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Simple Summary: The contemporary development of radiomics offers an opportune methodology
for the interpretation of prostate-specific membrane antigen (PSMA) positron emission tomogra-
phy/computed tomography (PET/CT). While both technologies are relatively new for consideration
of clinical integration, the present exploration seeks to review current literature on their intersec-
tion. Review of twenty-three peer-reviewed articles revealed promising results for the use of PSMA
PET/CT-derived radiomics in the prediction of biopsy Gleason score, adverse pathology, and treat-
ment outcomes for prostate cancer (PC). Clinical integration of these findings, however, are limited
by lack of biologic validation and reproducible methodology.

Abstract: The clinical integration of prostate membrane specific antigen (PSMA) positron emission
tomography and computed tomography (PET/CT) scans represents potential for advanced data
analysis techniques in prostate cancer (PC) prognostication. Among these tools is the use of radiomics,
a computer-based method of extracting and quantitatively analyzing subvisual features in medical
imaging. Within this context, the present review seeks to summarize the current literature on the
use of PSMA PET/CT-derived radiomics in PC risk stratification. A stepwise literature search of
publications from 2017 to 2023 was performed. Of 23 articles on PSMA PET/CT-derived prostate
radiomics, PC diagnosis, prediction of biopsy Gleason score (GS), prediction of adverse pathology,
and treatment outcomes were the primary endpoints of 4 (17.4%), 5 (21.7%), 7 (30.4%), and 7 (30.4%)
studies, respectively. In predicting PC diagnosis, PSMA PET/CT-derived models performed well,
with receiver operator characteristic curve area under the curve (ROC-AUC) values of 0.85–0.925.
Similarly, in the prediction of biopsy and surgical pathology results, ROC-AUC values had ranges
of 0.719–0.84 and 0.84–0.95, respectively. Finally, prediction of recurrence, progression, or survival
following treatment was explored in nine studies, with ROC-AUC ranging 0.698–0.90. Of the
23 studies included in this review, 2 (8.7%) included external validation. While explorations of
PSMA PET/CT-derived radiomic models are immature in follow-up and experience, these results
represent great potential for future investigation and exploration. Prior to consideration for clinical
use, however, rigorous validation in feature reproducibility and biologic validation of radiomic
signatures must be prioritized.

Keywords: prostate cancer; radiomics; personalized medicine; artificial intelligence

1. Introduction

Prostate cancer (PC) continues to be the most common non-cutaneous malignancy
among men [1–3], demanding continuous advancements in diagnostic and prognostic
methodologies. Over the past few decades, significant strides have been made in the
realm of medical imaging techniques, aiding early detection, precise localization, and
improvement in risk stratification for PC patients. Among these is the prostate-specific
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membrane antigen (PSMA) positron emission imaging and computerized tomography
(PET/CT), which was approved by the Food and Drug Administration (FDA) in December
2020 and May 2021 for use with 68-Gallium (68-Ga) and piflufolastat (F18) in PC patients,
respectively [4]. Since then, several systematic reviews have confirmed the PSMA PET/CT
to more accurately detect the extent of disease [5], lymph node involvement [6,7], and
distant metastases in patients newly diagnosed with PC [5,7,8].

Beyond its diagnostic impact, however, the integration of PSMA PET/CT into the
PC clinical care pathway also represents potential for leveraging advanced data analysis
techniques for prognostication. Among these is the use of radiomics, a computer-based
method of extracting and quantitatively analyzing subvisual imaging characteristics [9].
Not only can these radiomic features (i.e., textural, morphological, functional, or statistical)
be used to characterize subvisual patterns in tumor morphology and the microenviron-
ment [10], but they can also be aggregated into models to predict long-term treatment
outcomes [11,12]. Within the context of PC, similar models utilizing multiparametric mag-
netic resonance imaging (mpMRI) [1,2] and ultrasound (U/S) [13] have also demonstrated
potential to facilitate disease-tailored treatment planning. In this regard, the present review
seeks to summarize the current literature on the use of PSMA PET/CT-derived radiomics
in the diagnosis, staging, and treatment of localized PC.

