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Simple Summary: The clinical and diagnostic utility of comprehensive genomic profiling (CGP) in
Japan has not been thoroughly investigated. To address this gap, this large-scale study aimed to
determine the usefulness of CGP in diagnosing digestive cancer. A total of 547 cases of digestive
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cancers were analyzed using an original scoring system. Through this approach, the characteristic
genomic profiles of each digestive cancer type were identified, with the presence or absence of
APC, KRAS, and CDKN2A alterations being characteristic of each organ. Based on the patterns
of genomic alterations characteristic of each digestive cancer type, we suggested a classification
flowchart specifically designed for digestive adenocarcinomas. Our findings highlight not only the
clinical utility of CGP but also its diagnostic utility for digestive cancers.

Abstract: The usefulness of comprehensive genomic profiling (CGP) in the Japanese healthcare
insurance system remains underexplored. Therefore, this large-scale study aimed to determine the
usefulness of CGP in diagnosing digestive cancers. Patients with various cancer types recruited
between March 2020 and October 2022 underwent the FoundationOne® CDx assay at the Keio
PleSSision Group (19 hospitals in Japan). A scoring system was developed to identify potentially
actionable genomic alterations of biological significance and actionable genomic alterations. The
detection rates for potentially actionable genomic alterations, actionable genomic alterations, and
alterations equivalent to companion diagnosis (CDx), as well as the signaling pathways associated
with these alterations in each digestive cancer, were analyzed. Among the 1587 patients, 547 had
digestive cancer. The detection rates of potentially actionable genomic alterations, actionable genomic
alterations, and alterations equivalent to CDx were 99.5%, 62.5%, and 11.5%, respectively. APC, KRAS,
and CDKN2A alterations were frequently observed in colorectal, pancreatic, and biliary cancers,
respectively. Most digestive cancers, except esophageal cancer, were adenocarcinomas. Thus, the
classification flowchart for digestive adenocarcinomas proposed in this study may facilitate precise
diagnosis. CGP has clinical and diagnostic utility in digestive cancers.

Keywords: adenocarcinoma; cancer gene panel; comprehensive genomic profiling; pathological
diagnosis

1. Introduction

The advent of next-generation sequencing (NGS) has enabled the comprehensive and
rapid analysis of genomic information at low costs. Comprehensive cancer gene analysis,
defined as the simultaneous analysis of a large number of cancer-related genes in a single
test, has gained popularity in recent years. Among the estimated 20,000 genes present in
the human genome, approximately 400 are cancer-related genes [1]. Cancer-related genes
have been analyzed using NGS-based cancer gene panels to detect genomic alterations. The
process of testing cancer-related genes using a cancer gene panel is known as comprehensive
genomic profiling (CGP), as it yields a comprehensive genomic profile of the cancer. CGP
has become an indispensable test in the domain of cancer genome medicine [2–4]. Tumors
have been assessed using NGS-based CGP to detect genomic alterations, such as base
substitutions, insertions and deletions (indels), and fusions/rearrangements. Copy number
alterations (CNAs) [5], a part of precision cancer medicine, have been used to identify
effective targeted therapies that consider individual genomic variability and susceptibility.
CGP testing of tissue samples using the FoundationOne® CDx assay (Foundation Medicine,
Cambridge, MA, USA) was approved for insurance coverage in Japan in June 2019 [6].

FoundationOne® CDx, a CGP platform that exclusively examines tumor tissue, focuses
on a targeted sequence capable of analyzing the hotspots of 324 genes, including 36 fusion
genes [7]. FoundationOne® CDx also possesses companion diagnostic (CDx) functions
in multiple molecular-targeted therapeutics for specific genes [8]. Its use has enabled the
application of NGS to in vitro diagnostics via a hybrid capture-based target enrichment
approach and the construction of a whole-genome shotgun library for the identification of
substitutions, indels, CNAs, and select rearrangements, the four classes of somatic genomic
alterations [9]. Formalin-fixed paraffin-embedded (FFPE) specimens that are 5 × 5 mm in
size, have a tumor content of at least 20%, and have been collected within the last 3 years
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are recommended. FoundationOne CDx, the representative CGP in Japan, accounts for 74%
of the CGP performed by our group up to October 2022 [based on unpublished data from
the authors’ facility].

