16 show r∑ AD,NAD > r∑ CR,NAD and are thus classified correctly, we observe
that r∑ AD,NAD is just slightly smaller than r∑ CR,NAD in samples 10 and 17, but find dramatic
deviations from the classification for samples 4 and 11, with r value differences of 0.68 and
0.42, respectively.

In order to investigate how stably the classification works with respect to multiple
t-SNE runs, two further runs were performed, and the classification was carried out as
described previously. The AD samples were assigned to the same group in all runs as
described above. In two out of three runs, all CR samples except N = 18 were identified as
CR samples and in the third run, all were classified as CR.
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Figure 5. Graphic representation of the calculation of the r value as an example for two patients,
6 (CR group, top center) and 16 (AD group, bottom center). For patient 6, the density distribution
is compared with those containing all patients with AD (top right) and for all patients of the CR
group except patient 6 (top left). Likewise, we compare for patient 16 the density with the t-SNE
plots containing all patients with AD except patient 16 (bottom right) and all patients of the CR
group (bottom left). The orange arrows indicate which two plots were compared with each other.
The r values are given in between the compared plots. The density is normalized to the respective
maximum value of the plot. The gates are shown as an overlay for all plots.

The failure of allocating samples 4 and 11 asks for refined consideration. Despite their
different subtype of AML, the leukemic cells show a monoblastic differentiation reflecting a
more “mature” subtype not necessarily reflected by a particular CD34/CD38 subset. Since
the cells of these misassigned patients represent a more mature type and the patients had
only a molecular relapse, it is very likely that they could not be adequately assigned, since
the leukemic cells were not contained within the CD34+ cell population. For the detection of
that kind of subtype, additional markers such as CD33 and CD14, for example, would still
be necessary. Rather, the antigen markers used should show expression levels quite similar
to those of the CR samples. Since it is of great interest to study how such a misallocation
influences the t-SNE representation and the corresponding Pearson coefficients, we remove
patients 4 and 11 from the ensemble and repeat the quantitative analysis. The modified
t-SNE plot in comparison to the plots of these two patients, shown in Figure 6, illustrates
the dissimilarity of the density distributions. The obtained r values are given in Table 4
in parentheses. First, we notice a striking decrease of r∑ AD,∑ CR by 0.22. Apparently, these
two samples have been responsible for a significant similarity between the two t-SNE
representations, again indicating that samples 4 and 11 generate a pattern that resembles
more CR samples than AD cases. Second, for all control samples, the values of r∑ AD,NCR
improve, some of them dramatically, e.g. for patient 9, r drops from 0.24 to −0.05. Third,
however, we observe some effect on the r∑ AD,NAD values, which change by no more than
0.19. It increases only for patients 1 and 13 but decreases for the remaining cases. This
impressively shows how the lack of a relevant marker for clear characterization can lead to
false similarities and thus impede the classification. It is therefore conceivable that with
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each additional diagnostically relevant marker the characterization becomes better, the
t-SNE image becomes more differentiated and thus the classification becomes more reliable.

Table 4. The calculated r values are shown, in the second respective third column, the density of the
t-SNE plot of the individual patient (first column) with AD is compared with the density of the t-SNE
plot containing all patients with AD (∑AD) respective of the density of the t-SNE plot containing
all patients of the CR group (∑CR). In columns 4 to 6, this is shown accordingly for the individual
patients from the CR group (fourth column), in each case compared to the density of the t-SNE plot
of the entire CR group (∑CR) or entire group of patients with AD (∑AD). In the seventh column, the
r value for the comparison between the densities of the two t-SNE plots with all patients from the
CR group (∑CR) and with all patients with AD (∑AD) is shown. The calculated r values from the
analysis in which patients 4 and 11 were excluded from the AD group are given in parentheses in the
respective column.

1 2 3 4 5 6 7

Pat. NAD vs. ∑AD NAD vs. ∑CR Pat. NCR vs. ∑CR NCR vs. ∑AD ∑CR vs. ∑AD

1 0.23 (0.25) 0.17 2 0.46 0.17 (0.00) 0.46 (0.24)
4 0.12 0.80 3 0.53 0.41 (0.36)
10 −0.01 (−0.2) 0.06 5 0.77 0.44 (0.23)
11 0.29 0.71 6 0.84 0.52 (0.31)
12 0.14 (0.13) 0.12 7 0.50 0.43 (0.41)
13 0.05 (0.07) −0.06 8 0.56 0.19 (0.02)
14 0.22 (0.19) 0.14 9 0.61 0.24 (-0.05)
16 0.34 (0.33) 0.25 15 0.70 0.55 (0.43)
17 0.12 (0.11) 0.15 18 0.43 0.48 (0.42)

19 0.28 0.18 (0.16)
20 0.67 0.25 (0.01)
21 0.69 0.43 (0.28)