2. Methods

A stepwise literature search of publications from 2017 to 2023 was performed. A
search of Medical Literature Analysis and Retrieval System Online (MEDLINE) databases
was completed utilizing the following keywords and combination(s) thereof: [radiomics]
with/without [prostate cancer] or [prostate], interchanged with [PSMA] and/or [PSMA
PET] and/or [PSMA PET/CT]. This yielded 40 articles. Non-English publications, review
articles, editorials, and commentaries were excluded, but the reference list of each was
searched to ensure the inclusion of all relevant studies.

Utilizing the following stepwise methodology, studies were reviewed by the study
team for inclusion and exclusion criteria defined a priori. First, the titles and abstracts were
screened such that non-relevant studies pertaining to other imaging techniques and/or
other diagnoses were excluded. Second, full manuscripts were reviewed for their study
populations and/or outcome measures. All authors independently agreed on the selection
of eligible studies and achieved consensus of included studies. Data on the number of
subjects, outcome measures, image series used, radiotracers, feature selection, region
of interest, and model validation were systematically extracted from each article and
summarized in Tables 1–4. Studies were not excluded based on type of radiotracer used
but, to ensure standardization, the International Society of Urological Pathology (ISUP)
guidelines on Gleason score (GS) [14], National Comprehensive Center Network (NCCN)
and American Urological Association (AUA) guidelines for risk group stratification [15,16],
and Prostate Imaging Reporting and Data System version 2 (PI-RADS v2) were utilized [17].

Table 1. Summary of studies utilizing PSMA PET/CT-derived radiomic models in PC diagnosis.

Author Year n= Radiotracer Outcome
Measure

Feature
Selection

Region of
Interest

Model
Validation Results

Leung [18] 2022 n = 267 Fluoride-18-
PSMA-1007

PSMA-RADS
and PC

classification

6 features
selected Prostate

Cross-validation
between training,

testing, and
validation data

sets

AUC = 0.87 and 0.90 for
lesion-level and patient-level
PSMA-RADS classification.

AUC = 0.92 and 0.85 for
lesion-level and patient-level

PC classification

Zang [19] 2022 n = 125 68-Ga-PSMA-11
Prediction of
intraprostatic

lesions

944 features
extracted/
9 features
selected

Intraprostatic
lesions

Cross-validation
n = 87 in training
group, n = 38 in

testing group

Radiomics model AUC = 0.85
vs. AUC = 0.63 for

radiologists’ assessment
(p = 0.036);

Radiomics model vs.
radiologist sensitivity

AUC = 0.84 vs. AUC = 0.74
(p = 0.002)
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Table 1. Cont.

Author Year n= Radiotracer Outcome
Measure

Feature
Selection

Region of
Interest

Model
Validation Results

Yi [20] 2022 n = 100 68-Ga-PSMA-11

Diagnosis of
intraprostatic

lesions
invisible on

PET

1781 features
extracted/
10 features

selected

Intraprostatic
lesions

Cross-validation
n = 64 in training

set,
n = 36 in testing

set

3 radiomic models with AUC
= 0.903, 0.856, and 0.925

(p = 0.007, 0.045, and 0.005,
respectively)

Hinzpeter [21] 2021 n = 67 68-Ga-PSMA-11

Diagnosis of
metastatic

bone cancer
from PC

1218 features
extracted/
11 features

selected

Prostate

Internal
validation with

the original
non-augmented

data set

90% diagnostic accuracy,
91% sensitivity, and 88%

specificity

Table 2. Summary of studies utilizing PSMA PET/CT-derived radiomic models in PC staging
via biopsy.