Previous studies have examined the clinical utility of CGP tests covered by the
Japanese public health insurance system mainly from the clinical perspective, includ-
ing genomic profiling in light of pharmacotherapy and other treatments [10–13]. However,
the correlation of genomic profiles with pathological features and the signaling pathways
involved in digestive cancers remain underexplored. The genomic profiles contain many
kinds of diagnostically significant information that describes the nature of the tumor,
and CGP is a necessary test for qualitative diagnosis of tumors. In particular, the WHO
classification gives diagnoses to most tumors according to their genomic alterations for
hematological [14], brain [15], and bone and soft tissue tumors [16]. Therefore, genomic
analysis is essential when making a diagnosis.

This study aimed to characterize the pathological genomic features of different types of
digestive cancers in clinical practice using a CGP with insurance coverage and establish an
original scoring system. The information obtained using CGP will aid in the regularization
of its use in routine clinical practice across Japan and facilitate the creation of a database for
optimizing treatment strategies for cancer.

2. Materials and Methods

This study was approved by the Ethics Committee of the Keio University School
of Medicine (approval number: 2021-1159). Between March 2020 and October 2022,
1587 patients with cancer were selected for this study. These patients underwent the Foun-
dationOne CDx [7] assay at one of the hospitals affiliated with the Keio PleSSison Group,
the Keio University Hospital (a core hospital for cancer genome medicine recognized by
the Japanese Ministry of Health, Labour and Welfare) and its 18 partner hospitals.

CGP was performed under the coverage of the Japanese insurance system. The
requirements for insurance reimbursement are as follows: (1) patients, excluding those
with hematologic tumors, who have completed or were expected to complete standard
medical therapy, and (2) patients with an unknown primary cancer or rare cancer with no
established treatment protocol.

Figure S1 presents the clinical workflow of the cancer genome testing in the Keio
PleSSision Group. Consent was obtained via the opt-out method at the outpatient clinic
of each hospital. The tumor specimens were sequenced at Foundation Medicine, Inc.
(FMI) (Cambridge, MA, USA) and curated in bulk by the Molecular Tumor Board at the
Genomics unit, Keio University, based on reports analyzed by the Center for Cancer
Genomics [17] and Mitsubishi Electric Software Corporation (Amagasaki-shi, Hyogo,
Japan). The Clinical Tumor Board of each hospital reviewed the treatment recommended
based on the sequencing results. The results were explained to the patients in the outpatient
clinic at each hospital after a web-based consultation [18].

2.1. Sequencing and Identification of Genomic Alterations

DNA extraction and data acquisition via sequencing were performed in accordance
with predefined protocols followed at the facilities designated by the FMI. A total of
324 genes were sequenced via NGS using FoundationOne CDx. The presence of genomic
alterations, such as base substitution, indels, fusions/rearrangements, and CNAs, were
evaluated. CGP was performed as described in a previous study [8]. Although corrected
to some extent by tumor content, a variant allele frequency of 10% was established as the
cut-off value.

An original scoring system was developed based on the following factors to evaluate
and score the genomic alterations: population of carcinoma clones, the function of gene
alteration (using reference databases such as COSMIC, ClinVar, OncoKB, CIViC, and JAX
CKB), and the effect of CNAs (Figure 1). The total score of these three categories was
defined as the alteration score. Tumor mutation burden (TMB) and microsatellite instability
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(MSI) status were also evaluated [5,19]; high TMB (TMB-H) was defined as the presence
of ≥10 single-nucleotide variants/Mbp. A scoring system for genomic alterations was
developed based on these parameters.
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Figure 1. Scoring system of genomic alteration. A score is assigned to each item based on its impact on
carcinogenesis. The sum of the scores of the population of carcinoma clones, the function of genomic
alteration, and the effect of CNA is the score for that alteration. TMB and MSI are scored as high, in
addition to individual genomic alterations. Potentially actionable genomic alteration with biological
significance is defined by a score of ≥2 points without VUSs. An actionable genomic alteration
candidate for drugs that may be useful is defined by a score of ≥2.5 points without VUSs. CN, copy
number; CAN, copy number alteration; LOH, loss of heterozygosity; MSI-H, high microsatellite
instability; OG, oncogene; TMB-H, high tumor mutation burden; TSG, tumor suppressor gene; UPD,
uniparental disomy; VUS, variant of uncertain significance.