As an evaluation of this proposed identification protocol, we note that the values
of r∑ CR,NCR are large, a fact which quantifies the high similarity of the cell population
in the CR stage. They are furthermore significantly larger than r∑ AD,NCR and we can
thus conclude that the state of CR is safely identified and clearly distinguished from the
AD state. Furthermore, it can be characterized by a single number with the t-SNE-based
protocol, namely by r∑ CR,N. The identification of an AD case, however, has remained
ambiguous. All values for r∑ AD,NAD and r∑ CR,NAD are close to zero, with correspondingly
small differences which in some cases would even indicate a remission. This situation
reflects, in our opinion, the heterogeneity of the considered AD cases. Since these samples
generate widely varying t-SNE patterns, they have relatively low r values and if such a
reference pattern is compared with a new sample, a t-SNE-based identification is ambiguous
if not impossible. On the other hand, we have seen in the example of patients 4 and 11
how the t-SNE-based identification can be improved considering blasts of a more “mature”
type. We therefore expect that sufficiently differentiated t-SNE reference maps for AD
subtypes will also allow the unique identification of an AD as well as its predominant blast
population. To be on the safe side, we estimate that t-SNE subtype reference maps should
be constructed from at least ten samples.
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Figure 6. (A) Density plot of all patients with AD without patient 4 and patient 11; (B) density plot of
patient 4, and (C) of patient 11. The gates are shown as an overlay in all plots.

4. Conclusions

Our study has evaluated the potential of t-SNE to represent multi-dimensional cell
ensemble data from AML and MDS patients in a compact, two-dimensional form, thereby
condensing the widely spread information of the scatter plots in a single picture. In order
to develop this mapping into a diagnostically valuable tool, the mapping has to be capable
of handling the specific challenges of such data sets, namely the large variance of the
cell numbers per sample, the diverse manifestations of the diseases and their subtypes,
as well as the unavoidable smearing of the map by the continuous cell evolution. Our
protocol takes these initial conditions into account providing a meaningful clustering with
gates containing diagnostically relevant cell populations. Additional markers may facilitate
further dissection of otherwise homogeneous cell populations or hidden subtypes including
rare cells not detectable in the two-dimensional scatter plots. We have also demonstrated
how new samples may be diagnosed with the help of reference t-SNE patterns, based on
similarities or dissimilarities, respectively. A quantified approach may comprise a statistical
measure of the similarity of two pictures, like the Pearson coefficient. Our study shows
that such an approach may work even for relatively poorly defined reference pictures. It is
straightforward to adapt this concept to the evolution of the cell population of individual
patients under therapy.

To facilitate the continued advancement of the t-SNE method, it is essential to establish
a consistent and unchanging assignment of cells to a predefined t-SNE map representing
“normality,” as detailed earlier. This reference map should remain constant regardless of the
introduction of new samples. Recent developments by Kobak, D. and Berens, P. [21] and
Policar et al. [46] have introduced methods for embedding new samples into an existing
t-SNE plot in single-cell transcriptomics data. The integration of corresponding tools in
the mapping algorithm was, however, beyond the scope of the present work and will be
the topic of future studies. Finally, it should be emphasized that these concepts are not
limited to AML/MDS cells but can be applied to essentially all multidimensional diagnostic
fluorescence flow cytometry data.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cancers16071320/s1, Figure S1: Evaluation of the impact of varying the t-SNE
parameters number of iterations and perplexity; Figure S2: Scatter plots to determine the classification
limits; Figure S3: Box plots with antigen expression levels of all 27 gates; Figure S4: Density-plots of all
patients; Figure S5: t-SNE plots of the common datasets of the CR and AD group; Figure S6: t-SNE plots as
an example for four patients; Table S1: Percentage distribution of the calls in the 27 gates; Table S2: MRD
analysis; Code S1: R script for the t-SNE analysis, calculation of the density matrices and some figures;
Code S2: Python script for quantitative analysis of the t-SNE plots with the Pearson coefficient.
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Abbreviations

AD active disease
AML acute myeloid leukemia
BM bone marrow
CLP common lymphoid progenitors
CMP common myeloid progenitors
CR complete remission
GMP granulocyte-macrophage progenitors
GOI gate of interest
HSCs hematopoietic stem cells
HSPC hematopoietic stem and progenitor cell
HSPCs hematopoietic stem and progenitor cells
LSC leukemic stem cell
LSCs leukemic stem cells
MDS myelodysplastic syndromes
MEF marker expression function
MEP megakaryocyte/erythroid progenitors
MPP multipotent progenitor cells
PB peripheral blood
PCA principal component analysis
PD-L1 programmed death ligand 1
t-SNE t-distributed stochastic neighbor embedding
UMAP uniform manifold approximation and projection
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