Author Year n= Radiotracer Outcome
Measure

Feature
Selection

Region of
Interest

Model
Validation Results

Chan [22] 2023 n = 19
patients 68-Ga-PSMA-11

Tumor location
and grading

(Grade Group
scores of ≥3

for high grade
and ≤2 for low

grade)

75 features
selected/

10 features
analyzed

Intra-prostatic
lesions (IPLs)

Cross-
validation with
Random Forest
Classifier and

Support Vector
Classifier

Overall model, AUC = 0.890

Wang [8] 2022 n = 161
patients

Fluoride-18-
PSMA-1007

PSA level,
Gleason score,

metastasis
status

944 features
selected/

30 features
analyzed

Prostate

Internal
validation with

training and
test cohorts

Gleason score model
ROC-AUC = 0.719, p < 0.01

Yao [23] 2022 n = 173
patients

Fluoride-18-
PSMA-1007

Gleason score,
extracapsular

extension,
vascular
invasion

70 features
selected/

10 features
analyzed

Prostate

Internal
validation with

training and
test cohorts

Best model: 40–50% SUVmax
AUC 0.81, p < 0.001

Feliciani [24] 2022 n = 56
scans 68-Ga-PSMA-11 ISUP grade

218 features
selected/29

features analyzed
(for PET/CT

model)
218 features
selected/87

features analyzed
(for MRI model)

Prostate

Internal
validation with

training and
test cohorts

MRI AUC = 1.00 in testing
and training groups

MRI + PET/CT AUC = 1.00
in training group

Kesch [25] 2018 n = 10 68-Ga-PSMA-11

Chromosomal
copy number

alterations
(CNAs),

Gleason score

336 features
extracted

Prostate
(genomic

index lesions)
N/A

Lower ADC values correlate
with increasing tumor

aggressiveness

Table 3. Summary of studies utilizing PSMA PET/CT-derived radiomic models in identification of
adverse pathology.

Author Year n= Radiotracer Outcome
Measure Feature Selection Region of

Interest
Model

Validation Results

Ghezzo [26] 2023

n = 47
patients

(PET/CT or
PET/MRI)

68-Ga-PSMA-11 Postsurgical
GS

154 features selected/
2 features analyzed Prostate Cross-

validation
ECE AUC = 0.76 ±

0.12, p < 0.01”

Solari [27] 2022 101 patients 68-Ga-PSMA-11

Postsurgical
GS (ISUP

grades 1–3,
grade 4, and

grade 5)

480 features selected/
48 features analyzed Prostate

External
validation

cohort
(52 patients)

Radiomics-based
machine learning

model: LNI
AUC = 0.86 ± 0.15,

p < 0.01

Cysouw [28] 2020 76 patients 18-F-DCFPyL
LNM, presence
of metastasis,

GS, ECE

133 features
extracted/

86 features analyzed
(analysis 2), 56

features analyzed (3a),
1 feature analyzed

(3b)

Prostate

Internal
validation by
retrospective

cohort
(40 patients)

QSZHGE feature
GS: training-AUC =

0.91 and
testing-AUC = 0.84;

p < 0.01
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Table 3. Cont.

Author Year n= Radiotracer Outcome
Measure Feature Selection Region of

Interest
Model

Validation Results

Zamboglou [29] 2020 72 patients 68-Ga-PSMA-11
ISUP grade,
undetected

lesions

Spearman’s
correlation

coefficients, Wilcoxon
(1), Mann-Whitney U

test (2 and 3)

Intraprostatic
tumor lesions

5-fold cross-
validation

QSZHGE feature
LN status:

training-AUC =
0.87 and

testing-AUC = 0.85;
p < 0.01

Papp [30] 2020 52 patients 68-Ga-PSMA-11
and 18-F-FMC

low vs. high
lesion risk,
BCR, OPR

RaCaT software Intraprostatic
tumor lesions

6-fold cross-
validation with

training (67
patients) and

testing
(34 patients)

cohorts

Distal metastasis
AUC = 0.86 ± 0.14,

p < 0.01

Peeken [6] 2020 80 patients 68-Ga-PSMA-11 LNM 156 features extracted Intraprostatic
tumor lesions

10-fold cross-
validation with
training cohort

(47 patients)

Best model
(radiomics-
combined):

testing-AUC = 0.95
and training-AUC
= 0.89, p = 0.0035

Zamboglou [31] 2019 20 patients 68-Ga-PSMA-11 GS 7, ≥8 and
pelvic LNM

ComBatHarmonization
and LASSO

Intraprostatic
tumor lesions

External
testing cohort
(33 patients)

LBP features
showed highest
contribution to

model performance

Table 4. Summary of studies utilizing PSMA PET/CT-derived radiomic models in the identification
of treatment response.