“Potentially actionable genomic alterations” were defined as genomic alterations with
a biological significance of ≥2 but no variants of unknown significance (VUSs). “Actionable
genomic alterations” were defined as genomic alterations eligible for drug development
with a potential usefulness of ≥2.5; an evidence level of D or higher according to the
guidance provided by the Japanese Society of Medical Oncology, Japanese Society of
Clinical Oncology, and Japanese Cancer Association; and without VUSs (Figure 1) [20].

“Genomic alterations equivalent to CDx” were defined as genomic alterations with
which the physician could use the specific drugs under insurance coverage in Japan (Table
S1). The detection rate of potentially actionable genomic alterations, actionable genomic
alterations, and genomic alterations equivalent to CDx, as well as the signaling pathways
activated or inactivated by genomic alterations, were evaluated for each type of digestive
cancer. The Japanese version of the Cancer Genome Atlas (JCGA) was used as the reference
database [1]. Table S2 presents the signaling pathways associated with genomic alterations.
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2.2. Statistical Analysis

The detection rate, sensitivity, specificity, and positive likelihood ratio were calculated
using Microsoft Excel 2019 (Microsoft, Redmond, WA, USA). All statistical analyses were
performed using IBM SPSS Statistics ver. 25 (International Business Machines Co., Armonk,
NY, USA). The rate of characteristic genomic alterations was evaluated using the χ-square
test or Fisher’s exact test, and p-values < 0.05 were considered statistically significant.

3. Results

Among the 1587 patients that underwent the FoundationOne CDx, 547 had digestive
cancer. There were 333 male and 214 female patients and the median age at diagnosis was
62 years (range, 15–85) (Table S3). Figure S2 presents the alteration plots for each case. The
primary sites of cancer were as follows: esophageal cancer (n = 27), gastric cancer (n = 43),
duodenal cancer (n = 4), small intestine cancer (n = 6), colorectal cancer (n = 217), pancreatic
cancer (n = 127), and biliary tract cancer (n = 123) (Table S3).

The overall detection rates for potentially actionable genomic alterations, actionable
genomic alterations, and genomic alterations equivalent to CDx for digestive cancers were
99.5% (544/547), 62.5% (342/547), and 11.5% (63/547), respectively (Figure 2 and Table S3).
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Figure 2. Detection rate of genomic alterations. The detection rates for potentially actionable genomic
alterations, actionable genomic alterations, and CDx-equivalent genomic alterations for each digestive
cancer (Table S3). CDx, companion diagnostic.

3.1. Detection Rate of Genomic Alterations in Digestive Cancers

Several genomic alterations were observed in the genes involved in the TP53 signaling
pathway, mainly in TP53, in patients with digestive cancer. However, the genomic alter-
ations and signaling pathways with the highest number of genomic alterations differed for
each organ (Figure 3).
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Figure 3. Characteristic signaling pathways with genomic alterations in digestive cancers. Signaling
pathways with genomic alterations of >30% in each digestive cancer. The pathways are listed in
the order of their prevalence. Genomic alterations are observed in >20%. The duodenum and small
intestine show no clear trend owing to the small number of cases analyzed. For further details, please
refer to Figures S3 and S4. AC, adenocarcinoma; NEC, neuroendocrine carcinoma; SCC, squamous
cell carcinoma.

3.1.1. Esophagus/Stomach Cancer

Histologically, 81.5% (22/27) and 14.8% (4/27) of esophageal cancers were classified
as squamous cell carcinoma (SCC) and neuroendocrine carcinoma (NEC), respectively.
The detection rates for potentially actionable genomic alterations, actionable genomic
alterations, and genomic alterations equivalent to CDx were 100.0% (27/27), 85.2% (23/27),
and 18.5% (5/27), respectively (Table S2). MSI-H (0/27) was not observed in any of the
cases; in contrast, TMB-H was observed in 14.8% (4/27) of cases (Figure S2). Several
alterations were observed in the genes involved in the TP53 pathway, primarily in TP53
(85.2%), as well as the cell cycle pathway, mainly in CDKN2A (59.3%) and CDKN2B (40.7%)
(Figures S3 and S4).