Author Year n= Radiotracer Outcome
Measure

Feature
Selection

Region of
Interest

Model
Validation Results

Spohn [2] 2023 99 patients 68-Ga-PSMA-11

BCR after
salvage

radiation
therapy

104 features
extracted Prostate

Nested cross-
validation

multi-center
study

Radiomic signature AUC
0.73, p < 0.001

Assadi [32] 2022

33 patients
(2517

pathological
hotspots)

68-Ga-PSMA-11

BCR after
177Lu-PSMA
and overall

survival

Mutual
information

feature
selection

Prostate Multi-center
study

Combined clinical and
radiomic signature AUC

0.63; improved sensitivity
(0.26 to 0.78)

Tran [12] 2022 35 patients
(70 scans) 68-Ga-PSMA-11

Treatment
response to

ADT

119 features
extracted

Prostate
(3 zones) N/A

7 features in zone 1
distinguished responders to

ADT
2 features classifying nodal

disease: AUC 0.698,
p < 0.001

Moazemi [33] 2021

83 patients
(2070

pathological
hotspots)

68-Ga-PSMA-11
Overall

survival after
177Lu-PSMA

SUVmax:
80 features

analyzed (zone
1), 21 (zone 2),

3 (zone 3)

Intraprostatic
lesions

5-fold cross-
validation with

training and
testing cohort

Higher T2 interquartile
range showed longer OS,

p = 0.038
2 features in zone 2;
p-value 0.018–0.34

Roll [34] 2021 21 patients 68-Ga-PSMA-11
PSA response

and overall
survival

PyRadiomics Prostate

Unbalanced
cohort:

training
n = 56 patients
in validation;

n = 27 in
testing cohorts

2 features in zone 3; p-value
0.012–0.19

Papp [30] 2020 52 patients 68-Ga-PSMA-11
and 18-F-FMC

low vs. high
lesion risk,
BCR, OPR

ExtraTrees Intraprostatic
tumor lesions

10-fold cross-
validation with

9:1 training–
testing cohort

3 features classifying tumor
relapse: AUC 0.726,

p < 0.002

Acar [3] 2019 75 patients
(126 scans) 68-Ga-PSMA-11 Metastasis

status SVM Intraprostatic
lesions N/A

Highest accuracy prediction
biochemical response: T2w

AUC 0.83

3. Results
3.1. Study Selection

Forty publications were first identified and screened through a literature search of
the MEDLINE journals via a PubMed interface. Of these, 4 review articles, 1 letter to the
editor, and 1 clinical trial protocol were excluded, leaving 33 records for title and abstract
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review. In this process, two additional records were excluded for the inclusion of diseases
outside of prostate cancer and eight were excluded for endpoints related to imaging quality
(n = 1), scan reliability across series (n = 3), molecular imaging (n = 3), and feature stability
(n = 1). After all inclusion and exclusion criteria were satisfied, 23 articles remained
and were reviewed herein. Figure 1 depicts a schematic of study selection and inclu-
sion/exclusion criteria.
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3.2. Description of Studies

Of the 23 included studies, all were published between 2017 and 2022, with the
majority (n = 20, 87.0%) published in 2020 or later. There were no results of PSMA PET/CT-
derived radiomics work prior to 2017. Additionally, most explorations utilized imaging
achieved exclusively with 68-Ga-PSMA radiotracers (n = 18, 78.3%), with the second
majority exclusively utilizing Fluoride-18-PSMA-1007 (n = 4, 17.4%). One study utilized a
combination of both 68-Ga-PSMA and Fluoride-18-PSMA.