Adenocarcinoma, accounting for 93.0% (40/43) of cases, was the most common his-
tological type of gastric cancer. The detection rates for potentially actionable genomic
alterations, actionable genomic alterations, and genomic alterations equivalent to CDx
were 100.0% (43/43), 76.7% (33/43), and 30.2% (13/43), respectively (Table S3). MSI-H was
observed in 9.3% (4/43) of cases, whereas TMB-H was observed in 2.3% (1/43) of cases
(Figure S2). Several alterations were observed in the genes in the TP53 pathway, mainly in
TP53 (69.8%), as well as the RTK pathway, mainly in ERBB2 (27.9%) (Figures S3 and S4).

3.1.2. Bowel Cancer

Duodenal, small intestinal, and colorectal cancers were grouped as bowel cancers.
Adenocarcinomas accounted for all cases of duodenal cancers (4/4). The detection rates for
potentially actionable genomic alterations, actionable genomic alterations, and genomic
alterations equivalent to CDx were 100.0% (4/4), 100.0% (4/4), and 0.0% (0/4), respectively
(Table S3). MSI-H or TMB-H (0/4) was not detected in any of the cases (Figure S2). Several
alterations were observed in genes involved in the TP53 pathway, mainly in TP53 (75%)
(Figures S3 and S4).

Adenocarcinoma, accounting for 66.7% (4/6) of cases, was the most common histolog-
ical type of small intestine cancer. The detection rates for potentially actionable genomic
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alterations, actionable genomic alterations, and genomic alterations equivalent to CDx were
100% (6/6), 66.7% (4/6), and 0.0% (0/6), respectively (Table S3). MSI-H or TMB-H (0/6)
was not observed in any of the cases (Figure S2). Several alterations were observed in the
genes involved in the Ras/Raf/MEK/ERK pathway, mainly in KRAS (33.3%) and NRAS
(33.3%) (Figures S3 and S4).

Adenocarcinoma, accounting for 96.3% (209/217) of cases, was the most common
histological type of colorectal cancer. The detection rates for potentially actionable genomic
alterations, actionable genomic alterations, and genomic alterations equivalent to CDx
were 99.5% (216/217), 51.6% (112/217), and 12.0% (26/217), respectively (Table S3). MSI-H
was observed in 0.9% (2/217) of cases, whereas TMB-H was observed in 5.1% (11/217)
of cases (Figure S2). Several alterations were observed in the genes involved in the TP53
pathway, mainly in TP53 (81.1%), as well as the Wnt/β-catenin pathway, mainly in APC
(78.8%) (Figures S3 and S4).

3.1.3. Pancreatic Cancer

Adenocarcinoma, accounting for 90.6% (115/127) of cases, was the most common
histological type of pancreatic cancer. The detection rates for potentially actionable genomic
alterations, actionable genomic alterations, and genomic alterations equivalent to CDx were
99.2% (126/127), 59.1% (75/127), and 2.4% (3/127), respectively (Table S3). MSI-H was
not observed in any of the cases (0/127); in contrast, TMB-H was observed in 0.8% (1/127)
of cases (Figure S2). Several alterations were observed in the genes involved in the TP53
pathway, mainly in TP53 (69.3%), as well as the Ras/Raf/MEK/ERK pathway, mainly in
KRAS (87.4%) (Figures S3 and S4).

3.1.4. Biliary Tract Cancer

Adenocarcinoma, accounting for 96.7% (119/123) of cases, was the most common
histological type of biliary tract cancer. The detection rates for potentially actionable
genomic alterations, actionable genomic alterations, and genomic alterations equivalent
to CDx were 99.2% (122/123), 74.0% (91/123), and 13.0% (16/123), respectively (Table S3).
MSI-H was observed in 1.6% (2/123) of cases, whereas TMB-H was observed in 7.3%
(9/123) of cases (Figure S2). Several alterations were observed in the genes involved in
the TP53 pathway, mainly in TP53 (48.8%), as well as the cell cycle pathway, mainly in
CDKN2A (31.7%) and CDKN2B (21.1%) (Figures S3 and S4).

3.2. Genomic Alteration of Digestive Adenocarcinomas

Adenocarcinoma was the most common histologic type of digestive cancer, except
in esophageal cancer. The detection rates for signaling pathways with genomic alter-
ations (Figure S5) and overall genomic alterations (Figure S6) were analyzed for each organ.
However, no significant differences were observed between the detection rates for adenocar-
cinoma and the other histological types owing to the high proportion of adenocarcinomas
in each organ (Figures 3 and 4).

Alterations in the genes involved in the RTK system, such as ERBB2 amplification,
were often observed in gastric adenocarcinoma. Alterations in the genes involved in
the Wnt/β-catenin pathway, mainly APC, were observed in colorectal adenocarcinoma.
Alterations in KRAS, which plays a role in the Ras/Raf/MEK/ERK pathway, were observed
in pancreatic adenocarcinoma. Alterations in the genes involved in the cell cycle pathway,
mainly in CDKN2A and CDKN2B, were frequently observed in biliary tract adenocarcinoma.
Adenocarcinomas of the duodenum and small intestine showed no clear trend owing to
the small number of cases analyzed.

The genes with numerous alterations in digestive adenocarcinomas, excluding duo-
denal and small intestinal adenocarcinomas, were cross-organized and evaluated across
different types of digestive organs. The frequency of APC alterations in colorectal adenocar-
cinoma (80.9%) was significantly higher than that in stomach (2.5%), pancreatic (1.7%), and
biliary tract (1.7%) adenocarcinomas (p < 0.01). The frequency of KRAS alterations in pan-
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creatic (92.2%) and colorectal (45.5%) adenocarcinomas was significantly higher than that
in the stomach (20.0%) and biliary tract (21.2%) adenocarcinomas (p < 0.01). The frequency
of CDKN2A alterations in pancreatic (47.8%) and biliary tract (31.1%) adenocarcinomas was
significantly higher than that in stomach (17.5%) and colorectal (1.4%) adenocarcinomas
(p < 0.01) (Table S4).
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Figure 4. Characteristic signaling pathways with genomic alterations in digestive adenocarcinomas.
Signaling pathways with genomic alterations exceeded 30% in digestive adenocarcinomas. The
pathways are listed in order of their prevalence. Genomic alterations are observed in over 20% of
cases. The duodenum and the small intestine exhibit no clear trend owing to the small number of
cases analyzed. For further details, please refer to Figures S5 and S6.

3.3. Diagnostic Flowchart of Digestive Adenocarcinomas

A diagnostic flowchart of genomic alterations in digestive adenocarcinomas was
created based on these results (Figure 5). APC, KRAS, and CDKN2A were focused on in
the present study, and cases with adenocarcinomas were classified based on the presence
or absence of each alteration. Among the adenocarcinomas with APC alterations, 97.1%
were colorectal adenocarcinomas (Figure S7a). Colorectal (40.6%) and pancreatic (45.3%)
adenocarcinomas were the most common digestive adenocarcinomas with KRAS alterations
(Figure S7b). Pancreatic (53.9%) and biliary tract (36.3%) adenocarcinomas were the most
common digestive adenocarcinomas with CDKN2A alterations (Figure S7c). Pancreatic
adenocarcinoma (67.5%) was the most prevalent digestive adenocarcinoma without APC
alteration but with KRAS alteration (Figure S7d). Biliary tract adenocarcinoma (75.0%)
was the most prevalent digestive adenocarcinoma without APC and KRAS alteration but
with CDKN2A alteration (Figure S7e). The rates of digestive adenocarcinoma without
APC, KRAS, and CDKN2A alterations in patients with biliary tract, gastric, colorectal, and
pancreatic adenocarcinomas were 54.8%, 21.0%, 18.5%, and 5.6%, respectively (Figure S7f).
A diagnostic flowchart was created and the sensitivity, specificity, and positive likelihood
ratio were calculated to validate the usefulness of the diagnostic flow. The sensitivity,
specificity, and positive likelihood ratio were calculated for gastric (65.0%, 77.8%, and 2.9,
respectively), colorectal (80.9%, 98.2%, and 44.3, respectively), pancreatic (90.4%, 86.4%,
and 6.6, respectively), and biliary tract cancers (20.2%, 97.8%, and 9.2, respectively) using
this flowchart (Figure S8). Thus, APC alterations were highly associated with colorectal
cancer; KRAS alterations and normal APC were highly associated with pancreatic cancer;
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and CDKN2A alterations and normal APC and KRAS were highly associated with biliary
tract cancer.
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Figure 5. Diagnostic flowchart based on the genomic alterations in digestive adenocarcinomas. APC
alterations show strong associations with colorectal cancer. KRAS alterations and lack of alterations
in APC show strong associations with pancreatic cancer. A lack of alterations in APC and KRAS,
but the presence of alterations in CDKN2A, shows strong associations with biliary tract cancer. The
sensitivity, specificity, and positive likelihood ratios were calculated for each cancer type (Figure S8).
N/A, not applicable.