PC diagnosis, prediction of biopsy GS, prediction of adverse pathology, and treatment
outcomes were the primary endpoints of four (17.4%), five (21.7%), seven (30.4%), and
seven (30.4%) studies, respectively. Of those predicting treatment outcomes, treatment
response following radiation therapy (n = 1), biochemical recurrence following surgery
(n = 2), response following 177Lu-PSMA therapy (n = 1), post-ADT PSA levels (n = 1), and
overall survival (n = 2) were indicated to be the primary endpoints. Finally, of all studies
included, only two (8.3%) included external validation and two others (8.3%) included a
multi-institutional cohort of patients.
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3.2.1. Prediction of Prostate Cancer Diagnosis

Table 1 summarizes the four studies utilizing PSMA PET/CT-derived radiomics
models in initial PC diagnosis [18–21]. Of these, three (75.0%) and one (25.0%) utilized the
68-Gallium PSMA-11 PET/CT [19–21] and PSMA-1007 PET/CT [18], respectively. Two
(50%) studies utilized intraprostatic lesions as the region of interest, with the outcome
measure predicting lesions positive for PC [19,20]; the remaining two studies (50%) utilized
the full prostate as the region of interest, predicting PC risk group classification [18] and
bone metastases [21] as their primary outcome measures. Receiver operator characteristic
curve area under the curve (ROC-AUC) ranged from 0.85 to 0.925. Furthermore, Zang
and colleagues found their radiomic model to perform significantly better in predicting
positive PC lesions when compared to the radiologist’s assessment (radiomic model’s
ROC-AUC = 0.85 vs. radiologic assessment ROC-AUC = 0.63, p = 0.036) [19]. While all
radiomic-based models performed well, none of these studies included validation with an
external cohort of patients.

3.2.2. Prediction of Biopsy Results

Table 2 illustrates five studies utilizing PSMA PET/CT-derived radiomic models in PC
staging [8,22–25]. Three studies [22,24,25] (66.7%) utilized 68-Ga-PSMA-11 imaging and
two [8,23] (33.3%) utilized Fluoride-18-PSMA-11 imaging alterations and biopsy Gleason
score [25]. Sample sizes in these studies ranged from 10 patients [25] to 173 patients [23]
and final models included the highest number of features selected when compared to other
published PSMA-derived radiomic models (range: 70–336 features selected). Most studies
(n = 4, 80.0%) delineated the prostate as the region of interest during image processing, with
only one [22] utilizing intra-prostatic lesions. All studies were internal validations between
training and testing cohorts, or cross-validations, and external validation was not included.

ROC-AUC of the final radiomic models ranged from 0.719 to 0.84. Kesch et al. reported
that lower ADC values correlated with increasing tumor aggressiveness but did not include
a predictive model in their analysis [25].

3.2.3. Prediction of Adverse Pathology following Radical Prostatectomy

Table 3 summarizes the seven studies utilizing PSMA PET/CT-derived radiomics
in the identification and prediction of adverse pathology. Of the studies included, five
(71.4%) utilized PSMA PET/CT-derived radiomics to predict adverse pathology (i.e., GS,
LNI, and ECE) following RP (Table 3) [6,28,30,31]. Three (42.9%) studies reported on
LNI [6,28,29], five (71.4%) reported on GS characterization [27–30], and one (14.3%) reported
ECE [28]. Zamboglou et al. used both GS and LNI as their primary endpoint [29], while
Cysouw et al. also included any metastasis and ECE [28]. Furthermore, Zamboglou and
colleagues focused on detecting “visually undetectable” lesions that were initially missed
upon scanning. Solari, Tu, and Papp et al. utilized PSMA PET/MRI-derived radiomics to
predict adverse pathology (specifically, through GS characterization) following RP. Of the
seven studies, Papp et al. was the only one to use a dual tracer with 68-Ga-PSMA-11 and
18-F-DCFPyL [28,30].

Within these studies, four also included secondary classification of GS risk
groups [26–30]. Solari and colleagues compared radiomic features extracted from different
imaging sequences (i.e., T1w, T2w, and ADC) and found that the PET + ADC radiomics
model outperformed other double and single modalities [27]. In determining regions of
interest, two studies utilized the whole prostate [27,28] and two utilized intraprostatic
lesions [29,30].

Overall, the ROC-AUC of final radiomic models ranged from 0.81 to 0.86, with only
Zamboglou et al. performing external validation. For the prediction of GS 7 versus ≥8,
their model yielded an ROC-AUC on a training set of 0.91 and an ROC-AUC on a testing set
of 0.84 [29]. The ROC-AUC on training sets ranged from 0.87 to 0.89, while the ROC-AUC
on testing sets ranged from 0.85 to 0.95. Cysouw and colleagues used Random Forest for
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the prediction of LNI, which yielded an AUC of 0.86; additionally, they reported ECE,
which yielded an AUC of 0.76 [28].

3.2.4. Prediction of Prostate Cancer Recurrence

Table 4 provides a summary of the seven studies predicting PC recurrence following RP
(n = 2, 28.6%) [2,30] and following radiation (n = 5, 71.4) [3,32–35]. Of these seven studies, six
(86.0%) used PSMA PET/CT-derived radiomics to primarily predict biochemical recurrence
(BCR), treatment response, and overall survival. Tran et al. was the only study that focused
on predicting treatment response solely to ADT: patients received 3 months of ADT with
6 months remaining and had no prior RP or radiation [12].

Three studies (42.9%) reported on BCR [2,30,32], three (42.9%) reported on treatment
response [3,12,33], and three (42.9%) reported on overall survival (OS) [32,34,35]. Assadi
et al. used both BCR and OS as primary endpoints [32]. Within the eight studies, four
(57.1%) delineated the prostate [2,12,32,34] as the region of interest, while three (42.9%)
delineated intraprostatic lesions [3,27,33,35].

Overall, feature extraction and selection were most commonly performed via Random
Forest [32,35] and the ROC-AUC of final radiomic models ranged from 0.698 to 0.90. Tran
et al. identified specific radiomic features that helped distinguish responders to ADT in all
three zones of the prostate (p = 0.012–0.038), but no aggregated model was supplied [12].
Similarly, Moazemi and colleagues found that features representing SUVmin, kurtosis,
calculated RS, and SUVmean were statistically significant (p-value < 0.05) in predicting
OS [35].

4. Discussion

Given the recent approval and addition of the PSMA PET/CT scan to the PC clinical
care pathway, the progression to PSMA PET/CT-derived radiomics in risk stratification
and personalized management of PC is a logical and potentially transformative advance-
ment. Much of the groundwork for radiomic-related machine learning models has been
established with years of investigation via multiparametric MRI imaging [1,2,24,36] and,
given this, it is unsurprising that all the articles reviewed herein were accomplished within
the last three years following FDA approval of the 68-Ga-PSMA PET/CT in PC patients [4].
Keeping in mind that image interpretation and segmentation is limited by interobserver
variability, the use of radiomic models has the potential to enhance diagnostic performance.
Even further, recent advances in automated segmentation [23] and image preprocessing [27]
may further facilitate efficient clinical integration should an adequately validated model
be achieved.

A clear focus of PSMA PET/CT-derived radiomics has been in prediction of surgical
pathology [6,26–31], treatment outcomes [2,3,7,12,30,32–35], progression, or survival [32,34,35].
This is in stark contrast to several recent reviews of mpMRI-derived radiomic models [1,2,36],
which have concentrated on the initial diagnosis and staging of PC. While this is perhaps
partially due to differences in indication between mpMRI imaging versus PSMA PET/CT
scans, it may also be indicative of anticipated clinical utility and potential integration into
patient management. The prediction of long-term outcomes such as recurrence, progression,
and survival offer the potential to alter patient management and encourage multimodal
treatment. Of the 23 investigations included in the present review, 18 (78.3%) utilized PSMA
PET/CT-derived radiomics for such predictions; even further, a higher proportion of recent
investigations (2022 and after) concentrated on these outcomes, as compared to earlier in-
vestigations aiming to supplement Gleason score risk stratifications and the identification of
positive intraprostatic lesions on prostate biopsy [25,29].

Overall, most of the included studies illustrated good-to-excellent ROC-AUC values,
highlighting the potential for PSMA PET/CT-derived radiomics. Compared to previous
review articles reporting on mpMRI-derived radiomic models, the studies yielded higher
ROC-AUC values with sensitivity ranging from 64 to 82% and specificity ranging from 73
to 82%. Even further, a few studies compared PSMA PET/CT-derived radiomic models
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to standard clinical risk stratification tools and found significant improvement with the
inclusion of radiomic features [19,32]. Lastly, one exploration by Assadi in 2022 constructed
a clinicopathologic-radiomic nomogram to predict biochemical recurrence following 177Lu-
PSMA treatment, yielding an impressive ROC-AUC of 0.827 [32].