4. Discussion

We established a characteristic genomic profile for each organ by separating actionable
genomic alterations from those with minimal impact on carcinogenesis and VUSs using
the scoring system developed in the present study. Notably, this profile was comparable
with those reported in previous studies [21–24]. Evaluating CGP results using this scoring
system may elucidate the genomic profile of each case. Subsequent comparison with the
genomic profile of each organ established in the present study could help identify the
primary site of unknown primary cancers.

In esophageal cancers, CDKN2A, CDKN2B, and CCND1 alterations in the cell cycle
pathway were frequently observed (Figure S4). A previous study reported CCND1 amplifi-
cation in the cell cycle pathway, and also TP63/SOX2 amplification and KDM6A deletion in
transcriptional regulation [25]. In gastric cancers, ERBB2 alterations in the RTK pathway
were observed. In a previous study, gastric cancers were classified into four categories—
EBV (Epstein–Barr virus), MSI (microsatellite instability), CIN (chromosomal instability),
and GS (genomically stable). Of these, CIN was characterized by TP53 mutation, ERBB2
amplification, VEGFA amplification, and RTK-RAS activation [26]. In colorectal cancers,
APC alterations in the Wnt/β-catenin pathway were mainly observed. In a previous study,
colorectal cancers were classified into four categories—CMS1 (MSI immune), CMS2 (canon-
ical), CMS3 (metabolic), and CMS4 (mesenchymal). CMS2 was characterized by WNT and
MYC activation and high SCNAs (somatic copy number alteration) [27]. In the present
study, CMS2 was probably the most common. In pancreatic cancers, KRAS alterations in the
Ras/Raf/MEK/ERK pathway were mainly observed. Molecular genomic analyses revealed
that pancreatic ductal adenocarcinoma (PDAC) was composed of KRAS, TP53, SMAD4,
and CDKN2A. In particular, KRAS alterations were found in over 90% of PDACs [28]. In
biliary tract cancers, CDKN2A and CDKN2B alterations in the cell cycle pathway were
observed; however, these are not effective therapeutic target genes. In a previous study,
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biliary tract cancers were classified according to druggable genes—FGFR (FGFR pathway
alterations or FGFR2 fusion/rearrangement), HER2 (ERBB2 amplification and mutations),
IDH1 (IDH1 alterations), BRAF (BRAF alterations), MSI (MSI-H or MSI-deficient mismatch
repair), NTRK (NTRK fusion/rearrangement), and others [29]. Although trastuzumab
is expected to be an effective molecular target drug for ERBB2 alterations, which were
observed in gastric cancers, there are no effective drugs currently available for KRAS and
APC alterations, which are frequently observed in other organs, or for TP53 alterations,
which are frequently observed in digestive cancers. In the future, more drugs would need
to be developed.