While these studies represent promising avenues for the use of PSMA PET-CT-derived
radiomics in predicting high-risk features, it is unclear whether radiomics can outperform
the visual assessment of PSMA PET/CT by experienced radiologists. Of the four studies on
the prediction of PC diagnosis, for example, only two (50%) performed a direct comparison
between the performance of the radiomic model with that of the radiologists’ reading [19,21].
The radiomic model by Hinzpeter et al., for example, detected only 90% of the PSMA-
avid metastases identified by radiologists [21]. While this leaves the percentage of newly
detected metastases to be desired, direct comparison between radiomics and gold standard
procedures ought to be considered in future study designs.

As the field of radiomics continues to mature, it is clear that the direct prediction of
treatment outcomes is a topic of close exploration. However, given the long natural life
history of PC and long follow-up needed to provide reliable clinical information, many of
the papers included herein elected to utilize short-term metrics closely correlated with re-
currence, progression, and survival outcomes. While many of these metrics are established
strong predictors, it is important to note that they are not perfect 1:1 predictors. As such, we
caution that the interpretation of models reporting excellent correlation with these interim
predictors should be considered within this context. Furthermore, as the methodology of ra-
diomics is a pipeline of operations and each operation can be modified, subsequent models
are sensitive to these modifications and investigations on radiomic variability, robustness,
and reproducibility are required during the interpretation of results [37–39]. The literature
included in this review is of no exception and, as such, conclusions are limited by small
sample sizes [21,22,24,25], the inclusion of single institutions without external validation,
and high variability in image preprocessing and during the identification of regions of
interest. Cross-validation, resampling, and multiple segmentations were employed by
many of these studies [2,3,6,7,18–20,22,26–28,30,33], but the fragility of radiomic features
and the variability between models ought best to be addressed via external validation
and reproducibility. Despite these concerns, however, of the 23 studies included in the
present review, only 2 (8.7%) performed external validation of the radiomic model in an
external cohort of patients. As we consider future efforts for study design and validation,
we also caution against the inclusion of different PSMA tracers in these studies, as the
added layer of variability in tracer sensitivity and specificity may influence results. Given
the relative infancy of PSMA PET/CT-derived radiomics in PC, stepwise improvements in
study design will facilitate increased generalizability, validation, and clinical integration.

Finally, as exemplified by the present review, the traditional radiomics pipeline pro-
poses an imaging-derived signature of disease outcome and seeks to subsequently develop
and validate a predictive model in an independent training set. Although these models
may prove to be robust predictors of a given outcome, clinical integration demands further
evidence of a biologic relationship and/or molecular mechanism. As the field of radiomics
continues to grow and develop, intersectionality with histology [39,40], pathology [41,42],
and genomics [43,44] offers high potential for biologic validation and improved clinical
interpretability of radiomic models. Correlation with local pathologic analysis, for example,
can provide a direct comparison of quantitative, pathologic features to explain structural
characteristics underlying radiologic textures. Even further, correlations with genomic data
can provide a link to the molecular pathways underlying tumor biologic characteristics.
These explorations would not only facilitate a comprehensive understanding of the inter-
play between macroscopic imaging features and microscopic tissue properties, but they
can also facilitate the translation of radiomic findings into clinically actionable insights.
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5. Conclusions

Given the recent approval and integration of PSMA PET/CT into the PC clinical care
pathway, PSMA PET/CT-derived radiomics offers high potential for improved PC risk
stratification and prediction of treatment response. However, while current studies show
promise in predicting PC diagnosis, biopsy features, pathology, and treatment outcomes,
these explorations are limited by small sample sizes and a lack of external validation. As
the field of radiomics continues to mature, concerted efforts to enhance the reproducibility
of radiomics and biologically validate these radiomic models must be pursued prior to
clinical integration.
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