Nevertheless, more than before, the treatment landscape for cancer is rapidly evolv-
ing owing to the increase in the number of approved drugs targeting specific genomic
modifications [30,31]. In the present study, actionable genomic alterations were observed
in 62.5% of all digestive cancers. Moreover, genomic alterations equivalent to CDx were
observed in 11.5% of patients, demonstrating the clinical utility of genomic panel test-
ing. A previous study, which analyzed advanced solid tumors using FoundationOne
CDx or FoundationOne Heme, revealed one or more alterations in 94.6% of cases, as well
as actionable alterations with candidates for therapeutic agents in 87.7% of cases [12].
Several clinical trials on CGP in patients with advanced or metastatic solid tumors have
reported that the prevalence of actionable genomic alterations per patient ranges from 40%
to 94% [32,33]. Furthermore, compared with previous reports, the percentage of patients
with treatment recommendations ranged from 11% to 39% [13,34–37]. However, the rate
of genotype-matched therapy was 9.4% in Japan (between June 2019 and June 2022) [38].
This is due to the Japanese healthcare insurance system, which permits the use of some
molecular-targeted drugs and immune checkpoint inhibitors only if CDx-positive. In our
study, the alterations observed in several patients with esophageal cancer (actionable,
85.2%; CDx-equivalent, 18.5%), gastric cancer (actionable, 76.7%; CDx-equivalent, 30.2%),
and biliary tract cancer (actionable, 74.0%; CDx-equivalent, 13.0%) were associated with
therapeutic agents. This finding suggests that this subset of patients would benefit from
the active use of CGP. CGP is available only after the completion or expected completion
of standard therapy in most cases in Japan [34]. However, the adoption of CGP during
first-line chemotherapy can aid in therapeutic decision making. Furthermore, obtaining
a genomic profile at the time of pre-treatment, especially when making a pathological
diagnosis, would allow molecular classification, which would provide information on the
nature of the cancer and prognostic prediction.

A diagnostic flowchart of genomic alterations in digestive adenocarcinomas was
created based on our results (Figure 5). APC, KRAS, and CDKN2A were focused on in the
present study, and cases with adenocarcinomas were classified based on the presence or
absence of each alteration. The sensitivity, specificity, and positive likelihood ratio were
high for colorectal adenocarcinoma. Similarly, the specificity was high and the positive
likelihood ratio was relatively high for biliary tract adenocarcinoma. Thus, the established
diagnostic flowchart was considered useful for the diagnosis of colorectal and biliary tract
adenocarcinomas.

Nevertheless, the present study has some limitations. First, the definition of actionable
alterations remains controversial. Second, the progress of the disease was not followed
up. Third, although insurance requirements stipulate that the test should be performed
after or at the time of completion or expected completion of standard treatment, in reality,
the test may be performed at any time point at the discretion of clinicians [39]. Fourth,
various types of tissue, such as endoscopic ultrasound–fine needle aspiration (EUS-FNA) or
operative tissue, were used in the present study. Therefore, it is possible that not all genomic
alterations were detected in cases with a low tumor content. Fifth, the tissue specimens
were subjected to treatments that may have altered the true genomic profiles of each
digestive cancer. As the specimens were obtained at various time points before and after
chemotherapy and belonged to both primary tumors and metastases, it is difficult to discern
whether they were from a pure genomic profile of digestive cancer. Lastly, the flowchart
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developed in the present study has only been validated for digestive adenocarcinomas,
but not adenocarcinomas of other organs. Thus, the usefulness of the flowchart must be
validated using the CGP results of metastatic tissue with known primary sites. Furthermore,
it is expected that the flowchart will become more practical by evaluating the results of
liquid biopsy. In the future, a flowchart including all organ adenocarcinomas can be used
to identify the primary site of an unknown primary cancer. Despite these limitations, the
findings of the present study, along with the proposed diagnostic flowchart based on the
genome analysis of real-world data, add unique value to clinical practice owing to their
versatility, practicality, and suitability.

5. Conclusions

This large-scale study assessed the utility of CGP in diagnosing digestive cancers
and proposed a diagnostic flowchart based on gene alterations. The detection rates of
actionable genomic alterations were high across various digestive cancer types. We believe
that a comprehensive diagnosis based on histopathological images and CGP will aid in the
precise diagnosis and treatment of cancer. Further prospective clinical trials assessing the
overall survival and quality of CGP-based targeted therapies must be conducted to aid in
decision making in the era of personalized treatment.
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